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Abstract. This paper studies the problems of partitioning the vertices of a graph G= (V,E) into (or covering with) a minimum

number of low-diameter clusters from the lenses of approximation algorithms and integer programming. Here, the low-diameter

criterion is formalized by an s-club, which is a subset of vertices whose induced subgraph has diameter at most s. For these

problems, we give Õ(n1/2)-approximation algorithms for any even integer s, generalizing a previous algorithm for the case s= 2.

Complementing this, we show that for any ε > 0 the problem is NP-hard to approximate within n1/2−ε and n1−ε, for each fixed

even and odd integer s, respectively, suggesting an interesting contrast in approximability for even and odd values of s. Second,

we develop new MIP-based heuristics (inspired by the approximation algorithms) that perform extremely well in practice, solving

more than half of previous benchmark instances in less than one second. To handle the remaining instances, we propose a MIP

formulation with an exponentially large class of cut-like inequalities that we solve with a branch-and-cut algorithm. With it, we

tackle more benchmark instances than previous approaches and in less time.

Key words: Approximation algorithm, integer programming, low-diameter clusters, s-club, partitioning, covering, minimum

k-clustering problem

1. Introduction

Clustering problems arise in diverse fields ranging from biology (Eisen et al. 1998), to dating

apps (Rochat et al. 2019), to wireless sensor networks (Abbasi and Younis 2007). Ideally, there
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should be few edges between clusters and many edges inside each cluster, perhaps forming a clique.

This leads to problems where a graph’s vertices should be partitioned into (or covered by) cliques.

The clique condition may be too restrictive, either due to data imperfections or the fact that

“good” clusters need not be cliques. This has led to a plethora of clique relaxations (Pattillo et al.

2013b), such as γ-quasi-cliques (Abello et al. 2002, Pattillo et al. 2013a) which have edge density at

least γ, s-defective-cliques (Yu et al. 2006) which have at most s missing edges, and s-plexes (Seid-

man and Foster 1978, Balasundaram et al. 2011) which permit each vertex to non-neighbor at most

s other vertices. Each clique relaxation leads to an associated partitioning (or covering) problem.

In this paper, we focus on a diameter-based clique relaxation called an s-club (Mokken 1979).

In a graph G= (V,E), a subset of vertices S ⊆ V is called an s-club if the diameter of its induced

subgraph G[S] := (S,E ∩
(
S
2

)
) is at most s. When given a graph G and a positive integer s, the

minimum s-club partitioning problem asks to partition the vertices of G into a minimum number

of s-clubs. This problem is also known as the minimum s-clustering problem (Deogun et al. 1997),

and its objective value, the s-club partition number, is sometimes denoted by cls(G). The covering

problem is defined analogously, and we denote its objective value, the s-club cover number, by

cls(G). (This notation cls(G) is chosen because cl is “covered” by .) Because every partitioning

is also a covering, we have the following observation.

LEMMA 1. For any graph G and positive integer s, we have cls(G)≤ cls(G).

Figure 1 shows solutions to these problems when s = 2 and s = 3 for the karate

graph (Zachary 1977). Interestingly, when the real-life karate club split in two, each side formed

a 3-club, thus giving a minimum 3-club partition. Observe that the depicted 2-clubs each have a

hub vertex that dominates the others, and the 3-clubs each have a clique that dominates the others.

These observations will be exploited in our approximation algorithms and MIP-based heuristics.

The minimum s-club partitioning problem has garnered interest from computer scientists and

operations researchers, leading to various approximation algorithms, inapproximability results, and

mixed-integer programming (MIP) models. The case s= 1, i.e., the minimum clique partitioning

problem, is known to be NP-hard and hard to approximate. Specifically, Zuckerman (2006) shows

that for every ε > 0 it is NP-hard to get an n1−ε approximation, where n= |V | is the number of ver-

tices. Meanwhile, for ε= 0 an n1−ε approximation is easy by putting each vertex in its own clique.

The situation changes for s = 2. Dondi et al. (2019) give an approximation algorithm for the

minimum 2-club covering problem whose approximation factor is 2n1/2 log3/2 n = Õ(n1/2). The
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Figure 1 Minimum 2-club and 3-club partitions for the karate graph G with cl2(G) = 4 and cl3(G) = 2 parts.

idea behind this algorithm is to greedily find a small dominating set. They complement this by

showing that for every ε > 0 it is NP-hard to get an n1/2−ε approximation. We extend these re-

sults to any even s ≥ 2 (for both the covering and partitioning variants). That is, we give an ap-

proximation algorithm with factor Õ(n1/2), and we prove that getting an n1/2−ε approximation is

NP-hard, by carefully analyzing an earlier reduction proposed by Deogun et al. (1997) and using

the newer hardness result of Zuckerman (2006). For the covering variant, we also propose a MIP-

based heuristic that mimics the approximation algorithm, but uses a minimum dominating set (of

an appropriately constructed graph) rather than a greedily found one. A simple post-processing

procedure converts the covering to a partition of the same size.

For s= 3, the approximation hardness rears its head again. Dondi et al. (2019) show that it is NP-

hard to get an n1−ε approximation. We extend this result to any odd s, again by carefully analyzing

an earlier reduction of Deogun et al. (1997). Thus, the approximability of the minimum s-club

partitioning (or covering) problem alternates n,n1/2, n,n1/2, . . . as the value s = 1,2,3,4, . . . in-

creases. For the covering variant, we also propose a MIP-based heuristic for odd s. In the s = 3

case, it amounts to dominating the vertices with a minimum number of cliques (which we can take

to be maximal). Again, a simple post-processing procedure converts the covering to a partition of

the same size.

The proposed MIP-based heuristics often perform very well in practice, finding optimal solu-

tions in less than one second for more than half of the benchmark instances used by Yezerska et al.

(2019) and three-quarters of those used by Gschwind et al. (2021). We also use a lower bound

from the literature (the independence number of the s-power graph) to certify optimality of the

heuristic solutions. To handle the remaining benchmark instances, we propose a MIP formulation

with an exponentially large class of cut-like inequalities that we solve with a branch-and-cut algo-

rithm. Ultimately, we solve roughly twice as many benchmark instances as the previous approach
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of Gschwind et al. (2021). For instances solved by multiple approaches, our implementation is

fastest, sometimes by two orders of magnitude.

Outline. Section 2 provides the relevant background. Section 3 covers approximation algorithms

and hardness. It also gives the MIP-based heuristics that are inspired by the approximation algo-

rithms. Section 4 proposes the MIP formulation and branch-and-cut algorithm. It also discusses

the separation routine and formulation strength. Section 5 applies the MIP-based heuristics and

branch-and-cut algorithm to benchmark instances. We conclude in Section 6.

