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Abstract

In this paper, we propose a new stochastic gradient method for numeri-
cal minimization of finite sums. We also propose a modified version of this
method applicable on more general problems referred to as infinite sum
problems, where the objective function is in the form of mathematical ex-
pectation. The method is based on a strategy to exploit the effectiveness of
the well-known Barzilai-Borwein (BB) rules or variants of these (BB-like)
rules for updating the step length in the standard gradient method. The
proposed method adapts the aforementioned strategy into the stochastic
framework by exploiting the same Sample Average Aproximations (SAA)
estimator of the objective function for several iterations. Furthermore,
the sample size is controlled by an additional sampling which also plays
a role in accepting the proposed iterate point. Moreover, the number of
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“inner” iterations with the same sample is also controlled by an adaptive
rule which prevents the method from getting stuck with the same esti-
mator for too long. Convergence results are discussed for the finite and
infinite sum version, for general and strongly convex objective functions.
For the strongly convex case, we provide convergence rate and worst-case
complexity analysis. Numerical experiments on well-known datasets for
binary classifications show very promising performance of the method,
without the need to provide special values for hyperparameters on which
the method depends.

Keywords: Stochastic gradient method, Barzilai-Borwein rules, additional
sub-sampling, finite sum minimization, infinite sum minimization

1 Introduction

In this paper we consider the following unconstrained optimization problem

min
x∈Rd

f(x) := E[F (x, À)], (1)

where À ∈ Ω is a multi-valued random variable, F (x, À) is a cost function and
the mathematical expectation E is defined with respect to À on the probability
space (Ω,F ,P). As f(x) is rarely available analytically, one of the common
approaches is to approximate the problem with the finite sum function

min
x∈Rd

fN (x) =
1

N

N
∑

i=1

F (x, Ài). (2)

We assume that F (x, Ài) ≡ Fi(x) is a differentiable function with Li-Lipschitz-
continuous gradient. Here fN (x) is a sample average approximation of f(x),
based on a fixed sample N = {À1, . . . , ÀN } of size N , generated at the beginning
of the optimization process. In machine learning applications, N represents
the training set. The aim of this paper is to develop a stochastic first order
method, where we use a non-monotone line-search and the well-known Barzilai-
Borwein (BB) rules [14] or variants of these (BB-like rules) for updating the
step length along the negative stochastic gradient, which is a descent direction
in expectation.
We recall that, in the full gradient iteration xk+1 = xk−³k∇f(xk), the standard
BB rules are well-performing updating rules for the choice of ³k. They are
defined as

³BB1
k =

sTk−1sk−1

sTk−1yk−1
, ³BB2

k =
sTk−1yk−1

yTk−1yk−1
,

where sk−1 = xk − xk−1 and yk−1 = ∇f(xk)−∇f(xk−1).
Very effective improvements with respect to the standard BB rules have been
obtained using the Adaptive Barzilai-Borwein (ABB) strategy [9] and its mod-
ification ABBmin [6]. In this last version the step length is defined as

³ABBmin

k =

{

min{³BB2
j | j = max (1, k −M³), . . . , k} if

³BB2
k

³BB1
k

< Ä,

³BB1
k otherwise,

where M³ > 0 is a prefixed integer constant and Ä ∈ (0.5, 1). For non-quadratic
minimization problems, the BB or BB-like step length of a standard gradient
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method has to be projected on a prefixed, positive, arbitrary large interval
[µmin, µmax] and possibly adjusted by a line-search procedure. In many appli-
cations (see for example [17, 18, 19]), the standard gradient method (and its
variants) equipped with the BB or BB-like selection rules and a monotone or
non-monotone line-search strategy showed good performance.
Starting from these observations and following the approaches developed in Al-
gorithms LSOS [10] and SLiSeS [11], in this paper we propose a stochastic
gradient method where the approximated gradient is computed on a randomly
chosen subset Nk of the available dataset, i.e., a mini-batch of this dataset, with
a non decreasing cardinality |Nk| = Nk. In the case of the finite sum minimiza-
tion (2), we have Nk ¦ N and Nk f N , whereas in the infinite case Nk is a
random sample associated with the current estimator of the objective function
in (1).
The basic idea of the proposed method is to exploit the effectiveness of the
standard gradient method equipped with a BB-like rule until the mini-batch
Nk is changed. When an appropriate number of iterations (cycle) involving the
same mini-batch were performed or a suitable Stochastic Descent (SD) condi-
tion is not met for the additional random estimator fDk

= 1
|Dk|

∑

i∈Dk
F (·, Ài) of

the objective function in (2) or (1), another mini-batch Nk is randomly drawn
from the available dataset, by adapting the non decreasing cardinality Nk to
the current scenario of the algorithm. In particular, when the cycle is suc-
cessfully finished, the size of the new mini-batch is unchanged; when the SD
condition is not satisfied and the cycle is unsuccessfully stopped, the size of the
new mini-batch is increased. The method is described and analyzed first for
the minimization of the finite sum case (2), giving rise to the scheme named
LSNM-BB; then, it is generalized to the more general case stated in (1), lead-
ing to the version named LSNM-BB-G.
Recently, two methods have been proposed, LSOS and SLiSeS, for the finite
sum case (2), that are similar to LSNM-BB. We observe that, although it is
inspired by them, the LSNM-BB method differs in many aspects. Indeed, in
LSNM-BB scheme, the mini-batch Nk does not change for a certain number of
iterations, i.e., until it is possible to exploit the BB-like rules in a way that is ad-
vantageous for the original problem, giving rise to a cycle of iterations related to
the same mini-batch. The effectiveness of the BB-like rules is evaluated by using
the additional SD condition based on the evaluation of an additional estimator
fDk

of the objective function, where Dk is randomly chosen from the available
dataset. In SLiSeS, the line-search procedure is very different and no additional
estimator is used. Furthermore, the mini-batch Nk is changed after a prefixed
number of iterations. On the other hand, the LSOS method is a stochastic
version of the BFGS iteration; consequently, it is a second order method which
involves the control of an SD condition at each iteration based on an additional
estimator, as LSNM-BB, but when this condition is not satisfied for a prefixed
maximum number of times, the method switches to predefined square summable
step lengths. Unlike LSOS, LSNM-BB doesn’t prefix a maximum number of
times the SD condition is not satisfied; indeed the failure of the SD condition
causes an increase of the mini-batch size. In general, in the finite sums case,
Nk < N holds. In some cases, it could happen that the SD condition is not
met for a large number of times and, consequently, the increment rule of the
mini-batch size determines a value of Nk equal to N , i.e., the mini-batch is the
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whole dataset N and the stochastic iteration reduces to that of the standard
gradient. This does not happen in practice, unless a significant increase in the
cardinality of the mini-batch is forced and/or very long processing times are
allowed.
Furthermore, the method proposed for the case of a finite sum of terms can
be generalized to LSNM-BB-G for the resolution of problem (1). One of the
possible applications can be to address online learning problems. In this ver-
sion, the concept of mini-batch is replaced by that of estimator of f and, at
any iteration, two estimators fNk

and fDk
are used, the first to adjust the step

length, the second to verify the SD condition.
Finally, we should mention that the method proposed in [5] also uses additional
sampling as a control for accepting the step and increasing the sample size if
necessary. However, it differs from our approach significantly since it belongs to
the Trust-Region framework, uses Hessian approximations and considers only
finite sum case.
The paper is organized as follows. In Section 2, we describe the LSNM-
BB method, giving the details of the related algorithm and stating its well-
definiteness. In Section 3 we report the convergence results of the proposed
method for the finite sum minimization (2), whereas in Section 4 we describe
the LSNM-BB-G method for the problem (1) and we state the convergence
results. In Section 5 we evaluate the proposed method by a set of numerical ex-
periments. Some conclusions are drawn in the final section which also contains
some future work directions.

Notation.
In the following, R+ is the set of non negative real numbers; R++ is the set of
positive real numbers. ∥ · ∥ denotes the standard ℓ2 norm. E(·) and E(·| F)
denote mathematical expectation and conditional expectation with respect to
Ã-algebra F , respectively. We use “a.s.” to abbreviate “almost sure/surely” and
“i.i.d.” to abbreviate “independent and identically distributed”, while “SAA”
stands for “sample average approximation”. We denote by |N | the cardinality
of set N . Finally, B(x, Ä) denotes the ball of center x and radius Ä.

2 The LSNM-BB method for the finite sum case

The LSNM-BB method is a first-order scheme, consisting of cycles of itera-
tions. Each j-th cycle can have a maximum number of iterations, denoted by
m(Nj), characterized by the use of the same mini-batch Nj of the dataset N ,
where Nj ≡ Nk for any iteration k in the cycle. The search directions are
obtained by combining a suitable version of BB rules with the approximations
of the gradient based on Nk. In other words, within any cycle, the method
boils down to the gradient descent iteration for fNk

(x) combined with a non-
monotone line-search to adjust the step length, fixed by a BB-like rule. The
cycle can be stopped prematurely if it does not produce iterations deemed ac-
ceptable. Indeed, after the computation of the update xk of a standard gradient
iteration for fNk

, the following SD condition is checked:

fDk
(xk) f fDk

(xk)− cmin∥∇fDk
(xk)∥

2 + Cmax·k, (3)
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where Dk is randomly chosen from N , cmin, Cmax are positive real scalars and
{·k} is a summable sequence of non-negative real numbers, so that the strict
decrease of fDk

is relaxed. If the above condition is not met, the current cycle is
stopped; the vector xk is rejected and xk+1 = xk; a new cycle is started using a
new mini-batch Nk+1 of larger size ( Nk < Nk+1 f N). The step length is set as
the tentative value µk+1 = 1

∥∇fNk+1
(xk+1)∥

, suitably projected on [µmin, µmax].

The choice to adopt at the first step of a new cycle the scaled stochastic gradient
is convenient in the practice, but it is not relevant for the theoretical analysis;
other setting for µk+1 can be performed, as µk+1 = 1 for instance.
Conversely, when the SD condition (3) is met at xk, then xk+1 = xk, the initial
step length is updated by a new BB-like rule and a new iteration of the cycle is
performed.
If the j-th cycle ends by completing the foreseen m(Nj) iterations, a new mini-
batch is randomly extracted from N , leaving its cardinality equal to that of the
previous mini-batch, that is Nj+1 = Nj ; then, a new cycle is started, aimed to
perform a set of iterations which lead to decrease of a new approximation fNj+1

of fN .

The details of the proposed LSNM-BB method are described in Algorithm 1.
In particular, as already specified, within any cycle, the search directions dk is
computed as dk = −µkgk where gk is the gradient of the current estimate of
the objective function at xk and µk is initialized with a BB-like rule, suitably
projected on [µmin, µmax]. An adjustment of the step length, given by tk = ´ℓ,
´ ∈ (0, 1), ℓ ∈ N, is determined by a line-search technique, aimed at ensuring
that the non-monotone Armijo condition (4) is satisfied. A key assumption that
makes the algorithm well-defined is the following.

Assumption 1. For any i ∈ {1, ..., N}, the function Fi is bounded from below
and continuously-differentiable with Li-Lipschitz continuous gradient.

Consequently, LNk
= 1

Nk

∑

i∈Nk
Li is the Lipschitz parameter of ∇fNk

and

LNk
∈ [LN , Lmax], with LN equal to the Lipschitz parameter of ∇fN and

Lmax = maxi Li; obviously, LNk
f Lmax.

