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Abstract

We present an optimization algorithm that can identify a global minimum of a potentially nonconvex smooth
function with high probability, assuming the Gibbs measure of the potential satisfies a logarithmic Sobolev
inequality. Our contribution is twofold: on the one hand we propose a global optimization method, which is
built on an oracle sampling algorithm producing arbitrarily accurate samples from a given Gibbs measure. On
the other hand, we propose a new sampling algorithm, drawing inspiration from both overdamped and under-
damped Langevin dynamics, as well as from the high-resolution differential equation known for its acceleration
in deterministic settings. While the focus of the paper is primarily theoretical, we demonstrate the effectiveness
of our algorithms on the Rastrigin function, where it outperforms recent approaches.

1 Introduction
Smooth nonconvex optimization remains a challenge with broad applications in machine learning and statistical
inference. Despite significant advances, convex optimization techniques often lead to suboptimal or computationally
infeasible solutions in many inherently nonconvex real-world problems.

In this paper, we focus on the unconstrained global minimization problem: given a smooth nonconvex potential
U : Rd → R, we search for a point x∗ such that

x∗ ∈ argminx∈Rd U(x),

assuming such a point exists.

A recent trend in optimization consists of studying continuous-time versions of algorithms to obtain better estimates
for their discrete-time counterparts. Notable progress has been made in accelerating convergence of first-order op-
timization methods by analyzing second-order dynamical systems in their continuous-time formulation. In specific,
we shall interest ourselves in the high-resolution differential equation, given by

ẍ(t) + αẋ(t) + β∇2U(x(t))ẋ(t) + γ∇U(x(t)) = 0, (1)

where α, β, γ > 0 could in principle depend on time, but are supposed constants as indicated by the notation.
Equation (1) has the advantage of incorporating Nesterov’s inertial scheme (Nesterov, 1983) as a discretization,
amongst others. Equation (1) was originally introduced in Alvarez et al. (2002) and has since been further explored
in Attouch et al. (2016, 2022) to develop new first-order algorithms with faster convergence rates, in the convex
setting.

By introducing y(t) = ẋ(t) + β∇U(x(t)), we can rewrite Equation (1) as a first-order system{
ẋ(t) = −β∇U(x(t)) + y(t)

ẏ(t) = −γ∇U(x(t))− αy(t).
(2)

This reformulation has the benefit of not requiring the Hessian of U , making it more user-friendly, whilst still
preserving the favourable convergence results.
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However, deterministic models like System (2) may struggle when the potential U is nonconvex, as they can become
trapped in local minima and fail to identify the global minimizer. To overcome this limitation, it has been proposed
to add stochasticity to the dynamics to enable them to escape local minima. This stochasticity can come in the
form of random perturbations, encouraging the dynamics to navigate through more complex, potentially nonconvex,
landscapes. This perspective naturally leads us to consider stochastic differential equations, specifically the Langevin
dynamics (Langevin, 1908), which combine the advantages of gradient flows with stochastic elements. Rather than
the iterates of these dynamics, we study their law, and hope for it to concentrate around the global minimizers of the
potential. This pushes us towards sampling problems, where we aim to produce samples from a given distribution
µ ∝ exp(−U).

Many problems in statistics require sampling from probability distributions. Sampling through the Langevin dy-
namics is a well-studied approach when the target distribution is strongly log-concave (or equivalently, when the
potential is strongly convex) (see Durmus and Moulines (2016); Dalalyan and Karagulyan (2019); Cheng et al.
(2018); Dalalyan and Riou-Durand (2020) and the references therein), and has recently also been studied in the
non log-concave setting, when it, for instance, verifies a log-Sobolev inequality (Vempala and Wibisono, 2019; Ma
et al., 2021), a Poincaré inequality (Chewi et al., 2022), a weak Poincaré inequality (Mousavi-Hosseini et al., 2023),
or even in the fully nonconvex setting (Balasubramanian et al., 2022).

The simplest variant of the Langevin dynamics is the overdamped Langevin dynamics, governed by

dXt = −γ∇U(Xt)dt+
√

2γdBt,

where (Bt) is standard Brownian motion, γ > 0 is a free parameter and U is the negative logarithm of the
distribution we wish to sample from. Under weak assumptions, the invariant distribution of the dynamics is exactly
µ ∝ exp(−U). Convergence of the Euler discretization of the overdamped Langevin dynamics in Wasserstein-2
distance under strong convexity of U was shown in Durmus and Moulines (2016), and convergence in Kullback-
Leibler divergence under a log-Sobolev assumption on µ in Vempala and Wibisono (2019). Accelerated rates may
be obtained under different discretizations Dalalyan and Karagulyan (2019).

A different approach to faster convergence involves the underdamped Langevin dynamics, governed by the stochastic
differential equation {

dXt = Vtdt

dVt = (−γ∇U(Xt)− Vt)dt+
√
2γdBt,

where Vt represents the velocity. Under weak assumptions, the invariant measure is µ(x, y) ∝ exp(−U(x) −
∥y∥2/(2γ)). Accelerated convergence for the standard Euler-Maruyama discretization with respect to the over-
damped dynamics was shown in Wasserstein-2 distance in the strongly log-concave case by Cheng et al. (2018) and
in Kullback-Leibler divergence under a log-Sobolev inequality by Ma et al. (2021). We again note that different
discretizations are possible, we cite for instance Dalalyan and Riou-Durand (2020) and Schuh and Whalley (2024).

Sampling algorithms for optimization were first introduced for strongly convex potentials in Dalalyan (2017), and
further studied in Raginsky et al. (2017); Xu et al. (2018); Zhang et al. (2017); Tzen et al. (2018), in the nonconvex
setting. All of these focused on discretizations of the overdamped Langevin dynamics. The underdamped Langevin
dynamics have also been studied, we refer to Gao et al. (2018) and Borysenko and Byshkin (2021) for more details.
Discretizations of other underlying processes were investigated in Zhang (2024). As we do not delve into global
optimization inspired by Langevin dynamics without sampling methods, we refer interested readers to Chen et al.
(2024) and the references therein.

1.1 Contribution
The contributions of the paper are the following:

1. We design a global optimization algorithm capable of minimizing nonconvex functions and obtaining arbitrarily
accurate solutions with high probability. This optimization algorithm relies on an oracle sampling algorithm.

2. We propose a new variant of the classical Langevin dynamics, both for continuous-time and discrete-time.
The dynamics is inspired by the first-order high-resolution System (2), which is known to exhibt accelerated
convergence rates in the deterministic convex setting. This sampling algorithm will then serve as oracle
algorithm in our global optimization algorithm.
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1.2 Structure
Section 2 introduces notation and preliminaries. Section 3 is dedicated to the design of our global optimization
algorithm. In Section 4 we study a novel continuous- and discrete-time dynamics, and formulate the sampling
results. Finally, in Section 5, we illustrate our results numerically on the Rastrigin function, where we improve on
current methods. Technical results and proofs are provided in the appendix.