2. Background and Literature Review

We consider a simple undirected graph G = (V,E) and often let n := |V | and m := |E|. The

distance distG(i, j) between vertices i and j in graph G is the length of a shortest path between

them. In this paper, all distances are hop-based, meaning that each edge has a weight of one in

these path lengths. The diameter of graph G is denoted by diam(G) =max{distG(i, j) | i, j ∈ V }.

The subgraph of G induced by a subset of vertices S ⊆ V is denoted by G[S] = (S,E∩
(
S
2

)
), where(

S
2

)
= {e | e⊆ S, |e|= 2} is the collection of 2-element subsets of S.

A subset of vertices S ⊆ V is called an s-club if diam(G[S]) ≤ s. Equivalently, S ⊆ V is an

s-club if distG[S](i, j) ≤ s for all vertices i, j ∈ S. Meanwhile, S ⊆ V is called an s-clique if

distG(i, j)≤ s for all vertices i, j ∈ S, see Luce (1950). The difference is that distances are mea-

sured in G[S] for s-clubs and in G for s-cliques. Generally, if a subset of vertices is an s-club then

it is also an s-clique, but not vice versa. However, for s= 1, both definitions amount to a clique.

Clearly, s-cliques are hereditary, meaning that every subset of an s-clique is also an s-clique.

Consequently, the minimum s-clique partitioning problem is equivalent to the minimum s-clique

covering problem. Further, in the covering problem, it suffices to consider only those s-cliques

that are inclusion-wise maximal. However, these statements are not true for s-clubs due to lack of

heredity (Gschwind et al. 2021). For example, in the five-vertex cycle graph the entire vertex set

forms a 2-club, but if we remove any single vertex the result is no longer a 2-club.

The s-power of graph G is denoted by Gs = (V,Es). This graph Gs has the same vertex set as G,

and two distinct vertices i, j ∈ V are connected by an edge in Gs if their distance distG(i, j) in G is

at most s. We have that S ⊆ V is an s-clique in G if and only if S is a clique in the s-power graph

Gs. Consequently, the minimum s-clique partitioning problem in G is equivalent to the minimum

clique partitioning problem in Gs. In this sense, the covering and partitioning problems for cliques

and s-cliques are all essentially the same.



Zhang et al.: Partitioning a graph into low-diameter clusters
5

2.1. Lower and upper bounds

Here, we review known lower and upper bounds on cls(G) and cls(G).

The open neighborhood of vertex i ∈ V is denoted by N(i) := {j ∈ V | {i, j} ∈ E}, and the

closed neighborhood is N [i] := N(i) ∪ {i}. The closed neighborhood forms a 2-club (but not

vice versa). A subset of vertices S ⊆ V is called a dominating set if every vertex of the graph

either belongs to S or neighbors a vertex in S. Equivalently, S is a dominating set if the closed

neighborhoods {N [i] | i ∈ S} cover V . The minimum dominating set problem, which asks for

a dominating set of minimum cardinality γ(G), is related to the minimum 2-club partitioning

problem via the inequality cl2(G)≤ γ(G), see Deogun et al. (1997). We also have that

cl1(G)≥ cl2(G)≥ cl3(G)≥ · · ·

cl1(G)≥ cl2(G)≥ cl3(G)≥ · · ·

implying that the s-club partition and s-club cover numbers are also at most γ(G) when s ≥ 2.

Trivially, we have that cls(G) = cls(G) = 1 when the diameter of graph G is at most s. So, in line

with the idea of “six degrees of separation”, these covering and partitioning problems can quickly

become uninteresting as s grows, which is why most papers from the literature experiment only

with small values like s∈ {2,3,4,5}; these values also ensure a truly “low” diameter.

We can generate a lower bound using a familiar graph invariant (Yezerska et al. 2019). Suppose

we have a vertex subset I ⊆ V with distG(i, j)> s for all distinct i, j ∈ S. In other words, I is an

independent set in the s-power graph. Then, no two vertices from I can belong to the same s-club.

In particular, taking I to be a maximum independent set of Gs, i.e., of cardinality |I| = α(Gs),

we have α(Gs)≤ cls(G). When s= 1, we have the familiar inequality α(G)≤ cl1(G) relating the

independence number and the clique cover number.

Figure 2 illustrates the lower bounding idea for the karate graph G, showing that cl2(G)≥ 4

and cl3(G) ≥ 2. Recall that in Figure 1, we saw partitions showing cl2(G) ≤ 4 and cl3(G) ≤ 2.

Together, these inequalities demonstrate that cl2(G) = cl2(G) = 4 and cl3(G) = cl3(G) = 2.

2.2. Approximation algorithms and hardness

Deogun et al. (1997) consider approximation algorithms for the minimum s-club partitioning prob-

lem, especially for graphs with a dominating diametral path, i.e., a shortest i, j-path P whose

length equals diam(G) =: d and whose vertices V (P ) form a dominating set. For such graphs,

they prove that cls(G) lies between a := (d+1)/(s+1) and b := (d+1)/(s−1), ultimately giving
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Figure 2 Maximum independent sets in power graph G2 and G3 with sizes 4 and 2 for the karate graph G.

an approximation algorithm with ratio ⌈b⌉/⌊a⌋. They also show that cl2(G)≤ γ(G), which holds

at equality for strongly chordal graphs. They also provide a class of graphs {Gs}s on ns = 2s2+ s

vertices for which δ(Gs) = s and cls(Gs) = 2, showing that the domination bound can be weak.

Deogun et al. (1997) prove that there exists an ε > 0 for which getting an nε approximation is

NP-hard. For odd s = 2r + 1, their reduction takes a clique partitioning instance G = (V,E) and

attaches a pendant path of length r to each vertex. For even s= 2r, their reduction subdivides each

original edge (thus creating m = |E| new vertices), connects each pair of new vertices by a new

edge, and then attaches a pendant path of length r− 1 to each original vertex. The hardness result

that they use states that there exists an ε > 0 for which getting an nε approximation to the clique

partitioning problem is NP-hard (Lund and Yannakakis 1994).

Fernandess and Malkhi (2002) consider the case of unit disk graphs and provide an approxima-

tion algorithm for the minimum s-club partitioning problem with factor O(s).