Remark 1. In view of the above assumption, it is well known that the standard

monotone line-search technique is well-defined, that is there exists a value t = ´ℓ

with t g min(1, 2´(1−¸)
LNk

) such that, for µk ∈ [µmin, µmax], the following condition

is met
fNk

(xk − tµkgk) f fNk
(xk)− ¸tµk∥gk∥

2. (5)

Thus, the value t is bounded from below by tmin = min(1, 2´(1−¸)
Lmax

). The term
·k g 0 in the condition (4) can be positive, allowing for nondescent directions
and relaxing the condition (5) ; for tk small enough, the condition (4) is satisfied
and hence the finite termination of the backtracking loop is assured.

The further following assumption is required.

Assumption 2. The non-negative real sequence {·k} in (3) and in (4) is such
that

∑∞
k=0 ·k f ·.

Remark 2. When dk satisfies the SD condition (3), we notice that the reduction
of fDk

, although relaxed by the presence of Cmax·k g 0, can be considered as
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Algorithm 1 LSNM-BB

1: Given x0 ∈ R
d, ¸, ´ ∈ (0, 1), {·k} ¢ R+ subject to

∑∞
k=0

·k f · < ∞, cmin,
Cmax ∈ R++, 0 < µmin < µmax, µ0 ∈ [µmin, µmax], N0 > 0, ¹ > 1.

2: Set k ← 0, j ← 0.
3: Choose N0 ¦ N randomly with size N0

4: Compute g0 ← ∇fN0
(x0)

5: while the stopping criterion is not satisfied do

6: Compute m(Nj)
7: i = 1
8: repeat

9: Compute dk ← −µkgk
10: Find the smallest integer ℓ g 0 such that tk = ´ℓ satisfies

fNk
(xk + tkdk) f fNk

(xk) + ¸tkg
T
k dk + ·k (4)

11: xk ← xk + tkdk
12: if Nk < N then

13: Choose Dk randomly and uniformly from N with replacement
14: if fDk

(xk) f fDk
(xk)− cmin∥∇fDk

(xk)∥
2 + Cmax·k then

15: xk+1 ← xk

16: Nk+1 ← Nk

17: Nk+1 ← Nk

18: Compute gk+1 ← ∇fNk+1
(xk+1)

19: Compute µk+1 by a BB-like rule with threshold in [µmin, µmax]
20: else

21: xk+1 ← xk

22: Choose Nk+1 ∈ (Nk, N ]
23: k ← k + 1
24: Exit and go to step 34
25: end if

26: else (Nk = N )
27: xk+1 ← xk

28: Compute gk+1 ← ∇fN (xk+1)
29: Compute µk+1 by a BB-like rule with threshold in [µmin, µmax]
30: end if

31: k ← k + 1
32: i = i+ 1
33: until i > m(Nj) OR the stopping criterion is satisfied
34: if Nk < N then

35: Randomly choose Nk ¦ N with size Nk

36: Compute gk ← ∇fNk
(xk)

37: Compute µk as 1

∥gk∥
with threshold in [µmin, µmax]

38: end if

39: j ← k

40: end while
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an indication that the decrease of fNk
is acceptable in order to minimize the

original objective function; in other words, the satisfaction of the SD condition
(3) would suggest that the point xk provides a similar behaviour, regardless of
the chosen mini-batch Nk or Dk. In view of

∑∞
k=0 ·k <∞, we have ·k → 0, so

that the condition (3) becomes stricter as k increases. Furthermore, we highlight
that there are no conditions on the size of Dk, i.e., Dk can consist of only one
element.
We note that both decrease conditions (4) and (3) are non-monotone.

A crucial point of the behaviour of the proposed method is that the SD
condition (3) cannot fail to be satisfied infinitely many times. In fact, if for
many iterations this arises, as the size of the mini-batch is increased, there exists
an iteration k such that, for k g k, Nk = N and the method is switched to a
standard gradient method combined with a BB-like rule and the non-monotone
line-search, for which there are well-known convergence results (see for example
[12, 16, 13] and references therein). In this case, the algorithm is very expensive.
Nevertheless, the experiments in Section 5 indicate that the SD condition (3)
is satisfied in a vaste majority of cases and the number of discarded candidate
points is very low and the size N for the mini-batch is never reached within the
time equivalent to require the computation of 30 full gradients and to obtain a
satisfactory accuracy.

3 Convergence analysis of LSNM-BB method

for the finite sum case

Before we prove the main convergence result for the finite sum problem (2), we
need to state the following two important lemmas. The proofs of these lemmas
are fundamentally the same as the ones for Lemmas 1-2 in [5]. However, they
are adapted to the LSNM-BB method and stated here for completeness.

Let us denote by D+
k the subset of all possible outcomes of Dk at iteration

k for which the condition (3) is satisfied, i.e.,

D+
k = {Dk ¢ N | fDk

(xk) f fDk
(xk)− cmin∥∇fDk

(xk)∥
2 + Cmax·k}. (6)

We denote the complementary subset of outcomes at iteration k by

D−
k = {Dk ¢ N | fDk

(xk) > fDk
(xk)− cmin∥∇fDk

(xk)∥
2 + Cmax·k}. (7)

The first lemma guarantees that if the mini-batches are always proper subsets
of N , then from a certain iteration forward the SD condition is always satisfied.

Lemma 1. Suppose that Assumptions 1 and 2 hold. If Nk < N for all k ∈ N,
then a. s. there exists k1 ∈ N such that D−

k = ∅ for all k g k1.

Proof. Assume that Nk < N for all k ∈ N. Since the sample size sequence {Nk}
in LSNM-BB Algorithm is non-decreasing, this means that there exists some
N < N and k2 ∈ N such that Nk = N for all k g k2. Now, let us assume that
there is no k1 ∈ N such that D−

k = ∅ for all k g k1. This means that there
exists an infinite sub-sequence of iterations K ¦ N such that D−

k ̸= ∅ for all
k ∈ K. Since Dk is chosen randomly and uniformly, with finitely many possible
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outcomes for each k, there exists some q > 0 such that P(Dk ∈ D
−
k ) g q for all

k ∈ K. So, we have

P(Dk ∈ D
+
k , k ∈ K) f Πk∈K(1− q) = 0;

this means that we will almost surely encounter an iteration at which the sample
size will be increased due to violation of SD condition (3). This is a contra-
diction with the sample size being kept to N during the whole optimization
process. Thus, we conclude that the statement holds.

Next, we show that Lemma 1 implies that the Armijo-like inequality holds
for the overall objective function for all k sufficiently large in the mini-batch
scenario. The proof is essentially the same as the proof of Lemma 2 in [5], but
we state it here for completeness.

Lemma 2. Suppose that Assumptions 1 and 2 hold and that Dk is chosen with
replacement. If Nk < N for all k ∈ N, then a. s.

fN (xk) f fN (xk)− cmin∥∇fN (xk)∥
2 + Cmax·k

holds for all k g k1 where k1 is as in Lemma 1.

Proof. First, notice that Lemma 1 implies that a. s.

fDk
(xk) f fDk

(xk)− cmin∥∇fDk
(xk)∥

2 + Cmax·k (8)

holds for all possible realizations of Dk and for all k g k1. Thus, we conclude
that a. s. for every i = 1, 2, ..., N and every k g k1 we have

Fi(xk) f Fi(xk)− cmin∥∇Fi(xk)∥
2 + Cmax·k. (9)

Indeed, if there exists i ∈ N that violates the previous inequality, then there
would exist at least one realization of Dk (namely, Dk = {i, i, ..., i}) that violates
(8). Thus, a. s. for all k g k1 we have

fN (xk) =
1

N

N
∑

i=1

Fi(xk) f
1

N

N
∑

i=1

(Fi(xk)− cmin∥∇Fi(xk)∥
2 + Cmax·k)(10)

= fN (xk)− cmin
1

N

N
∑

i=1

∥∇Fi(xk)∥
2 + Cmax·k

f fN (xk)− cmin∥∇fN (xk)∥
2 + Cmax·k,

where the last inequality comes from the fact that ∥ · ∥2 is convex and therefore

∥∇fN (xk)∥
2 = ∥

1

N

N
∑

i=1

∇Fi(xk)∥
2 f

1

N

N
∑

i=1

∥∇Fi(xk)∥
2.

Next, we prove that the iterates of the proposed algorithm remain within a
random level set.
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Lemma 3. Suppose that Assumptions 1 and 2 hold and that Dk is chosen with
replacement. Then a. s. there exists a finite, random iteration k̃ such that

fN (xk̃+k) f fN (xk̃) + max{1, Cmax}·̄

holds for all k ∈ N.

Proof. If the full sample is reached, then there exists some k0 ∈ N such that
Nk = N for all k g k0 and (4) holds for a suitable tk, i.e., for all k g k0

fN (xk+1) f fN (xk) + ¸tkg
T
k dk + ·k f fN (xk) + ·k.

Using the su mmability of ·k we obtain the result with k̃ = k0.
On the other hand, if Nk < N for all k, then Lemma 1 implies the existence

of k1 such that xk+1 = x̄k for all k g k1 and Lemma 2 implies that

fN (xk+1) f fN (xk)− cmin∥∇fN (xk)∥
2 + Cmax·k f fN (xk) + Cmax·k

holds for all k g k1 a. s. Again, using the su mmability of ·k we obtain the
result with k̃ = k1.

In order to prove the main convergence results for LSNM-BB Algorithm, we
state the following assumption.

Assumption 3. There exists a constant C such that E(|fN (xk̃)|) f C, where

k̃ is as in Lemma 3.

The expectation in the previous assumption is taken over all possible sample
paths. Assumption 3, together with the result of Lemma 3, implies that the se-
quence {fN (xk)}kgk̃ is uniformly bounded in expectation. Moreover, we obtain
(see [5] for more details)

E(|fN (xk̃)| | A) f C1 and E(|fN (xk̃)| | Ā) f C2, (11)

where A represents a subset of all possible outcomes (sample paths) such that
the full sample is reached eventually, Ā represents a subset of all possible out-
comes which belong to the mini-batch scenario, and C1, C2 are some positive
constants depending on C and the probability of the mini-batch scenario. Notice
that Assumption 3 holds if we have bounded iterates and continuous objective
function. Let us abbreviate EA(·) := E(·|A) and EĀ(·) := E(·|Ā). We denote
the corresponding conditional probabilities with PA and PĀ.

Now, we are ready to prove the main convergence result. The second part
of the proof (the mini-batch scenario) is similar to the proof of Theorem 3.9 in
[10], although in a different context.

Theorem 1. Suppose that the Assumptions 1, 2 and 3 hold and let {xk} be a
sequence generated by LSNM-BB Algorithm. Then

lim
k→∞

∥∇fN (xk)∥ = 0 a.s. (12)

and each limit point of {xk} is stationary for problem (2) a.s.
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Proof. Let us observe the first (mini-batch) scenario, where Nk < N for all
k ∈ N. Then, Lemma 1 and 2 imply that a. s. there exists k1 ∈ N such that
the following holds for all k g k1

fN (xk+1) f fN (xk)− cmin∥∇fN (xk)∥
2 + Cmax·k.

