
TRFD: A derivative-free trust-region method based on

finite differences for composite nonsmooth optimization
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Abstract

In this work we present TRFD, a derivative-free trust-region method based on finite differences
for minimizing composite functions of the form f(x) = h(F (x)), where F is a black-box function
assumed to have a Lipschitz continuous Jacobian, and h is a known convex Lipschitz function,
possibly nonsmooth. The method approximates the Jacobian of F via forward finite differences.
We establish an upper bound for the number of evaluations of F that TRFD requires to find an
ϵ-approximate stationary point. For L1 and Minimax problems, we show that our complexity
bound reduces to O(nϵ−2) for specific instances of TRFD, where n is the number of variables
of the problem. Assuming that h is monotone and that the components of F are convex, we
also establish a worst-case complexity bound, which reduces to O(nϵ−1) for Minimax problems.
Numerical results are provided to illustrate the relative efficiency of TRFD in comparison with
existing derivative-free solvers for composite nonsmooth optimization.

1 Introduction

1.1 Problem and Contributions

We are interested in composite optimization problems of the form

Minimize f(x) ≡ h(F (x)) subject to x ∈ Ω, (1)

where F : Rn → Rm is assumed to be continuously differentiable with Lipschitz continuous Jacobian,
h : Rm → R is a Lipschitz convex function (possibly nonsmooth), and Ω ⊂ Rn is a nonempty closed
convex set. Specifically, we assume that F ( · ) is only accessible through an exact zeroth-order oracle,
meaning that the analytical form of F ( · ) is unknown, and that for any x, all we can compute is the
exact function value F (x). This situation occurs when F (x) is obtained as the output of a black-box
software or as the result of some simulation. Examples include aerodynamic shape optimization [12],
optimization of cardiovascular geometries [17, 19] or tuning of algorithmic parameters [2], just to
mention a few. Standard first-order methods for solving composite optimization problems (see, e.g.,
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[7, 20, 3]) require the computation of the Jacobian matrices of F ( · ) at the iterates, which are not
readily available when F ( · ) is accessible via a zeroth-order oracle. Therefore, in this setting one
needs to rely on derivative-free methods [5, 1, 14].

One of the main classes of derivative-free methods is the class of model-based trust-region methods
(see, e.g., [4]). At each iteration, this type of method builds linear or quadratic interpolation models
for the components of F ( · ), considering carefully chosen points around the current iterate. Then,
the corresponding model of the objective f( · ) is approximately minimized subject to a trust-region
constraint. If the resulting trial point provides a sufficient decrease in the objective function, the
point is accepted as the next iterate and the radius of the trust-region may increase. Otherwise, the
trial point is rejected, and the process is repeated with a reduced trust-region radius. For the class
of unconstrained composite optimization problems with h being convex and Lipschitz continuous,
Grapiglia, Yuan and Yuan [11] proposed a model-based version of the trust-region method of Fletcher
[7]. They proved that their derivative-free method takes at most O

(
n2| log(ϵ−1)|ϵ−2

)
evaluations

of F ( · ) to find an ϵ-approximate stationary point of f( · ). Considering a wider class of model-
based trust-region methods, Garmanjani, Júdice and Vicente [8] established an improved evaluation
complexity bound of O

(
n2ϵ−2

)
, also assuming that h( · ) is convex and Lipschitz continuous. For

the case in which h( · ) is not necessarily convex, Manifold Sampling trust-region methods have been
proposed by Larson and Menickelly [15, 13] under the general assumption that

h(z) ∈ {hj(z) : j ∈ {1, . . . , q}} , ∀z ∈ Rm,

where hj : Rm → R is a Lipschitz continuous differentiable function, with ∇hj( · ) also Lipschitz
continuous. In particular, the variants of Manifold Sampling recently proposed in [13] are currently
the state-of-the-art solvers for derivative-free composite optimization problems.

In recent years, improved evaluation complexity bounds have been obtained for derivative-free
methods designed to smooth unconstrained optimization1. Specifically, Grapiglia [9, 10] proved
evaluation complexity bounds of O

(
nϵ−2

)
for quadratic regularization methods with finite-difference

gradient approximations. Moreover, for convex problems, a bound of O
(
nϵ−1

)
was also established

in [10]. Motivated by these advances, in the present work we propose a derivative-free trust-region
method based on finite differences for composite problems of the form (1). At its k-th iteration, our
new method (called TRFD) approximates the Jacobian matrix of F at xk, JF (xk), with a matrix
Ak obtained via forward finite differences. The stepsize τk used in the finite differences and the
trust-region radius ∆k are jointly updated in a way that ensures an error bound

∥JF (xk)−Ak∥2 ≤ O (∆k) , ∀k.

