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Abstract

In this paper, we focus on the relaxed proximal point algorithm (RPPA) for solving convex (pos-
sibly nonsmooth) optimization problems. We conduct a comprehensive study on three types of
relaxation schedules: (i) constant schedule with relaxation parameter αk ≡ α ∈ (0,

√
2], (ii) the dy-

namic schedule put forward by Teboulle and Vaisbourd [TV23], and (iii) the silver stepsize schedule
proposed by Altschuler and Parrilo [AP23b]. The latter two schedules were initially investigated for
the gradient descent (GD) method and are extended to the RPPA in this paper. For type (i), we
establish tight non-ergodic O(1/N) convergence rate results measured by function value residual and
subgradient norm, where N denotes the iteration counter. For type (ii), we establish a convergence
rate that is tight and approximately

√
2 times better than the constant schedule of type (i). For

type (iii), aside from the original silver stepsize schedule put forward by Altschuler and Parrilo, we
propose two new modified silver stepsize schedules, and for all the three silver stepsize schedules,
O(1/N1.2716) accelerated convergence rate results with respect to three different performance metrics
are established. Furthermore, our research affirms the conjecture in [LG24, Conjecture 3.2] on GD
method with the original silver stepsize schedule.

Mathematical Subject Classifications: 90C25

1 Introduction

In this paper, we consider the following general convex optimization problem

minimize
x∈Rd

f(x), (Q)

where f : Rd → R ∪ {∞} is an extended-real-valued proper, closed, and convex (possibly nonsmooth)
function. Denote the optimal solution set of (Q) by X ⋆, which is assumed to be nonempty. Throughout
this paper, we let x⋆ ∈ X ⋆ be arbitrarily fixed. The proximal mapping [Mor65] of f is defined by

Proxλf (x) = arg min
y∈Rd

{
f(y) +

1

2λ
∥y − x∥2

}
, ∀x ∈ Rd, ∀λ > 0. (1)

A classic approach for solving (Q) is the proximal point algorithm (PPA), which, starting at x0 ∈ Rd,
iterates for k ≥ 0 as xk+1 = Proxλf (x

k). PPA was first introduced in [Mar70] and was further studied
by Rockafellar [Roc76b, Roc76a].

Convergence rate results of PPA with varying proximal parameters {λk}N−1
k=0 for solving (Q) was first

established by Güler [Gül91], where O(1/
∑N−1

k=0 λk) complexity bounds for both function value residual
and subgradient norm were derived. Recently, the results derived by [Gül91] were tightened by improving
a constant factor in [THG17a].

A common technique for accelerating convergence is relaxation, which originates from methods like
successive over-relaxation for solving linear systems [Sou46, Var62] and Krasnosel’skǐı-Mann (KM) it-
eration for fixed-point algorithms [Kra55, Man53]. Given a positive integer N ∈ N+, an initialization
point x0 ∈ Rd and N relaxation parameters {α0, α1, . . . , αN−1} ⊆ R++, the N -step relaxed proximal
point algorithm (RPPA) for solving (Q) is summarized in Algorithm 1. The sequence of relaxation
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parameters, denoted by vector α = (α0, α1, . . . , αN−1) ∈ RN
++, is also referred to as the relaxation sched-

ule. It has been widely recognized empirically that relaxation, especially over-relaxation, i.e., αi > 1,
can enhance the numerical performance of fixed-point algorithms and optimization methods, see, e.g.,
[EB92, Boy+11, CGH14].

Algorithm 1: Relaxed Proximal Point Algorithm

input : x0 ∈ Rd, λ > 0, N ∈ N+, α ∈ RN
++

for k = 0, 1, 2, . . . , N − 1 do
zk = Proxλf (x

k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Proximal step)
xk+1 = xk + αk(z

k − xk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Relaxation step)
end

output: zN = Proxλf (x
N )

Various studies have analyzed the convergence of RPPA in different settings. For instance, it has been
applied to solving variational inequality problems in [LY13, GY24], where ergodic sublinear convergence
rates were established. However, the performance measures used in these works cannot be applied
to our setting. In [CY14, GHY14], RPPA was analyzed for solving monotone inclusion and mixed
variational inequality problems. While the performance measures used in these works can be adapted
to our setting, only ergodic convergence rates were provided. Recently, with the fixed point residual
being used as the performance measure, tight non-ergodic convergence rate results of the KM iteration
were established in [Lie18], and these results also apply to RPPA. Detailed convergence bound results of
RPPA under different measures for different stepsize schedules, along with the corresponding references,
are summarized in Table 1.

Despite the various studies on RPPA, current research has several limitations. As far as we know,
there has been no analysis regarding the tight convergence rate of RPPA with a constant relaxation
schedule for solving (Q). Moreover, existing studies fail to demonstrate a clear advantage of RPPA over
PPA in terms of the order of convergence rate. In this paper, we conduct a theoretical examination of how
different relaxation schedules impact the worst-case guarantees of PPA. We will study existing relaxation
schedules and also propose new ones. In particular, we establish tight convergence rate results for RPPA
and show that RPPA can achieve improved complexity bounds compared to PPA. As byproducts, we
also solve some conjectures in the literature by providing their formal proofs. A majority of the main
results derived in this paper are summarized in Table 1.

1.1 Connection with gradient descent methods

Our study is closely related to the recent advances in the analysis of gradient descent (GD) methods
[DT14, TV23, AP23b, GSW24]. This is because RPPA can be viewed as applying GD method to the
Moreau envelope of f , which is defined as

fλ(x) := min
u∈Rd

{
f(u) +

1

2λ
∥x− u∥2

}
, x ∈ Rd, λ > 0.

It is well known that fλ is convex, (1/λ)-smooth, i.e., it is differentiable and its gradient is (1/λ)-
Lipschitz continuous, and furthermore, it shares the same set of minimizers as f , see, e.g., [Bec17, Sec.
6.7]. In particular, for k ∈ {⋆, 0, 1, 2, . . . , N − 1}, the sequence generated by Algorithm 1 together with
z⋆ := Proxλf (x

⋆) = x⋆ satisfy

xk − zk

λ
=

xk − Proxλf (x
k)

λ
= ∇fλ(xk) ∈ ∂f(zk), (2)

fλ(xk) = f(zk) +
1

2λ

∥∥xk − zk
∥∥2 = f(zk) +

λ

2

∥∥∇fλ(xk)
∥∥2 . (3)

As a result, the iterative scheme of RPPA can be equivalently expressed as

xk+1 = xk + αk(Proxλf (x
k)− xk) ≡ xk − αkλ∇fλ(xk), k = 0, 1, . . . , N − 1, (4)

which is precisely the N -step GD method applied to the (1/λ)-smooth function fλ with stepsize schedule
α = (α0, α1, . . . , αN−1) normalized by the Lipschitz constant (1/λ). For this reason, we will also refer
to the relaxation schedule α of RPPA as the stepsize schedule.
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ü
l9
1
,
T
h
m
.
2
.2
]

α
k
≡

α
∈
(0
,√

2]
Y
es

1
1
+
α
N

1 λ
[O

u
rs
,
R
m
k
.
3
.1
]

S
il
ve
r
sc
h
ed
u
le

π
(m

)
(3
1)

[A
P
23
b
]

N
=

2m
−
1

1
1
+
∑ N

−
1

k
=

0
α

k

1 λ
∼

1
N

lo
g
2

ρ
1 λ
[O

u
rs
,
T
h
m
.
5
.3
]

T
ab

le
1:

C
on

ve
rg
en
ce

b
ou

n
d
re
su
lt
s
of

R
P
P
A

w
it
h
d
iff
er
en
t
st
ep
si
ze

sc
h
ed
u
le
s
u
n
d
er

d
iff
er
en
t
m
ea
su
re
s
fo
r
so
lv
in
g
(Q

).
ρ
=

1
+
√
2
≈

2.
4
1
4
is

th
e
si
lv
er

ra
ti
o
.

3



Given the connection expressed in (4) between RPPA and GD methods, it appears that the con-
vergence results of GD methods can be extended to RPPA in a straightforward manner. However, if
extended in this way, the resulting results are characterized by the Moreau envelope fλ, whereas our
primary interest lies in f itself. Moreover, the results obtained in this manner are usually worse than
the tight complexity bound that we desire. Next, we will review the key results from the GD literature.
This will help place our contributions in context.

1.2 Prior arts on stepsize design for gradient descent methods

Let x0 ∈ Rd be a given starting point. Consider minimizing an L-smooth convex function h via the
N -step GD method with stepsize schedule α = (α0, α1, . . . , αN−1) ∈ RN

++ normalized by L, that is

xk+1 = xk − αk

L
∇h(xk), k = 0, 1, . . . , N − 1. (5)

Traditional analysis of GD is confined to the scenario of “short stepsizes”. In this case, the (normalized)
stepsizes αk are chosen in (0, 2), as seen [DT14, Kim+23, THG17c, TV23]. This strategy ensures a
decrease in the function value at each iteration. For constant stepsizes αk ≡ α ∈ (0, 1], tight convergence
rate results have been established under three optimality measures, which are

∥∥∇h(xN )
∥∥ / ∥∥x0 − x⋆

∥∥ in

[TV23], (h(xN ) − h(x⋆))/
∥∥x0 − x⋆

∥∥2 in [DT14, TV23] and
∥∥∇h(xN )

∥∥2 /(h(x0) − h(x⋆)) in [Kim+23].
Very recently, an exact full-range analysis of GD method for any constant stepsizes αk ≡ α ∈ (0, 2)
was conducted in [RGP24]. In [TV23], a dynamic stepsize schedule with αk → 2 was proposed. This
schedule improves the complexity bound of the GD method with αk ≡ 1 by a factor of 2 asymptotically

for the measure (h(xN ) − h(x⋆))/
∥∥x0 − x⋆

∥∥2. Similarly, another dynamic schedule was introduced in

[RGP24], which achieved an accelerated rate under the measure
∥∥∇h(xN )

∥∥2 /(h(x0) − h(x⋆)). In this
“short stepsize” case, the best possible convergence rate without momentum is O(1/N), see [DVR24,
Sec. 6.1.1].