Equivalently, a. s. for all s ∈ N we have

fN (xk1+s) f fN (xk1
)− cmin

s−1
∑

ℓ=0

∥∇fN (xk1+ℓ)∥
2 + Cmax

s−1
∑

ℓ=0

·k1+ℓ.

Furthermore, applying the expectation EĀ and using the fact that k̃ coincides
with k1 in the mini-batch scenario, by (11) we obtain

EĀ(fN (xk̃+s)) f C2 − cmin

s−1
∑

ℓ=0

EĀ(∥∇fN (xk̃+ℓ)∥
2) + Cmax

s−1
∑

ℓ=0

·k̃+ℓ.

Moreover, using Assumptions 1 and 2 and letting s→∞ we obtain

∞
∑

k=0

EĀ(∥∇fN (xk)∥
2) <∞.

Now, by the extended version of Markov’s inequality we have that for any ϵ > 0

PĀ(∥∇fN (xk)∥ g ϵ) f
EĀ(∥∇fN (xk)∥

2)

ϵ2
<∞

and therefore
∞
∑

k=0

PĀ(∥∇fN (xk)∥ g ϵ) <∞.

Finally, Borel-Cantelli Lemma [15] implies that, conditioned onA, limk→∞ ∥∇fN (xk)∥ =
0 a.s., or in other words

P ( lim
i→∞

∥d(xk̃1+i)∥ = 0 | Ā) = 1. (13)

Now, let us consider the scenario where the full sample size is reached, i.e.,
the outcomes that belong to A. In this scenario, the method eventually becomes
a standard gradient method equipped with BB step size and non-monotone
backtracking line-search, but with a random “starting” point k̃ = k0. Notice
that under the Assumption 1, both µk and tk are uniformly bounded away from
zero. Therefore, according to (4), we obtain the following inequality for all k g k̃

fN (xk+1) f fN (xk)− ¸t̄µmin∥∇fN (xk)∥
2 + ·k. (14)

Applying the conditional expectation EA and following similar steps as in the
previous part of the proof, we obtain

P ( lim
k→∞

∥∇fN (xk)∥ = 0 | A) = 1, (15)

which together with (13) implies (12).
Finally, since we have proved that the gradient of the objective function tends
to zero a.s. in all possible scenarios, by the continuity of ∇fN we conclude that
every limit point of {xk} is stationary for fN a.s.
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If fN is µN -strongly convex we have a stronger convergence result. In this case,
problem (2) has a unique solution x∗ and for any x ∈ R

d the following inequality
holds

µN

2
∥x− x∗∥

2 f fN (x)− fN (x∗) f
1

2µN
∥∇fN (x)∥2. (16)

Taking xk instead of x and letting k → ∞, according to Theorem 1 we obtain
the following result.

Corollary 1. Let Assumptions 1, 2 and 3 hold and let {xk} be a sequence
generated by LSNM-BB Algorithm. If fN is µN−strongly convex, then the
sequence {xk} converges a.s. to the unique solution x∗ of problem (2).

Next, we analyse the convergence rate and the worst-case complexity of the
proposed algorithm under the strong convexity assumption. We show that R-
linear convergence rate can be achieved. Moreover, if the local cost functions
are heterogeneous enough, we provide an expected number of iterations to reach
the ε-vicinity of the solution.

Theorem 2. Suppose that the assumptions of Corollary 1 hold. Assume that
cmin < 1/(2µN ) and ¸ < 1/(2µN µmintmin). Then the LSNM-BB Algorithm
converges to the unique solution x∗ of the problem (2) R-linearly in a mean
squared sense, i.e., there exist constants Ä ∈ (0, 1) and M > 0 such that

E(∥xk̃+j − x∗∥
2) fMÄj , j = 1, 2, ... (17)

where where k̃ is as in Lemma 3.

Proof. Following the steps of Theorem 1, in the mini-batch scenario we obtain
that the following holds a. s. for all k g k1

fN (xk+1) f fN (xk)− cmin∥∇fN (xk)∥
2 + Cmax·k.

Recall that in this scenario, k1 coincides with k̃ from Lemma 3.
Now, by subtracting fN (x∗) from both sides of the previous inequality and

using the second inequality of (16) we obtain

fN (xk+1)− fN (x∗) f Ä1(fN (xk)− fN (x∗)) + Cmax·k,

where Ä1 = 1− 2cminµN ∈ (0, 1). Therefore, a. s. for each j ∈ N there holds

fN (xk1+j)− fN (x∗) f Äj1(fN (xk1
)− fN (x∗)) + sk1+j ,

where sk1+j = Cmax

∑j
i=1 Ä

i−1
1 ·k1+j−i. Since the sequence of ·k is assumed to

be nonnegative and summable, we conclude that it converges to zero R-linearly.
Furthermore, without loss of generality, we can assume that the sequence of ·k
is monotone decreasing, so

sk1+j f Cmax

j
∑

i=1

Äi−1
1 ·j−i = sj .

Moreover, the sequence of sj also converges to zero R-linearly (see Lemma 4.2
in [23] for instance), so there exist constants M· > 0 and Ä· ∈ (0, 1) such that
for each j ∈ N

fN (xk1+j)− fN (x∗) f Äj1(fN (xk1
)− fN (x∗)) +M·Ä

j
· .

11



Applying the conditional expectation EĀ we obtain

EĀ(fN (xk1+j)− fN (x∗)) f Äj1(C2 − fN (x∗)) +M·Ä
j
·

and conclude the existence of constants MĀ > 0 and ÄĀ ∈ (0, 1) such that for
each j ∈ N

EĀ(fN (xk1+j)− fN (x∗)) fMĀÄ
j
Ā
. (18)

Analogously, for the full sample scenario we obtain the existence of constants
MA > 0 and ÄA ∈ (0, 1) such that for each j ∈ N

EA(fN (xk0+j)− fN (x∗)) fMAÄ
j
A, (19)

where k0 coincides with k̃ and the analysis is based on (14) and the assumption
¸ < 1/(2µN µmintmin).
Finally, combining both scenarios we obtain

E(fN (x
k̃+j

)− fN (x∗)) = P (Ā)EĀ(fN (x
k̃
)− fN (x∗)) + P (A)EA(fN (x

k̃
)− fN (x∗))(20)

= P (Ā)EĀ(fN (xk1
)− fN (x∗)) + P (A)EA(fN (xk0

)− fN (x∗))

≤ ρjM̄,

where Ä = max{ÄA, ÄĀ} and M̄ = max{MA,MĀ}. Applying the strong con-

vexity assumption we conclude the proof of the statement with M = 2M̄
µN

.

Corollary 2. Let Assumptions of Theorem 2 hold. Then E(∥xk − x∗∥
2) f ε

holds for all k g k̂, where

k̂ = k̃ +

⌈

| log(ε/M)|

| log(Ä)|

⌉

.

and k̃ is like in Lemma 3.

Notice that the worst-case complexity in the previous corollary is of order
O(log(ε)), but it also depends on random iteration k̃. In general, k̃ is very
hard to determine since it is problem-dependent. In the sequel, we provide an
estimate for k̃ under assumption of heterogeneous local cost functions. More
precisely, we assume that for each k there exists at least one Fi function that
violates the inequality (9). We formalize this assumption as follows.

Assumption 4. For each k there exists at least one Fi function such that

Fi(xk) > Fi(xk)− cmin∥∇Fi(xk)∥
2 + Cmax·k.

Assumption 4 implies that D−
k is nonempty for each k and there exists

p ∈ (0, 1] such that
P (Dk ∈ D

−
k ) g p > 0. (21)

For instance, if |Dk| = 1, then p g 1/N . Furthermore, let Sk be a random
variable that counts how many times the sample size is increased within the
first k iterations. We can represent Sk as a sum of indicator variables, i.e.,
Sk = I1 + ... + Ik, where Ik = 1 if Nk > Nk−1 and Ik = 0 otherwise. Notice
that E(Ik) = P (Ik = 1) = P (Dk ∈ D

−
k ) g p and thus

E(Sk) g kp. (22)

12



Furthermore, notice that the full sample size is reached a.s. under the Assump-
tion 4. Let us denote by Ñ the number of increments of sample size needed
to reach the full sample. For instance, if in line 22 of LSNM-BB algorithm we
set Nk+1 = Nk + 1, then Ñ = N − N0. If we use Nk+1 = +¹Nk,, then Ñ is
at most +log(N/N0)/ log(¹),. Therefore, by setting E(Sk̃) = Ñ and using (22)
we conclude that the expected number of iterations to reach the full sample is
bounded from above by +Ñ/p,. We summarize this analysis in the following
statement.

Corollary 3. Let Assumptions of Theorem 2 hold together with Assumption 4.
Then the expected number of iterations to reach E(∥xk − x∗∥

2) f ε is

k̂E = +Ñ/p,+

⌈

| log(ε/M)|

| log(Ä)|

⌉

.

4 The LSNM-BB-G method for the general

case and its convergence analysis

Now, let us consider more general problem (1). We assume that the approx-
imation fNk

(x) of the objective function at iteration k is formed by the SAA
estimator

fNk
(x) =

1

Nk

Nk
∑

i=1

F (x, Àki ), (23)

where Àk1 , À
k
2 , ..., À

k
Nk

are i.i.d. random vectors for each k and Nk = |Nk|. We
assume the same structure for the additional sampling, i.e.,

fDk
(x) =

1

Dk

Dk
∑

i=1

F (x, À̃ki ), (24)

where À̃k1 , ..., À̃
k
Dk

are i.i.d. random vectors independent of Àk1 , À
k
2 , ..., À

k
Nk

, and
Dk = |Dk|. We also assume that, given a point x, both fNk

(x) and fDk
(x) are

unbiased estimators of f(x). The SAA estimator with unbounded sample size
is a key point in the generalization of the method LSNM-BB. The modified
version, named LSNM-BB-G and shown in Algorithm 2, implements the de-
tails of the proposed method for solving the problem (1). A further difference
between the two algorithms is that the sample size Dk used for the estimator
fDk

increases at the same time as the sample size Nk used for the estimator
fNk

, but not necessary at the same rate and there holds Dk f Nk.
Notice that the proposed algorithm can yield two possible scenarios regarding

the sample size: 1) the mini-batch scenario where the sample size Nk is bounded
from above as well as Dk; 2) the scenario where both Nk and Dk tend to
infinity. The second scenario corresponds to the case where the trial point is
rejected infinitely many times. We assume that the sequence of iterates is
bounded. Moreover, we also make an assumption that, given a point x, the
gradient ∇F (x, À) is a.s. bounded with D(x). This ensures that the stochastic
gradient is a.s. well defined at any given point x. Moreover, it is satisfied in
logistic regression problems if the attributes belong to some finite range.