We have already seen that Dondi et al. (2019) give an approximation algorithm for the covering

case s= 2 with factor 2n1/2 log3/2 n= Õ(n1/2). After initializing the set of uncovered vertices as

V ′← V , this algorithm repeatedly finds a vertex v ∈ V with maximum |N [v]∩ V ′|, adds N [v] to

the collection of 2-clubs, and then updates V ′← V ′ \N [v]. It terminates when all vertices have

been covered. This is essentially the greedy algorithm for the dominating set problem, and the same

vertex may be selected in multiple 2-clubs. However, one can easily find a 2-club partitioning of the

same size by taking D as the associated dominating set (the vertices v selected by the algorithm)

and re-assigning each vertex from V \D to an arbitrary neighbor from D. This immediately gives

an approximation algorithm for the partitioning case s= 2 with the same factor.

Dondi et al. (2019) provide a (near) matching inapproximability result, showing that finding an

O(n1/2−ε) approximation to the covering problem is NP-hard for s= 2. The reduction is similar to
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the s= 2 reduction of Deogun et al. (1997). Specifically, each edge of a clique partitioning instance

is subdivided, and two new “edge” vertices are connected by an edge if the edges are incident in

the input graph (whereas Deogun et al. (1997) made these “edge” vertices a clique). Additionally,

Dondi et al. (2019) invoke the hardness result of Zuckerman (2006), while Deogun et al. (1997)

invoke the earlier result of Lund and Yannakakis (1994).

Dondi et al. (2019) also show that finding an O(n1−ε) approximation to the covering problem is

NP-hard for s= 3. The reduction is exactly the same as in Deogun et al. (1997), i.e., to take a clique

partitioning instance and add a pendant vertex to each original vertex. Further, Dondi et al. show

that determining whether a graph can be covered by two 3-clubs (or three 2-clubs) is NP-complete.

2.3. MIPs for s-clubs

There are many existing formulations for identifying a single s-club in a graph. Each uses a binary

variable xi that equals one when vertex i ∈ V is selected. The case s = 2 admits the common

neighbor formulation in which selecting nonadjacent vertices i, j ∈ V requires selecting at least

one common neighbor as well, i.e., xi + xj ≤ 1+
∑

v∈N(i)∩N(j) xv. The cases where s≥ 3 are less

straightforward to model.

Bourjolly et al. (2002) propose the chain formulation (cf. Balasundaram et al. (2005)), which

uses an additional binary variable yP for each chain (or path) P of length at most s. This leads to a

model with O(ns+1) variables and nonzeros. Wotzlaw (2014) observes that it suffices to define the y

variables for the interior nodes of each path, which leads to a model with O(ns−1) variables. Salemi

and Buchanan (2020) further reduce the size by observing that the y variables are only needed for

length-bounded connectors (i.e., without specifying the node sequence inside each path).

Veremyev and Boginski (2012), Veremyev et al. (2015) propose compact (i.e., polynomial-size)

formulations with O(sn2) variables. The idea here is to define a binary variable ytij for every pair

of vertices i, j ∈ V and each distance t≤ s, and to relate these variables to each other recursively.

Almeida and Carvalho (2012) consider the case s= 3 and compare the chain formulation, a so-

called neighborhood formulation, and a node cut set formulation. The neighborhood formulation

is essentially the s= 3 case of the length-bounded connector formulation of Salemi and Buchanan

(2020). Meanwhile, the node cut set formulation is the s= 3 case of the length-bounded separator

formulation of Salemi and Buchanan (2020).

The length-bounded separator formulation has constraints of the form xi + xj ≤ 1 +
∑

v∈S xv,

where S ⊆ V \ {i, j} is a length-s i, j-separator, i.e., distG[V \S](i, j) > s. It suffices to impose

these constraints only for inclusion-wise minimal separators. The case s= 2 of this formulation is
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precisely the common neighbor formulation. Salemi and Buchanan (2020) show that the separation

problem for the length-bounded separator constraints is polynomial-time solvable for s∈ {2,3,4}
and NP-hard for s ≥ 5. Salemi and Buchanan find that a branch-and-cut implementation of this

formulation outperforms other formulations, often by orders of magnitude. They use a separation

routine that is invoked only when LP relaxation solution is integer. It runs in time O(nm) for any

s and returns a violated minimal length-s i, j-separator inequality (if one exists).

2.4. MIPs for s-club partitioning and covering

Only a couple papers from the literature propose MIPs for s-club partitioning and covering. Let k

be an upper bound on the s-club partition number. Yezerska et al. (2019) propose to use a binary

variable xij for each vertex i∈ V and each part j ∈ [k] and write:

min z (1a)
k∑

j=1

xij = 1 ∀i∈ V (1b)

jxij ≤ z ∀i∈ V, ∀j ∈ [k] (1c)

{i∈ V | xij = 1} is an s-club ∀j ∈ [k] (1d)

xij ∈ {0,1} ∀i∈ V, ∀j ∈ [k]. (1e)

They impose the s-club constraints (1d) in a recursive manner, similar to Veremyev and Boginski

(2012), Veremyev et al. (2015), ultimately giving a model with O(sn2) variables. With this for-

mulation, they solve 6 of 14 real-life instances when s= 3, with the largest one being adjnoun

with n= 112 vertices. They also propose a combinatorial branch-and-bound algorithm, which also

solves 6 of 14 instances (although not the same 6), with the largest one being jazz with n= 198

vertices. Later, we will see that our MIP-based heuristic finds optimal solutions to adjnoun and

jazz in a fraction of a second, and these solutions are also proven optimal in a fraction of a second

by the independence number lower bound α(Gs).

Gschwind et al. (2021) propose a set partitioning formulation with exponentially many binary

variables λS , one for each s-club S ⊆ V from the collection of all s-clubs S .

min
∑
S∈S

λS (2a)∑
S∈S:i∈S

λS = 1 ∀i∈ V (2b)

λS ∈ {0,1} ∀S ∈ S. (2c)
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Rather than solve this MIP directly, Gschwind et al. (2021) propose to use branch-and-price. Of

their nine benchmark instances (see their Table 6), the smallest one karate has n= 34 vertices,

and the largest one celegansneural has n= 297. Their Table 11 reports that 3/9 were solved

when s = 3 (in an average of 376.9 seconds), but does not report which three. Later we will see

that our MIP-based heuristic (and independence number lower bound) solve 5/9 instances, each in

a fraction of a second. Our branch-and-cut implementation solves all 9 instances, each in under 75

seconds. We also solve the much larger instance netscience (n= 1589) in two seconds.

3. Approximation Algorithms, Hardness, and MIP Heuristics

This section proposes approximation algorithms for the s-club partitioning and covering problems.