Recent research has delved into “long stepsizes”, where the (normalized) stepsizes αk can surpass the
bound of 2. Although this approach may result in an increase in function value at some iterations, a
meticulous design of the stepsizes can potentially enhance the final complexity bound. Altschuler’s mas-
ter’s thesis [Alt18] first identified optimal stepsize schedules for strongly convex problems with N = 2, 3.
Das Gupta et al. proposed in [DVR24] the use of a branch-and-bound technique to solve the nonconvex
performance estimation problem. This approach, referred to as BnB-PEP in the rest of this paper, can
numerically find the optimal stepsize schedules for any N ≥ 1. However, due to the nonconvexity of
the stepsize optimization problem, only optimal schedules for N ≤ 50 were provided as only small-scale
problems can be solved by the branch-and-bound approach due to their nonconvex nature. Grimmer
[Gri24] achieved asymptotic convergence rates by cycling through finite “straightforward” schedules,
thereby improving the classical convergence rates by a constant factor.

All the works reviewed above maintain the convergence rate of O(1/N) for the GD method without
altering the order. However, recent studies [AP23a, AP23b, GSW23, GSW24] have developed stepsize
sequences that boost the convergence rate of GD method to a higher order. Motivated by the numerically
optimal step sizes in [DVR24], Grimmer et al. in [GSW23] proposed an infinite “straightforward” stepsize
schedule, which achieves an O(1/N1.0564) rate in the non-strongly convex setting. In [AP23a], Altschuler
and Parrilo introduced the silver stepsize schedule for the GD method in the µ-strongly convex setting,
which is named after its use of the silver ratio ρ := 1+

√
2 in the stepsizes. In the limit as µ approaches

0, an accelerated O(1/N1.2716) rate for the function value residual in the non-strongly convex case was
derived in [AP23b]. Later, Grimmer et al. [GSW24] proposed a “right-side heavy” stepsize schedule based
on the silver stepsize schedule, which improves the original result by a constant factor of approximately
2.3244. Furthermore, motivated by the H-duality of gradient-based algorithms as described in [Kim+23],
Grimmer et al. in [GSW24] also introduced a “left-side heavy” stepsize schedule. This schedule mirrors
the “right-side heavy” stepsize schedule and achieves an O(1/N1.2716) rate for the gradient norm.

The above-reviewed stepsize schedules, along with their corresponding convergence rate results and
references, are summarized in Table 2.

1.3 Contributions

The contributions of this paper are summarized below.
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1. We establish tight complexity bounds for RPPA with the constant relaxation schedule αk ≡ α ∈
(0,

√
2] in terms of function value residual and subgradient norm, see Theorem 3.1 and Remark 3.1,

respectively.

2. We establish a tight complexity bound for RPPA with the dynamic relaxation schedule proposed by
Teboulle and Vaisbourd in [TV23]. Once again, we use the function value residual as the optimality
measure. The main result is presented in Theorem 4.1, which improves the result in Theorem 3.1 by
a constant factor of approximately

√
2 as N → ∞.

3. The original silver stepsize schedule, denoted by π(m), was proposed in [AP23b] for GD method.
In this paper, we propose two extensions of it, i.e., the left and the right silver stepsize sched-
ules, denoted respectively by π(m) and π(m). For π(m), π(m) and π(m), we establish tight com-
plexity bounds based on three different optimality measures

∥∥∇fλ(xN )
∥∥ /∥∥x0 − x⋆

∥∥ (Theorem 5.3),∥∥∇fλ(xN )
∥∥2 /(f(x0)−f(x⋆)) (Theorem 5.5) and (f(zN )−f(x⋆))/

∥∥x0 − x⋆
∥∥2 (Theorem 5.4), respec-

tively. The established bounds show that RPPA with all these silver stepsize schedules converges at
the same rate O(1/N1.2716), which is faster than the classical rate O(1/N) for standard GD method
with “short stepsizes” αk ∈ (0, 2). Furthermore, the established upper bounds are tight since they
match the lower bounds derived in Lemma 2.3. See Section 5 for details.

4. As a byproduct of our research, we establish in Theorem 5.2 tight convergence rate results for the
GD method with the silver stepsize schedule π(m) under two different optimality measures for solving
smooth convex optimization problems. These results provide an affirmative answer to the conjecture
in [LG24, Conjecture 3.2].

1.4 Notation and organization

Our notation is standard. Here, we clarify some of it. We denote R++ as the set of all positive real
numbers; Rd represents the standard Euclidean space with dimension d; Rd

++ is the subset of Rd consisting
of all vectors in Rd with positive components; Rm×n stands for the set of m × n matrices; and N+ is
the set of positive integers. The standard inner product and the induced norm on Rd are denoted by
⟨·, ·⟩ and ∥ · ∥ respectively. The subgradient of a convex function f at x ∈ Rd, denoted by ∂f(x), is given
by ∂f(x) = {g ∈ Rd | f(y) ≥ f(x) + ⟨g, y − x⟩ for all y ∈ Rd}. The effective domain of f is given
by dom(f) =

{
x ∈ Rd | f(x) < ∞

}
. For any positive sequences {ak} and {bk}, we employ the notation

ak ∼ bk to signify that limk→∞ ak/bk = 1. Other notations will be explained as the paper proceeds.
The remainder of this paper is structured as follows. In Section 2, we gather preliminary results

that will be useful in the subsequent analysis. Specifically, we derive lower complexity bounds of RPPA
with any relaxation schedule under different optimality measures. Section 3 is dedicated to a thorough
analysis of RPPA with a constant relaxation schedule αk ≡ α ∈ (0,

√
2]. Section 4 deals with Teboulle and

Vaisbourd’s relaxation schedule as presented in [TV23]. Section 5 examines the silver stepsize schedule
of Altschuler and Parrilo [AP23b] and two extensions thereof. Finally, concluding remarks are presented
in Section 6.

2 Preliminaries

The following identities and inequalities are elementary and easy to verify. They will be employed in our
analysis. For any x, y, z, w ∈ Rd, θ ∈ R and κ > 0, there hold

2⟨x− y, z − w⟩ = ∥x− w∥2 + ∥y − z∥2 − ∥x− z∥2 − ∥y − w∥2, (6)

∥θx+ (1− θ)y∥2 = θ∥x∥2 + (1− θ)∥y∥2 − θ(1− θ)∥x− y∥2, (7)

(1 + 1/κ)∥x∥2 + (1 + κ)∥y∥2 ≥ ∥x+ y∥2 ≥ (1− 1/κ)∥x∥2 + (1− κ)∥y∥2. (8)

Next, we present two lemmas. Lemma 2.1 is an extension of [TV23, Lemma 4], and Lemma 2.2
recalls some properties of the stepsize schedule proposed in [TV23]. It should be noted that in [TV23],
it is specified that γ ∈ {0, 1}. However, for the conclusion of Lemma 2.1 to be valid, it is sufficient to
ensure that γ ≥ −s.

Lemma 2.1 (Extension of [TV23, Lemma 4]). For any x, y, z ∈ Rd, s > 0, γ ≥ −s and v ∈ R. If
∥x∥2 ≥ ∥y∥2 + s(s+ γ)∥z∥2 + sv and v ≤ 2⟨y, z⟩ − γ∥z∥2, then there holds v ≤ ∥x∥2/(2s+ γ).
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Lemma 2.2 (Collected from [TV23]). For k ≥ 1, define αk recursively as

αk =
1

2

(
−Ak−1 +

√
A2

k−1 + 8(Ak−1 + 1)
)

with α0 =
√
2 and Ak−1 :=

k−1∑
i=0

αi. (9)

Then, it holds for any k ≥ 0 that

√
2 ≤ αk =

2(1 +Ak)

2 +Ak
< 2 and α2

k − 2 = (2− αk)Ak−1. (10)

Furthermore, we also have Ak−1 ∼ 2k.

In fact, the first equality in (10) is established by [TV23, Lemma 13], while the second equality follows
directly from the definition of αk. Moreover, it can be verified that αk is monotonically increasing and
approaches 2 as k → ∞. Thus,

√
2 ≤ αk < 2 and Ak−1/(2k) converges to 1. For simplicity, below we

refer to the relaxation schedule defined in (9) as TV’s schedule.
Next, we establish some lower bounds that are applicable to Algorithm 1 with any relaxation schedule

α. These bounds serve as limitations and set the stage for determining the best possible upper bounds of
RPPA when carefully designed relaxation schedules are employed. The proofs of these lower bounds are
based on constructing examples that match these lower bounds. Particularly, the examples have been
recognized in [THG17a, TV23] as worst-case instances for PPA.

Lemma 2.3 (Lower bounds for RPPA). Let N ∈ N+ be any positive integer, {(xk, zk)}Nk=0 be the
sequence generated by Algorithm 1 with any positive relaxation schedule α = (α0, α1, . . . , αN−1) ∈ RN

++

for solving (Q). Then, there hold

(i)
∥∥∇fλ(xN )

∥∥ =
∥∥ 1
λ (x

N − zN )
∥∥ ≥ 1

1+
∑N−1

i=0 αi

1
λ

∥∥x0 − x⋆
∥∥,

(ii) f(zN )− f(x⋆) ≥ 1

2(1+
∑N−1

i=0 αi)
1
2λ

∥∥x0 − x⋆
∥∥2, and

(iii)
∥∥∇fλ(xN )

∥∥2 =
∥∥ 1
λ (x

N − zN )
∥∥2 ≥ 1

1+
∑N−1

i=0 αi

1
λ

(
f(x0)− f(x⋆)

)
.

Proof. The proof is accomplished by constructing specific functions that match the lower bounds. In all
three cases, the constructed functions have the form f(·) = η∥ · ∥ for some η > 0. Note that f is convex,
X ⋆ = {0}, f(x⋆) = 0 and ∂f(x) = {ηx/∥x∥} for any x ̸= 0. Let x0 satisfy

∥∥x0
∥∥ = 1.

To prove (i) and (iii), we let η =
(
λ(1 +

∑N−1
i=0 αi)

)−1
. Using (4), (2) and ∥x0∥ = 1, by induction we

can show that xk = x0 −
∑k−1

i=0 αiληx
i/∥xi∥ =

(
1 −

∑N−1
i=0 αiλη

)
x0 ̸= 0 and zk = xk − ληxk/

∥∥xk
∥∥ =(

1 − λη −
∑N−1

i=0 αiλη
)
x0 for any 0 ≤ k ≤ N . Therefore, we have shown that ∇fλ(xN ) =

(
λ(1 +∑N−1

i=0 αi)
)−1

x0, which proves (i). Moreover, by noting ∥x0∥ = 1, f(x⋆) = 0 and f(x0) = η, it is easy to

verify that ∥∇fλ(xN )∥2 =
(
λ(1 +

∑N−1
i=0 αi)

)−1
(f(x0)− f(x⋆)), which proves (iii). To prove (ii), we set

η =
(
2λ(1 +

∑N−1
i=0 αi)

)−1
. In this case, we have zN = x0/2, and thus f(zN ) =

(
4λ(1 +

∑N−1
i=0 αi)

)−1
,

which proves (ii) since ∥x0 − x⋆∥ = 1.