13



Algorithm 2 LSNM-BB-G

1: Given x0 ∈ R
d, ¸, ´ ∈ (0, 1), {·k} ¢ R+ subject to

∑∞
k=0

·k f · < ∞, cmin,

Cmax ∈ R++, 0 < µmin < µmax, µ0 ∈ [µmin, µmax], N0 > 0, ¹ g ¹̃ > 1.
2: Set k ← 0, j ← 0
3: Choose i.i.d. random sample Àk1 , À

k
2 , ..., À

k
N0

to form fN0
by (23)

4: Compute g0 ← ∇fN0
(x0)

5: while the stopping criterion is not satisfied do

6: Compute m(Nj)
7: i = 1
8: repeat

9: Compute dk ← −µkgk
10: Find the smallest integer ℓ g 0 such that tk = ´ℓ satisfies

fNk
(xk + tkdk) f fNk

(xk) + ¸tkg
T
k dk + ·k (25)

11: xk ← xk + tkdk
12: if Nk < N then

13: Choose i.i.d. random sample À̃k1 , À̃
k
2 , ..., À̃

k
Dk

to form fDk
by (24)

14: if fDk
(xk) f fDk

(xk)− cmin∥∇fDk
(xk)∥

2 + Cmax·k then

15: xk+1 ← xk

16: Nk+1 ← Nk

17: Nk+1 ← Nk

18: Compute gk+1 ← ∇fNk+1
(xk+1)

19: Compute µk+1 by a BB-like rule with threshold in [µmin, µmax]
20: else

21: xk+1 ← xk

22: Choose Nk+1 > Nk

23: Choose Dk+1 ∈ (Dk, Nk+1]
24: k ← k + 1
25: Exit and go to step 35
26: end if

27: else (Nk = N )
28: xk+1 ← xk

29: Compute gk+1 ← ∇fN (xk+1)
30: Compute µk+1 by a BB-like rule with threshold in [µmin, µmax]
31: end if

32: k ← k + 1
33: i = i+ 1
34: until i > m(Nj) OR the stopping criterion is satisfied
35: if Nk < N then

36: Choose i.i.d. random sample Àk1 , À
k
2 , ..., À

k
Nk

to form fNk
by (23)

37: Compute gk ← ∇fNk
(xk)

38: Compute µk as 1

∥gk∥
with threshold in [µmin, µmax]

39: end if

40: j ← k

41: end while

14



Assumption 5. The function F (·, À) is bounded from below and continuously-
differentiable with L-Lipschitz continuous gradient for any given À. Moreover,
for every x there exists a constant D(x) such that ∥∇F (x, À)∥ f D(x) for almost
every À.

Consequently, all the SAA functions (fNk
and fDk

) are bounded from below
and continuously-differentiable with L-Lipschitz continuous gradients as well.

Assumption 6. The sequence of iterates {xk}k∈N generated by Algorithm LSNM-
BB-G is bounded.

In order to continue with the convergence analysis, let us denote by e(x,N ) the
error of the SAA estimate based on sample N at point x, i.e.,

e(x,N ) := |fN (x)− f(x)|. (26)

We also define the corresponding error for the gradient as

eg(x,N ) := |∥∇fN (x)∥2 − ∥∇f(x)∥2|. (27)

In order to claim a.s. convergence of these errors, we make the following as-
sumption.

Assumption 7. The function F and its gradient ∇F are dominated by inte-
grable functions on any compact subset of Rd.

Since we assume i.i.d. samples, the Uniform Law of Large Numbers (ULLN)
implies that, under Assumption 7, there holds

lim
|N |→∞

sup
x∈S

e(x,N ) = 0 a.s. and lim
|N |→∞

sup
x∈S

eg(x,N ) = 0 a.s., (28)

for any given compact set S (see Theorems 7.48 and 7.52 from [4]).

Now, we state the conditions under which we have infinite number of iterations
at which the trial point is accepted unless we have encountered a stationary
point of the objective function f .

Lemma 4. Suppose that the Assumptions 2, 5, 6 and 7 hold. Then, a.s., there
exists an infinite subset of iterations K ¦ N such that xk+1 = xk for each k ∈ K
provided that ∥∇f(xk)∥ > 0 for each k and cmin < ¸µmin min{2´(1− ¸)/L, 1}.

Proof. First, notice that tk g min{2´(1−¸)/L, 1} due to the Assumption 5 and
the backtracking line-search. Therefore, from (25) we obtain that

fNk
(xk) f fNk

(xk)− ¸tkµk∥∇fNk
(xk)∥

2 + ·k f fNk
(xk)− c∥∇fNk

(xk)∥
2 + ·k,

(29)
where c := ¸µmin min{2´(1 − ¸)/L, 1}. Furthermore, using (26) and (27) we
obtain

f(xk) f f(xk)− c∥∇f(xk)∥
2 + e(xk,Nk) + e(xk,Nk) + ceg(xk,Nk) + ·k. (30)

Now, let us assume that K ¦ N such that xk+1 = xk for each k ∈ K does not
exist. This means that there exists k such that the point xk is rejected for all
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k g k, i.e., the sequence of iterates becomes stationary at xk. According to the

algorithm, this is possible only if the following happens for all k g k

fDk
(xk) > fDk

(xk)− cmin∥∇fDk
(xk)∥

2 + Cmax·k.

Thus, for all k g k we have

f(xk) >f(xk)− cmin∥∇f(xk)∥
2 − e(xk,Dk)− e(xk,Dk)+

− cmineg(xk,Dk) + Cmax·k.
(31)

We observe that Cmax·k g 0 in the previous inequality; then, combining (30)
and (31) and using the fact that xk = xk for all k g k we obtain

(c− cmin)∥∇f(xk)∥
2 < e(xk,Dk) + e(xk,Dk) + cmineg(xk,Dk)

+ e(xk,Nk) + e(xk,Nk) + c eg(xk,Nk) + ·k.

Notice that each rejection of a trial point increases both Nk and Dk, so in this
scenario we have that Nk →∞ and Dk →∞ and thus

lim
k→∞

e(xk,Dk) + cmineg(xk,Dk) + e(xk,Nk) + c eg(xk,Nk) = 0 a.s..

Moreover, Assumption 5 implies the existence of a constant D(xk) such that
∥∇fNk

(xk)∥ f D(xk) a.s. which further implies that

∥xk∥ f ∥xk∥+ tkµk∥∇fNk
(xk)∥ f ∥xk∥+ µmaxD(xk) a.s. for all k g k.

Thus, we conclude that for all k g k, xk remains bounded, i.e., {xk}kgk ∈
B(xk, µmaxD(xk)) a.s. and applying the ULLN we obtain

lim
k→∞

e(xk,Nk) + e(xk,Dk) = 0 a.s.

Since ·k is summable, we have limk→∞ ·k = 0 and thus, by using the assumption
that cmin < c and ∥∇f(xk)∥ > 0, we obtain the following contradiction

0 < (c− cmin)∥∇f(xk)∥
2 f 0 a.s.

This completes the proof.

The following lemma is the analogue of Lemma 1, stated in the previous section
for the finite sum case.

Lemma 5. Suppose that the Assumptions 2 and 5 hold. If Nk f N <∞ for all
k ∈ N then there exists k1 ∈ N such that the SD condition (3) of LSNM-BB-G

Algorithm holds a.s. for all k g k1.

Proof. Assume that there exists some k2 ∈ N such that Nk = N for all k g k2.
Now, let us assume that there is no k1 ∈ N such that the SD condition (3)
holds a.s. for all k g k1. This means that there exists an infinite sub-sequence
of iterations K ¦ N such that the measure of D−

k is non-zero for all k ∈ K and
thus the probability of Dk ∈ D

−
k is strictly positive for all k ∈ K. This further

implies that P(Dk ∈ D
+
k ) < 1 for all k ∈ K and

P(Dk ∈ D
+
k , k ∈ K) =

∏

k∈K

P(Dk ∈ D
+
k ) = 0.
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This means that we will almost surely encounter an iteration at which the
sample size will be increased due to violation of SD condition (3). This is a
contradiction with the sample size being kept to N during the optimization
process. Thus, we conclude that the statement holds.

Now, we prove the main convergence result for LSNM-BB-G Algorithm.

Theorem 3. Suppose that the assumptions of Lemma 4 hold and let {xk} be a
sequence generated by LSNM-BB-G Algorithm. Then, we have

lim inf
k→∞

∥∇f(xk)∥ = 0 a.s. (32)

and there exists a limit point of {xk} which is stationary for problem (1) a.s.

Proof. Recall that there are two possible scenarios for the proposed algorithm:
mini-batch scenario (Ā) and the one where the sample size tends to infinity (A).

Let us observe the first scenario. In this case, Lemma 5 implies that the
following holds a.s. for all k g k1

fDk
(xk) f fDk

(xk)− cmin∥∇fDk
(xk)∥

2 + Cmax·k. (33)

This further implies that x̄k = xk+1 a.s. for all k g k1. Now, let us denote by
Fk+1/2 the Ã-algebra generated by N0, D0, ..., Nk−1, Dk−1, Nk. Since Dk is
chosen randomly and uniformly after both xk and xk are determined, we have

f(x̄k) = E(fDk
(xk) | Fk+1/2) and f(xk) = E(fDk

(xk) | Fk+1/2).

Thus, applying conditional expectation with respect to Fk+1/2 on (33) leads to

f(x̄k) f f(xk)− cminE(∥∇fDk
(xk)∥

2 | Fk+1/2) + Cmax·k. (34)

Moreover, there holds

E(∇fDk
(xk)| Fk+1/2) = ∇f(xk), (35)

so we obtain

∥∇f(xk)∥
2 = ∥E(∇fDk

(xk)| Fk+1/2)∥
2 f E

2(∥∇fDk
(xk)∥| Fk+1/2)

f E(∥∇fDk
(xk)∥

2| Fk+1/2).

and conclude that for all k g k1 there holds

f(x̄k) f f(xk)− cmin∥∇f(xk)∥
2 + Cmax·k. (36)

Furthermore, since we also have x̄k = xk+1 a.s. for all k g k1 and f is a
deterministic function, we know that for all k g k1 there holds

EĀ(f(xk+1)) = EĀ(f(x̄k)) f EĀ(f(xk))− cminEĀ(∥∇f(xk)∥
2)+Cmax·k. (37)

Now, using the Assumptions 2 and 6, we conclude that
∑∞

k=k1
EĀ(∥∇f(xk)∥

2) <
∞ and continuing as in the proof of Theorem 1, we conclude

P ( lim
k→∞

∥∇f(xk)∥ = 0 | Ā) = 1. (38)
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Now, let us observe the second scenario, where Nk tends to infinity. Recall
that in this scenario Dk tends to infinity as well. Lemma 4 implies the existence
of an infinite sub-sequence of iterations K := {kj}j∈N ¦ N such that the trial
point is accepted. In other words, for each k ∈ K we have

fDk
(xk+1) f fDk

(xk)− cmin∥∇fDk
(xk)∥

2 + Cmax·k

and by using (26) and (27) we get

f(xk+1) f f(xk)− cmin∥∇f(xk)∥
2 + ak,

where
ak := e(xk+1,Dk) + e(xk,Dk) + cmineg(xk,Dk) + Cmax·k. (39)

In other words, for all j ∈ N we have

f(xkj+1) f f(xkj
)− cmin∥∇f(xkj

)∥2 + akj
.

Moreover, in all the intermediate iterations between kj and kj+1, the trial point
is rejected and we conclude that xkj+1 = ... = xkj+1−1 = xkj+1

for each j and
thus

f(xkj+1
) = ... = f(xkj+1) f f(xkj

)− cmin∥∇f(xkj
)∥2 + akj

. (40)

Now, assume that (32) does not hold. This means that there exists ε > 0 such
that ∥∇f(xk)∥

2 g ε for each k ∈ N. Thus, for each j we obtain

f(xkj+1
) f f(xkj

)− cminε+ akj
.