2 Notation and Assumptions
The following standing assumptions on the potential U : Rd → R will be valid throughout the paper:

• U is twice differentiable, L-smooth and has Lipschitz continuous and bounded Hessian.

• There exists an a0 > 0 such that exp(−a0U) is integrable.

• U has a nonzero finite number of global minimizers, and admits no global minimizers at infinity. We define
its minimal value to be U∗.

Let ∥ · ∥ denote the Euclidean norm on Rd and P(Rd) denote the space of probability measures on Rd. With abuse
of notation, we shall denote interchangeably by µ ∈ P(Rd) the probability distribution and its density function with
respect to the Lebesgue measure, in the case where it exists. For a given potential U : Rd → R and reals a ≥ a0
and b > 0, we define µa ∈ P(Rd) and µa,b ∈ P(R2d) to be the probability distributions whose densities satisfy

µa(x) ∝ exp(−aU(x)) and µa,b(x, y) ∝ exp

(
−aU(x)− b

∥y∥2

2

)
,

which are well-defined, by assumption.

Given a distribution µ ∈ P(Rd), we denote by

EX∼µ[f(X)] =

∫
Rd

f(x)µ(dx)

the expected value of f(X) where X ∼ µ. Whenever the random variable is clear from context, we shall abbreviate
this to Eµ[f(X)], or when the distribution is clear from context to E[f(X)].

Let µ,ν ∈ P(Rd) both have a density with respect to the Lebesgue measure and have full support. We define the
total variation distance between µ and ν as

∥µ− ν∥TV = sup {|Eµ[f ]− Eν [f ]| : ∥f∥∞ ≤ 1} .

We define the Kullback-Leibler divergence of µ with respect to ν as

KL(µ∥ν) = EX∼µ

[
log

µ(X)

ν(X)

]
.

Moreover, we define their relative Fisher information as

Fi(µ∥ν) = EX∼µ

[∥∥∥∥∇ log
µ(X)

ν(X)

∥∥∥∥2
]
.

Finally, we define the Wasserstein-2 distance between µ and ν as

W2(µ,ν) =

(
inf

ζ∈Γ(µ,ν)
E(X,Y )∼ζ

[
∥X − Y ∥22

])1/2

,

where Γ(µ,ν) is the set of couplings of µ and ν, namely the set of distributions ζ ∈ P(R2d) such that ζ(A×Rd) =
µ(A) and ζ(Rd×A) = ν(A) for all A ∈ B(Rd). The infimum is always attained, and we call the minimizers optimal
couplings. For a comprehensive introduction on the subject, see Villani (2009).

A standard assumption in literature when dealing with nonconvex sampling is a logarithmic Sobolev inequality
(Vempala and Wibisono, 2019; Ma et al., 2019, 2021), which may be viewed as a Polyak-Łojasiewicz inequality on
the space of probability measures (Liu et al., 2023). A log-Sobolev inequality on µ with coefficient ρ states that,
for all ν ∈ P(Rd),

KL(ν∥µ) ≤ 1

2ρ
Fi(ν∥µ). (3)
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Remark 2.1. The notion of a logarithmic Sobolev inequality as presented in Inequality (3) was originally introduced
in Feissner (1972) for Gaussian measures, and extended in Gross (1975) for general measures. All strongly log-
concave probability distributions satisfy the inequality (Bakry and Émery, 1985), which is stable under bounded
perturbations (Holley and Stroock, 1987), convolutions and mixtures (Ledoux, 2006), although this might come at
the expense of the constant. In the case of mixtures of Gaussians of equal variance, the log-Sobolev constant has
an exponential dependency in the problem dimension (Menz and Schlichting, 2014; Schlichting, 2019). Moreover,
measures with potentials which are strongly convex outside of a ball satisfy a log-Sobolev inequality (Ma et al., 2019),
although the constant may again have an exponential dependency in the dimension.

Assumption 2.2. The Gibbs measures µa,b of U : Rd → R satisfy a logarithmic Sobolev inequality with coefficients
ρa,b > 0, for all a ≥ a0 and b > 0.

Remark 2.3. Verifying the logarithmic Sobolev inequality for each a ≥ a0 may be challenging in general. However,
it is satisfied if U = V + F , where V is strongly convex and F is bounded, as strongly convex potentials induce a
Gibbs measure satisfying the log-Sobolev property, which is stable under bounded perturbations. By convolution, the
inequality for µa,b is satisfied as soon as it is for µa.

We now recall Pinsker’s Inequality (Pinsker, 1964), which relates the Kullback-Leibler divergence and the total
variation distance.

Theorem 2.4 (Pinsker’s Inequality). For any two µ,ν ∈ P(Rd), it holds that

∥µ− ν∥TV ≤
√

KL(ν∥µ)
2

.

We finish this section by recalling McDiarmids’s Inequality (McDiarmid et al., 1989) in the single-variable case,
namely

Lemma 2.5. Let f : Rd → R satisfy Osc(f) < +∞. Then, for any random variable X, it holds that

P(E[f(X)]− f(X) ≥ ε) ≤ exp

(
− 2ε2

Osc(f)2

)
.

3 Optimization
The idea behind the global optimization algorithm is to sample from a distribution that produces samples close to
global minimizers. Specifically, we define µ∗ ∈ P(Rd) to be a mixture of Dirac measures concentrated around the
global minimizers of U with weights as defined in (Hasenpflug et al., 2024, Equation 18). As such, by Hasenpflug
et al. (2024), under technical assumptions listed in Assumption 3.1, there exists a constant C > 0, depending on U
only, satisfying

W2(µ
a,µ∗) ≤ C · a−1/4. (4)

As such, an approximate sample from µa will yield samples close to global minimizers. Concretely, we suppose we
have access to a distribution µ̃ satisfying

KL(µ̃∥µa) ≤ ε2/18, (5)

for some ε > 0, and that we can draw samples from µ̃.

We are now ready to introduce our global optimization algorithm, dependent on a yet unspecified oracle sub-
algorithm, corresponding to a sample from µ̃.

Algorithm 1 Global Optimization Algorithm
Require: Oracle algorithm.
1: Generate N random i.i.d. samples X̃(i) according to oracle algorithm where i = 1, . . . , N .
2: Set X̃ = X̃(I) for I = argmini=1...,N U(X̃(i)).

We add the following set of assumptions, under which Equation (4) holds:

Assumption 3.1. We assume
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1. There exists a global minimizer x̂ of U satisfying∫
Rd

∥x− x̂∥2 exp(−U(x))dx < +∞.

2. U is 6-times continuously differentiable on a set F ⊂ Rd such that all global minimizers are contained in the
interior of F .

3. The Hessian of U is positive definite at each global minimizer.

With these results at hand, we may prove convergence in probability of Algorithm 1.