If a complexity upper bound established for RPPA with any relaxation schedule coincides with any
of the lower bounds provided in Lemma 2.3, it is considered to be tight.

3 Tight analysis of RPPA with αk ≡ α ∈ (0,
√
2]

In this section, we establish a tight worst-case complexity bound for RPPA as presented in Algorithm 1
with constant relaxation schedule αk ≡ α ∈ (0,

√
2]. Drawing inspiration from [TV23], we identify the

key monotonically decreasing terms within the analysis that are crucial for our analysis and introduce
a double sufficient decrease inequality to simplify the proof. We now present a useful lemma, which is
applicable beyond the case of constant relaxation schedule.

Lemma 3.1. Let x⋆ ∈ X ⋆ be arbitrarily fixed and {(zk, xk)}k≥0 be the sequence generated by Algorithm
1 for solving (Q). Then, for k ≥ 0, we have

f(x⋆) ≥ f(zk) +
1

2λαk
∥xk+1 − x⋆∥2 − 1

2λαk
∥xk − x⋆∥2 + 2− αk

2λ
∥zk − xk∥2, (11)
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f(zk) ≥ f(zk+1) +
1

2λ

(
∥zk+1 − xk+1∥2 + ∥zk+1 − zk∥2 − (1− αk)

2∥zk − xk∥2
)
, (12)

αk − 2

2(1− αk)
∥zk+1 − zk∥2 + αk

2(1− αk)
∥zk+1 − xk+1∥2 + αk(αk − 1)

2
∥zk − xk∥2

= ⟨(xk+1− zk+1)− (xk − zk), zk+1 − zk⟩ ≥ 0. (αk ̸= 1) (13)

Proof. For any k ≥ 0, from zk = Proxλf (x
k), we obtain 0 ∈ ∂f(zk) + zk−xk

λ , and thus

f(x) ≥ f(zk) +
1

λ
⟨xk − zk, x− zk⟩, ∀x ∈ Rd. (14)

Substituting x = x⋆ in (14), we get

f(x⋆) ≥ f(zk) +
1

λ
⟨xk − zk, x⋆ − zk⟩ (6)

= f(zk) +
1

2λ

(
∥zk − xk∥2 + ∥zk − x⋆∥2 − ∥xk − x⋆∥2

)
. (15)

Since xk+1 = αkz
k + (1− αk)x

k, using (7) and the fact that xk+1 − xk = αk(z
k − xk), we deduce

∥zk − x⋆∥2 =
1

αk
∥xk+1 − x⋆∥2 + αk − 1

αk
∥xk − x⋆∥2 + (1− αk)∥zk − xk∥2.

Substituting this into (15) directly gives (11). Setting x = zk−1 in (14) and utilizing zk−1 − xk =
(1− αk−1)(z

k−1 − xk−1), we obtain

f(zk−1) ≥ f(zk) +
1

λ
⟨xk− zk, zk−1− zk⟩ (6)

= f(zk) +
1

2λ

(
∥zk − xk∥2+ ∥zk − zk−1∥2− ∥xk − zk−1∥2

)
= f(zk) +

1

2λ

(
∥zk − xk∥2 + ∥zk − zk−1∥2 − (1− αk−1)

2∥zk−1 − xk−1∥2
)
,

which verifies (12). The equality in (13) follows by

⟨(xk+1 − zk+1)− (xk − zk), zk+1 − zk⟩ = ⟨xk+1 − zk+1, zk+1 − zk⟩ − ⟨xk − zk, zk+1 − zk⟩
(Alg1)
= ⟨xk+1 − xk+1, zk+1 − zk⟩+ 1

αk − 1
⟨xk+1 − zk, zk+1 − zk⟩

(6)
=

αk − 2

2(1− αk)
∥zk+1 − zk∥2 + αk

2(1− αk)
∥zk+1 − xk+1∥2 + αk

2(αk − 1)
∥zk − xk+1∥2

(Alg1)
=

αk − 2

2(1− αk)
∥zk+1 − zk∥2 + αk

2(1− αk)
∥zk+1 − xk+1∥2 + αk(αk − 1)

2
∥zk − xk∥2.

Recall that xk−zk

λ ∈ ∂f(zk). Leveraging the monotonicity property of the proximal operator, we can
deduce that ⟨(xk+1−zk+1)−(xk−zk), zk+1−zk⟩ ≥ 0, thereby confirming the assertion of (13).

Next, we prove the monotonicity of ∥zk − xk∥, which shows that the norm of a specifically selected
subgradient element decreases monotonically as k increases.

Lemma 3.2 (Monotonicity of ∥zk − xk∥). Let {(zk, xk)}k≥0 be the sequence generated by Algorithm 1
for solving (Q) with αk ≡ α ∈ (0, 2]. Then, for any k ≥ 0, it holds that

∥zk+1 − xk+1∥ ≤ ∥zk − xk∥. (16)

Proof. We consider three cases: (i) α ∈ (0, 1), (ii) α ∈ (1, 2], and (iii) α = 1.

(i) For α ∈ (0, 1), applying (8) with x = zk+1 − xk+1, y = xk+1 − zk and κ = 1
1−α > 0, we obtain

∥zk+1 − zk∥2 ≥ α∥zk+1 − xk+1∥2 − α

1− α
∥xk+1 − zk∥2

(Alg1)
= α∥zk+1 − xk+1∥2 − α(1− α)∥zk − xk∥2.

(17)

(ii) For α ∈ (1, 2], similarly, applying (8) with x = zk+1− xk+1, y = xk+1− zk and κ= 1
α−1 > 0 gives

∥zk+1 − zk∥2 ≤ α∥zk+1 − xk+1∥2 + α

α− 1
∥xk+1 − zk∥2

(Alg1)
= α∥zk+1 − xk+1∥2 + α(α− 1)∥zk − xk∥2.

(18)
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For both cases (i) and (ii), we derive

α∥zk − xk∥2 − α∥zk+1 − xk+1∥2

=
α− 2

1−α

(
α∥zk+1− xk+1∥2−α(1−α)∥zk − xk∥2

)
+

α

1−α
∥zk+1− xk+1∥2 + α(α−1)∥zk − xk∥2

(17) or (18)

≥ α− 2

1−α
∥xk+1 − xk∥2 + α

1−α
∥zk+1 − xk+1∥2 + α(α−1)∥zk − xk∥2

(13)

≥ 0,

where the “=” can be verified straightforwardly. This confirms (16) for α ∈ (0, 1) ∪ (1, 2].

(iii) For α = 1, we have xk+1 = zk. Using the monotonicity of the proximal operator, we derive

0 ≤ ⟨(zk − zk+1)− (zk−1 − zk), zk+1 − zk⟩ = ⟨(2zk − zk−1)− zk+1, zk+1 − zk⟩
≤ ∥zk − zk−1∥2 − ∥zk+1 − zk∥2 = ∥zk − xk∥2 − ∥zk+1 − xk+1∥2.

In summary, we have shown that (16) holds for all k ≥ 0.

Lemma 3.3 (Double sufficient decrease). Let {(zk, xk)}k≥0 be the sequence generated by Algorithm 1
for solving (Q) with αk ≡ α ∈ (0, 2). Then, for any k ≥ 0, there hold

1. f(zk) ≥ f(zk+1) + α+1
2λ ∥zk+1 − xk+1∥2 + α−1

2λ ∥zk − xk∥2 if α ∈ (0, 1], and . . . . . . . . . . . . . .(2SD−1)

2. f(zk) ≥ f(zk+1) + 1
2λ

2
2−α∥z

k+1−xk+1∥2+ 1
2λ

2(α−1)2

α−2 ∥zk − xk∥2 if α ∈ (1, 2). . . . . . . . . . . . (2SD−2)

Proof. We first address the case α ∈ (0, 1], the proof of which is divided into two subcases: α ∈ (0, 1) and
α = 1. For α ∈ (0, 1), combining (12) with (17) directly yields (2SD-1). For α = 1, we have xk+1 = zk.
Thus, (12) reduces to f(zk) ≥ f(zk+1) + 1

λ∥z
k+1 − xk+1∥2, which is exactly (2SD-1).

Now, consider the case α ∈ (1, 2). It follows from (13) that

∥zk+1 − zk∥2 ≥ α

2− α
∥zk+1 − xk+1∥2 + α(α− 1)2

α− 2
∥zk − xk∥2.

Combining the above inequality with (12) directly demonstrates (2SD-2).

Now, we are prepared to establish the tight complexity bound for RPPA with αk ≡ α ∈ (0,
√
2] by

using the function value residual as the optimality measure.

Theorem 3.1 (Tight complexity bound for RPPA with αk ≡ α ∈ (0,
√
2]). Let x⋆ ∈ X ⋆ and N ∈ N+

be arbitrarily fixed. Let zN be the output after N iterations of Algorithm 1 for solving (Q) with constant
relaxation schedule αk ≡ α ∈ (0,

√
2]. Then, it holds that

f(zN )− f(x⋆) ≤ 1

αN + 1

1

4λ
∥x0 − x⋆∥2. (19)

Furthermore, this bound is tight.

Proof. Reorganizing the terms in (11) gives

1

2λα
∥xk − x⋆∥2 − 1

2λα
∥xk+1 − x⋆∥2 ≥ f(zk)− f(x⋆) +

2− α

2λ
∥zk − xk∥2, ∀k ≥ 0.