Due to Assumption 6, summability of ·k and the fact that Dk → ∞, we
conclude that limj→∞ akj

= 0 a.s.; thus, there exists j such that akj
f cminε/2

for all j g j a.s. which implies that the following holds

f(xkj+1
) f f(xkj

)− cminε/2.

This further implies that, for any s ∈ N, a.s. there holds

f(xkj+s
) f f(xkj

)− scminε/2,

and by employing Assumption 6 and letting s→∞, we obtain lims→∞ f(xkj+s
) =

−∞, which is a contradiction with f being bounded from below. Thus, we con-
clude that (32) must hold, i.e.,

P (lim inf
k→∞

∥∇f(xk)∥ = 0 | A) = 1. (41)

Thus, combining (38) and (41) we conclude that (32) holds.
Finally, since we assume that the sequence of iterates is bounded, due to the fact
that f is continuously differentiable function, we conclude that a.s. there exists
an accumulation point of the sequence {xk} which is stationary for function
f .

Remark 3. Notice that we can prove a stronger results ( limk→∞ ∥∇f(xk)∥ = 0
a.s.) if the sequence of ak defined in (39) is summable. This can be achieved
for some classes of problems if we impose fast enough increase of Dk in the
scenario where Dk → ∞ (see the discussion after the proof of Theorem 3.1 in
[2] and the references therein.)
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If the function f is µ-strongly convex, then we can prove that the whole sequence
converges to the unique solution x∗ of problem (1).

Theorem 4. Suppose that the Assumptions of Lemma 4 hold. Further, assume
that the function f is µ-strongly convex and cmin < 1/(2µ). Then the sequence
{xk} generated by LSNM-BB-G Algorithm converges to x∗ a.s.

Proof. Notice all the assumptions of Theorem 3 hold. Moreover, we have proved
that in the mini-batch scenario we obtain limk→∞ ∥∇f(xk)∥ = 0 a.s. and the
statement is a direct consequence of the following inequality

µ

2
∥xk − x∗∥

2 f f(xk)− f(x∗) f
1

2µ
∥∇f(xk)∥

2. (42)

In the second scenario, when Dk →∞, there holds (40), i.e.,

f(xkj+1
) f f(xkj

)− cmin∥∇f(xkj
)∥2 + akj

, j ∈ N

where K := {kj}j∈N ¦ N is the sequence as in the proof of Theorem 3 - an
infinite sub-sequence of iterations at which the trial point is accepted, and akj

→
0, j →∞ a.s.. Now, by using the second inequality in (42) and subtracting f(x∗)
from both sides of the previous inequality, we obtain

f(xkj+1
)− f(x∗) f f(xkj

)− f(x∗)− cmin2µ(f(xkj
)− f(x∗)) + akj

,

i.e., for each j there holds

f(xkj+1
)− f(x∗) f ¹(f(xkj

)− f(x∗)) + akj
,

where ¹ := 1 − cmin2µ ∈ (0, 1) by the assumption on cmin. Applying the
induction argument we obtain

f(xkj
)− f(x∗) f ¹j(f(xk0

)− f(x∗)) +

j
∑

t=1

¹j−takt−1
.

Since f(xk0
)−f(x∗) is bounded, we have limj→∞ ¹j(f(xk0

)−f(x∗)) = 0. More-
over, since akj

tends to zero a.s. as j tends to infinity, it can be shown that

limj→∞
∑j

t=1 ¹
j−takt−1

= 0 a.s. (see Lemma 3.1. in [3] for instance). There-
fore, we conclude that limj→∞ f(xkj

) = f(x∗) a.s., and according to (42) we
have that limj→∞ ∥xkj

− x∗∥ = 0 a.s. Having in mind the definition of the sub-
sequence {xkj

}j∈N, we conclude that the whole sequence of iterates {xk}k∈N

tends to x∗ a.s.

Under the assumptions of the previous theorem, we analyze the convergence
rate of the proposed method. We prove R-linear convergence in a mean squared
sense if the sample size is increased fast enough in the scenario A (Nk → ∞),
i.e., if the following holds for all j and some constants Ma > 0 and Äa ∈ (0, 1)

EA(akj
) fMaÄ

j
a, (43)

where akj
is as in the proof of Theorem 4. We refer to iterations where xk+1 = x̄k

as successful iterations.
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Theorem 5. Let assumptions of Theorem 4 hold. Then the sequence of suc-
cessful iterations generated by LSNM-BB-G Algorithm tends to x∗ R-linearly
in the mean squared sense, provided that (43) holds.

Proof. In the mini-batch scenario (Ā) there holds (37). Following the analysis
of the proof of Theorem 2, we conclude that for all j ∈ N

EĀ(∥xk1+j − x∗∥
2) f

2MĀ

µ
Äj
Ā
.

Notice that all the iterations after k1 are a.s. successful. Considering the re-
maining scenario (A), we conclude that (40) holds. By applying the conditional
expectation EA, subtracting f(x∗) from both sides, using (43) and strong con-
vexity assumption, we obtain that the following holds for all successful itera-
tions, i.e., for all j ∈ N

EA(f(xkj+1
)− f(x∗)) f Ä1EA(f(xkj

)− f(x∗)) +MaÄ
j
a,

where Ä1 = (1− cmin2µ) ∈ (0, 1). Furthermore, using the same arguments as in
the proof of Theorem 2, we conclude that

EA(∥xkj
− x∗∥

2) f Ä̃jAM̃A,

for some Ä̃A ∈ (0, 1) and M̃A > 0. This completes the proof.

We conclude the analysis by stating the worst-case complexity result that
takes into account dissimilarity of approximate functions given by (21).

Corollary 4. Let assumptions of Theorem 5 hold together with (21). Then the
expected number of iterations to reach E(∥xk − x∗∥

2) f ε is

k̃E =

⌈

| log(ε/M̃A)|

|(1− p) log(Ä̃A)|

⌉

.

Proof. Notice that under Assumption 3 and its consequence (21), the number of
unsuccessful iterations is infinite a.s. Indeed, the probability of having finitely
many unsuccessful iterations is 0 since

P (Dk ∈ D
+
k , k g k2) =

∏

kgk2

(1− P (Dk ∈ D
−
k )) f

∏

kgk2

(1− p) = 0.

Thus, the sample size tends to infinity, i.e., the scenario A happens a.s. Thus,
according to the proof of the previous theorem, we have EA(∥xkj

− x∗∥
2) f

Ä̃jAM̃A, for all j and E(∥xkj
− x∗∥

2) f ε is satisfied for all j g j̃ where

j̃ =

⌈

| log(ε/M̃A)|

| log(Ä̃A)|

⌉

.

Recall that kj represent successful iterations and therefore this means that the
ε-vicinity of the solution in the mean squares sense is attained after at most
j̃ successful iterations. Notice also that we can set xk0

= x0 since the first
successful iteration must be in the initial point (but not necessarily at initial
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iteration k = 0). Furthermore, by using (22), we conclude that the expected
number of successful iterations within total k iterations is

E(k − Sk) f k − kp.

Finally, setting the expected number of successful iterations to reach j̃, i.e.,
E(k − Sk) g j̃, we obtain the result.

5 Numerical experiments

In this section we evaluate the numerical effectiveness of the proposed approach
when we have to solve a binary classification problem, i.e., a minimization prob-
lem as (2). Only in the last Section 5.4 we consider a problem that simulates
the formulation of the problem (1). We remark that, in order to prevent possi-
ble overfitting problems, an ℓ2 regularization term is included in the objective
function in both cases.
In the numerical experiments addressing problem (2), we consider four datasets:
w8a, IJCNN and RCV1 (downloadable from https://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/) and MNIST (available at https://yann.lecun.com/

exdb/mnist/). This last dataset is adapted to the binary classification prob-
lem, by separating the items in even and the odd digits. The details of the
considered datasets are reported in Table 1. Here, d is the size of any element
Ài (feature vector and corresponding label) of the dataset N (training set) and
of the testing set.

dataset d− 1 #training set (N) #testing set
MNIST 784 60000 10000
w8a 300 44774 4975
IJCNN 22 49990 91701
RCV1 47236 20242 10000

Table 1: Dataset features.

We consider two different binary classifiers, corresponding to two loss functions,
one convex and one non-convex. In particular, by denoting as ai ∈ R

d−1 and bi ∈
{1,−1} the feature vector and the class label of the i-th example respectively,
in the first case the objective function in (2) is the sum of N convex logistic
regression (LR) loss terms penalized by an ℓ2 regularization term:

F (x, Ài) = log
[

1 + e−bia
T
i x

]

+ ¼∥x∥2,

whereas, in the second case, the objective function is the sum of N non-convex
loss in 2-layer neural networks (NN) penalized by an ℓ2 regularization term:

F (x, Ài) =

(

1−
1

1 + e−biaT
i
x

)2

+ ¼∥x∥2.

Here, ¼ is the regularization parameter. For all test problems, we set ¼ = 10−4.
All numerical results described in the following (unless otherwise specified) were
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obtained by running each numerical test 10 times with the same setting, but
leaving the possibility to the random number generator to vary; consequently,
each reported performance measurement is the average of 10 values.
Furthermore, for any considered test problem, a ground truth value f∗ for the
minimum of the objective function was computed by a huge number of iterations
of the standard stochastic gradient method (SGD).
In order to evaluate the results carried out from the numerical experiments, the
following averaged quantities are tracked:

• averaged optimality gap value at each epoch, where the optimality gap
value is defined as |fN (x)− f∗| and it is computed by using the training
set; the epoch is a measure of computational complexity, equivalent to the
computation of a full gradient;

• averaged mini-batch size at each iteration;

• averaged accuracy evaluated on the testing set at each epoch.

As a further performance measure, we can use also the decreasing rate of the
objective function at the iteration k, defined as

Rk =
fN (xk)− f∗

fN (x0)− f∗
,

where fN (xk) is the averaged value of the objective function computed at the
current k-th iterate over 10 runs.
Finally, in all the numerical experiments, the methods are stopped when the
total number of the objective function gradient evaluations exceeds N ·maxit
where maxit is the number of considered epochs. This stopping criterion is
motivated by the choice to fix the computational complexity (i.e., the available
budget of the computational resources), although in view of the stochasticity of
the methods, the number of the iterations at any run may be different.
In all numerical experiments described below (unless otherwise indicated), 30
epochs were considered for the running of LSNM-BB Algorithm (or other
methods), that is, we fixed a budget of computational resources equivalent to
computing 30 full gradients of the objective function. In addition, we remark
that, for both the considered objective functions, the evaluation of each term at
the current iterate xk provides also the value of the related gradient at xk with
negligible additional computational costs.