Theorem 3.2. Let U : Rd → R satisfy Assumptions 2.2 and 3.1. Fix ε ∈ (0, 1/2), δ ∈ (0, 1), and suppose

a ≥ max

(
a0,

9C4L2

ε2

)
and N ≥ 18 ln(1/δ)

ε2
. (6)

Suppose we have access to an oracle algorithm that can produce a sample from µ̃, where µ̃ satisfies (5). Then, if
X̃ is simulated according to Algorithm 1 with the same oracle algorithm, it holds that

P(U(X̃)− U∗ ≥ ε) ≤ δ.

Remark 3.3. A natural choice for the oracle algorithm producing samples X̃(i) satisfying (5) is an iterative sampling
algorithm, producing the sample in K iterations. The total complexity to produce the sample X̃ is then of K · N ,
with the possibility of parallelization when N > 1. For a fixed computational budget, there is a trade-off between
the number of iterations K and the number N of samples, as indicated by Equation (8) below, where the number of
iterations K will control how small the probability P(U(X̃(1)) ≥ ε) is. Therefore, the number of iterations K should
be big enough if one wants to ensure that increasing the number of samples N leads to improved accuracy.

Proof. Without loss of generality, set U∗ = 0.

Let X̃(i) for i = 1, . . . , N be N i.i.d. copies generated according to the oracle algorithm, such that X̃ = X̃(I) where
I = argmini=1,...,N U(X̃(i)).

Note that, for any i = 1, . . . , N ,

1− e−U(X̃(i)) = 1− e−E[U(Xa)] (7a)

+ e−E[U(Xa)] − E[e−U(Xa)] (7b)

+ E[e−U(Xa)]− E[e−U(X̃(i))] (7c)

+ E[e−U(X̃(i))]− e−U(X̃(i)). (7d)

Term (7a) is bounded by L-smoothness as

E[U(Xa)] = E[U(Xa)− U(X∗)] ≤ E
[
∇U(X∗)(Xa −X∗) +

L

2
∥Xa −X∗∥2

]
=

L

2
W 2

2 (µ
a,µ∗) ≤ LC2

2
√
a

≤ ε

6
,

where X∗ ∼ µ∗ such that ∇U(X∗) = 0 almost surely, and (Xa, X∗) ∼ ζ∗ for ζ∗ an optimal coupling between µa

and µ∗. As such, using that 1 − e−x ≤ x, we obtain that (7a) is bounded by ε/6. Moreover, as x 7→ exp(−x) is
convex, (7b) is nonpositive, by Jensen’s inequality. Since x 7→ exp(−U(x)) is bounded by 1, (7c) is bounded as

E
[
e−U(Xa)

]
− E

[
e−U(X̃(0))

]
≤ ∥µ̃− µa∥TV ≤

√
KL(µ̃∥µa)

2
≤ ε

6
,

where the second step uses Pinsker’s Inequality 2.4.

Finally, by considering all the bounds on (7), we have

P
(
1− e−U(X̃(i)) ≥ ε/2

)
≤ P

(
E[e−U(X̃(i))]− e−U(X̃(i)) ≥ ε/6

)
≤ exp(−ε2/18) ≤ δ1/N ,
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where the third inequality follows by Lemma 2.5, as x 7→ e−U(x) takes values in [0, 1]. For x ∈ [0, 1/2], it holds that
1− e−x ≥ x/2, and hence

P(U(X̃(i)) ≥ ε) ≤ P
(
1− e−U(X̃(i)) ≥ ε/2

)
≤ δ1/N .

As X̃ = X̃(I) where I = argmini=1,...,N U(X̃(i)), and (X̃(i))i=1,...,N are i.i.d., it holds that

P(U(X̃) ≥ ε) = P(U(X̃(1)) ≥ ε)N ≤ δ, (8)

as wanted.

Remark 3.4. In Theorem 3.2 , the bound of ε < 1/2 is merely artificial to the proof. Indeed, by scaling U one can
obtain similar results, up to a constant factor, for any value of ε > 0.

Algorithm 1 depends on a yet unspecified oracle algorithm. A new such oracle algorithm is discussed in Section 4
(Corollary 4.5).

4 High-Resolution Langevin

4.1 Continuous-Time Study
Aiming to build an algorithm with accelerated convergence rate for nonconvex sampling, we introduce the High-
Resolution Langevin Dynamics, inspired by the high-resolution differential equation given by System (2). Let
(Ω,F ,P) be a filtered probability space and consider the following stochastic differential equation:dXt = (−β∇U(Xt) + Yt)dt+

√
2σ2

xdB
x
t

dYt = (−γ∇U(Xt)− αYt)dt+
√
2σ2

ydB
y
t ,

(9)

where (Bx, By) is a standard 2d-dimensional Brownian motion, (X0, Y0) ∼ µ0 for some initial distribution µ0, and
α, β, γ, σ2

x, σ
2
y > 0. As the drift coefficient is Lipschitz continuous, System (9) has a unique solution (Friedman, 1975).

We denote the joint law of (Xt, Yt) by µt, which is known to have a twice continuously differentiable density with
respect to the Lebesgue measure, as the drift coefficient has Lipschitz continuous and bounded gradient (Menozzi
et al., 2021).

Remark 4.1. System (9) is equivalent to

dZt = −
(
β/a −1/b
γ/a α/b

)
∇H(Zt)dt+ 2

(
σ2
x 0
0 σ2

y

)
dBt,

where Zt = (Xt, Yt) and H(z) = H((x, y)) = aU(x)+b∥y∥
2

2 . As such, System (9) may be viewed as a preconditionned
Langevin dynamics in a larger space on the extended function H.

Moreover, we see the difference between System (9) and the underdamped Langevin dynamics, through the presence
of additional noise.

Finally, as σ2
x, σ

2
y → 0, we recover the deterministic System (2), which exhibits accelerated convergence.

We now study the convergence in KL divergence of System (9), similarly to what was done in Ma et al. (2021). A
byproduct of the proof (see Appendix A.1) is the uniqueness of the invariant measure.

Theorem 4.2. Let U : Rd → R, and let a ≥ a0 and b, α, β, γ, σx, σy > 0 satisfy

a =
β

σ2
x

, b =
α

σ2
y

and
a

b
= γ. (10)

Then

1. System (9) admits a weak solution (Xt, Yt) which has as invariant law µa,b.

2. If µa,b satisfies a log-Sobolev inequality with constant ρ > 0,

KL(µt∥µa,b) ≤ KL(µ0∥µa,b) · e−2ρmin(σ2
x,σ

2
y)t.

In specific, provided σ2
x, σ

2
y > 0, we obtain KL(µt∥µa,b) → 0 at exponential rate as t → ∞, and the invariant

law µa,b is unique.
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4.2 Discrete-Time Study
Consider the following Euler-Maruyama discretization process of System (9):dX̃t = (−β∇U(X̃kh) + Ỹt)dt+

√
2σ2

xdB
x
t

dỸt = (−γ∇U(X̃kh)− αỸt)dt+
√
2σ2

ydB
y
t ,

(11)

for t ∈ [kh, (k + 1)h], where h > 0 is the step-size and µ̃0 is the initial distribution, such that (X̃0, Ỹ0) ∼ µ̃0. We
define µ̃t = L((X̃t, Ỹt)).