Summing up the above inequality over k = 0, . . . , N , we obtain

1

2λα
∥x0 − x⋆∥2 − 1

2λα
∥xN+1 − x⋆∥2 ≥

N∑
i=0

(
f(zi)− f(x⋆) +

2− α

2λ
∥zi − xi∥2

)

=

N∑
i=0

(
f(zi)− f(zN ) +

2− α

2λ
∥zi − xi∥2

)
+ (N + 1)(f(zN )− f(x⋆)). (20)

Next, we separate the proof into two cases: α ∈ (0, 1] and α ∈ (1,
√
2]. For α ∈ (0, 1], utilizing (2SD-1)

in Lemma 3.3, we obtain for all 0 ≤ i < N that

f(zi)− f(zN ) +
2− α

2λ
∥zi − xi∥2 ≥ α+ 1

2λ
∥zN − xN∥2 + α

λ

N−1∑
k=i+1

∥zk − xk∥2 + 1

2λ
∥zi − xi∥2
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(16)

≥
(
(N − i)α

λ
+

2− α

2λ

)
∥zN − xN∥2. (21)

For α ∈ (1,
√
2], we can also establish (21). In fact, in this case, by utilizing (2SD-2) in Lemma 3.3, it

yields for all 0 ≤ i < N that

f(zi)− f(zN ) +
2− α

2λ
∥zi − xi∥2 ≥ 1

2λ

2

2− α
∥zN − xN∥2+α

λ

N−1∑
k=i+1

∥zk − xk∥2+ 1

2λ

α2 − 2

α− 2
∥zi − xi∥2

(16)

≥
(
(N − i)α

λ
+

2− α

2λ

)
∥zN − xN∥2,

where the second “≥” also uses α ≤
√
2. Substituting (21) into (20), we obtain

1

2λα
∥x0 − x⋆∥2 − 1

2λα
∥xN+1 − x⋆∥2

≥ (N + 1)

[
α(N + 1) + 2(1− α)

2λ
∥zN − xN∥2 + (f(zN )− f(x⋆))

]
. (22)

Substituting k = N into (15), we drive

f(x⋆) ≥ f(zN ) +
1

λ
⟨xN − zN , x⋆ − zN ⟩ = f(zN ) +

1

λ
⟨xN − zN , x⋆ − xN+1 + xN+1 − zN ⟩

(Alg1)
= f(zN ) +

1

λ
⟨xN − zN , x⋆ − xN+1⟩+ 1− α

λ
∥zN − xN∥2. (23)

Combining (22) and (23), setting v = 2λ(f(zN ) − f(x⋆)), x = x0 − x⋆, y = xN+1 − x⋆, z = zN − xN ,
s = α(N + 1) and γ = 2(1− α) in Lemma 2.1, we directly obtain the desired result (19) by noting that
s + γ > 0 holds for any α ∈ (0,

√
2] and N ≥ 1. Finally, the tightness of (19) can be easily verified by

noticing that it matches the lower bound given in item (ii) of Lemma 2.3.

Remark 3.1 (Complexity bound for subgradient norm
∥∥∇fλ(xN )

∥∥). Let αk ≡ α ∈ (0,
√
2]. Since, by

(2), we have ∇fλ(xN ) ∈ ∂f(zN ),
∥∥∇fλ(xN )

∥∥ can be viewed as the subgradient norm residual of f at

zN . By slightly modifying the previous analysis, we can derive a tight complexity bound for
∥∥∇fλ(xN )

∥∥.
First, by summing the inequality (11) over k = 0, 1, . . . , N − 1, we can obtain a result analogous to (20).
Then, by following the same reasoning as in Theorem 3.1, we can derive an inequality similar to (22):

1

2λα
∥x0 − x⋆∥2 − 1

2λα
∥xN − x⋆∥2 ≥ N

[
αN + 2

2λ
∥zN − xN∥2 + (f(zN )− f(x⋆))

]
. (24)

Next, by setting k = N in (15), leveraging the fact that f(zN ) − f(x⋆) ≥ 0 and rearranging terms, we
obtain ∥∥xN − x⋆

∥∥2 ≥
∥∥zN − xN

∥∥2 + ∥∥zN − x⋆
∥∥2 . (25)

By combining (25) with (24), followed by eliminating certain non-negative terms from the right-hand side
of (24), we achieve the bound ∥∇fλ(xN )∥2 ≤ 1

λ2(αN+1)2 ∥x
0 − x⋆∥2 for any α ∈ (0,

√
2]. The tightness

of this bound can be verified by item (i) of Lemma 2.3 as well.

4 Tight analysis of RPPA with TV’s schedule (9)

In this section, we establish a tight worst-case complexity bound for RPPA with TV’s relaxation schedule
as presented in (9). As in Theorem 3.1, function value residual is used as the optimality measure, and
the established bound is approximately

√
2 times better as N → ∞.

Theorem 4.1. Let x⋆ ∈ X ⋆ and N ∈ N+ be arbitrarily fixed. Let zN be the output after N iterations of
Algorithm 1 for solving (Q) with TV’s relaxation schedule defined in (9). Then, it holds that

f(zN )− f(x⋆) ≤ 1

AN−1 + 1

1

4λ
∥x0 − x⋆∥2, (26)

where AN−1 is defined in (9). Furthermore, this bound is tight.
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Proof. Similar to the proof of (2SD-2) in Lemma 3.3, by utilizing (12) and (13), we can show

f(zk) ≥ f(zk+1) +
1

2λ

2

2− αk
∥zk+1 − xk+1∥2 + 1

2λ

2(αk − 1)2

αk − 2
∥zk − xk∥2, ∀k ≥ 0,

which further implies for all 0 ≤ i < N that

f(zi)− f(zN ) +
2− αi

2λ
∥zi − xi∥2 ≥ 1

2λ

2

2− αN−1
∥zN − xN∥2 + 1

2λ

α2
i − 2

αi − 2
∥zi − xi∥2

+
1

2λ

N−1∑
k=i+1

(
2

2−αk−1
+ 2(αk−1)2

αk−2

)
∥zk − xk∥2.

(27)

Rearranging (11) gives 1
2λ∥x

k − x⋆∥2 − 1
2λ∥x

k+1 − x⋆∥2 ≥ αk(f(z
k) − f(x⋆) + 2−αk

2λ ∥zk − xk∥2) for all
k ≥ 0. Summing up this inequality over k = 0, 1, . . . , N , we obtain

1

2λ
∥x0−x⋆∥2− 1

2λ
∥xN+1−x⋆∥2 ≥

N∑
i=0

αi

(
f(zi)−f(zN ) +

2− αi

2λ
∥zi−xi∥2

)
+AN (f(zN )−f(x⋆)).

Making use of (27), the above inequality further implies

1

2λ
∥x0−x⋆∥2− 1

2λ
∥xN+1−x⋆∥2 ≥ αN (2−αN )

2λ ∥zN − xN∥2 +AN (f(zN )− f(x⋆))

+
1

2λ

N−1∑
i=0

αi

[
2

2−αN−1
∥zN − xN∥2 + α2

i−2
αi−2 ∥z

i − xi∥2 +
N−1∑
k=i+1

(
2

2−αk−1
+ 2(αk−1)2

αk−2

)
∥zk − xk∥2

]

=
1

2λ

[(
2AN−1

2−αN−1
+αN (2−αN )

)
∥zN−xN∥2+

N−1∑
k=1

(
2Ak−1

2−αk−1
+ 2Ak−1(αk−1)2

αk−2 +
αk(α

2
k−2)

αk−2

)
∥zk−xk∥2

+
α0(α

2
0−2)

α0−2 ∥z0−x0∥2
]
+AN (f(zN )− f(x⋆)). (28)

Applying the results from (10), we can verify for k = 1, . . . , N − 1 that

2Ak−1

2−αk−1
+ 2Ak−1(αk−1)2

αk−2 +
αk(α

2
k−2)

αk−2 = Ak−1(2 +Ak−1) +
1

αk−2 [2Ak−1(αk − 1)2 + αk(2Ak−1 − αkAk−1)]

= Ak−1(2 +Ak−1) +
1

αk−2 [Ak−1(α
2
k − 2αk) + 2Ak−1] = Ak−1(2 +Ak−1) +Ak−1(αk + 2

αk−2 )

= Ak−1(2 +Ak−1) +Ak−1(αk − 2−Ak) = 0,

as well as

2AN−1

2−αN−1
+αN (2−αN )=AN−1(2 +AN−1)+2αN − α2

N =A2
N−1−α2

N+2AN = AN (AN + 2(1−αN )).

Hence, (28) can be simplified to

1

2λ
∥x0−x⋆∥2− 1

2λ
∥xN+1−x⋆∥2 ≥ AN (AN + 2(1−αN ))

2λ
∥zN − xN∥2+AN (f(zN )−f(x⋆)). (29)

Similar to (23), we can derive

f(x⋆) ≥ f(zN ) +
1

λ
⟨xN − zN , x⋆ − xN+1⟩+ 1− αN

λ
∥zN − xN∥2. (30)

By combining (29) and (30), and setting v = 2λ(f(zN ) − f(x⋆)), x = x0 − x⋆, y = xN+1 − x⋆, z =
zN − xN , s = AN and γ = 2(1− αN ) in Lemma 2.1, the desired upper bound result (26) can be derived
straightforwardly. Finally, the tightness of (26) follows from item (ii) of Lemma 2.3 and the definition
of AN−1 in Lemma 2.1.

5 Accelerate RPPA via silver stepsize schedules

In this section, we analyze the performance of RPPA using the silver stepsize schedule from [AP23b].
Additionally, we propose two modified schedules based on the silver stepsize schedule. These sched-
ules permit the stepsizes to be considerably larger than 2 and enable higher-order convergence rates of
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O(1/N1.2716) for either the function value residual or the subgradient norm, surpassing the standard
O(1/N) rate.

Before deriving the results for RPPA, we first establish the tight complexity bound for GD method
with the silver stepsize schedule for minimizing smooth convex functions. Part of these results can be
directly utilized to establish the tight convergence rate of RPPA with the silver stepsize schedule.

5.1 Tight convergence rate of GD method with the silver stepsize schedule

Consider minimizing an L-smooth convex function h via theN -step GD method (5) with stepsize schedule
α = (α0, α1, . . . , αN−1) ∈ RN

++ normalized by L. For any m ≥ 1, the silver stepsize schedule, denoted

by π(m), was first proposed for the GD method in [AP23b]. The m-th silver stepsize schedule π(m) is a
vector in R2m−1

++ , and it is recursively defined as follows:

π(1) := [
√
2] and π(m+1) := [π(m), 1 + ρm−1, π(m)], ∀m ≥ 1, (31)

where ρ = 1+
√
2 is the silver ratio satisfying ρ2 = 2ρ+1. For convenience, the components of π(m) are

indexed by i ∈ {0, 1, . . . , 2m − 2}. By this definition, we have
∑2m−2

i=0 π
(m)
i = ρm − 1. In [AP23b], the

following convergence rate for GD method with silver stepsize schedule was established.