5.1 Performance evaluation of LSNM-BB with respect to

the rule for m(Nj)

In order to evaluate the performance of LSNM-BB Algorithm we consider the
ABBmin rule for the updating of µk within each j-th cycle. This choice is mo-
tivated by a numerical comparison between different BB rules, confirming that
ABBmin rule enables to obtain the best performance, as it is well known in the
literature [6]. The other hyperparameters involved in LSNM-BB Algorithm
do not influence significantly the effectiveness of the method, as the numerical
experimentation reported in the Section 5.2 will highlight; thus, in all numer-
ical tests performed, we use the same setting, i.e., Cmax = 1, cmin = 10−4,
¸ = 10−4, ´ = 10−2, ·k = 0.99k, k = 0, 1, . . . , the size of the initial mini-batch
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N0 = 5, µmin = 10−8, µmax = 108; furthermore, the increasing rule for the
mini-batch size Nk at step 22 (when the trial update xk is refused) is set as
Nk+1 ← min(Nk + 1, N).
The first experiment is aimed to evaluate the behaviour of LSNM-BB Algo-
rithm with respect to the maximum numberm(Nj) of the steps of the inner cycle
(steps 8-33 ). We observe that the strategy of using cycles of iterations, where
a cycle is related to the same mini-batch Nk, is not required by the theoretical
convergence analysis of the method. Indeed this is a feature of the practical
implementation of the method, aimed at exploiting the well-known effectiveness
of the BB-like rules. Motivated by this approach, we evaluate the behaviour of
different rules in the definition of m(Nj):

Case 1) m(Nj) = 10;

Case 2) m(Nj) = +
√

Nj,;

Case 3) m(Nj) = +0.2Nj,;

Case 4) m(Nj) = max(+log(Nj),, 1).

Case 1) Case 2) Case 3) Case 4)
LR NN LR NN LR NN LR NN

RK 1.49·10−3 7.35·10−3 1.33·10−3 8.85·10−3 1.53·10−3 1.06·10−2 1.19·10−3 1.05·10−2

MNIST NK ± STD 889 ± 32.77 828± 60.44 899± 18.31 828± 28.85 893± 14.79 760± 50.95 887± 21.62 822± 35.19
EK ± STD 39 %± 1.11 % 29 %± 1.39 % 39 %± 0.58 % 28 %± 0.66 % 39 %± 0.59 % 28 %± 1.18 % 40 %± 0.87 % 28 %± 0.82 %

RK 8.00·10−4 1.60·10−3 1.08·10−3 1.69·10−3 8.69·10−4 1.45·10−3 1.19·10−3 1.33·10−3

w8a NK ± STD 940± 26.70 934± 30.88 955± 21.35 923± 54.11 942± 23.99 923± 49.72 932± 31.29 925± 30.25
EK ± STD 39 %± 0.92 % 38 %± 0.81 % 38 %± 0.61 % 37 %± 1.46 % 38 %± 0.72 % 35 %± 1.44 % 40 %± 0.89 % 38 %± 0.85 %

RK 4.46·10−3 3.32·10−3 4.83·10−3 3.19·10−3 3.51·10−3 3.94·10−3 5.86·10−3 3.59·10−3

IJCNN NK ± STD 976± 33.57 962± 43.94 967± 39.42 959± 20.53 972± 27.12 975± 35.87 955± 30.24 971± 28.67
EK ± STD 40 %± 1.08 % 36 %± 1.17 % 40 %± 1.21 % 37 %± 0.49 % 40 %± 0.94 % 36 %± 0.93 % 40 %± 1.17 % 37 %± 0.93 %

RK 5.86·10−3 4.04·10−3 6.23·10−3 2.99·10−3 4.88·10−3 3.36·10−3 4.08·10−3 1.98·10−3

RCV1 NK ± STD 590± 21.32 572± 31.82 597± 15.92 607± 19.29 583± 26.82 609± 19.18 597± 20.48 611± 13.98
EK ± STD 33 %± 0.93 % 32 %± 1.14 % 32 %± 0.68 % 32 %± 0.84 % 31 %± 0.96 % 31 %± 0.72 % 32 %± 0.93 % 32 %± 0.54 %

Table 2: LSNM-BB Algorithm: comparison of different rules for the definitions of
m(Nj); LR and NN denote the cases of convex and non-convex loss terms in
the objective function respectively.

Table 2 summarizes the results obtained by applying LSNM-BB Algorithm
to both the two objective functions for all the datasets; in particular, for any
combination of dataset-objective function-choice of m(Nj), we report:

• the value RK of the objective function decreasing rate at the final iteration
K;

• the averaged mini-batch size at the final iteration K with the related
standard deviation;

• the averaged percentage EK of the early exits in the inner cycles, i.e., the
ratio between the number of times when the m(Nj) iterations of the inner
cycle fail to complete (and an early exit occurs) and the total number of
iterations K; the standard deviation is reported.

Table 2 highlights that the values of RK are very similar in all cases (around
10−3). Also the percentage of the early exits is contained within 40%. The
final mini-batch size is limited with almost the same values for all rules. Conse-
quently, the method appears very robust with respect to the choice of the rule
for m(Nj).
This analysis can be further explored by examining the results obtained for the
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Figure 1: Results obtained by LSNM-BB Algorithm for the dataset MNIST and
objective function with LR loss terms - On the left, behaviour of the averaged
optimality gap with respect to the epochs in the case of the four rules for
m(Nj); on the right, corresponding behaviour of the averaged mini-batch
size with respect to the iterations.

Figure 2: Results obtained by LSNM-BB Algorithm for the dataset MNIST and
objective function with LR loss terms - Depictions of the running of the
inner cycle for the four rules of m(Nj) over the first 2 epochs: top-left
plot m(Nj) = 10, top-right plot m(Nj) =

√

Nj ; bottom-left plot m(Nj) =
0.2 Nj , bottom-right m(Nj) = max(log (Nj), 1). The red dot in a position
different from (j,m(Nj)) means that the SD condition is not satisfied by the
trial iterate and the inner cycle early exits.

MNIST database in more detail. Figures 1 and 2 concern the numerical be-
haviour of LSNM-BB when the objective function includes LR loss terms for
the four different choices of m(Nj). In particular, Figure 1 shows the averaged
optimality gap with respect to the epochs (on the left) and the averaged increase
of the mini-batch size with respect to the iterations (on the right); Figure 2 de-
picts the running of the inner cycle for the four rules of m(Nj) over the first 2
epochs: in each plot, for any j-th inner cycle (depicted on the horizontal axis),
the corresponding expected number of iterations m(Nj) is drawn on the vertical
axis, together with the information (marked with the red dot) about the itera-
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tion at which the cycle stops. If the red dot is at the point (j,m(Nj)), the whole
cycle is executed, while, on the contrary, an early exit occurs, highlighting that
the SD condition (3) is not satisfied by the current trial iterate.
From Figures 1 and 2 no significant difference depending on m(Nj) can be
observed in the effectiveness of LSNM-BB Algorithm, both regarding the op-
timality gap and the increase in the mini-batch size. In Figure 2, we can detect
that, in the first two epochs, the rules that determine a rapid increase of m(Nj),
as

√

Nj or 0.2 Nj , determine the early exit of the inner cycle almost always from
a certain iteration; this does not happen for m(Nj) = 10 or max(log(Nj), 1). So
we deduce that the rule for the inner cycle shouldn’t increase too much.
A similar analysis was repeated for the binary classification of the dataset

Figure 3: Results obtained by LSNM-BB Algorithm for the dataset MNIST and ob-
jective function with NN loss terms - On the left, behaviour of the averaged
optimality gap with respect to the epochs in the case of the four rules for
m(Nj); on the right, corresponding behaviour of the averaged mini-batch
size with respect to the iterations.

MNIST by minimizing the non-convex objective function with NN loss terms
by LSNM-BB Algorithm. Figures 3-4 show the obtained results, very sim-
ilar to those of the previous test problem. In conclusion, the effectiveness of
LSNM-BB Algorithm appears not too dependent on the prefixed number of
iterations of the inner cycle, since this number remains small. In the following
numerical experiments, we decided to use the rule m(Nj) = max(log(Nj), 1),
since with this choice the increase in the number of internal iterations is slow.

5.2 About the stability of LSNM-BB Algorithm with re-

spect to the initial setting

In this subsection, we describe the behaviour of the LSNM-BB Algorithm
with respect to the initial setting of the hyperparameters involved in the SD
condition (3), i.e. cmin, Cmax and ·k. The behaviour of the values of ¸ and
´ related to the standard line-search (4) has been deeply investigated in the
deterministic framework; so that we choose standard values, as ¸ = 10−4 and
´ = 10−2. Furthermore, the starting mini-batch size is set as a small value
N0 = 5, to prevent considering the entire dataset too prematurely; the bounds
for the learning rate µmin and µmax are chosen within a very wide range of
variability to evaluate the effectiveness of the BB-like rules.
In the following experiment, we consider six different configurations for the
hyperparameters cmin, Cmax and ·k, k ∈ N :

1. cmin = 10−4, Cmax = 1, ·k = 0.99k;
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Figure 4: Results obtained by LSNM-BB Algorithm for the dataset MNIST and
objective function with NN loss terms - Depictions of the running of the
inner cycle for the four rules of m(Nj) over the first 2 epochs: top-left
plot m(Nj) = 10, top-right plot m(Nj) =

√

Nj ; bottom-left plot m(Nj) =
0.2 Nj , bottom-right m(Nj) = max(log (Nj), 1). The red dot in a position
different from (j,m(Nj)) means that the SD condition is not satisfied by the
trial iterate and the inner cycle early exits.

2. cmin = 10−4, Cmax = 10, ·k = 0.99k;

3. cmin = 10−4, Cmax = 0.1, ·k = 0.99k;

4. cmin = 10−4, Cmax = 1, ·k = 0.1k;

5. cmin = 10−2, Cmax = 1, ·k = 0.99k;

6. cmin = 10−1, Cmax = 10, ·k = 0.99k.

In Table 3 we report the results obtained by running LSNM-BB Algorithm
equipped with the six initial settings in the case of the objective functions with
convex and non-convex terms for the four datasets. In particular, for any com-
bination of dataset-objective function-initial setting, we report at the end of 30
epochs the following performance measures:

• the decreasing rate RK of the considered objective function and the av-
eraged mini-batch size at the final iteration K with the related standard
deviation;

• the averaged percentage EK of the early exits with the related standard
deviation.