Assuming that f( · ) is bounded below by flow, and denoting by Lh,p the Lipschitz constant of h( · )
with respect to a p-norm, and by LJ the Lipschitz constant of JF ( · ) with respect to the Euclidean
norm, we show that TRFD requires no more than

O
(
nc2,p(n)

2cp,2(m)Lh,pLJ(f(x0)− flow)ϵ
−2

)
(2)

evaluations of F ( · ) to find an ϵ-approximate stationary point of f( · ) on Ω, where c2,p(n) and cp,2(m)
are positive constants such that

∥x∥2 ≤ c2,p(n)∥x∥p, ∀x ∈ Rn, and ∥z∥p ≤ cp,2(m)∥z∥2, ∀z ∈ Rm.

1Problem (1) with Ω = Rn, m = 1 and h(z) = z.
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For L1 and Minimax problems, which are composite problems defined respectively by h(z) = ∥z∥1
and h(z) = mini=1,...,m {zi}, we show that the complexity bound (2) reduces to O

(
nϵ−2

)
for spe-

cific instances of TRFD. This represents an improvement with respect to the complexity bound of
O
(
n2ϵ−2

)
proved in [8] in the context of composite nonsmooth optimization. For the case where h( · )

is monotone and the components of F ( · ) are convex functions, we also show that TRFD requires no
more than

O
(
nc2,p(n)

2cp,2(m)Lh,pLJ∆
2
∗ϵ

−1
)

(3)

evaluations of F ( · ) to find an ϵ-approximate minimizer of f( · ) on Ω, where ∆∗ is a sufficiently large
upper bound on the trust-region radii. For Minimax problems, we show that the bound (3) reduces
to O

(
nϵ−1

)
for specific instances of TRFD. To the best of our knowledge, this is the first time that

evaluation complexity bounds with linear dependence on n are obtained for a deterministic DFO
method in the context of composite nonsmooth optimization problems of the form (1). Finally, we
present numerical results that illustrate the relative efficiency of TRFD on L1 and Minimax problems.

1.2 Contents

The paper is organized as follows. In Section 2, we prove the relevant auxiliary results. In Section
3, we analyze the evaluation complexity of the new method for nonconvex and convex problems.
Finally, in Section 4, we report numerical results for L1 and Minimax problems.

1.3 Notations

Throughout the paper, given p ∈ N∞ := {1, 2, 3, . . .} ∪ {∞}, ∥ · ∥p denotes the p-norm of vectors or
matrices (depending on the context); and ∥ · ∥F denotes the Frobenius norm. Given x ∈ Ω, y ∈ Rn

and r > 0, we consider the sets

Ω− {x} := {s ∈ Rn : x+ s ∈ Ω} and Bp[y; r] = {s ∈ Rn : ∥s− y∥p ≤ r} .

In addition, [A]j denotes the j-th column of the matrix A ∈ Rm×n, while [Ad]i denotes the i-th
coordinate of the vector Ad ∈ Rm.

2 Assumptions and Auxiliary results

Through the paper, we will consider the following assumptions:

A1. Ω ⊂ Rn is a nonempty closed convex set.
A2. F : Rn → Rm is differentiable and its Jacobian JF is LJ -Lipschitz on Rn with respect to the
Euclidean norm, that is,

∥JF (x)− JF (y)∥2 ≤ LJ∥x− y∥2, ∀x, y ∈ Rn.

A3. h : Rm → R is convex and Lh,p-Lipschitz continuous on Rm with respect to the p-norm, that is,

|h(z)− h(w)| ≤ Lh,p∥z − w∥p, ∀z, w ∈ Rm.
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Remark 2.1. By A2, given x, y ∈ Rn we have

∥F (y)− F (x)− JF (x)(y − x)∥2 ≤
LJ

2
∥y − x∥22.

Remark 2.2. Since all norms are equivalent on Euclidean spaces, given
p ∈ {1, 2, . . . ,+∞}, there exist positive constants c2,p(n), cp,2(m) ≥ 1 such that

∥x∥2 ≤ c2,p(n)∥x∥p, ∀x ∈ Rn, and ∥z∥p ≤ cp,2(m)∥z∥2, ∀z ∈ Rm. (4)

The lemma below provides a necessary condition for a solution of (1).