Conditionally on (X̃kh, Ỹkh), System (11) describes an Ornstein-Uhlenbeck process for t ∈ [kh, (k + 1)h]. We may
thus simulate µ̃(k+1)h by sampling an appropriate Gaussian random variable. The explicit computations leading to
Algorithm 2 are presented in Appendix A.2.

Algorithm 2 High-Resolution Sampling Algorithm
Require: An initial distribution µ̃0 ∈ P(R2d).
1: Simulate (X̃0, Ỹ0) ∼ µ̃0.
2: for k = 0, . . . ,K − 1 do
3: Generate (X̃(k+1)h, Ỹ(k+1)h) ∼ N (m,Σ) independently from previous iterates, where

mX = X̃kh − βh∇U(X̃kh) +
1− e−αh

α
Ỹkh − γ

α

(
h− 1− e−αh

α

)
∇U(X̃kh)

mY = e−αhỸkh − γ

α
(1− e−αh)∇U(X̃kh)

ΣXX =
σ2
y

α3

[
2αh− e−2αh + 4e−αh − 3

]
· Id + 2σ2

xh · Id

ΣY Y =
σ2
y(1− e−2αh)

α
· Id

ΣXY = ΣY X =
σ2
y(1− e−αh)2

α2
· Id.

4: end for
5: return (X̃Kh, ỸKh).

Our result, as well as our analysis, is comparable to Vempala and Wibisono (2019), who studied the highly over-
damped Langevin Dynamics. The more precise result and its derivation are given in Appendix A.3.

Theorem 4.3. Let ε > 0, a ≥ a0, b > 0 and assume (10) holds. If a log-Sobolev inequality on µa,b with parameter
ρ > 0 holds, and h ≲ O(ρ), then there exist

Ã = O(ρ), B̃ = O(a2d/ρ) and B̂ = O(a2d),

such that
KL(µ̃h∥µa,b) ≤ e−Ãh KL(µ̃0∥µa,b) + B̂h2,

and, for all K ≥ 1,
KL(µ̃Kh∥µa,b) ≤ e−ÃKh KL(µ̃0∥µa,b) + B̃h. (12)

As an immediate corollary we obtain sufficient conditions on the step-size and the number of iterations to obtain
an ε-accurate sample.

Corollary 4.4. Let ε > 0, a ≥ a0, b > 0 and assume (10) holds. If a log-Sobolev inequality on µa,b with parameter
ρ > 0 holds, then KL(µ̃Kh∥µa,b) ≤ ε for

h ≲ Õ
( ρε

a2d

)
and K ≳ Õ

(
da2

ρ2ε

)
.

Proof. Bound each term in Equation (12) by ε/2.
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We are now ready to complement Theorem 3.2, by replacing the oracle algorithm by Algorithm 2.

Corollary 4.5. Let U : Rd → R satisfy Assumptions 2.2 and 3.1, and fix ε ∈ (0, 1/2) and δ ∈ (0, 1). Suppose (6)
holds, and that X̃ is simulated according to Algorithm 1 with K iterations of Algorithm 2 being used for the oracle
sub-procedure. It holds that

P(U(X̃)− U∗ ≥ ε) ≤ δ,

for

h ≲ Õ
(
ρa,bε

2

a2d

)
and K ≳ Õ

(
da2

ε2ρ2a,b

)
.

Remark 4.6. As in Remark 3.4, the results in Corollary 4.5 immediately extend to any ε > 0.

5 Numerical Results
All numerical experiments have been performed in Python 3.8 and were run on the EDF Cronos HPC cluster1. Our
theoretical study does not answer the question of the optimality of the parameter choice, which we leave for future
works. Given a > 0, we fix α = 1, β = 1, b = 10, γ = a/10, σ2

x = 1/a and σ2
y = 0.1. The remaining parameters,

namely the number of samples N , the number of iterations K and the step size h, will vary with the experiments.
The number of runs over which we compute empirical probabilities is denoted by M . The code is available on the
authors GitHub page2.

We illustrate the convergence of our algorithm on the Rastrigin function, a classical example of a highly multimodal
function with regularly distributed local minima. Let U : Rd → R be given by

U(x) = d+ ∥x∥2 −
d∑

i=1

cos(2πxi),

which is minimized in x∗ = (0, . . . , 0) ∈ Rd, with objective value U∗ = U(x∗) = 0. The Rastrigin function for d = 1
and d = 2 are plotted in Figure 1 for illustrative purposes. The Gibbs measure of the Rastrigin function satisfies a
log-Sobolev inequality by Remark 2.3, and it is easy to see it also satisfies Assumption 3.1. We select d = 10 for all
the subsequent experiments.

Figure 1: Rastrigin Function for d = 1 and d = 2.

In Figure 2, we show the empirical probabilities computed over M = 100 runs that U(X̃k) − U∗ ≥ ε, for various
thresholds ε. In each run, a step size h = 0.01, a sample number N = 10 and a maximal number of iterations
K = 14000 have been chosen. The initial distribution is set to µ̃0 = N (3 ·1d, 10 · Id×d). We observe that for smaller
values of a, µa is not representative enough of µ∗ to guarantee the wanted threshold, even after a large number of
iterations. For larger a, the probability converges, with a rate that decreases as a increases. This is expected from
the theory, as µa approaches µ∗ as a increases, but the number of iterations to reach a good estimate of µa also
increases as a increases. These observations qualitatively confirm the results of Corollary 4.5.

1https://www.top500.org/system/179899/
2https://github.com/DanielCortild/GlobalOptimization
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Figure 2: Empirical Probabilities for 14000 Iterations.

Extending the previous results to a larger number of iterations (K = 100000) with larger values of a allows us to
reach better accuracies. These results are depicted in Figure 3, in which we again observe the same global trends
as in Figure 2.

Figure 3: Empirical Probabilities for 100000 Iterations.

In both Figures 2 and 3, we observe a faster convergence to the target µa for smaller a, however the target µa is
further from the true target µ∗, such that the probability converges to a value far from 1. In order to leverage this,
one can update the value of a over the iterations, in the same spirit as simulated annealing. For a given a and a,
we let ak be the value of a at iteration k, where we assume (ak) evolves linearly between a and a in k. In specific
we set

ak =
(K − k) · a− k · a

K
, (13)

where K is the total number of iterations. We select a = 0.1, and vary the final value a. Figure 4 plots the
empirical probabilities for various values of a, now for smaller tolerances. We observe a faster convergence to a
higher accuracy, as expected. For large values of a, the increase from a to a is abrupt, causing the algorithm
to become trapped in local minima. This behavior may originate from the suboptimality of the cooling scheme
described in Equation (13).
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Figure 4: Empirical Probabilities with ak given by Equation (13), after 14000 Iterations.