From the Table 3 we can observe that different starting settings do not
qualitatively influence the results; indeed, in every configurations, RK takes
a value with the same order of magnitude for each test problem; the same
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MNIST w8a IJCNN RCV1
LR NN LR NN LR NN LR NN

RK 1.20·10−3 1.04·10−2 8.47·10−4 1.33·10−3 5.86·10−3 3.59·10−3 4.09·10−3 1.98·10−3

Setting 1 NK ± STD 887 ± 21.63 822± 35.19 932± 31.29 932± 30.25 955± 30.24 968± 28.67 597± 20.48 612± 13.98
EK ± STD 40 %± 0.87 % 28 %± 0.82 % 38 %± 0.89 % 38 %± 0.84 % 40 %± 1.17 % 37 %± 0.93 % 32 %± 0.93 % 32 %± 0.54 %

RK 1.34·10−3 1.16·10−2 8.41·10−4 1.34·10−3 4.73·10−3 3.30·10−3 3.96·10−3 2.19·10−3

Setting 2 NK ± STD 902± 14.71 789± 43.81 931± 26.66 958± 24.10 973± 22.83 975± 32.98 593± 12.58 610± 13.89
EK ± STD 36 %± 0.47 % 26 %± 0.94 % 34 %± 0.66 % 35 %± 0.69 % 36 %± 0.63 % 34 %± 0.84 % 29 %± 0.45 % 29 %± 0.55 %

RK 1.49·10−3 9.84·10−3 8.27·10−4 1.80·10−3 4.52·10−3 3.51·10−3 5.61·10−3 2.81·10−3

Setting 3 NK± STD 878± 28.48 784± 38.72 907± 35.54 971± 16.67 943± 30.54 955± 35.08 583± 25.42 590± 16.00
EK± STD 43 %± 1.23 % 31 %± 1.06 % 41 %± 1.33 % 42 %± 0.52 % 44 %± 1.18 % 42 %± 1.36 % 36 %± 1.32 % 36 %± 0.79 %

RK 1.64·10−3 1.30·10−2 9.90·10−4 1.70·10−3 4.88·10−3 2.94·10−3 6.45·10−3 3.87·10−3

Setting 4 NK ± STD 900± 23.13 862± 26.65 960± 20.67 994± 22.28 966± 35.82 990± 19.43 587± 25.79 596± 16.70
EK ± STD 48 %± 1.09 % 45 %± 1.39 % 56 %± 1.27 % 63 %± 1.29 % 51 %± 1.69 % 53 %± 1.02 % 42 %± 1.37 % 40 %± 0.95 %

RK 1.93·10−3 1.34·10−2 8.04·10−4 1.52·10−3 4.33·10−3 3.46·10−3 3.82·10−3 1.85·10−3

Setting 5 NK ± STD 985± 20.71 844± 47.43 928± 23.41 961± 28.19 975± 21.37 970± 31.30 615± 26.40 619± 19.80
EK ± STD 54 %± 0.95 % 33 %± 1.12 % 38 %± 0.75 % 39 %± 0.77 % 40 %± 0.74 % 38 %± 0.98 % 35 %± 1.22 % 34 %± 0.80 %

RK 2.84·10−3 1.11·10−2 7.41·10−4 1.47·10−3 5.36·10−3 2.65·10−3 1.21·10−3 1.04·10−3

Setting 6 NK ± STD 1026± 23.93 905± 35.27 958± 25.04 978± 22.34 990± 25.54 989± 20.27 690± 10.99 689± 10.38
EK ± STD 59 %± 0.99 % 36 %± 0.86 % 37 %± 0.67 % 38 %± 0.57 % 40 %± 0.76 % 37 %± 0.54 % 41 %± 0.37 % 38 %± 0.39 %

Table 3: LSNM-BB Algorithm: numerical results of the comparison with respect to
six different settings of the hyperparameters Cmin, Cmax and ·k; LR and NN
denote the cases of convex and non-convex terms in the objective function,
respectively.

Figure 5: Results obtained by LSNM-BB Algorithm for the dataset IJCNN and the
objective function with LR loss terms - On the left, behaviour of the averaged
optimality gap computed at the training set with respect to the epochs for
the six starting settings of cmin, Cmax and ·k. On the right, increase of
the averaged mini-batch size with respect to the iterations for LSNM-BB

Algorithm equipped with the six starting settings of cmin, Cmax and ·k.

Figure 6: Results obtained by LSNM-BB Algorithm for the dataset IJCNN and
the objective function with NN loss terms - On the left, behaviour of the
averaged optimality gap computed at the training set with respect to the
epochs for the six starting settings of cmin, Cmax and ·k. On the right,
increase of the averaged mini-batch size with respect to the iterations for
LSNM-BB Algorithm equipped with the six starting settings of cmin, Cmax

and ·k.
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consideration can be repeated also for the final mini-batch size and EK , whose
values are in very narrow ranges for each column of the table.

To highlight the results of Table 3, Figures 5 and 6 show the behaviour of
the averaged optimality gap (on the left) and the increase of the mini-batch
size (on the right), obtained by running LSNM-BB Algorithm with the six
different starting settings for the dataset IJCNN with objective function with
LR and NN terms, respectively. We can observe that the behaviour of the
averaged optimality gap appears to be unaffected by the values chosen for cmin,
Cmax and ·k. Similarly, the values of the final mini-batch size are really similar,
although the number of iterations varies independently of a more or less severe
SD condition.
However, for a fixed computational budget, the results obtained by LSNM-BB
Algorithm appear not to depend significantly on the values chosen for cmin,
Cmax and ·k. For the next subsections we use LSNM-BB Algorithm with the
first configuration.

5.3 Comparison of LSNM-BB Algorithm with several state

of the art methods

The next experiment is aimed to compare LSNM-BB Algorithm with an ef-
fective version of the standard deterministic descent method and several state
of the art methods in the stochastic framework. The methods taken into con-
sideration to carry out a comparison are listed below with the implementation
details:

• standard full gradient descent methodGD-BB equipped with the ABBmin

rule and the Armijo non-monotone line-search [6, 7]; using the notation
in [6, 7], we set Ä = 0.9, the memory size for the BB2 definition is 2; the
step length obtained by the ABBmin rule is thresholded within the range
[10−8, 108];

• SGD method with the best tuned value of ³0 as starting learning rate
and constant mini-batch size equal to 50; the value of ³0 is determined
by a very expensive trial and error procedure; in order to guarantee the
convergence, the value of the learning rate is decreased by a rule with
behaviour as O(1/k) [8], i.e., ³k = ³0

max(k/1200,nepoch) ; where nepoch is the

counter for the epochs;

• SARAH method with the setting of the hyperparameters as specified in
[24];

• SGD method with momentum (SGD-MOM), where the stochastic gra-
dient is computed at the iteration k as

gk = (1− ´)∇fNk
(xk) + ´gk−1,

with g0 = ∇fN0
(x0) and Nk a random sub-sample of fixed size; we set

´ = 0.7, 50 as mini-batch size and the best tuned value as fixed learning
rate [1];

• Adaptive Sampling Method (ASM) [25], based on the increase in the
mini-batch size depending on a test (Augmented Inner Test) which checks
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whether the current stochastic gradient is a descent direction in expecta-
tion; at any iteration, the learning rate is computed by means a line-search
procedure; the initial mini-batch size is set as N0 = 3 whereas the initial
learning rate is ³0 = 1; using the same notation in [25], the setting of the
other hyperparameters is ¹ = 0.9, ¿ = 5.84, r = 5, µ = 0.38, ¸ = 2 and
·k = · = 2.

Figure 7: Dataset IJCNN and objective function with LR loss terms - First row: on the
left, behaviour of the averaged optimality gap (combined with the relative
standard deviation) computed at the training set with respect to the epochs;
on the right, averaged accuracy evaluated at the testing set with respect
to the epochs. Second row: increase of the averaged mini-batch size with
respect to the iterations for LSNM-BB method (on the left) and for ASM

method (on the right).

Dataset MNIST w8a IJCNN RCV1
Method RK Acc OG± RK Acc OG± RK Acc OG± RK Acc OG±

STD STD STD STD
LSNM-BB 6.65·10−4 0.8924 0.0153± 1.17·10−3 0.9007 0.0064 ± 4.72·10−3 0.9138 0.0041 ± 1.06·10−2 0.9433 0.0340±

0.0079 0.0027 0.0013 0.0074
GD-BB 6.81·10−3 0.8502 0.1565 3.37·10−1 0.8926 1.8536 2.55·10−1 0.9050 0.2204 2.92·10−12 0.9541 0.93 ·10−11

SGD 2.33·10−3 0.8806 0.0536± 5.99·10−3 0.8890 0.0330 ± 7.92·10−2 0.9050 0.0684 ± 8.58·10−1 0.5013 2.7464±
0.0003 0.0002 0.0002 0.0012

SARAH 9.58·10−4 0.8928 0.0220± 2.62·10−3 0.8935 0.0144 ± 2.42·10−2 0.9053 0.0209 ± 6.43·10−1 0.5227 2.0597±
0.0010 0.0005 0.0001 0.0000

SGD-MOM 3.38·10−4 0.8975 0.0078± 9.00·10−4 0.8990 0.0050 ± 3.68·10−3 0.9124 0.0032 ± 4.46·10−1 0.7227 1.4278 ±
0.0003 0.0001 0.0000 0.0003

ASM 1.65·10−3 0.8820 0.0382± 6.18·10−4 0.8984 0.0035± 2.77·10−2 0.9202 0.0232 ± 2.69·10−2 0.9464 0.0878±
0.0016 0.0015 0.0006 0.0051

Table 4: Comparison between different methods for objective function with LR loss
terms; at the final iteration K, the following performance measures are re-
ported: RK computed at the training set, the averaged accuracy Acc com-
puted at the testing set and the averaged optimality gap at the training set
± the relative standard deviation (OG± STD).

In Figures 7 and 8 we can observe the behaviour in 30 epochs for all considered
methods for the dataset IJCNN and the objective functions with LR and NN
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Figure 8: Dataset IJCNN and objective function with NN loss terms - First row:
on the left, behaviour of the averaged optimality gap (combined with the
relative standard deviation) computed at the training set with respect to
the epochs; on the right, averaged accuracy evaluated at the testing set with
respect to the epochs. Second row: increase of the averaged mini-batch size
with respect to the iterations for LSNM-BB method (on the left) and for
ASM method (on the right).

Dataset MNIST w8a IJCNN RCV1

Method R
K

Acc OG± R
K

Acc OG± R
K

Acc OG± R
K

Acc OG±

STD STD STD STD

LSNM-BB 8.83·10−3 0.8949 0.0040± 1.31·10−3 0.8992 0.0010 ± 2.96·10−3 0.9117 0.0011 ± 4.75·10−3 0.9458 0.0090±

0.0025 0.0000 0.0005 0.0033

GD-BB 8.88·10−1 0.0086 0.1565 3.37·10−3 0.8926 0.0009 8.47·10−2 0.9050 0.0030 7.84·10−15 0.9519 1.49 ·10−14

SGD 9.95·10−1 0.4926 0.4521± 5.99·10−3 0.8890 0.0330 ± 5.89·10−2 0.9050 0.0210 ± 9.72·10−1 0.5013 1.8514±

0.0000 0.0002 0.0000 0.0000

SARAH 9.85·10−1 0.4926 0.4478± 2.62·10−3 0.8935 0.0144 ± 3.82·10−2 0.9050 0.0136 ± 9.17·10−1 0.5013 1.7468±

0.0000 0.0000 0.0000 0.0000

SGD-MOM 9.70·10−1 0.4926 0.4409± 5.42·10−3 0.8969 0.8942 ± 1.02·10−2 0.9059 0.0037 ± 8.03·10−1 0.5013 1.5293 ±

0.0000 0.0000 0.0000 0.0000

ASM 6.20·10−3 0.8906 0.0028± 1.21·10−3 0.8962 0.0009± 1.46·10−2 0.9179 0.0050 ± 1.82·10−2 0.9411 0.0349±

0.0003 0.0005 0.0001 0.0016

Table 5: Comparison between different methods for objective function with NN loss
terms; at the final iteration K, the following performance measures are re-
ported: RK computed at the training set, the averaged accuracy Acc com-
puted at the testing set and the averaged optimality gap at the training set
± the relative standard deviation (OG± STD).