We complement them with approximation hardness results. We also propose MIP-based heuristics

that are inspired by the approximation algorithms.

3.1. Approximation algorithm for even s

Here, we generalize the approximation algorithm of Dondi et al. (2019) for the 2-club covering

problem so that it works for all even values of s and for both the partitioning and covering variants.

The approximation factor Õ(n1/2) remains the same. Pseudocode is given in Algorithm 1. We will

assume that n := |V | ≥ 3, since otherwise both problems are easy.

Algorithm 1 Approximate-Club-Partitioning-Even(G,s)

1: create (s/2)-power graph H :=Gs/2

2: initialize U← V and D←∅

3: while U ̸= ∅ do

4: pick a vertex v ∈ V with maximum |NH [v]∩U |

5: D←D∪{v}

6: U←U \NH [v]

7: create a new auxiliary vertex r

8: create G′ = (V ′,E ′) with V ′ = V ∪{r} and E ′ =E ∪{{r, i} | i∈D}

9: find a BFS tree of G′ rooted at r and call it T

10: let T1, T2, . . . , T|D| be the components of T −{r}

11: return V (T1), V (T2), . . . , V (T|D|)
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The idea behind the algorithm is to greedily find a dominating set D ⊆ V in the (s/2)-power

graph and assign the other vertices V \D to them. Thus, when s= 2, the (s/2)-power graph is the

same as G, and the algorithm essentially reduces to that of Dondi et al. (2019).

Lines 2–6 are the greedy algorithm for dominating set, applied to the power graph H :=Gs/2.

Let D∗ be a minimum dominating set of graph H , and let D be the set of vertices picked by

Algorithm 1. We have the following inequalities, where the first inequality holds by the greedy

dominating set approximation (Johnson 1974) and the second inequality holds when n≥ 3.

|D| ≤ |D∗|(1+ lnn)≤ 2|D∗| lnn. (3)

Lines 7–11 find s-clubs that are “centered” at the dominating set vertices. The diameter of each

induced subgraph G[V (Tj)] is at most s because it contains a rooted tree Tj whose depth is at

most s/2. The algorithm’s running time is O(nm), with the most time-consuming step being the

creation of the power graph H . Like Dondi et al. (2019), we require the following lemma.

LEMMA 2 (Desormeaux et al. (2014)). If an n-vertex graph G= (V,E) has diameter two, then

it admits a dominating set of size at most 1+
√
n lnn.

LEMMA 3. Let s be even. If S is an s-club in G, then S is a 2-club in H :=Gs/2.

Proof of Lemma 3. Let u and v be distinct vertices from the s-club S. By definition of s-club,

we have distG[S](u, v) ≤ s. We are to show that distH[S](u, v) ≤ 2. In the first case, suppose that

distG[S](u, v)≤ s/2. This implies that distG(u, v)≤ s/2 as well, so {u, v} is an edge in H and thus

distH[S](u, v) = 1. In the other case, where s/2< distG[S](u, v)≤ s, there is an intermediate vertex

w ∈ S for which distG[S](u,w) = s/2 and distG[S](w,v)≤ s/2. This implies that distG(u,w)≤ s/2

and distG(w,v)≤ s/2, so {u,w} and {w,v} are edges of H and distH[S](u, v)≤ 1+1= 2. □

THEOREM 1. Algorithm 1 provides an Õ(n1/2)-approximation for the minimum s-club parti-

tioning and covering problems when s is even.

Proof of Theorem 1. Let S∗ be a minimum s-club covering of G and define OPT := |S∗|.

Meanwhile, the algorithm returns a partition with |D| different s-clubs. To prove the approximation

factor for both the partitioning and covering problems, it suffices to show that |D| ≤ Õ(
√
n)OPT.

Let D∗ be a minimum dominating set of power graph H =Gs/2. By inequality (3), we have

|D| ≤ 2|D∗| lnn. (4)
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By Lemma 3, each s-club S in the covering S∗ is a 2-club in H . By Lemma 2, H[S] has a

dominating set DS of size at most 1+
√
|S| ln(|S|)≤ 2

√
n lnn. Taking their union D′ :=∪S∈S∗DS

gives a dominating set for H whose size |D′| satisfies

|D∗| ≤ |D′| ≤
∑
S∈S∗

|DS| ≤OPT(2
√
n lnn), (5)

with the first inequality holding because D∗ is minimum. Putting inequalities (4) and (5) together,

|D| ≤ 2|D∗| lnn≤ 4(lnn)
√
n lnnOPT= Õ(

√
n)OPT . □

3.2. MIP-based heuristic for even s

To get better practical performance, we find a minimum dominating set of H =Gs/2 in lines 2–6

rather than a greedy one. To accomplish this, we solve the integer program (IP)

min
z binary

∑
i∈V

zi

∣∣∣∣∣∣
∑

j∈NH [i]

zj ≥ 1 ∀i∈ V

 . (6)

While the minimum dominating set problem is NP-hard, it can often be solved quickly in practice,

including for the benchmark instances used by Yezerska et al. (2019) and Gschwind et al. (2021).

This gives a better approximation factor, although the procedure is no longer polynomial.

REMARK 1. The approximation factor of Algorithm 1 improves to 2
√
n lnn if the set D in

lines 2-6 is taken as a minimum dominating set, as inequality (5) shows.

3.3. Approximation hardness for even s

We complement the approximation algorithm with an inapproximability result, extending a result

of Dondi et al. (2019) for 2-club covering to all even values of s for both covering and partitioning.

THEOREM 2. Let s≥ 2 be an even integer and ε > 0. It is NP-hard to get an n1/2−ε approxi-

mation to the s-club partitioning (or covering) problem.

Proof of Theorem 2. Zuckerman (2006) shows that, for any ε > 0, it is NP-hard to get an n1−ε

approximation for the clique partitioning problem. So, consider an instance G′ = (V ′,E ′) of the

clique partitioning problem with n′ = |V ′| vertices and m′ = |E ′| edges. We may assume that G′

has at least one edge and is connected, in which case m′ ≥ 1 and m′ ≥ n′− 1 so 2m′ ≥ n′. Also, if

the number of vertices n′ is smaller than n′
0 := (s+ 1)−1+1/2ε, then the instance is easy as n′

0 is a

constant. So, we may also assume that n′ ≥ n′
0.