Lemma 2.3. Suppose that A1-A3 hold. If x∗ is a solution of (1), then

f(x∗) ≤ h(F (x∗) + JF (x
∗)s), ∀s ∈ Ω− {x∗}. (5)

Proof. Suppose by contradiction that f(x∗) > h(F (x∗) + JF (x
∗)ŝ) for some ŝ ∈ Ω − {x∗}. Then

ŝ ̸= 0 and there exists δ > 0 such that

h(F (x∗) + JF (x
∗)ŝ) < f(x∗)− δ (6)

and
δ ≤ Lh,pcp,2(m)LJ∥ŝ∥22. (7)

Given α ∈ [0, 1], let x̂(α) = x∗+αŝ. Then, using assumptions A3 and A2, and Remarks 2.1 and 2.2,
we have

f(x̂(α)) = h(F (x̂(α))) = [h(F (x∗ + αŝ))− h(F (x∗) + JF (x
∗)αŝ)]

+ h(F (x∗) + JF (x
∗)αŝ)

≤ |h(F (x∗ + αŝ))− h(F (x∗) + JF (x
∗)αŝ)|+ h(F (x∗) + JF (x

∗)αŝ)

≤ Lh,p∥F (x∗ + αŝ)− F (x∗)− JF (x
∗)αŝ∥p

+ h((1− α)F (x∗) + α(F (x∗) + JF (x
∗)ŝ))

≤ Lh,pcp,2(m)∥F (x∗ + αŝ)− F (x∗)− JF (x
∗)αŝ∥2

+ (1− α)h(F (x∗)) + αh(F (x∗) + JF (x
∗)ŝ)

≤
Lh,pcp,2(m)LJ∥ŝ∥22

2
α2 + (1− α)f(x∗) + αh(F (x∗) + JF (x

∗)ŝ).

Then, by (6), it follows that

f(x̂(α)) <
Lh,pcp,2(m)LJ∥ŝ∥22

2
α2 + (1− α)f(x∗) + α (f(x∗)− δ)

=
Lh,pcp,2(m)LJ∥ŝ∥22

2
α2 + f(x∗)− δα. (8)

Minimizing the right-hand side of the inequality above with respect to α, we obtain

α∗ =
δ

Lh,pcp,2(m)LJ∥ŝ∥22
.
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It follows from (7) that α∗ ∈ [0, 1]. Thus, by (8) we would have

f(x̂(α∗)) < f(x∗)− δ2

2Lh,pcp,2(m)LJ∥ŝ∥22
< f(x∗),

which contradicts the assumption that x∗ is a solution of (1). Therefore, we conclude that (5) is
true.

Lemma 2.3 motivates the following definition of stationarity, which in the unconstrained case corre-
sponds to the definition considered by Yuan [21].

Definition 2.4. We say that x∗ ∈ Ω is a stationary point of f on Ω when x∗ satisfies condition (5).

Given p ∈ N∞ and r > 0, let us define ψp,r : Ω → R by

ψp,r(x) =
1

r

h(F (x))− min
s∈Ω−{x}
∥s∥p≤r

h(F (x) + JF (x)s)

 . (9)

From the definition of ψp,r( · ), we have the following result.

Lemma 2.5. Suppose that A1-A3 hold and let ψp,r( · ) be defined by (9). Then,

(a) ψp,r(x) ≥ 0 ∀x ∈ Ω;
(b) ψp,r(x

∗) = 0 if, and only if, x∗ is a stationary point of f on Ω.

Proof. Given x ∈ Ω, we have

min
s∈Ω−{x}
∥s∥p≤r

h(F (x) + JF (x)s) ≤ h(F (x)).

Then, by (9), we have ψp,r(x) ≥ 0, and so (a) is true.

To prove (b), let us first assume that x∗ ∈ Ω is a stationary point of f . By Definition 2.4,

h(F (x∗)) ≤ h(F (x∗) + JF (x
∗)s) ∀s ∈ Ω− {x∗},

and so,

h(F (x∗)) ≤ min
s∈Ω−{x∗}
∥s∥p≤r

h(F (x∗) + JF (x
∗)s).

Therefore, in view of (9), we have ψp,r(x
∗) ≤ 0. Combining this fact with (a), we conclude that

ψp,r(x
∗) = 0.