For a fixed computational effort N ·K, one can choose to put a heavier emphasis on the number of samples N or the
number of iterations K. Table 1 shows a comparison between multiple pairs of (N,K) having a constant product
and the average running best value over all iterates obtained. We observe that it is beneficial to select N small,
although N = 1 is not always optimal. Moreover, N = 1 does not allow for parallelization, contrary to N > 1. This
does align with the observations in Remark 3.3. We leave the study of the optimal combination as a direction of
future work.

Table 1: Average Outcome for Fixed Effort N ·K = 140000, with ak given by Equation (13).
N a = 4 a = 12 a = 20 a = 40
1 0.1401 0.0628 0.0785 0.1409
10 0.1433 0.0476 0.0540 0.1755
100 0.1966 0.2286 1.3114 4.4323
1000 3.6529 8.7814 11.1672 12.5576
10000 16.2062 16.0138 16.0228 16.1602

In Table 2 we compare our results to well-studied variants of simulated annealing. Our algorithm is compared
to Simulated Annealing (SA) as presented in Haario and Saksman (1991), Fast Simulated Annealing (FSA) as
presented in Rubenthaler et al. (2009), Sequential Monte Carlo Simulated Annealing (SMC-SA) as presented in
Zhou and Chen (2013), and Curious Simulated Annealing as presented in Guilmeau et al. (2021). The numerical
values for the four aforementioned methods are extracted from Guilmeau et al. (2021). For a fair comparison we use
the same parameters, namely we perform M = 50 runs with N = 250 samples and K = 500 number of iterations,
and an initial distribution µ̃0 = δ{x0}, where x0 = (1, . . . , 1)T ∈ R10. Table 2 transcribes the average running best
function value and its corresponding standard deviation over the runs. Although at 50 iterations the accuracy of
our algorithm is worse than for the other presented algorithms, the comparison reverses at 500 iterations, where our
method outperforms the state-of-the-art methods by an order of magnitude of 10. In the state-of-the-art simulated
annealing methods, we observe very little improvement between 50 and 500 iterations compared to our algorithm.
This reflects the well-known fact that simulated annealing methods tend to get stuck in local minimizers if the
cooling scheme is not tailored to the problem, issue which our method does not seem to encounter.

Table 2: Comparison to Results in Guilmeau et al. (2021), with ak given by Equation (13).
K SA FSA SMC-SA CSA a = 1 a = 2 a = 3 a = 4 a = 5 a = 6
50 Avg 3.29 3.36 3.26 3.23 15.76 15.30 14.04 13.61 13.40 13.40
50 SD 0.425 0.453 0.521 0.484 2.539 2.262 2.563 2.068 2.306 2.065
500 Avg 2.52 2.64 2.62 2.47 2.56 0.74 0.38 0.32 0.31 0.61
500 SD 0.320 0.304 0.413 0.502 0.549 0.244 0.101 0.095 0.223 0.433

6 Conclusions
The main focus of the paper is on a global optimization algorithm, which produces arbitrarily accurate solution with
high probability. The main assumptions on the potential to be minimized were some regularity assumptions, and a
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log-Sobolev inequality on the Gibbs measure. This global optimization algorithm relies on an oracle sub-algorithm,
which produces samples from a given Gibbs distribution.

For this oracle algorithm, we introduced a new variant of Langevin dynamics, given in System (9). These dynamics
are inspired by the deterministic high-resolution differential equation presented in System (2) to tackle global
optimization in nonconvex settings. Our continuous-time and discrete-time dynamics complement the classical
overdamped and underdamped Langevin methods by adding an additional noise term. We established convergence
properties of the continuous-time dynamics, showing that their invariant measure concentrates around the global
minimizers of the potential U , and developed a practical sampling algorithm through discretization, which provably
converges.

Our theoretical analysis and numerical experiments on the Rastrigin function demonstrate that the proposed method
effectively navigates complex, nonconvex landscapes and can obtain arbitrarily accurate solutions with high prob-
ability.

6.1 Open Questions
Several open questions remain for future work:

1. The parameters of the algorithm were presented in a general form, and the optimal selection of these param-
eters is unclear. This is also the case for the ideal combination of (N,K), as suggested by the results in Table
1.

2. The constant C in Inequality (4) is not explicitly defined in Hasenpflug et al. (2024). An explicit computation
of this constant would enable an explicit bound on the parameters in Theorem 3.2.

3. The cooling scheme outlined in Equation (13) is suboptimal, as evidenced by Figure 4. Further research is
needed to provide a theoretical analysis of the simulated annealing variant of our algorithm. Additionally, the
exploration of an adaptive scheme that increments a only upon achieving convergence could be considered.
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A Deferred Proofs
For a probability measure µ ∈ P(Rd), we use the notation µ(f) := E[f(Z)] where Z ∼ µ and f is an integrable
test function defined on Rd. Given a process Zt ∼ µt, the notation µ0|t(f) denotes the function defined on Rd such
that µ0|t(f)(z) := E[f(Z0)|Zt = z] for any z ∈ Rd.

We start by introducing a lemma that will be used throughout the proofs.

Lemma A.1. Let µt : R≥0 → P(Rd) be a curve. Suppose that vt : R≥0 × Rd → Rd is a sequence of vector fields
satisfying ∂

∂tµt +∇ · (µt · vt) = 0. Then it holds that, for all µ∗ ∈ P(Rd),

d

dt
KL(µt∥µ∗) = Eµt

[〈
∇ log

µt

µ∗ , vt

〉]
.

Proof. See (Ambrosio et al., 2005, Equation 10.1.16).

A.1 Proof of Theorem 4.2
1. Observe that

∇xµ
a,b = −a∇U(x)µa,b, ∇yµ

a,b = −byµa,b,

∇xxµ
a,b = −a∇2U(x)µa,b + a2∥∇U(x)∥2µa,b, ∇yyµ

a,b = (−b+ b2∥y∥2)µa,b.

As such, under the given parameters, one easily checks that

0 = (−aβ + σ2
xa

2)∥∇U(x)∥2 + (a− γb)∇U(x) · y + (−αb+ σ2
yb

2)∥y∥2 + (β − σ2
xa) tr(∇2U(x)) + (α− σ2

yb)

= β tr(∇2)U(x) + a(−β∇U(x) + y) · ∇U(x) + α+ b(−γ∇U(x)− αy)y

+ σ2
x(−a tr(∇2U(x)) + a2∥∇U(x)∥2) + σ2

y(−b+ b2∥y∥2)

=
1

µa,b

(
−∇x · ((−β∇U(x) + y)µa,b(x, y))−∇y · ((−γ∇U(x)− αy)µa,b(x, y)) + σ2

x tr(∂xxµ
a,b) + σ2

y tr(∂yyµ
a,b)
)
.

It thus holds that µa,b satisfies the Fokker-Planck Equation, and must hence be an invariant distribution.