We proceed by using the construction of Deogun et al. (1997). That is, letting r = s/2, we

subdivide each edge of G′ (thus creating m′ = |E ′| new vertices), connect each pair of these new
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“edge” vertices by a new edge (i.e., making them a clique), and then attach a pendant path of

length r − 1 to each original vertex. The number of vertices in this new graph G = (V,E) is

n= n′ +m′ +(r− 1)n′ or equivalently n= (s/2)n′+m′.

Suppose that we have an n1/2−ε approximation algorithm for s-club partitioning in G. That is, it

returns a feasible solution with objective ALG≤ n1/2−εOPT. We show that it can be used to give

an (n′)1−ε approximation algorithm for clique partitioning in G′, i.e., returning a feasible solution

with objective ALG′ ≤ (n′)1−εOPT′.

We observe that OPT≤OPT′ because a clique partitioning Q′ of G′ can be converted into an

s-club partitioning of G of the same size. Specifically, for each clique Q′ ∈ Q′, we construct an

s-club Q by taking the original vertices Q′, the pendant paths that are connected to them, and any

of the new “edge” vertices that lie between the original clique vertices. After this process, there

will be some remaining “edge” vertices that neighbor two different cliques; arbitrarily assign them

to either side. This gives the s-club partition Q of G.

After applying the supposed n1/2−ε approximation algorithm to get an s-club partitioning S of

G, we can recover a clique partitioning S ′ of G′ of the same size. Specifically, for each s-club

S ∈ S, construct a clique S ′ = S ∩ V ′ by taking just its original vertices (i.e., ignoring the “edge”

vertices and pendant path vertices). Some S ′ may be empty. This shows ALG′ =ALG. Then,

ALG′ =ALG≤ n1/2−εOPT= ((s/2)n′ +m′)1/2−εOPT (7a)

≤ ((s/2)n′ +m′)1/2−εOPT′ (7b)

≤ (sm′ +m′)1/2−εOPT′ (7c)

= (s+1)1/2−ε× (m′)1/2−εOPT′ (7d)

≤ (s+1)1/2−ε× (n′)1−2εOPT′ (7e)

= (n′
0)

ε× (n′)1−2εOPT′ (7f)

≤ (n′)ε× (n′)1−2εOPT′ = (n′)1−εOPT′ . (7g)

The proof is essentially the same for the covering case. □

3.4. Approximation hardness for odd s

We extend a result of Dondi et al. (2019) for 3-club covering to all odd values of s for both covering

and partitioning. For this reason, it seems hopeless to search for polynomial-time approximation

algorithms with nontrivial factors when s is odd.
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THEOREM 3. Let s≥ 3 be an odd integer and ε > 0. It is NP-hard to get an n1−ε approximation

to the s-club partitioning (or covering) problem.

Proof of Theorem 3. Zuckerman (2006) shows that, for any ε′ > 0, it is NP-hard to get an n1−ε′

approximation for the clique partitioning problem. In particular, it is hard for ε′ = ε/2 > 0. So,

consider an instance G′ = (V ′,E ′) of the clique partitioning problem with n′ = |V ′| vertices and

m′ = |E ′| edges. We may assume that G′ has at least one edge and is connected, in which case m′ ≥
1 and m′ ≥ n′−1 so 2m′ ≥ n′. Also, if the number of vertices n′ is smaller than n′

0 := ( s+1
2
)−2+1/ε′ ,

then the instance is easy as n′
0 is a constant. So, we may also assume that n′ ≥ n′

0.

We proceed by using the (other) construction of Deogun et al. (1997). That is, let r= (s− 1)/2

and attach a pendant path of length r to each original vertex. The number of vertices in this new

graph G= (V,E) is n= n′ + rn′ or equivalently n= n′(s+1)/2.

Suppose that we have an n1−ε approximation algorithm for s-club partitioning in G. That is, it

returns a feasible solution with objective ALG≤ n1−εOPT. We show that it can be used to give

an (n′)1−ε′ approximation algorithm for clique partitioning in G′, i.e., returning a feasible solution

with objective ALG′ ≤ (n′)1−ε′ OPT′.

We observe that OPT≤OPT′ because a clique partitioning Q′ of G′ can be converted into an

s-club partitioning of G of the same size. Specifically, for each clique Q′ ∈ Q′, we construct an

s-club Q by taking the original vertices Q′ and adding the pendant paths that are connected to

them. This gives the s-club partition Q of G.

After applying the supposed n1−ε approximation algorithm to get an s-club partitioning S of G,

we can recover a clique partitioning S ′ of G′ of the same size. Specifically, for each s-club S ∈ S,

construct a clique S ′ = S ∩ V ′ by taking just its original vertices (i.e., ignoring the pendant path

vertices). Some S ′ may be empty. This shows ALG′ =ALG. Then,

ALG′ =ALG≤ n1−εOPT=

(
s+1

2
×n′

)1−2ε′

OPT (8a)

≤
(
s+1

2
×n′

)1−2ε′

OPT′ (8b)

=

(
s+1

2

)1−2ε′

× (n′)1−2ε′ OPT′ (8c)

= (n′
0)

ε′ × (n′)1−2ε′ OPT′ (8d)

≤ (n′)ε
′ × (n′)1−2ε′ OPT′ = (n′)1−ε′ OPT′ . (8e)

The proof is essentially the same for the covering case. □
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3.5. MIP-based heuristic for odd s

The approximation algorithm of Dondi et al. (2019) seeks a small dominating set of G, with the

idea that these vertices can be used as centers of the 2-clubs. Algorithm 1 generalized this to all

even s by seeking a dominating set of the power graph Gs/2.

In this section, we extend the idea to odd s. Here, each s-club will be centered at a clique, and

these cliques should dominate the other vertices from a distance—in power graph H =G(s−1)/2.

First, we propose a greedy version that repeatedly identifies a (maximal) clique Q⊆ V whose

closed neighborhood N [Q] = ∪i∈QN [i] covers the most uncovered vertices in H . This repeats

until all vertices have been covered. The resulting collection of maximal cliques Q may include

the same vertex multiple times, so we remove any such duplicates. For example, if the selected

maximal cliques are Q1,Q2,Q3, . . . ,Qq, we may pick Q′
1 = Q1,Q

′
2 = Q2 \Q1,Q

′
3 = Q3 \ (Q1 ∪

Q2), . . . ,Q
′
q =Qq \ (Q1 ∪Q2 ∪ · · · ∪Qq−1) and then update Q to be this new collection of cliques

{Q′
1,Q

′
2, . . . ,Q

′
q}. The other vertices—that do not belong to any chosen clique—are assigned to

the cliques to get an s-club partitioning. Pseudocode is provided in Algorithm 2.