Now, suppose that ψp,r(x
∗) = 0. Then, if s̃ ∈ (Ω− {x∗}) ∩Bp[0; r] , we have

h(F (x∗)) = min
s∈Ω−{x∗}
∥s∥p≤r

h(F (x∗) + JF (x
∗)s) ≤ h(F (x∗) + JF (x

∗)s̃). (10)
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On the other hand, suppose that s̃ ∈ (Ω− {x∗}) \Bp[0; r] , and define γ = r/∥s̃∥p. Notice that

γ ∈ (0, 1). Then, by (10) and A3 we have

h(F (x∗)) ≤ h(F (x∗) + JF (x
∗)γs̃) = h((1− γ)F (x∗) + γ(F (x∗) + JF (x

∗)s̃))

≤ (1− γ)h(F (x∗)) + γh(F (x∗) + JF (x
∗)s̃),

which implies that
h(F (x∗)) ≤ h(F (x∗) + JF (x

∗)s̃). (11)

As a result, combining (10) and (11), we conclude that x∗ is a stationary point of f on Ω. Therefore,
(b) is also true.

In view of Lemma 2.5, we will use ψp,r(x) as a stationarity measure for problem (1).

Remark 2.6. When Ω = Rn, m = 1 and h(z) = z ∀z ∈ R, then problem (1) reduces to the smooth
unconstrained problem minx∈Rn F (x), for which ψ2,r(x) = ∥∇F (x)∥2.

In the context of derivative-free optimization, JF (x) is unknown. Consequently, ψp,r(x) is not
computable. For a given x ∈ Ω, our new method will compute a matrix A ≈ JF (x) leading to the
following approximate stationarity measure

ηp,r(x;A) :=
1

r

h(F (x))− min
s∈Ω−{x}
∥s∥p≤r

h(F (x) +As)

 . (12)

The error |ψp,r(x)−ηp,r(x;A)| depends on how well A approximates JF (x). The next lemma provides
an error bound when A is computed by forward finite differences.

Lemma 2.7. Suppose that A2 holds. Given x ∈ Rn and τ > 0, let A ∈ Rm×n be defined by

[A]j =
F (x+ τej)− F (x)

τ
, j = 1, ..., n. (13)

Then

∥A− JF (x)∥2 ≤
LJ

√
n

2
τ. (14)

Proof. Given j ∈ {1, ..., n}, it follows from A2 that

∥F (x+ τej)− F (x)− JF (x)τej∥2 ≤
LJ

2
∥τej∥22 =

LJ

2
τ2.

Thus, by (13) we have

∥[A]j − [JF (x)]j∥2 ≤
LJ

2
τ.

Consequently,

∥A− JF (x)∥2F =
n∑

j=1

∥[A]j − [JF (x)]j∥22 ≤ n

(
LJ

2
τ

)2

.

Therefore

∥A− JF (x)∥2 ≤ ∥A− JF (x)∥F ≤ LJ
√
n

2
τ,

and so (14) is true.
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Remark 2.8. Definition (13) implies that the i-th row of the corresponding matrix A is a forward
finite-difference approximation to ∇Fi(x).

Using Lemma 2.7, we can establish an upper bound for the error |ψp,r(x) − ηp,r(x;A)| when A is
constructed by forward finite differences.

Lemma 2.9. Suppose that A1-A3 hold. Given x ∈ Ω and τ > 0, let A ∈ Rm×n be defined by (13).
Then,

|ψp,r(x)− ηp,r(x;A)| ≤
Lh,pLJcp,2(m)c2,p(n)

√
n

2
τ, ∀x ∈ Ω. (15)

Proof. By A3, it follows that s 7→ h(F (x)+ JF (x)s) defines a continuous function. Then, by A1 and
the Weierstrass Theorem, there exists s̃ ∈ (Ω− {x}) ∩Bp[0; r] such that

min
s∈Ω−{x}
∥s∥p≤r

h(F (x) + JF (x)s) = h(F (x) + JF (x)s̃).