2. The Fokker-Planck Equation associated with System (9) reads

∂tµt = −∇x · ((−β∇U(x) + y)µt(x, y))−∇y · ((−γ∇U(x)− αy)µt(x, y)) + σ2
x∆xxµt + σ2

y∆yyµt

= ∇ ·
[(

σx −1/b
1/b σy

)(
a∇U(x)

by

)
µt

]
+∇ ·

[(
σ2
x −1/b

1/b σ2
y

)
∇µt

]
= ∇ ·

[(
σ2
x −1/b

1/b σ2
y

)[
−∇ logµa,b +∇ logµt

]
µt

]
= ∇ ·

[(
σ2
x −1/b

1/b σ2
y

)
∇ log

(
µt

µa,b

)
µt

]
.

As such, by Lemma A.1, we know that

d

dt
KL(µt∥µa,b) = −Eµt

[〈
∇ log

(
µt

µa,b

)
,

(
σ2
x −1/b

1/b σ2
y

)
∇ log

(
µt

µa,b

)〉]
= −Eµt

[〈
∇ log

(
µt

µa,b

)
,

(
σ2
x 0
0 σ2

y

)
∇ log

(
µt

µa,b

)〉]
≤ −min(σ2

x, σ
2
y)Eµt

[∥∥∥∥∇ log

(
µt

µa,b

)∥∥∥∥2
]
. (14)

In specific, if we assume a log-Sobolev inequality with coefficient ρ, we get

d

dt
KL(µt∥µa,b) ≤ −2ρmin(σ2

x, σ
2
y)KL(µt∥µa,b),

which, by Grönwall’s Inequality, implies

KL(µt∥µa,b) ≤ exp(−2ρmin(σ2
x, σ

2
y)t)KL(µ0∥µa,b),

which means we get convergence as long as σ2
x, σ

2
y > 0.
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A.2 Explicit Computations for Algorithm 2
We first note that we can rewrite System (11) in integral form as, for t ∈ [kh, (k + 1)h),

X̃t = X̃kh − β(t− kh)∇U(X̃kh) +

∫ t

kh

Ysds+
√

2σ2
x

∫ t

kh

dBx
s

Ỹt = e−α(t−kh)Ỹkh − γ

α

(
1− e−α(t−kh)

)
∇U(X̃kh) +

√
2σ2

y

∫ t

kh

e−α(t−s)dBy
s .

(15)

Conditionally on the initial condition (X̃kh, Ỹkh), the process (X̃t, Ỹt)kh≤t≤(k+1)h is an Ornstein-Uhlenbeck process
on [kh, (k + 1)h]. From now on, in this subsection, we always work implicitly conditionally to (X̃kh, Ỹkh). In
particular, L((X̃t, Ỹt)) is Gaussian and it remains to compute the associated expectation and covariance matrix to
fully characterize it.

We thus compute
E[Ỹt] = e−α(t−kh)Ỹkh − γ

α

(
1− e−α(t−kh)

)
∇U(X̃kh),

from which we get that

E[X̃t] = X̃kh − β(t− kh)∇U(X̃kh) +
1− e−α(t−kh)

α
Ỹkh − γ

α

(
t− 1− e−α(t−kh)

α

)
∇U(X̃kh).

Now note that the Brownian motion term for Ỹt is
√
2σ2

y

∫ t

kh
e−α(t−s)dBy

s , whereas the Brownian motion term for

X̃t is √
2σ2

x

∫ t

kh

dBx
s +

√
2σ2

y

∫ t

kh

∫ r

kh

e−α(r−s)dBy
sdr =

√
2σ2

x

∫ t

kh

dBx
s +

√
2σ2

y

∫ t

kh

∫ t

s

e−α(r−s)drdBy
s

=
√
2σ2

x

∫ t

kh

dBx
s +

√
2σ2

y

∫ t

kh

1− e−α(t−s)

α
dBy

s .

As such,

Cov
(
Ỹt, Ỹt

)
= E

[(
Ỹt − E[Ỹt]

)(
Ỹt − E[Ỹt]

)T]
= 2σ2

y · E

[(∫ t

kh

e−α(t−s)dBy
s

)(∫ t

kh

e−α(t−s)dBy
s

)T
]

= 2σ2
y ·
(∫ t

kh

e−2α(t−s)ds

)
· Id

= σ2
y ·

1− e−2α(t−kh)

α
· Id.

Moreover,

Cov
(
X̃t, Ỹt

)
= E

[(
X̃t − E[X̃t]

)(
Ỹt − E[Ỹt]

)T]
= E

[(√
2σ2

x

∫ t

kh

dBx
s +

√
2σ2

y

∫ t

kh

1− e−α(t−s)

α
dBy

s

)(√
2σ2

y

∫ t

kh

e−α(t−s)dBy
s

)T
]

= 2
√
σ2
xσ

2
yE

[(∫ t

kh

dBx
s

)(∫ t

kh

e−α(t−s)dBy
s

)T
]

+
2σ2

y

α
E

[(∫ t

kh

1− e−α(t−s)dBy
s

)(∫ t

kh

e−α(t−s)dBy
s

)T
]

=
2σ2

y

α

(∫ t

kh

(1− e−α(t−s))e−α(t−s)ds

)
· Id

=
σ2
y(1− e−α(t−kh))2

α2
· Id.
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And, finally,

Cov
(
X̃t, X̃t

)
= E

[(
X̃t − E[X̃t]

)(
X̃t − E[X̃t]

)T]
= E

[(√
2σ2

x

∫ t

kh

dBx
s +

√
2σ2

y

∫ t

kh

1− e−α(t−s)

α
dBy

s

)
·(√

2σ2
x

∫ t

kh

dBx
s +

√
2σ2

y

∫ t

kh

1− e−α(t−s)

α
dBy

s

)T
]

= 2σ2
xE

[(∫ t

kh

dBx
s

)(∫ t

kh

dBx
s

)T
]
+ 2σ2

yE

[(∫ t

kh

1− e−α(t−s)

α
dBy

s

)(∫ t

0

1− e−α(t−s)

α
dBy

s

)T
]

= 2σ2
x

(∫ t

kh

ds

)
· Id +

2σ2
y

α2

(∫ t

kh

(1− e−α(t−s))2ds

)
· Id

=

(
2σ2

x +
σ2
y

α3

[
2α(t− kh) + 1− e−2α(t−kh) − 4(1− e−α(t−kh))

])
· Id.

Selecting t = (k + 1)h yields the wanted result.

A.3 Proof of Theorem 4.3
For completion, we introduce the following technical lemma:

Lemma A.2. Consider the Rd-valued random process (Zt) defined through

dZt = b(Z0)dt+ σdWt,

with initial condition Z0 ∼ ν0 for some ν0 ∈ P(Rd). Then νt = L(Zt) is a weak solution of

∂tνt = L∗
tνt,

where

L∗
tη = −

d∑
i=1

∂i(ν0|t(b)η) +
1

2

d∑
i,j=1

∂i,j
(
(σσT )i,jη

)
.