Algorithm 2 Heuristic-Club-Partitioning-Odd(G,s)

1: create (s− 1)/2-power graph H :=G(s−1)/2

2: initialize U← V and Q←{}

3: while U ̸= ∅ do

4: pick a maximal clique Q⊆ V in G with maximum |NH [Q]∩U |

5: Q←Q∪{Q}

6: U←U \NH [Q]

7: remove duplicates from Q (e.g., keep a vertex only in its earliest clique)

8: create a new auxiliary vertex r and a new vertex vQ for each clique Q∈Q

9: let VQ = {vQ |Q∈Q} and EQ = {{vQ, v} |Q∈Q, v ∈Q}

10: create G′ = (V ′,E ′) with V ′ = V ∪VQ ∪{r} and E ′ =E ∪EQ ∪{{r, vQ} |Q∈Q}

11: find a BFS tree of G′ rooted at r and call it T

12: let T1, T2, . . . , T|Q| be the components of T −{r}

13: return V (T1), V (T2), . . . , V (T|Q|) (omitting the vertices from VQ)
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To get better practical performance, we can take an exact approach to select cliques rather than

being greedy. Namely, for each maximal clique Q, we introduce a binary variable zQ and write:

min
∑
Q

zQ (9a)

∑
Q : i∈NH [Q]

zQ ≥ 1 ∀i∈ V (9b)

zQ ∈ {0,1} ∀Q. (9c)

Generally, a graph may have up to 3n/3 maximal cliques (Miller and Muller 1960, Moon and Moser

1965), possibly making this model quite large. However, many real-life graphs are very sparse with

relatively few maximal cliques. They can be enumerated with the well-known algorithm of Bron

and Kerbosch (1973), which is implemented in the Python package NetworkX (Hagberg et al.

2008), or with the more recent algorithm of Eppstein et al. (2013) that is tailored for graphs that

have low degeneracy (a measure of density). We will see that this approach works quite well for

the benchmark instances used by Yezerska et al. (2019) and Gschwind et al. (2021).

4. Integer Programming Formulations

This section provides an IP formulation for the minimum s-club partitioning problem. Like the

formulation of Yezerska et al. (2019), it relies on an upper bound k on cls(G) and uses a binary

variable xij for each vertex i∈ V and each part j ∈ [k]. However, rather than simply using a single

variable z to count the number of parts that are being used (and writing jxij ≤ z), we introduce a

variable yj for each part j ∈ [k] and minimize their sum. This leads to the following formulation,

which turns out to be stronger. We also break some symmetry with constraints (10d). To model

the covering problem, change the sense of the assignment constraints (10b) from = to ≥.

min
k∑

j=1

yj (10a)

k∑
j=1

xij = 1 ∀i∈ V (10b)

xij ≤ yj ∀i∈ V, ∀j ∈ [k] (10c)

yk ≤ yk−1 ≤ · · · ≤ y1 ≤ 1 (10d)

diameter-bounding constraints (10e)

xij ∈ {0,1} ∀i∈ V, ∀j ∈ [k]. (10f)
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For now, we write the diameter-bounding constraints in a generic form (10e) so that we can

compare the “cores” of the models. Specifically, consider a fractional point (x̂, ŷ) that satisfies

constraints (10c). Then, the similar point (x̂, ẑ) with ẑ :=
∑

j∈[k] ŷj satisfies the following

big-M -style constraints from Yezerska et al. (2019) and has the same LP objective value.

jxij ≤ z ∀i∈ V, ∀j ∈ [k].

Moreover, the reverse is not always true. In this sense, the constraints (10c) are stronger (and add

little size to the formulation), and we will see that they perform better in practice.

To ensure that each part has diameter at most s, we use length-bounded separator constraints.

This choice is informed by previous success with these constraints for other diameter-constrained

problems (Salemi and Buchanan 2020, Validi and Buchanan 2020, Lu et al. 2022, Validi et al.

2022). Recall that if a, b ∈ V are distinct, nonadjacent vertices, then S ⊆ V \ {a, b} is called a

length-s a, b-separator if distG[V \S](a, b)> s. For any such a, b,S, we can write the constraints

xaj +xbj ≤ 1+
∑
i∈S

xij ∀j ∈ [k].

It follows from Salemi and Buchanan (2020) that the collection of all such inequalities will ensure

that each part is an s-club. Generally, there are exponentially many such inequalities, although

relatively few are needed to prove optimality in practice. Like Salemi and Buchanan (2020), we

add them on-the-fly in a branch-and-cut implementation, separating only integer infeasible points

x∗. In this case, separation can be performed in time O(nm), as follows.

• for j ∈ [k] do

— construct graph G[Vj] where Vj = {i∈ V | x∗
ij = 1}

— if diam(G[Vj])≤ s then continue

— let a, b∈ Vj be vertices with distG[Vj ](a, b)> s

— observe that S ′ = V \Vj is a length-s a, b-separator

—S← minimalize(S ′)

— add cut xaj +xbj ≤ 1+
∑

i∈S xij and exit

Here, minimalize is a subroutine proposed by Salemi and Buchanan (2020) that takes a length-s

a, b-separator S ′ and returns a minimal length-s a, b-separator S in time O(nm). For us to achieve a

total running time of O(nm), it should be observed that the diameters of all graphs G[Vj] = (Vj,Ej)

can be computed in a total of time
∑k

j=1O(|Vj||Ej|) =
∑k

j=1O(|Vj|m) =O(nm). In practice, we
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may choose to add multiple cuts, one for each part j ∈ [k] for which Vj is not an s-club. This can be

accomplished by removing the “exit” command, in which case the total running time is O(knm).

To speed up the computation, we fix some variables to zero or one. Specifically, let I =

{i1, i2, . . . , iα(H)} be maximum independent set of the s-power graph H = Gs. Since no two

vertices from I can belong to the same s-club, it is safe to fix them into different parts, e.g., to fix

ij into part j. This breaks a considerable amount of formulation symmetry and also allows us to

fix xvj = 0 for all vertices v that are “far” from ij (i.e., with distG(ij, v) > s). These techniques

apply to both partitioning and covering.

5. Computational Experiments

To evaluate our proposed methods (and to compare them with previous ones), we experiment

on the benchmark instances used by Yezerska et al. (2019) and Gschwind et al. (2021). Table 1

summarizes these 14 instances, showing that Gschwind et al. (2021) considered the 9 smallest

instances from Yezerska et al. (2019). Like Gschwind et al. (2021), we consider s∈ {2,3,4,5}.