Theorem 5.1 ([AP23b, Theorem 1.1]). For any fixed m ≥ 1, let N = 2m − 1. Then, for any L-smooth
convex function h : Rd → R and any x0 ∈ Rd, there holds

h(xN )− h(x⋆) ≤
L
∥∥x0 − x⋆

∥∥2
1 +

√
4ρ2m−3 − 3

≤
L
∥∥x0 − x⋆

∥∥2
2ρlog2 N

≈
L
∥∥x0 − x⋆

∥∥2
2N1.2716

,

where x⋆ denotes an arbitrarily fixed minimizer of h, and xN denotes the output of the N -step GD method
(5) using the silver stepsize schedule α = π(m).

However, as discussed in [LG24, Section 3.1], the above convergence rate is not tight. By [LG24,
Conjecture 3.2], GD method with the silver stepsize schedule π(m) was conjectured to have the following
tight rates:

h(xN )− h(x⋆) ≤
L
∥∥x0 − x⋆

∥∥2
4ρm − 2

and
∥∥∇h(xN )

∥∥ ≤
L
∥∥x0 − x⋆

∥∥
ρm

.

In the following, we will prove this conjecture is true. To do this, we first introduce the following definition
of Qh

x,y, whose nonnegativity plays a fundamental role in the proof.

Definition 5.1. Given any L-smooth convex function h and x, y ∈ Rd, we define

Qh
x,y := h(x)− h(y)− ⟨∇h(y), x− y⟩ − 1

2L
∥∇h(x)−∇h(y)∥2 , (32)

which is nonnegative due to L-smoothness and convexity of h [Nes18, Theorem 2.1.5].

Next, we recall [GSW24, Lemma 1], which is useful in our analysis.

Lemma 5.1 ([GSW24, Lemma 1]). For any fixed m ≥ 1, let N = 2m − 1. Furthermore, define a matrix
A(m) ∈ R2m×2m , whose components are indexed by (i, j) ∈ {0, 1, . . . , 2m − 1}2, recursively by

A(1) :=

0 ρ

1 0

 , and A(i+1) :=

A(i)

ρ2A(i)

+


0(2i−1)×(2i−1)

0 ρπ(i) ρ

0(2i−1)×(2i−1)

ρi ρπ(i) 0

 , (33)

for i = 1, 2, . . . ,m− 1. Let h : Rd → R be any L-smooth convex function, x⋆ be any fixed minimizer of h
and x0 ∈ Rd be any initial point. Let {xk}Nk=0 be the sequence generated by the N -step GD method (5)
with stepsize schedule α = π(m). Then, we have

0 ≤
∑

i,j∈{0,1,...,2m−1}

A
(m)
i,j Qh

xi,xj =−
2m−2∑
i=0

αi

(
h(x2m−1)− h(xi)− 1

2L

∥∥∇h(xi)
∥∥2 − 〈∇h(xi), x0 − xi

〉 )
− L

2

∥∥∥x2m−1 − x0
∥∥∥2 − ρm(ρm − 1)

2L

∥∥∥∇h(x2m−1)
∥∥∥2 . (34)

12



Using Lemma 5.1, we can then prove the validity of Conjecture 3.2 in [LG24].

Theorem 5.2 ([LG24, Conjecture 3.2]). For any fixed m ≥ 1, let N = 2m − 1. Let h : Rd → R be any
L-smooth convex function, x⋆ be any fixed minimizer of h, x0 ∈ Rd be any initial point. Let {xk}Nk=0 be
the sequence generated by the N -step GD method (5) with stepsize schedule α = π(m). Then, we have

h(xN )− h(x⋆) ≤
L
∥∥x0 − x⋆

∥∥2
2
(
2
∑2m−2

i=0 π
(m)
i + 1

) =
L
∥∥x0 − x⋆

∥∥2
4ρm − 2

, (35)

∥∥∇h(xN )
∥∥ ≤

L
∥∥x0 − x⋆

∥∥∑2m−2
i=0 π

(m)
i + 1

=
L
∥∥x0 − x⋆

∥∥
ρm

. (36)

Furthermore, these bounds are tight.

Proof. To prove (35), we note that 0 ≤ Qh
x⋆,xi = h(x⋆) − h(xi) −

〈
∇h(xi), x⋆ − xi

〉
− 1

2L

∥∥∇h(xi)
∥∥2.

Thus, Lemma 5.1 implies

0 ≤
∑

i,j∈{0,1,...,2m−1}

A
(m)
i,j Qh

xi,xj +

2m−2∑
i=0

Qh
x⋆,xi + ρmQh

x⋆,x2m−1

(34)
=

2m−2∑
i=0

π
(m)
i

(
h(x⋆)− h(x2m−1)−

〈
∇h(xi), x⋆ − x0

〉)
− L

2

∥∥∥x2m−1 − x0
∥∥∥2 − ρ2m

2L

∥∥∥∇h(x2m−1)
∥∥∥2

+ ρm
(
h(x⋆)− h(x2m−1)−

〈
∇h(x2m−1), x⋆ − x2m−1

〉)
(∗)
= (2ρm − 1)

(
h(x⋆)− h(x2m−1)

)
+ L

〈
x2m−1 − x0, x⋆ − x0

〉
+

L

2

∥∥x0 − x⋆
∥∥2 − L

2

∥∥x0 − x⋆
∥∥2

− L

2

∥∥∥x2m−1 − x0
∥∥∥2 − ρ2m

2L

∥∥∥∇h(x2m−1)
∥∥∥2 − ρm

〈
∇h(x2m−1), x⋆ − x2m−1

〉
= (2ρm − 1)

(
h(x⋆)− h(x2m−1)

)
+

L

2

∥∥x0 − x⋆
∥∥2 − L

2

∥∥∥∥x2m−1 − ρm

L
∇h(x2m−1)− x⋆

∥∥∥∥2 ,
where we have used

∑2m−2
i=0 π

(m)
i = ρm − 1 and −

∑2m−2
i=0 π

(m)
i ∇h(xi) = L(x2m−1 − x0) in (∗). Reorga-

nizing the terms yields the desired upper bound in (35).

To prove (36), we note that 0 ≤ Qh
x⋆,xi = h(x⋆) − h(xi) −

〈
∇h(xi), x⋆ − xi

〉
− 1

2L

∥∥∇h(xi)
∥∥2 and

0 ≤ Qh
x2m−1,x⋆ = h(x2m−1)− h(x⋆)− 1

2L

∥∥∇h(x2m−1)
∥∥2. Thus, Lemma 5.1 implies

0 ≤
∑

i,j∈{0,1,...,2m−1}

A
(m)
i,j Qh

xi,xj +

2m−2∑
i=0

Qh
x⋆,xi +Qh

x⋆,x2m−1 + ρmQh
x2m−1,x⋆

(34)
=

2m−2∑
i=0

π
(m)
i

(
h(x⋆)− h(x2m−1)−

〈
∇h(xi), x⋆ − x0

〉)
− L

2

∥∥∥x2m−1 − x0
∥∥∥2 − ρ2m + 1

2L

∥∥∥∇h(x2m−1)
∥∥∥2

−
〈
∇h(x2m−1), x⋆ − x2m−1

〉
+ (ρm − 1)

(
h(x2m−1)− h(x⋆)

)
(∗)
= L

〈
x2m−1 − x0, x⋆ − x0

〉
+

L

2

∥∥x0 − x⋆
∥∥2 − L

2

∥∥x0 − x⋆
∥∥2 − L

2

∥∥∥x2m−1 − x0
∥∥∥2

− L

2

∥∥∥∥ρmL ∇h(x2m−1)

∥∥∥∥2 − 1

2L

∥∥∥∇h(x2m−1)
∥∥∥2 − 〈∇h(x2m−1), x⋆ − x2m−1

〉
= − L

2

∥∥∥∥ρmL ∇h(x2m−1)

∥∥∥∥2 + L

2

∥∥x0 − x⋆
∥∥2 − L

2

∥∥∥∥x2m−1 − 1

L
∇h(x2m−1)− x⋆

∥∥∥∥2 ,
where we have used

∑2m−2
i=0 π

(m)
i = ρm − 1 and −

∑2m−2
i=0 π

(m)
i ∇h(xi) = L(x2m−1 − x0) in (∗). Reorga-

nizing the terms yields the desired upper bound (36).
Finally, the tightness of the bounds in (35) and (36) can be easily confirmed by considering the Huber

function as discussed in [LG24, Section 3.1]. We omit the details for brevity.

13



5.2 Accelerated convergence rates for RPPA with silver stepsize schedules

We now return to the convex optimization problem (Q). Let {(xk, zk)}k≥0 be the sequence generated
by Algorithm 1. Consider the connection between RPPA and GD method as given in (4), we can apply
Theorem 5.2 with h = fλ and L = 1/λ and obtain the following convergence results.

Theorem 5.3 (Convergence rate of RPPA with silver stepsize schedule π(m)). Let x⋆ ∈ X ⋆ be arbitrarily
fixed and z⋆ = Proxλf (x

⋆) = x⋆. For any fixed m ≥ 1, let N = 2m − 1 and {(xk, zk)}Nk=0 be the sequence
generated by Algorithm 1 for solving (Q) with stepsize schedule α = π(m) from any starting point x0 ∈ Rd.
Then, we have

f(zN ) +
λ

2

∥∥∇fλ(xN )
∥∥2 − f(x⋆) ≤

∥∥x0 − x⋆
∥∥2

(4ρm − 2)λ
and

∥∥∇fλ(xN )
∥∥ ≤

∥∥x0 − x⋆
∥∥

ρmλ
. (37)

Note that ρm = (N + 1)log2 ρ ≈ (N + 1)1.2716. Therefore, Theorem 5.3 has already provided an
accelerated convergence rate for RPPA using the silver stepsize schedule. Moreover, the upper bound

on
∥∥∇fλ(xN )

∥∥ given in (37) is tight due to item (i) of Lemma 2.3 and the fact that
∑2m−2

i=0 π
(m)
i =

ρm − 1. On the other hand, the first inequality in (37) also yields an accelerated complexity bound for
the function value residual f(zN ) − f(x⋆). However, this bound is no longer tight. Deriving a tight

upper bound for (f(zN )− f(x⋆))/
∥∥x0 − x⋆

∥∥2 from the first inequality in (37) remains challenging. This
challenge motivates us to construct two modified silver stepsize schedules: the “right silver” stepsize
schedule π(m) and the “left silver” stepsize schedule π(m). These two modified silver stepsize schedules
allow us to achieve accelerated and tight convergence rates for RPPA under the measures (f(zN ) −
f(x⋆))/

∥∥x0 − x⋆
∥∥2 and

∥∥∇fλ(xN )
∥∥2 /(f(x0)− f(x⋆)), respectively.