Proof. Let us consider a smooth real-valued function f . Then Ito’s lemma together with the tower property of
conditional expectation yields

E[f(Zt)] = E[f(Z0)] +

∫ t

0

E

 d∑
i=1

E[bi(Z0)|Zs]∂if(Zs) +
1

2

d∑
i,j=1

(σσT )i,j∂i,jf(Zs)

 ds ,

which reads

(νt − ν0)(f) =

∫ t

0

νs

 d∑
i=1

ν0|s(bi)∂if +
1

2

d∑
i,j=1

(σσT )i,j∂i,jf

 ds .

Let L be the differential operator such that

Ltf :=

d∑
i=1

ν0|t(bi)∂if +
1

2

d∑
i,j=1

(σσT )i,j∂i,jf

Then

(νt − ν0)(f) =

∫ t

0

νs(Ltf)ds =

∫ t

0

L∗
tνs(f)ds,

and differentiating yields the wanted result.
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Given the parameters α, β, γ, σ2
x, σ

2
y, a, b, ρ, L, we define

θ := ρmin(σ2
x, σ

2
y),

τ :=
a2L2(σ4

x + b−2)

2min(σ2
x, σ

2
y)

,

A := 12 + 4β2L2 + 4γ2L2,

B := 2σ2
x +

12

b
+

4β2L

a
+ 3σ2

y +
4γ2L

a
,

B̂ := 2τB · d.

(16)

We now introduce the more precise statement of Theorem 4.3.

Theorem A.3. Assume µa,b satisfies a log-Sobolev inequality with constant ρ. Assume (X̃t, Ỹt) follows System
(11), with initial distribution (X̃0, Ỹ0) ∼ µ̃0. Moreover, assume that

h < min

(
1,

1

θ
,

√
θρ

8τA

)
. (17)

Then it holds that
KL(µ̃h∥µa,b) ≤ e−θh/2 KL(µ̃0∥µa,b) + B̂h2, (18)

and for all K ≥ 1,

KL(µ̃Kh∥µa,b) ≤ exp(−θKh/2)KL(µ̃0∥µa,b) +
3B̂h

4θ
. (19)

Proof. Choose h according to Equation (17), and fix some t ≤ h, such that System (11) reduces to
X̃t = X̃0 − βt∇U(X̃0) +

∫ t

0

Ysds+
√

2σ2
x

∫ t

0

dBx
s

Ỹt = e−αtỸ0 −
γ

α

(
1− e−αt

)
∇U(X̃0) +

√
2σ2

y

∫ t

0

e−α(t−s)dBy
s .

(20)

Denote by µ̃t the joint law of (X̃t, Ỹt). Note that in the above process, (X̃0, Ỹ0) is itself a random variable, with joint
law µ̃0. Denote by µ̃0,t the joint law of (X̃0, Ỹ0) and (X̃t, Ỹt), and by µ̃0|t the conditional law L((X̃0, Ỹ0)|(X̃t, Ỹt)).

Applying Lemma A.2 to the process Z̃ = (X̃, Ỹ ) implies that µ̃t satisfies

∂

∂t
µ̃t = ∇ ·

((
σ2
x −1/b

1/b σ2
y

)[(
aµ̃0|t

(
∇U

)
(x, y)

by

)
µ̃t +∇µ̃t

])
= ∇ ·

((
σ2
x −1/b

1/b σ2
y

)[(
a∇U(x)

by

)
+∇ log (µ̃t) +

(
aµ0|t

(
∇U

)
(x, y)−∇U(x)

0

)]
µ̃t

)
= ∇ ·

((
σ2
x −1/b

1/b σ2
y

)[
∇ log

µ̃t

µa,b
+

(
aµ0|t

(
∇U

)
(x, y)−∇U(x)

0

)]
µ̃t

)
.

As such, the vector field given by

vt = −
(
σ2
x −1/b

1/b σ2
y

)(
∇ log

µ̃t

µa,b
+

(
aµ̃0|t

(
∇U

)
(x, y)−∇U(x)

0

))
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is tangent to (µ̃t), and hence, by Lemma A.1, it holds that

d

dt
KL(µ̃t∥µa,b) = −Eµ̃t

[〈
∇ log

µ̃t

µa,b
,

(
σ2
x −1/b

1/b σ2
y

)(
∇ log

µ̃t

µa,b
+

(
aµ̃0|t

(
∇U

)
(X̃t, Ỹt)−∇U(X̃t)

0

))〉]
= −Eµ̃t

[〈
∇ log

µ̃t

µa,b
,

(
σ2
x −1/b

1/b σ2
y

)
∇ log

µ̃t

µa,b

〉]
− Eµ̃t

[〈
∇ log

µ̃t

µa,b
,

(
σ2
x −1/b

1/b σ2
y

)(
aµ̃0|t

(
∇U

)
(X̃t, Ỹt)−∇U(X̃t)

0

)〉]
(21)

= −Eµ̃t

[〈
∇ log

µ̃t

µa,b
,

(
σ2
x 0
0 σ2

y

)
∇ log

µ̃t

µa,b

〉]
− Eµ̃0,t

[〈
∇ log

µ̃t

µa,b
,

(
σ2
x −1/b

1/b σ2
y

)(
a[∇U(X̃0)−∇U(X̃t)]

0

)〉]
≤ −

min(σ2
x, σ

2
y)

2
Fi(µ̃t∥µa,b)

+
1

2min(σ2
x, σ

2
y)
Eµ̃0,t

[∥∥∥∥( σ2
x −1/b

1/b σ2
y

)(
a[∇U(X̃0)−∇U(X̃t)]

0

)∥∥∥∥2
]
, (22)

where the final inequality follows by Young’s Inequality with coefficient min(σ2
x, σ

2
y). Now note that

Eµ̃0,t

[∥∥∥∥( σ2
x −1/b

1/b σ2
y

)(
a[∇U(X̃0)−∇U(X̃t)]

0

)∥∥∥∥2
]
= a2(σ4

x + b−2)Eµ̃0,t
[∥∇U(X̃0)−∇U(X̃t)∥2]

≤ a2L2(σ4
x + b−2)Eµ̃0,t

[∥X̃0 − X̃t∥2].