Our experiments are conducted on a machine running Windows 11 Enterprise with an Intel

Core i9-13900 processor (2.00 GHz base, 5.2 GHz turbo) and 32 GB RAM. The code is

written in Python, handles graphs with NetworkX (Hagberg et al. 2008) (including to enumerate

maximal cliques), and solves MIPs using Gurobi v11.0.3. Our code and data are available

at https://github.com/JackDaihanZhang/Partitioning-a-graph-into-low-diameter-clusters.

5.1. Evaluating the lower and upper bounds

In this section, we evaluate the performance of the lower and upper bounds for both the covering

and partitioning problems. In particular, the lower bound (for both problem variants) is the

independence number of the s-power graph α(Gs).

For even s, we consider two upper bounds: the approximation algorithm (Algorithm 1) and the

associated MIP-based heuristic that solves the dominating set problem (6) exactly. Results for

s ∈ {2,4} are provided in Table 2. We exclude the trivial instances that have diam(G) ≤ s and

thus cl(G) = cl(G) = 1. For odd s, we also consider two upper bounds: the greedy heuristic (Al-

gorithm 2) and the associated MIP-based heuristic that solves the dominating cliques problem (9)

exactly. Results for s∈ {3,5} are provided in Table 3.

Inspecting the tables, we see that both the lower and upper bounds can be computed quite

quickly, usually in a small fraction of a second. Moreover, the lower bound equals the upper bound

coming from the MIP-based heuristic for more than 55% of the instances (26/47). As expected, the

https://github.com/JackDaihanZhang/Partitioning-a-graph-into-low-diameter-clusters/tree/main
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Table 1 The benchmark instances that we use. We report the number of vertices n, edges m, maximal

cliques c, and diameter diam. For the disconnected instances (shown by ∗), the largest diameter of any

component is reported. The names celegansneural and celegans metabolic are shortened to CN and CM.

Used by

Graph n m c diam Yezerska et al. Gschwind et al.

karate 34 78 36 5 ✓ ✓

chesapeake 39 170 139 3 ✓ ✓

dolphins 62 159 84 8 ✓ ✓

lesmis 77 254 59 5 ✓ ✓

polbooks 105 441 199 7 ✓ ✓

adjnoun 112 425 303 5 ✓ ✓

football 115 613 281 4 ✓ ✓

jazz 198 2,742 746 6 ✓ ✓

CN 297 2,148 1,386 5 ✓ ✓

CM 453 2,025 668 7 ✓ ✗

netscience 1,589 2,742 741 17∗ ✓ ✗

polblogs 1,490 16,715 49,884 8∗ ✓ ✗

email 1,133 5,451 3,267 8 ✓ ✗

data 2,851 15,093 11,928 79 ✓ ✗

approximation algorithm and greedy heuristic give worse solutions than the MIP-based heuristic,

only matching the lower bound for 21% (10/47) of the instances. For example, for netscience

and s= 4, the approximation algorithm gives a solution with objective 421, while the MIP-based

heuristic gives an optimal solution with objective 418. The difference is even more noticeable for

data and s = 2, where the approximation algorithm gives 358, while the MIP-based heuristic

gives 286. Similarly, for data and s= 5, the greedy heuristic gives a solution with objective 89,

while the MIP-based heuristic gives 68, nearly matching the lower bound of 67.

We conclude that the MIP-based heuristic is a solid choice, given that it is fast and gives

optimal or near-optimal solutions for most benchmark instances used by Yezerska et al. (2019)

and Gschwind et al. (2021).

5.2. Evaluating the branch-and-cut implementation

In this section, we evaluate the performance of the branch-and-cut implementation as a whole.

If the graph’s diameter is at most s, then an optimal solution has just one s-club consisting of all
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Table 2 Lower and upper bounds for the minimum s-club partitioning and covering problems for even s.

The lower bounds LB are α(Gs). The upper bounds UB come from the approximation algorithm (APX) and the

MIP-based heuristic (MIP) under a 60-second time limit (TL). Dashes indicate diam(G)≤ s, i.e., cl(G) = cl(G) = 1.

s= 2 s= 4

Graph LB time APX time MIP time LB time APX time MIP time

karate 4 0.01 4 0.00 4 0.00 2 0.00 2 0.00 2 0.00

chesapeake 3 0.02 3 0.00 3 0.00 - - - - - -

dolphins 13 0.02 16 0.00 14 0.00 4 0.02 5 0.00 4 0.02

lesmis 10 0.02 10 0.00 10 0.00 2 0.02 2 0.02 2 0.01

polbooks 12 0.02 14 0.00 13 0.02 2 0.03 2 0.03 2 0.03

adjnoun 18 0.02 18 0.02 18 0.00 3 0.05 4 0.05 3 0.04

football 7 0.13 14 0.02 12 0.20 - - - - - -

jazz 13 0.11 14 0.08 13 0.06 4 0.14 4 0.42 4 0.31

CN 14 0.36 19 0.05 16 0.05 2 0.32 3 0.42 3 0.41

CM 29 0.36 30 0.11 29 0.08 7 0.74 8 0.80 7 0.58

netscience 477 0.24 477 0.11 477 0.34 418 0.44 421 0.23 418 0.33

polblogs 395 4.12 396 1.09 395 0.55 280 7.02 284 8.42 281 6.00

email 209 1.43 222 0.58 210 0.13 37 15.20 51 1.04 40 0.69

data 250 TL 358 2.23 286 TL 91 13.94 123 1.80 96 18.09

vertices. Otherwise, it computes a maximum independent set I ⊆ V of Gs and uses this as a lower

bound. Then, it applies the MIP-based heuristic to get an upper bound. If these bounds match,

then it terminates. Otherwise, it fixes the vertices of I to different parts and solves the integer

programming formulation (10) by separating the length-s i, j-separator inequalities on-the-fly.

The formulation is warm-started with the MIP-based heuristic solution.

Tables 4, 5, 6, 7 summarize the results for s ∈ {2,3,4,5} for both the partitioning and covering

variants. To isolate the effects of our proposed formulation, we compare our implementation with

an alternative one that instead uses the integer programming formulation of Yezerska et al. (2019).