Our “right silver” stepsize schedule π(m) is defined by extending the silver stepsize schedule with an
additional element on the right, i.e.,

π(0) := [γ0] and π(m) := [π(m), γm], ∀m ≥ 1, (38)

where γm = 1
2

(
1 +

√
1 + 4ρm

)
≥ 1 for any m ≥ 0 is a solution to

γ2
m = γm + ρm. (39)

On the other hand, our “left silver” stepsize schedule π(m) is defined as

π(0) := [γ0] and π(m) := [γm, π(m)], ∀m ≥ 1. (40)

Define Tm := 1 + γm +
∑2m−2

i=0 π
(m)
i for m ≥ 1. Then, it follows from (39) and

∑2m−2
i=0 π

(m)
i = ρm − 1

that

Tm = 1 + γm +

2m−2∑
i=0

π
(m)
i = γm + ρm

(39)
= γ2

m =
1

2
+

1

2

√
1 + 4ρm + ρm. (41)

For N = 2m, we have Tm = 1
2 + 1

2

√
1 + 4N log2 ρ +N log2 ρ ∼ N log2 ρ.

To prove convergence results of RPPA with the silver stepsize schedules π(m) and π(m), we need to
adapt Lemma 5.1 from GD method to RPPA (see Lemma 5.3). This adaptation is based on the relations

(2) and (3). Before proceeding, we introduce the notation P f
y,zj , which is crucial to our proof.

Definition 5.2. Given N ∈ N+, α ∈ RN
++ and x0 ∈ Rd. Suppose that {(xk, zk)}Nk=0 is the sequence

generated by Algorithm 1 with stepsize schedule α for solving (Q). Let x⋆ ∈ X ⋆ be any minimizer of f
and z⋆ = Proxλf (x

⋆) = x⋆. For any y ∈ Rd and j ∈ {⋆, 0, 1, . . . , N}, define

P f
y,zj := f(y)− f(zj)−

〈
∇fλ(xj), y − zj

〉
. (42)

From (2), we have ∇fλ(xj) ∈ ∂f(zj) and thus P f
y,zj ≥ 0.

Next, we show that Qfλ

xi,xj ≡ P f
zi,zj for any i, j ∈ {⋆, 0, 1, . . . , N}.

Lemma 5.2. Given any fixed N ∈ N+, α ∈ RN
++ and x0 ∈ Rd. Suppose that {(xk, zk)}Nk=0 is the sequence

generated by Algorithm 1 with stepsize schedule α for solving (Q). Let x⋆ ∈ X ⋆ be any minimizer of f
and z⋆ = Proxλf (x

⋆) = x⋆. Then, we have

Qfλ

xi,xj ≡ P f
zi,zj , ∀i, j ∈ {⋆, 0, 1, . . . , N}. (43)
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Proof. Recall that fλ is convex and (1/λ)-smooth. Further considering the notation defined in (32) and
(42) and the relations (2) and (3), we obtain

Qfλ

xi,xj

(32)
= fλ(xi)− fλ(xj)−

〈
∇fλ(xj), xi − xj

〉
− λ

2

∥∥∇fλ(zi)−∇fλ(zj)
∥∥2

(2),(3)
= f(zi)− f(zj)−

〈
∇fλ(xj), zi − zj + λ

(
∇fλ(zi)−∇fλ(zj)

)〉
+

λ

2

〈
∇fλ(xi)−∇fλ(xj),∇fλ(xi) +∇fλ(xj)

〉
− λ

2

∥∥∇fλ(zi)−∇fλ(zj)
∥∥2

= f(zi)− f(zj)−
〈
∇fλ(xj), zi − zj

〉
= P f

zi,zj ,

for any i, j ∈ {⋆, 0, 1, . . . , N}. This completes the proof.

By invoking h = fλ in Lemma 5.1, we can derive the following lemma, which plays a key role in
proving the convergence results for RPPA with the modified silver stepsize schedules π(m) and π(m).

Lemma 5.3 (Adapted from Lemma 5.1). For any fixed m ≥ 1, let N = 2m − 1 and {(xk, zk)}Nk=0 be
the sequence generated by Algorithm 1 for solving (Q) with the silver stepsize schedule α = π(m) from
an arbitrarily starting point x0 ∈ Rd. Then, we have

0 ≤
∑

i,j∈{0,1,...,2m−1}

A
(m)
i,j P f

zi,zj =

2m−2∑
i=0

αi

(
f(zi)− f(z2

m−1) +
〈
∇fλ(xi), x0 − zi

〉)

− (ρ2m − 1)λ

2

∥∥∥∇fλ(x2m−1)
∥∥∥2 − λ

2

∥∥∥∥∥
2m−2∑
i=0

αi∇fλ(xi)

∥∥∥∥∥
2

,

(44)

where A(m) ∈ R2m×2m , whose components are indexed by (i, j) ∈ {0, 1, . . . , 2m − 1}2, is defined in (33).

Proof. Due to the connection (4), we can invoke h = fλ and L = 1/λ in Lemma 5.1 and then deduce

0 ≤
∑

i,j∈{0,1,...,2m−1}

A
(m)
i,j Qfλ

xi,xj =

2m−2∑
i=0

αi

(
fλ(xi)− fλ(x2m−1) +

〈
∇fλ(xi), x0 − xi

〉
+

λ

2

∥∥∇fλ(xi)
∥∥2)

− 1

2λ

∥∥∥x2m−1 − x0
∥∥∥2 − ρm(ρm − 1)λ

2

∥∥∥∇fλ(x2m−1)
∥∥∥2 .

Then, by leveraging Lemma 5.2 and the relations (2) and (3), we derive

0 ≤
∑

i,j∈{0,1,...,2m−1}

A
(m)
i,j P f

zi,zj

(43)
=

∑
i,j∈{0,1,...,2m−1}

A
(m)
i,j Qfλ

xi,xj

(3)
=

2m−2∑
i=0

αi

(
f(zi) +

λ

2

∥∥∇fλ(xi)
∥∥2 − f(z2

m−1)− λ

2

∥∥∥∇fλ(x2m−1)
∥∥∥2 + 〈∇fλ(xi), x0 − xi

〉
+

λ

2

∥∥∇fλ(xi)
∥∥2 )− 1

2λ

∥∥∥x2m−1 − x0
∥∥∥2 − (ρ2m − ρm)λ

2

∥∥∥∇fλ(x2m−1)
∥∥∥2

(∗)
=

2m−2∑
i=0

αi

(
f(zi)− f(z2

m−1) +
〈
∇fλ(xi), x0 − xi

〉
+ λ

∥∥∇fλ(xi)
∥∥2)

− λ

2

∥∥∥∥∥
2m−2∑
i=0

αi∇fλ(xi)

∥∥∥∥∥
2

− (ρ2m − 1)λ

2

∥∥∥∇fλ(x2m−1)
∥∥∥2

(2)
=

2m−2∑
i=0

αi

(
f(zi)− f(z2

m−1) +
〈
∇fλ(xi), x0 − zi

〉)

− λ

2

∥∥∥∥∥
2m−2∑
i=0

αi∇fλ(xi)

∥∥∥∥∥
2

− (ρ2m − 1)λ

2

∥∥∥∇fλ(x2m−1)
∥∥∥2 ,

where we have used
∑2m−2

i=0 αi =
∑2m−2

i=0 π
(m)
i = ρm − 1 and x2m−1 − x0 = −

∑2m−2
i=0 λαi∇fλ(xi) in (∗).

This completes the proof.
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The following technical lemma will be used in subsequent analysis. Although it may appear complex
initially, its verification is elementary as it comprises equations.

Lemma 5.4. For any vectors a, b, c, d ∈ Rd and positive scalars r, s ∈ R++, we have

⟨b, a⟩ − 1

2
(r2 − 1) ∥c∥2 − 1

2
∥b∥2 + (r + 1) ⟨c, a− b− c⟩+ 2r ⟨d, c− d− sc⟩+ 2s ⟨d, a− b− sc− d⟩

=
1

2

(
∥a∥2 − ∥a− b− (1 + r)c− 2sd∥2

)
+ 2

(
s2 − s− r

)
⟨d, d− c⟩ (45)

and

s+ r

r2
(
⟨b, (1− s)c+ d⟩ − (r2 − 1) ∥d∥2 − ⟨d, b+ (s− 1)c+ d⟩

)
− ∥c∥2 + s

r
⟨c, b+ (s− 1)c+ d⟩

= −(s+ r) ∥d∥2 + s2 − s− r

r2
⟨c,−b+ rc− d⟩ . (46)

Then for RPPA with the right silver stepsize schedule π(m), we establish an upper bound for the

measure (f(zN )− f(x⋆))/
∥∥x0 − x⋆

∥∥2 in the following theorem.

Theorem 5.4 (Tight convergence rate of RPPA with the right silver stepsize schedule π(m)). For any
fixed m ≥ 0, let N = 2m and {(xk, zk)}Nk=0 be the sequence generated by Algorithm 1 with stepsize
schedule α = π(m) for solving (Q) from any starting point x0 ∈ Rd. Let x⋆ ∈ X ⋆ be any minimizer of f
and z⋆ = Proxλf (x

⋆) = x⋆. Then, there holds

f(zN )− f(x⋆) ≤ 1

2Tm

1

2λ

∥∥x0 − x⋆
∥∥2 ∼ 1

2N log2 ρ

1

2λ

∥∥x0 − x⋆
∥∥2 ,

where Tm is defined in (41). Furthermore, this bound is tight.