loss terms respectively. In particular, we observe that, in Figure 7, the smallest
value of the averaged optimality gap (computed at the training set) after 30
epochs is obtained by SGD-MOM method. This value is very similar to the
one provided by LSNM-BB; the meaningful difference is that, for SGD and
SDG-MOM methods, a best tuned set of hyperparameters was used, obtained
with expensive trial and error procedures, while the behaviour of LSNM-BB
Algorithm is not significantly dependent on its hyperparameters. We point
out that 2-3 epochs are enough for the optimality gap to reach a value fairly
close to the final value. With regard to the final value of the mini-batch size, we
highlight that the LSNM-BB Algorithm provides an increase of the mini-batch
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size which is not very relevant and lower than that required in ASM. About
the accuracy (computed at the testing set), all the method are around the 90%.
Figure 8, related to the objective function with non-convex loss terms, highlights
that the more efficient method in term of optimality gap at the end of 30 epochs
is LSNM-BB Algorithm. Also in this case the increase of the mini-batch size
is limited and lower than that required by ASM. The accuracy is very similar
for all the considered methods. Both Figures 7-8 shown that the optimality gap
provided by LSNM-BB Algorithm, however, has a standard deviation that
increases as the iterations increase; the method appears very efficient in the
first 2-3 epochs. Tables 4-5 summarize the results obtained at the end of 30
epochs for all the test problems. These results confirm the previous remarks,
highlighting that LSNM-BB Algorithm can be very competitive, despite the
increase of the mini-batch size. The only exception is the case of the GD-BB
method for the RCV1 dataset; in the 30 iterations carried out, the backtracking
procedure is never triggered and the ABBmin rule determines long steps which
in the first approximately 20 iterations maintain the optimality gap comparable
with the one of the other methods, while, in the last 10 iterations, this rule
allows to reach a very low value of the optimality gap.
Now, in order to deepen the comparison of LSNM-BB Algorithm with the
state of the art methods, we consider a similar method, as SLiSeS method in
[11]; this method exhibits a particularly efficient numerical behavior in the early
iterations. In the numerical experiment where the behaviour of SLiSeS method
is compared with the one of LSNM-BB Algorithm over the first epoch, we used
the Matlab code provided by the authors where SLiSeS method is equipped
with the same setting specified in [11]; in particular, the stochastic gradient is
related to a single term of the objective function, randomly drawn from the
training set, and any inner cycle consists of 3 iterations. As in the numerical
experiments in [11], we execute a single representative run of SLiSeS method
and LSNM-BB Algorithm; to monitor the behaviour of both methods, the
optimality gap evaluation at the end of any outer iteration is carried out.

Figure 9: Dataset w8a and objective function with LR loss terms - Behaviour of the
optimality gap computed at the training set with respect to the function
evaluations in the first epoch for LSNM-BB on the left and for SLiSeS on
the right. A logarithmic scale is used for both axes.

Table 6 shows the metrics for the two methods at the end of the first epoch; we
observe that LSNM-BB Algorithm appears very efficient in term of optimality
gap and accuracy for all test problems. Figures 9 and 10 show the comparison
between the results obtained by the two methods for the w8a dataset and the
objective function with convex and non-convex terms, respectively. We observe
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LSNM-BB SLiSeS

LR NN LR NN

R
K

2.11·10−3 4.00·10−2 * 6.67·10−1

MNIST Acc 0.8791 0.8763 * 0.4927

OG 0.0484 0.0182 * 0.3030

R
K

3.56·10−3 4.01·10−3 4.39·10−2 1.46·10−1

w8a Acc 0.8935 0.8975 0.7741 0.7262

OG 0.0196 0.0031 0.2419 0.1124

R
K

1.40·10−2 9.57·10−3 2.59·10−1 1.96·10−1

IJCNN Acc 0.9099 0.9053 0.9037 0.9050

OG 0.0121 0.0034 0.2242 0.0697

R
K

2.03·10−2 1.56·10−2 7.13·10−1 4.80·10−1

RCV1 Acc 0.9329 0.9284 0.5070 0.5013

OG 0.0651 0.0297 2.2815 0.9142

Table 6: Comparison between LSNM-BB Algorithm and SLiSeS method for the
two considered objective functions (with LR and NN loss terms); at the
final iteration K of the first epoch, the following performance measures are
reported: RK computed at the training set, the accuracy Acc computed at
the testing set and the optimality gap at the training set. The symbol *
denotes a failure of the method.

Figure 10: Dataset w8a and objective function with NN loss terms - Behaviour of the
optimality gap computed at the training set with respect to the function
evaluations in the first epoch for LSNM-BB on the left and for SLiSeS

on the right. A logarithmic scale is used for both axes.

that, in the case of SLiSeS method, the optimality gap exhibits an almost
linear decrease until the end of the epoch, while, in the case of LSNM-BB, a
very rapid decrease occurs only at the end of the first epoch. The same results
can be observed for the RCV1 dataset and the objective function with convex
and non-convex terms in Figures 12 -11 respectively. In summary, in the initial
epochs the behavior of LSNM-BB Algorithm and SLiSeS method appears
very similar: LSNM-BB Algorithm seems to determine a stepwise descent of
the objective function while in the case of SLiSeS method the decrease seems
more regular. However, at the end of the first epoch LSNM-BB Algorithm
appears to perform better than SLiSeSmethod for all test problems considered.
Finally, the last experiment is aimed to compare LSNM-BB Algorithm and
GD-BB along 500 epochs. We remark that LSNM-BB can fall back to GD-
BB method when the mini-batch is the whole dataset. In order to speed up this
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Figure 11: Dataset RCV1 and objective function with LR loss terms - Behaviour of
the optimality gap computed at the training set with respect to the function
evaluations in the first epoch for LSNM-BB on the left and for SLiSeS

on the right. A logarithmic scale is used for both axes.

Figure 12: Dataset RCV1 and objective function with NN loss terms - Behaviour of
the optimality gap computed at the training set with respect to the function
evaluations in the first epoch for LSNM-BB on the left and for SLiSeS

on the right. A logarithmic scale is used for both axes.

process, at the step 22 of LSNM-BB Algorithm we set the rule of the increase
of mini-batch size as Nk+1 = min(Nk + 250, N).

Figure 13: Dataset w8a and objective function with LR loss terms - On the left, be-
haviour of the objective function for LSNM-BB and GD-BB methods
along 500 epochs; on the right a zoom along 400− 500 epochs is shown; at
the epoch 426, LSNM-BB uses the whole dataset and the two methods
exhibit the same behaviour.

Figures 13-14 show the behaviour of the objective function with LR and NN loss
terms respectively for LSNM-BB and GD-BB methods along 500 epochs: we
observe that after 426 epochs for the convex objective function and 312 epochs
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Figure 14: Dataset w8a and objective function with NN loss terms - On the left,
behaviour of the objective function for LSNM-BB and GD-BB methods
along 500 epochs; on the right a zoom along 300− 400 epochs is shown; at
the epoch 312, LSNM-BB uses the whole dataset and the two methods
exhibit the same behaviour.

for the non-convex one, LSNM-BB Algorithm falls into the method GD-BB,
by using the whole training set in both the cases.
These results allow us to give a double interpretation of the performance of the
proposed LSNM-BB Algorithm:

• for small-medium datasets with moderate memory demanding, the method
can be used as a low-cost technique for finding a suitable starting point of
any deterministic method;

• for very big datasets, the LSNM-BB Algorithm appears competitive with
state of the art stochastic methods in terms of limited memory require-
ments and low computational costs; in addition, it does not require any
hyperparameter tuning phase and appears robust with respect to the pre-
defined rules that enable to control the maximum memory request in con-
nection with the available computing resources.

5.4 A further numerical test simulating the infinite sum

problem

In order to evaluate the behaviour of LSNM-BB-G Algorithm, we simulate the
infinite sum problem (2). We consider the dataset CIFAR10, dowloadable from ,
where d−1 = 3072, the size of the training set is 50000 and the one of the testing
set is 10000. We adapt CIFAR10 for the binary case, where the two classes are
the even and odd class positions. To mimic the behaviour of an incremental
database, we follow the approach used in [20, 21, 22]. We subdivide the training
and the testing sets in 30 blocks of 1666 and 333 elements respectively. Then,
at the start of the code run, at 0 seconds, LSNM-BB-G Algorithm is executed
by considering the first blocks of training and testing sets; every two seconds
new blocks of the training and the testing sets are added to the previous ones,
enlarging the two sets. So, at 0 seconds we have 1666 elements for the training
and 333 elements for the testing, at 2 second we have 3332 elements for the
training and 666 elements for the testing and so on. As error measure [22], we
consider the quantity named error rate, given by 1−Acc, where the accuracy is
computed for the training and the testing sets before adding the new blocks at
the end of two seconds. Every two seconds, the time count is stopped to evaluate
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the metrics (error rate and objective function) and to increase the training and
testing sets; then, it is restarted for the next two seconds. In LSNM-BB-G
Algorithm, the rule for the increase of Nk and Dk is respectively Nk+1 = Nk+1
and Dk+1 = Dk + 1 where N0 = 5 and D0 = 1.
In the following we describe the numerical results obtained by running LSNM-
BB-G Algorithm on the described incremental training set. As in the previous
experiments, we execute 10 runs of the code, changing the seed of the random
number generator, and we report the averaged values of the measured quantities.
In particular, the plots of the following averaged quantities are shown:

• objective function computed at the training set every two seconds before
adding the new blocks;

• mini-batch size Nk with respect to the iterations;

• mini-batch size Dk with respect to the iterations;

• error rate for the training and the testing sets every two seconds before
adding the new blocks.

Figure 15: Behavior of LSNM-BB-G Algorithm. First row: on the left panel, objec-
tive function evaluated for the training set every two seconds; on the right
panel, the increase of the mini-batch sizes Nk and Dk. Second row: on the
left panels, error rate computed at the training set every two seconds; on
the right panel, error rate computed at the testing set every two seconds.

In Figure (15) we observe that the objective function measured every 2 seconds
on an increasing training set shows a decreasing trend. About the error rates
measured on the testing and the training sets, we remark that they have a de-
creasing behaviour, very similar, achieving around the 40%. The increase of the
mini-batch sizes Nk and Dk are very similar and limited under the value 1000.
A difference with respect to LSNM-BB Algorithm is the increase of the size
Dk; indeed, in LSNM-BB Algorithm, Dk is fixed to 1.
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We remark that in the case of an incremental database the proposed algorithm
appears stable; after the first learning phase based on the initial dataset, the
procedure maintains or improves the accuracy, even after the successive incre-
ments of the database. These results are confirmed even if the increase of the
training and the testing sets occurs with time intervals other than 2 seconds.

6 Conclusions

We developed a new method tailored for the numerical minimization of both
finite sum (2) and objective functions in the form of mathematical expectation
(1). This stochastic first-order method is based on a strategy to exploit the
effectiveness of the well-known BB-like rules for the updating of the step length
in the framework of the standard gradient descent methods; the idea is to group
into cycles the iterations that consider the same mini-batch or SAA estimator
of the objective function and to include in the current iteration an additional
SD condition evaluated on a different mini-batch or SAA estimator; when this
condition is not met, the trial iterate is rejected and the size of the new mini-
batch or SAA estimator is increased; on the other hand, when all the iterations
foreseen in a cycle are executed, a new mini-batch or SAA estimator with the
same cardinality of the previous is chosen.
The details of the method are described in LSNM-BB and LSNM-BB-G Al-
gorithms. Convergence results are discussed for the finite and infinite version
for general and strongly convex objective function. Numerical experimenta-
tion for the binary classification of datasets well-known in the literature show
very promising performance of the method, without the need to provide special
values for the hyperparameters on which the method depends. Further future
investigations can be planned to evaluate how to adapt the method to training
neural networks and to handle incremental databases. Future experiments will
allow evaluating the behaviour of the algorithm even when the oldest blocks are
eliminated to limit memory requests.
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