Both use a one-hour time limit. We see that our implementation solves most instances in a short

amount of time, with only a few exceptions for each value of s. These same challenging instances

also cause troubles for the formulation of Yezerska et al. (2019). Our formulation solves several

more instances, namely football, CN, and email for s= 2; CN for s= 3; and data for s= 5.
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Table 3 Lower and upper bounds for the minimum s-club partitioning and covering problems for odd s. The

lower bounds LB are α(Gs). The upper bounds UB come from the greedy heuristic (GRE) and the MIP-based

heuristic (MIP) under a 60-second time limit (TL). Dashes indicate diam(G)≤ s, i.e., cl(G) = cl(G) = 1.

s= 3 s= 5

Graph LB time GRE time MIP time LB time GRE time MIP time

karate 2 0.01 3 0.00 2 0.00 - - - - - -

chesapeake - - - - - - - - - - - -

dolphins 6 0.01 8 0.01 7 0.01 2 0.02 3 0.01 2 0.01

lesmis 6 0.02 7 0.01 6 0.01 - - - - - -

polbooks 5 0.03 7 0.02 6 0.02 2 0.04 3 0.03 2 0.04

adjnoun 8 0.05 11 0.03 8 0.02 - - - - - -

football 3 0.07 7 0.03 6 0.17 - - - - - -

jazz 6 0.14 6 0.24 6 0.17 2 0.13 3 0.42 2 0.50

CN 5 0.36 9 0.25 7 0.25 - - - - - -

CM 15 0.70 17 0.45 15 0.23 5 0.72 6 1.12 5 0.86

netscience 444 0.08 449 0.14 445 0.22 410 0.27 413 0.19 410 0.35

polblogs 311 13.99 326 TL 314 TL 272 6.39 273 42.90 273 TL

email 93 29.80 120 2.62 97 0.36 16 8.41 25 2.89 20 3.78

data 127 12.79 183 10.26 139 TL 67 28.03 89 7.71 68 3.72

Table 4 Computational results for the minimum 2-club partitioning (or covering) problem using our MIP and

that of Yezerska et al. (2019) under a 3,600-second time limit (TL). MEM stands for memory crash.

Our MIP Yezerska et al. (2019)

Graph partition time cover time partition time cover time

dolphins 13 0.11 13 0.09 13 1.34 13 1.37

polbooks 12 0.62 12 0.84 12 4.19 12 3.84

football 10 610.72 10 2,426.76 [7, 12] TL [7, 12] TL

CN 15 52.84 15 50.12 [14, 16] TL [14, 16] TL

email 209 56.30 209 67.88 MEM MEM MEM MEM

data [251, 286] TL [251, 286] TL MEM MEM MEM MEM

We would have liked to compare our results with the branch-and-price algorithm of Gschwind

et al. (2021), but the associated codes have not been shared publicly, and the authors declined to
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Table 5 Computational results for the minimum 3-club partitioning (or covering) problem using our MIP and

that of Yezerska et al. (2019) under a 3,600-second time limit (TL). MEM stands for memory crash.

Our MIP Yezerska et al. (2019)

Graph partition time cover time partition time cover time

dolphins 6 0.14 6 0.17 6 1.69 6 1.55

polbooks 5 1.03 5 1.16 5 9.91 5 11.36

football 3 7.03 3 6.27 3 558.28 3 388.17

CN 5 74.19 5 36.63 [5, 7] TL [5, 7] TL

netscience 444 2.14 444 2.17 444 71.29 444 81.89

polblogs [311, 314] TL [312, 314] TL MEM MEM MEM MEM

email [94, 97] TL [94, 97] TL MEM MEM MEM MEM

data [128, 139] TL [128, 139] TL MEM MEM MEM MEM

Table 6 Computational results for the minimum 4-club partitioning (or covering) problem using our MIP and

that of Yezerska et al. (2019) under a 3,600-second time limit (TL). MEM stands for memory crash.

Our MIP Yezerska et al. (2019)

Graph partition time cover time partition time cover time

CN 2 18.45 2 6.80 2 1,580.87 2 2,365.68

polblogs [280, 281] TL [280, 281] TL MEM MEM MEM MEM

email [37, 40] TL [38, 40] TL MEM MEM MEM MEM

data [92, 96] TL [91, 96] TL MEM MEM MEM MEM

Table 7 Computational results for the minimum 5-club partitioning (or covering) problem using our MIP and

that of Yezerska et al. (2019) under a 3,600-second time limit (TL). MEM stands for memory crash.

Our MIP Yezerska et al. (2019)

Graph partition time cover time partition time cover time

polblogs [272, 273] TL 272 566.08 MEM MEM MEM MEM

email [16, 20] TL [16, 20] TL MEM MEM MEM MEM

data 68 2,676.61 [67, 68] TL MEM MEM MEM MEM

send them to us when we asked. So, Table 8 summarizes the performance of our approach and

that reported by Gschwind et al. (2021), both using the same 10-minute time limit. We see that our

implementation solves all 36 instances of the partitioning variant, while Gschwind et al. (2021)
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solve 19/36. Further, by referring back to Tables 2 and 3, we see that our initial lower and upper

bounds (along with the “is diam(G) ≤ s?” check) suffice to solve 27/36 instances, without even

invoking the branch-and-cut algorithm. Meanwhile, for the covering variant, both approaches

work well; we solve all 36 instances, while Gschwind et al. (2021) solve 35.

Table 8 Number of instances solved across the 9 benchmark instances of Gschwind et al. (2021) of the

minimum s-club partitioning (or covering) problem within a 600-second time limit.

Our approach Gschwind et al. (2021)

s partition cover partition cover

2 9 9 4 8

3 9 9 3 9

4 9 9 4 9

5 9 9 8 9

6. Conclusion and Future Work

This paper considers the problem of partitioning a graph into (or covering with) a minimum

number of s-clubs. For even values of s, we give an Õ(n1/2) approximation algorithm, and then

show that getting an n1/2−ε approximation is NP-hard. For odd values of s, we show that getting

an n1−ε approximation is NP-hard. These results generalize Dondi et al. (2019), who considered

the covering problem for s= 2 and s= 3, to all values of s for both the covering and partitioning

variants. We also propose MIP-based heuristics, based on the approximation algorithms, that

perform extremely well in practice, solving roughly half of the instances of Yezerska et al. (2019)

and three-quarters of the instances of Gschwind et al. (2021) in less than one second. With an

improved integer programming formulation and an associated branch-and-cut algorithm, we solve

nearly all remaining instances and do so in significantly less time than previous approaches.

Future work may consider the partitioning and covering problems for other clique relaxations.

Do they admit approximation algorithms with a nontrivial approximation factor? If so, can better

practical performance be achieved by embedding a MIP inside them (instead of a greedy step)?

How well do they perform in practice? Do the problems admit improved integer programming

formulations, and what tricks can be used to speed them up? Do the resulting implementations

outperform the general-purpose branch-and-price algorithms of Gschwind et al. (2021)?
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