Proof. For m = 0, we have N = 1 and α = π(0) = [γ0]. Note that 0 ≤ P f
z⋆,zi = f(z⋆) − f(zi) −〈

∇fλ(xi), z⋆ − zi
〉
, 0 ≤ P f

z0,z1 = f(z0)− f(z1)−
〈
∇fλ(x1), z0 − z1

〉
, and T0 = 1 + γ0. We thus have

0 ≤ 2P f
z⋆,z0 + 2P f

z0,z1 + 2γ0P
f
z⋆,z1

(2),(4)
= 2T0

(
f(z⋆)− f(z1)

)
+ 2

〈
∇fλ(x0), x0 − z⋆ − λ∇fλ(x0)

〉
+ 2

〈
∇fλ(x1),−γ0λ∇fλ(x0)− λ

(
∇fλ(x1)−∇fλ(x0)

)〉
+ 2γ0

〈
∇fλ(x1), x0 − z⋆ − γ0λ∇fλ(x0)− λ∇fλ(x1)

〉
,

(45)
= 2T0

(
f(z⋆)− f(z1)

)
+

1

2λ

( ∥∥x0 − z⋆
∥∥2 − ∥∥x0 − z⋆ − 2λ∇fλ(x0)− 2γ0λ∇fλ(x1)

∥∥2 ), (47)

where in the second “=” we have utilized (45) with a = λ−1/2(x0 − z⋆), b = 0, c = λ1/2∇fλ(x0),
d = λ1/2∇fλ(x1), r = 1, s = γ0, and the fact that γ2

0 − γ0 − 1 = 0. Hence, (47) implies that the desired
bound holds for m = 0.

For m ≥ 1, we have N = 2m and α = π(m) = [π(m), γm]. Since the first 2m − 1 stepsizes are
identical to the silver stepsize schedule π(m), the inequality (44) in Lemma 5.3 still holds. Then,

by noting 0 ≤ P f
z⋆,zi = f(z⋆) − f(zi) −

〈
∇fλ(zi), z⋆ − zi

〉
, 0 ≤ P f

z2m−1,z2m = f(z2
m−1) − f(z2

m

) −〈
∇fλ(z2

m

), z2
m−1 − z2

m〉
and Tm = 1 + γm +

∑2m−2
i=0 αi = γm + ρm, we derive

0 ≤
∑

i,j∈{0,1,...,2m−1}

A
(m)
i,j P f

zi,zj +

2m−2∑
i=0

αiP
f
z⋆,zi + (ρm + 1)P f

z⋆,z2m−1 + 2ρmP f
z2m−1,z2m + 2γmP f

z⋆,z2m

(44)
=

2m−2∑
i=0

αi

(
f(z⋆)− f(z2

m−1) +
〈
∇fλ(xi), x0 − z⋆

〉)
− (ρ2m − 1)λ

2

∥∥∥∇fλ(x2m−1)
∥∥∥2

+ (ρm + 1)
(
f(z⋆)− f(z2

m−1)−
〈
∇fλ(x2m−1), z⋆ − z2

m−1
〉)

+ 2ρm
(
f(z2

m−1)− f(z2
m

)−
〈
∇fλ(x2m), z2

m−1 − z2
m
〉)

− λ

2

∥∥∥∥∥
2m−2∑
i=0

αi∇fλ(xi)

∥∥∥∥∥
2
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+ 2γm

(
f(z⋆)− f(z2

m

)−
〈
∇fλ(x2m), z⋆ − z2

m
〉)

(2),(4)
= 2Tm

(
f(z⋆)− f(z2

m

)
)
+

〈
2m−2∑
i=0

αi∇fλ(xi), x0 − z⋆

〉
− (ρ2m − 1)λ

2

∥∥∥∇fλ(x2m−1)
∥∥∥2

+ (ρm + 1)

〈
∇fλ(x2m−1), x0 − z⋆ − λ

2m−2∑
i=0

αi∇fλ(xi)− λ∇fλ(x2m−1)

〉

+ 2ρmλ
〈
∇fλ(x2m),∇fλ(x2m−1)−∇fλ(x2m)− γm∇fλ(x2m−1)

〉
− λ

2

∥∥∥∥∥
2m−2∑
i=0

αi∇fλ(xi)

∥∥∥∥∥
2

+ 2γm

〈
∇fλ(x2m), x0 − z⋆ − λ

2m−2∑
i=0

αi∇fλ(xi)− γmλ∇fλ(x2m−1)− λ∇fλ(x2m)

〉

(45)
= − 1

2

∥∥∥∥∥λ−1/2(x0 − z⋆)− λ1/2
2m−2∑
i=0

αi∇fλ(xi)− (1 + ρm)λ1/2∇fλ(x2m−1)− 2γmλ1/2∇fλ(x2m)

∥∥∥∥∥
2

+ 2Tm

(
f(z⋆)− f(z2

m

)
)
+

1

2λ

∥∥x0 − z⋆
∥∥2 , (48)

where in the last “=” we have utilized (45) with a = λ−1/2(x0 − z⋆), b = λ1/2
∑2m−2

i=0 αi∇fλ(xi),
c = λ1/2∇fλ(x2m−1), d = λ1/2∇fλ(x2m), r = ρm, s = γm, and the fact that γ2

m − γm − ρm = 0. Hence,
(48) implies that the desired bound also holds for m ≥ 1. Finally, the tightness of the bound can be

verified by using item (ii) of Lemma 2.3 and the fact that Tm = 1 +
∑2m−1

i=0 αi.

Our final result concerns RPPA with the left silver stepsize schedule π(m). Here, we establish a

tight upper bound for the measure
∥∥∇fλ(xN )

∥∥2 /(f(x0)− f(x⋆)). This measure is especially relevant in
overparameterized models, which are frequently encountered in machine learning applications. In such
models, f(x⋆) is often a known constant, such as 0. In these cases, the initial function value residual is
directly computable, whereas the initial distance to a minimizer can be difficult to estimate.

Theorem 5.5 (Tight convergence rate of RPPA with the left silver stepsize schedule π(m)). For any fixed
m ≥ 0, let N = 2m and {(xk, zk)}Nk=0 be the sequence generated by Algorithm 1 with stepsize schedule
α = π(m) for solving (Q) from any starting point x0 ∈ dom(f). Let x⋆ ∈ X ⋆ be any minimizer of f and
z⋆ = Proxλf (x

⋆) = x⋆. Then, there holds

λ

2

∥∥∇fλ(xN )
∥∥2 ≤ 1

2Tm

(
f(x0)− f(x⋆)

)
∼ 1

2N log2 ρ

(
f(x0)− f(x⋆)

)
,

where Tm is defined in (41). Furthermore, this bound is tight.

Proof. For m = 0, we have N = 1 and α = [γ0]. Note that 0 ≤ P f
x0,z0 = f(x0)− f(z0)− λ

∥∥∇fλ(x0)
∥∥2,

0 ≤ P f
z1,z⋆ = f(z1) − f(z⋆), 0 ≤ P f

z1,z0 = f(z1) − f(z0) −
〈
∇fλ(x0), z1 − z0

〉
, 0 ≤ P f

z0,z1 = f(z0) −
f(z1)−

〈
∇fλ(x1), z0 − z1

〉
, and T0 = 1 + γ0. We thus have

0 ≤ T0P
f
z0,z1 + γ0P

f
z1,z0 + P f

x0,z0 + P f
z1,z⋆

(2),(4)
= f(x0)− f(z⋆)− T0λ

〈
∇fλ(x1), (γ0 − 1)∇fλ(x0) +∇fλ(x1)

〉
+ γ0λ

〈
∇fλ(x0), (γ0 − 1)∇fλ(x0) +∇fλ(x1)

〉
− λ

∥∥∇fλ(x0)
∥∥2

(46)
= f(x0)− f(z⋆)− T0λ

∥∥∇fλ(x1)
∥∥2 + (γ2

0 − γ0 − 1)λ
〈
∇fλ(x0),∇fλ(x0)−∇fλ(x1)

〉
, (49)

where in the second “=” we have utilized (46) with a = b = 0, c = λ1/2∇fλ(x0), d = λ1/2∇fλ(x1),
r = 1 and s = γ0. Since γ2

0 − γ0 − 1 = 0, (49) implies that the desired bound holds for m = 0.
For m ≥ 1, we have N = 2m and α = π(m) = [γm, π(m)]. We define the multiplier matrix C(m) :=

2Tm

ρ2m A(m) ∈ R2m×2m , whose components are indexed by (i, j) ∈ {1, 2, . . . , 2m}2. Since that the last 2m−1

components of π(m) are identical to the silver stepsize schedule π(m), the sequence {x1} ∪ {zk}2mk=1 is
generated by Algorithm 1 with stepsize schedule π(m) from starting point x1. Thus, by Lemma 5.3, we
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have

0 ≤
∑

i,j∈{1,2,...,2m}

C
(m)
i,j P f

zi,zj =
2Tm

ρ2m

[
2m−1∑
i=1

αi

(
f(zi)− f(z2

m

) +
〈
∇fλ(xi), x1 − zi

〉)

− (ρ2m − 1)λ

2

∥∥∥∇fλ(x2m)
∥∥∥2 − λ

2

∥∥∥∥∥
2m−1∑
i=1

αi∇fλ(xi)

∥∥∥∥∥
2 ]

. (50)

Note that 0 ≤ P f
x0,z0 = f(x0) − f(z0) − λ

∥∥∇fλ(x0)
∥∥2, 0 ≤ P f

z2m ,z⋆ = f(z2
m

) − f(z⋆), 0 ≤ P f
zi,z0 =

f(zi)− f(z0)−
〈
∇fλ(x0), zi − z0

〉
, 0 ≤ P f

z0,zi = f(z0)− f(zi)−
〈
∇fλ(xi), z0 − zi

〉
, and Tm = 1+ γm +∑2m−1

i=1 αi = γm + ρm. We thus have

0 ≤
∑

i,j∈{1,...,2m}

C
(m)
i,j P f

zi,zj +
Tm

ρ2m

[
2m∑
i=1

αi

(
P f
z0,zi + P f

z2m ,zi

)
+ P f

z0,z2m

]
+

γm
ρm

P f
z2m ,z0 + P f

x0,z0 + P f
z2m ,z⋆

(50)
=

Tm

ρ2m

(
1 +

2m−1∑
i=1

αi

)(
f(z0)− f(z2

m

)
)
+

γm
ρm

(
f(z2

m

)− f(z0)
)
+ f(x0)− f(z0) + f(z2

m

)− f(z⋆)

+
Tm

ρ2m

(
2m∑
i=1

αi

〈
∇fλ(xi), 2x1 − z0 − z2

m
〉
− (ρ2m − 1)λ

∥∥∥∇fλ(x2m)
∥∥∥2 − λ

∥∥∥∥∥
2m−1∑
i=1

αi∇fλ(xi)

∥∥∥∥∥
2

+
〈
∇fλ(x2m), z2

m

− z0
〉)