As such, Equation (22) reads

d

dt
KL(µ̃t∥µa,b) ≤ −

min(σ2
x, σ

2
y)

2
Fi(µ̃t∥µa,b) + τEµ̃0,t

[∥X̃0 − X̃t∥2]. (23)

Now notice that, by the integral Equations (20) and Jensen’s Inequality,

Eµ̃0,t
[∥X̃0 − X̃t∥2] = Eµ̃0,t

[∥∥∥∥βt∇U(X̃0) +

∫ t

0

Ỹsds+
√

2σ2
x

∫ t

0

dB̃s

∥∥∥∥2
]

≤ 2β2t2Eµ̃0,t
[∥∇U(X̃0)∥2] + 2t

∫ t

0

Eµ̃0,t

[
∥Ỹs∥2

]
ds+ 2σ2

xd · t. (24)

Now observe that, for ζ an optimal coupling between µ̃0 and µa,b and for (Xa,b, Y a,b) ∼ µa,b,

Eµ̃0
[∥∇U(X̃0)∥2] ≤ 2Eζ [∥∇U(X̃0)−∇U(Xa,b)∥2] + 2Eµa,b [∥∇U(Xa,b)∥2]

≤ 2L2Eζ [∥X̃0 −Xa,b∥2] + 2Eµa,b [∥∇U(Xa,b)∥2]
= 2L2W0 + 2Eµa,b [∥∇U(Xa,b)∥2], (25)

where W0 = W 2
2 (µ̃0,µ

a,b). Moreover, by denoting Za,b the normalization constant of µa,b,

Eµa,b [∥∇U(x)∥2] =
∫∫

Rd×Rd

∇U(x) · ∇U(x)dµa,b(x, y)

=
1

Za,b

∫
Rd

e−b∥y∥2/2

∫
Rd

∇U(x) · ∇U(x)e−aU(x)dxdy

=
−1

Za,ba

∫
Rd

e−b∥y∥2/2

∫
Rd

∇U(x) · ∇e−aU(x)dxdy

=
1

Za,ba

∫
Rd

e−b∥y∥2/2

∫
Rd

∆U(x)e−aU(x)dxdy

=
1

a
Eµa,b [∆U(Xa,b)]

≤ dL

a
, (26)
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where the third-to-last equality follows from integration by parts, and the final inequality follows from L-smoothness.
Plugging this into (25) then yields

Eµ̃0
[∥∇U(X̃0)∥2] ≤ 2L2W0 +

2dL

a
, (27)

which, replacing in Equation (24), gives

Eµ̃0,t

[∥∥∥X̃0 − X̃t

∥∥∥2] ≤ 2β2t2
(
2L2W0 +

2dL

a

)
+ 2t

∫ t

0

Eµ̃0,t

[∥∥∥Ỹs

∥∥∥2] ds+ 2σ2
xd · t. (28)

By Equations (20)

Eµ̃(0,s)

[∥∥∥Ỹt

∥∥∥2] ≤ 3Eµ̃0

[∥∥∥Ỹ0

∥∥∥2]+ 3γ2Eµ̃0

[∥∥∥∥∫ s

0

∇U(X̃0)dr

∥∥∥∥2
]
+ 6σ2

yEµ̃(0,s)

[∥∥∥∥∫ s

0

e−α(s−r)dBy
r

∥∥∥∥2
]

≤ 6W0 + 6Eµa,b

[∥∥Y a,b
∥∥2]+ 3γ2s2Eµ̃0

[∥∥∥∇U(X̃0)
∥∥∥2]+ 6σ2

yd · s

≤ 6W0 + 6Eµa,b

[∥∥Y a,b
∥∥2]+ 3γ2s2

(
2L2W0 +

2dL

a

)
+ 6σ2

yd · s. (29)

Now we realize that analogous computations to (26) give that

Eµa,b

[∥∥Y a,b
∥∥2] ≤ d

b
,

which, plugged into (29), yields, after rearranging the terms,

Eµ̃t

[
∥Ỹt∥2

]
≤ 6W0

(
1 + γ2L2t2

)
+ 6

d

b
+ 6d · t

(
γ2Lt

a
+ σ2

y

)
.

Returning to Equation (28), we obtain

Eµ̃0,t

[∥∥∥X̃0 − X̃t

∥∥∥2] ≤ 2β2t2
(
2L2W0 +

2dL

a

)
+ 2σ2

xd · t

+ 2t

∫ t

0

(
6W0

(
1 + γ2L2s2

)
+ 6

d

b
+ 6ds

(
2γ2Ls

a
+ σ2

y

))
ds

= 2β2t2
(
2L2W0 +

2dL

a

)
+ 2σ2

xd · t

+ 2t

(
6W0

(
t+

γ2L2t3

3

)
+

6d · t
b

+ 2d · t3 2γ
2L

a
+ 3d · t2σ2

y

)
= W0 ·

[
12t2 + 4β2L2t2 + 4γ2L2t3

]
+ d ·

[
2σ2

xt+
12t2

b
+

4β2L

a
· t2 + 3σ2

y · t3 +
4γ2L

a
· t4
]
.

Using that t ≤ h < 1 and recalling the notation defined in Equation (16), we obtain

Eµ̃0,t

[∥∥∥X̃0 − X̃t

∥∥∥2] ≤ W0 ·A · t2 + d ·B · t.

Combining the above with (23), we obtain

d

dt
KL(µ̃t∥µa,b) ≤ −

min(σ2
x, σ

2
y)

2
Fi(µ̃t∥µa,b) + τ ·W0 ·A · t2 + τ · d ·B · t.

Applying a log-Sobolev inequality, we obtain

d

dt
KL(µ̃t∥µa,b) ≤ −θKL(µ̃t∥µa,b) + τA ·W0 · t2 + τB · d · t.

Rearranging the terms yields

d

dt
eθt KL(µ̃t∥µa,b) ≤ eθtτA ·W0 · t2 + eθtτB · d · t.
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As t ≤ h,
d

dt
eθt KL(µ̃t∥µa,b) ≤ eθtτA ·W0 · h2 + eθtτB · d · h,

which we integrate from 0 to h in t, yielding

eθh KL(µ̃(h)∥µa,b)−KL(µ̃0∥µa,b) ≤ eθh − 1

θ
τA ·W0 · h2 +

eθh − 1

θ
τB · d · h

≤ 2τA ·W0 · h3 + 2τB · d · h2,

where we used ec ≤ 1 + 2c for 0 < c < 1 for c = θh. Using Talagrand’s Inequality (Talagrand, 1996) and denoting
KL0 = KL(µ̃0∥µa,b) gives us that

eθh KL(µ̃(h)∥µa,b)−KL0 ≤ 4

ρ
τA ·KL0 ·h3 + 2τB · d · h2,

This implies that

KL(µ̃(h)∥µa,b) ≤ e−θh KL0 ·
(
1 +

4

ρ
τA · h3

)
+ 2e−θhτB · d · h2,

which implies (18), using (17) and the fact that ln(x) ≤ x− 1 for x > 0.

Iteratively applying the result of (18), we obtain, where KLk = KL(µ̃kh∥µa,b) for all k,

KLK ≤ e−θh/2 KLK−1 +B̂h2 ≤ e−2θh/2 KLK−2 +(e−θh/2 + 1)B̂h2 ≤ · · · ≤ e−Kθh/2 KL0 +

(
K−1∑
k=0

e−kθh/2

)
B̂h2,

which, by bounding the finite sum by an infinite sum and using e−c ≤ 1− 2
3c for 0 < c < 1, yields (19).
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