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Abstract We introduce a novel time-varying step-size for the classical pro-
jected subgradient method, offering optimal ergodic convergence. Importantly,
this approach does not depend on the Lipschitz assumption of the objective
function, thereby broadening the convergence result of projected subgradient
method to non-Lipschitz case.
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1 Introduction

To tackle the nonsmooth convex optimization problem

x∗ ∈ argminx∈X f(x),

where X ⊂ Rn is a compact convex set enclosed within the Euclidean ball
B(x∗, R), and f is a (possibly nonsmooth) convex function, the traditional
projected subgradient method (PSG) is employed as follows:{

ys+1 = xs − ηsgs, where gs ∈ ∂f(xs),

xs+1 = argminx∈X ∥x− ys+1∥,

where ∥ · ∥ denotes the Euclidean norm throughout this paper.
In the literature, the following common Lipschitz assumption on f is made:

Assumption 1 There exists an L > 0 such that for any g ∈ ∂f(x) ̸= ∅ and
x ∈ X , it holds that ∥g∥ ≤ L.
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It is well-established that employing a constant step-size of

ηs ≡
R

L
√
t
, s = 1, · · · , t,

allows PSG to attain an optimal ergodic convergence rate, which is given by

f

(∑t
s=1 xs

t

)
− f(x∗) ≤ RL√

t
,

see, for example, [1,2].
Recently, a time-varying step-size formula, as presented in [1,2], given by

ηs =
R

L
√
s
, s = 1, · · · , t, (1)

has been proven to ensure the optimal convergence rate of PSG as well, as
stated in [3, Corollary 3.2]. The following succinct result concerning PSG with
the step-size given by (1) is credited to [4]:

f

(∑t
s=1 xs

t

)
− f(x∗) ≤ 3RL

2
√
t
. (2)

In [1], a more practical subgradient-normalized time-varying step-size is
further examined, given by

ηs =
R

∥gs∥
√
s
, s = 1, · · · , t, (3)

which notably does not necessitate the knowledge of the Lipschitz constant
beforehand. However, to guarantee the convergence of PSG, Assumption 1
is still required. Additionally, the convergence rate achieved is merely sub-
optimal.

The key contribution of this note is to introduce a subtle variation to the
step-size (3), which enables us to establish the optimal ergodic convergence
rate of PSG, notably without requiring Assumption 1.

2 The main result

We derive the following result without the need for Assumption 1.

Theorem 1 PSG with the following step-size

ηs = min

{
ηs−1,

R

∥gs∥
√
s

}
(η0 = +∞), s = 1, · · · , t, (4)

satisfies

f

(∑t
s=1 xs

t

)
− f(x∗) ≤ 3R

2
√
t
· max
s=1,··· ,t

∥gs∥. (5)
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Proof Consider PSG with the step-size (4). We have

f(xs)− f(x∗) ≤ gTs (xs − x∗) (by the definition of subgradient)

=
1

ηs
(xs − ys+1)

T (xs − x∗)

=
1

2ηs
(∥xs − ys+1∥2 + ∥xs − x∗∥2 − ∥ys+1 − x∗∥2) (6)

=
1

2ηs
(∥xs − x∗∥2 − ∥ys+1 − x∗∥2) + ηs

2
∥gs∥2

≤ 1

2ηs
(∥xs − x∗∥2 − ∥xs+1 − x∗∥2) + R

2
√
s
∥gs∥, (7)

where (6) is derived from the fundamental identity 2aT b = ∥a∥2 + ∥b∥2 −∥a−
b∥2, and (7) holds due to ηs as defined in (4) and the fact that

∥ys+1 − x∗∥2 ≥ ∥xs+1 − x∗∥2,

which is a direct consequence of the projection theorem.
Consequently, we have

f

(∑t
s=1 xs

t

)
− f(x∗)

≤ 1

t

t∑
s=1

(f(xs)− f(x∗)) (Jensen′s inequality)

≤ 1

t

t∑
s=1

1

2ηs
(∥xs − x∗∥2 − ∥xs+1 − x∗∥2) + 1

t

t∑
s=1

R

2
√
s
∥gs∥ (by (7))

=
1

2tη1
∥x1 − x∗∥2 + 1

2t

t∑
s=2

(
1

ηs
− 1

ηs−1
)∥xs − x∗∥2 − 1

2tηt
∥xt+1 − x∗∥2 + 1

t

t∑
s=1

R

2
√
s
∥gs∥

≤ R2

2tη1
+

R2

2t

t∑
s=2

(
1

ηs
− 1

ηs−1
) +

1

t

t∑
s=1

R

2
√
s
∥gs∥ (since

1

ηs
− 1

ηs−1
≥ 0)

≤ R2

2tηt
+

R

2t
( max
s=1,··· ,t

∥gs∥)
t∑

s=1

1√
s

≤ R2

2tηt
+

R√
t

max
s=1,··· ,t

∥gs∥ (since
t∑

s=1

1√
s
< 2

√
t)

=
R√
t

(
1

2
max

s=1,··· ,t
∥gs∥

√
s

t
+ max

s=1,··· ,t
∥gs∥

)
(by the definition of ηt (4))

≤ 3R

2
√
t

max
s=1,··· ,t

∥gs∥.

The proof is complete. ⊓⊔
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Remark 1 In the scenario where ∂f(xs) is not a singleton, Theorem 1 sug-
gests that selecting gs from ∂f(xs) with the minimal norm may possibly en-
hance the convergence.

Remark 2 Given Assumption 1, Theorem 1 allows us to swiftly attain the
optimal ergodic convergence result of (2).

Remark 3 Even when ∥gs∥ is unbounded (i.e., Assumption 1 is violated),
convergence of PSG can still be assured by Theorem 1, as long as the growth
rate of ∥gs∥ during the iteration strictly stays within O(

√
s).

Remark 4 We can apply the same proof techniques to extend the non-Lipschitz
convergence result to weak ergodic convergence of PSG in [4], mirror descent
and other schemes with time-varying step sizes for solving nonsmooth convex
optimization, see [1,2].
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