+
γm
ρm

〈
∇fλ(x0), z0 − z2

m
〉
− λ

∥∥∇fλ(x0)
∥∥2

(2),(4)
= f(x0)− f(z⋆) +

Tm

ρ2m

(
λ

〈
2m∑
i=1

αi∇fλ(xi), (1− γm)∇fλ(x0) +∇fλ(x2m)

〉

− λ

〈
∇fλ(x2m),

2m∑
i=1

αi∇fλ(xi) + (γm − 1)∇fλ(x0) +∇fλ(x2m)

〉)
− λ

∥∥∇fλ(x0)
∥∥2

+
γm
ρm

〈
∇fλ(x0),

2m∑
i=1

αi∇fλ(xi) + (γm − 1)∇fλ(x0) +∇fλ(x2m)

〉
− (ρ2m − 1)λ

∥∥∥∇fλ(x2m)
∥∥∥2

(46)
= f(x0)− f(z⋆)− Tmλ

∥∥∥∇fλ(x2m)
∥∥∥2 , (51)

where in the second “=” we also used
∑2m−1

i=1 αi =
∑2m−2

i=0 π
(m)
i = ρm − 1 and in the last “=” we have

utilized (46) with a = 0, b = λ1/2
∑2m

i=1 αi∇fλ(xi), c = λ1/2∇fλ(x0), d = λ1/2∇fλ(x2m), r = ρm,
s = γm, and the fact that γ2

m − γm − ρm = 0. Hence, (51) implies that the desired bound also holds for
m ≥ 1. Finally, the tightness of the bound can be verified by using item (iii) of Lemma 2.3 and the fact

that Tm = 1 +
∑2m−1

i=0 αi.

5.3 Discussion on the optimality of silver stepsize schedules

Given a fixed stepsize schedule, we obtain a specific instance of the RPPA and can establish its tight
convergence rate under certain performance measures. This naturally raises the following questions:
What is the optimal stepsize schedule that yields the best tight convergence rate for RPPA? Are the
silver stepsize schedules π(m), π(m), and π(m) that we previously analyzed optimal in this regard? In
this section, we aim to address these questions.

First, we consider the optimality of the order of the accelerated convergence rate O(1/N log2 ρ) ≈
O(1/N1.2716), which we obtained for the RPPA using the (modified) silver stepsize schedules across
different measures. This order of convergence has been conjectured optimal for GD method without
momentum for solving smooth convex optimization problems [AP23b, Section 1.1] [GSW24, Remark 1].
Given the close relationship between RPPA and GD method, it is reasonable to conjecture that this
order of rate is also optimal for RPPA without momentum, i.e. Algorithm 1.

Next, we examine the exact optimal stepsize schedules, that is, those that achieve the optimal rate
even up to the constant. For any fixed N ∈ N+ and α ∈ RN

++, the tight worst-case rate of Algo-
rithm 1 with the stepsize schedule α under different measures can be computed numerically using the
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performance estimation approach proposed in [DT14, THG17c, THG17b]. Additionally, for any fixed
performance measure, we can conduct a numerical search for the optimal stepsize schedules that mini-
mize the tight worst-case rate. The problem of finding the optimal stepsize schedules can be formulated
as a nonconvex quadratically constrained quadratic programming problem and be solved numerically
by a customized branch-and-bound method (abbreviated as BnB-PEP for later use), as described in
[DVR24]. In this paper, we have considered the following three measures:

∥∥∇fλ(xN )
∥∥ / ∥∥x0 − x⋆

∥∥,
(f(zN )− f(x⋆))/

∥∥x0 − x⋆
∥∥2 and

∥∥∇fλ(xN )
∥∥2 /(f(x0)− f(x⋆)). In the following, we denote the numer-

ically optimal stepsize schedules for these measures as αgd,dist,⋆, αfval,dist,⋆ and αgd,fval,⋆, respectively.
In Table 3, we compare αgd,dist,⋆ with π(m), for which the measure

∥∥∇fλ(xN )
∥∥ /∥∥x0 − x⋆

∥∥ is used, and

αfval,dist,⋆ with π(m), for which the measure (f(zN )− f(x⋆))/
∥∥x0 − x⋆

∥∥2 is employed.

For the measure
∥∥∇fλ(xN )

∥∥ /∥∥x0 − x⋆
∥∥, we observe from Table 3 that the silver stepsize schedule

π(m) approximates the optimal stepsize schedule αgd,dist,⋆ found via BnB-PEP for m = 1, 2, 3 (cor-
responding to N = 1, 3, 7, respectively) quite well. Therefore, we conjecture that the silver stepsize
schedule π(m) is already optimal for RPPA for the measure

∥∥∇fλ(xN )
∥∥ / ∥∥x0 − x⋆

∥∥. For the measure

(f(zN )−f(x⋆))/
∥∥x0 − x⋆

∥∥2, the constructed right silver stepsize schedule π(m) approximates the optimal
stepsize schedule found by BnB-PEP quite well when m = 0, 2 (corresponding to N = 1, 4, respectively).

In Table 4, we present the tight worst-case upper bound of (f(zN )− f(x⋆))/
∥∥x0 − x⋆

∥∥2 corresponding

to π(m) and αfval,dist,⋆ with m = 0, 1, 2, 3 (corresponding to N = 1, 2, 4, 8, respectively). It can be seen
from Table 4 that, for m = 1 (and N = 2), our constructed schedule π(1) ≈ [1.414214, 2.132242] gives a

tight worst-case bound of (f(zN )−f(x⋆))/
∥∥x0 − x⋆

∥∥2 to be 0.054988. This value is larger than that cor-
responding to αfval,dist,⋆, which is 0.54900. The discrepancy between the two is somehow nonnegligible.
A similar discrepancy is observed for m = 3 (and N = 8). This indicates that π(m) may be suboptimal,
though it is quite close to the optimal stepsize schedule.

The right and left silver stepsize schedules π(m) and π(m) mirror each other and provide convergence
rates that mirror the relationship between function value residual and subgradient norm (see Theorems
5.4 and 5.5). This symmetry has been observed in optimal gradient methods for solving smooth convex
optimization problems [GSW24, Kim+23]. It appears closely related to the H-duality theory presented
in [Kim+23]. Therein, it was shown that reversing the order of steps in methods using certain inductive
proofs leads to a conversion between (sub)gradient norm and function value residual convergence. Due
to this fundamental connection, the left silver stepsize schedule π(m) may also be suboptimal.

6 Conclusion

In this paper, we have examined RPPA for solving convex optimization problems. Our analysis encom-
passes three types of relaxation schedules. For both the constant and the TV’s relaxation schedules, we
have established non-ergodic and tight O(1/N) convergence rate results by using the function value resid-
ual or subgradient norm as the optimality measure. For the original silver relaxation schedule and two
extensions, which permit αk to exceed 2, we have attained accelerated convergence rates of O(1/N1.2716)
across three prevalent performance measures.

Some limitations of our analysis are as follows. First, our tight analysis for the constant case can
only cover the range α ∈ (0,

√
2], rather than the traditional range (0, 2). This gap might be addressed

by leveraging recent advances in GD method in [RGP24], where tight bounds for the GD method with
a constant stepsize across the full range α ∈ (0, 2) were established. Second, we have maintained the
proximal parameter λ > 0 as constant throughout all the iterations. This may be overly restrictive in
practice. Hence, conducting an in-depth analysis of RPPA with varying proximal parameters λk presents
an interesting avenue for future research. It remains an open task for further studies. Moreover, there
is also room for improvement in the constructed silver stepsize schedules π(m) and π(m), as they do
not precisely match the numerical optimal stepsize schedules. Determining the exact optimal stepsize
schedule also remains an open problem for future study.
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N
Measure:

∥∥∥∇fλ(xN )
∥∥∥

∥x0−x⋆∥ Measure:
f(zN )−f(x⋆)

∥x0−x⋆∥2

π(m) αgd,dist,⋆ π(m) αfval,dist,⋆

1
[

1.414214
] [

1.414334
] [

1.618034
] [

1.618035
]

2 −

 1.600519

1.414482

  1.414214

2.132242

  1.515086

2.038664



3


1.414214

2.0

1.414214




1.414745

2.000451

1.414115

 −


1.414211

1.601232

2.565298



4 −


1.414214

1.601232

2.260578

1.414214




1.414214

2.0

1.414214

2.965447




1.414214

2.0

1.414213

2.965447



7



1.414214

2.0

1.414214

3.414214

1.414214

2.0

1.414214





1.414402

2.000943

1.413279

3.411508

1.413362

2.000698

1.414120


−



1.414214

1.601232

3.989651

1.414214

2.745299

1.515087

2.038664



8 −



1.414215

2.000003

1.414214

3.754383

1.414213

1.601232

2.260578

1.414214





1.414214

2.0

1.414214

3.414214

1.414214

2.0

1.414214

4.284319





1.414214

2.0

1.414214

5.004706

1.414214

2.0

1.414214

2.965447


Table 3: Comparison between αgd,dist,⋆ and π(m), as well as
αfval,dist,⋆ and π(m), where αgd,dist,⋆ and αfval,dist,⋆ denote the op-
timal stepsize schedules computed by BnB-PEP under the measures∥∥∇fλ(xN )

∥∥ /∥∥x0 − x⋆
∥∥ and (f(zN )−f(x⋆))/

∥∥x0 − x⋆
∥∥2, respectively.

Recall that π(m) is available only for N = 2m − 1 (m ≥ 1), and π(m) is
available only for N = 2m (m ≥ 0).

N
π(m) αfval,dist,⋆

Tight upper bound

of
f(zN )−f(x⋆)

∥x0−x⋆∥2

1 0.095492 0.095492

2 0.054988 0.054900

4 0.028429 0.028429

8 0.013620 0.013422

Table 4: Comparison be-
tween the tight upper bound

of f(zN )−f(x⋆)

∥x0−x⋆∥2 corresponding to

π(m) and αfval,dist,⋆ with m =
0, 1, 2, 3 (corresponding to N =
1, 2, 4, 8, respectively). In the
computation, we set λ = 1
for RPPA. Each table entry is
obtained through solving the
corresponding performance es-
timation problem. We ob-
serve that π(m) attains larger
tight worst-case bounds than
αfval,dist,⋆ when m = 1, 3 (cor-
responding to N = 2, 8, respec-
tively). This may indicate that
π(m) is suboptimal.
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