Then, by A3 and (14),

ψp,r(x)− ηp,r(x;A) =
1

r

h(F (x))− h(F (x) + JF (x)s̃)−

h(F (x))− min
s∈Ω−{x}
∥s∥p≤r

h(F (x) +As)


=

1

r

 min
s∈Ω−{x}
∥s∥p≤r

h(F (x) +As)− h(F (x) + JF (x)s̃)


≤ 1

r
[h(F (x) +As̃)− h(F (x) + JF (x)s̃)]

≤
Lh,p

r
∥(A− JF (x))s̃∥p

≤
Lh,pcp,2(m)

r
∥(A− JF (x))s̃∥2,

≤
Lh,pcp,2(m)

r
∥A− JF (x)∥2∥s̃∥2,

≤
Lh,pcp,2(m)

r
∥A− JF (x)∥2c2,p(n)∥s̃∥p,

≤
Lh,pLJcp,2(m)c2,p(n)

√
n

2
τ. (16)

In a similar way, considering ŝ ∈ (Ω− {x}) ∩Bp[0; r] such that

min
s∈Ω−{x}
∥s∥p≤r

h(F (x) +As) = h(F (x) +Aŝ),

we can show that

ηp,r(x;A)− ψp,r(x) ≤
Lh,pLJcp,2(m)c2,p(n)

√
n

2
τ. (17)

Combining (16) and (17), we see that (15) is true.
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Now, using Lemma 2.9, we can bound ηp,r(x;A) from below when ψp,r(x) > ϵ and A is defined by
(13) with τ being sufficiently small.

Lemma 2.10. Suppose that A1-A3 hold. Given x ∈ Ω and τ > 0, let A be defined by (13). Given
r, ϵ > 0, if ψp,r(x) > ϵ and

τ ≤ max {2ηp,r(x;A), ϵ}
Lh,pLJcp,2(m)c2,p(n)

√
n
, (18)

then
ηp,r(x;A) >

ϵ

2
.

Proof. From Lemma 2.9 and (18), we have

ψp,r(x) ≤ |ψp,r(x)− ηp,r(x;A)|+ ηp,r(x;A) ≤ max
{
ηp,r(x;A),

ϵ

2

}
+ ηp,r(x;A). (19)

Suppose that ηp,r(x;A) ≤ ϵ
2 . Then from (19) we would have ψp,r(x) ≤ ϵ, contradicting the assumption

that ψp,r(x) > ϵ. Therefore, we must have ηp,r(x;A) > ϵ/2.

Given 0 < r1 ≤ r2, the next lemma establishes the relation between ηp,r1(x;A) and ηp,r2(x;A) for
any given x ∈ Ω and A ∈ Rm×n.

Lemma 2.11. Suppose that A1 and A3 hold. Given x ∈ Ω, A ∈ Rm×n and 0 < r1 ≤ r2, we have

ηp,r1(x;A) ≥ ηp,r2(x;A).

Proof. Denote α = r1
r2

and let s∗ ∈ (Ω− {x}) ∩Bp[0; r2] be such that

min
s∈Ω−{x}
∥s∥p≤r2

h(F (x) +As) = h(F (x) +As∗).

Then, ∥αs∗∥ ≤ r1 and so
min

s∈Ω−{x}
∥s∥p≤r1

h(F (x) +As) ≤ h(F (x) + αAs∗),

which implies that

ηp,r1(x;A) =
1

r1

h(F (x))− min
s∈Ω−{x}
∥s∥p≤r1

h(F (x) +As)

 ≥ 1

r1
(h(F (x))− h(F (x) + αAs∗)) . (20)

On the other hand, using the convexity of h (from A3) and the fact that α ∈ (0, 1], we also have

h(F (x) + αAs∗) = h((1− α)F (x) + α(F (x) +As∗))

≤ (1− α)h(F (x)) + αh(F (x) +As∗)

= h(F (x)) + α[h(F (x) +As∗)− h(F (x))]. (21)

Finally, combining (20), (21) and the definition of α, we obtain

ηp,r1(x;A) ≥
α

r1
[h(F (x))− h(F (x) +As∗)] =

1

r2
[h(F (x))− h(F (x) +As∗)] = ηp,r2(x;A),

and the proof is complete.

8



3 Trust-region method based on finite differences

Leveraging the auxiliary results established in the previous section, we propose a derivative-free
Trust-Region Method based on Finite-Difference Jacobian approximations, which we refer to as
TRFD.

Algorithm 1: TRFD

Step 0. Given x0 ∈ Ω, ϵ > 0, σ > 0, α ∈ (0, 1), θ ∈ (0, 1] and the Lipschitz constant Lh,p of
h( · ), define

τ0 =
ϵ

Lh,pσcp,2(m)c2,p(n)
√
n
,

where cp,2(m) and c2,p(n) satisfy (4). Choose ∆0 and ∆∗ such that τ0
√
n ≤ ∆0 ≤ ∆∗ and set

k := 0.

Step 1. Construct Ak ∈ Rm×n with

[Ak]j =
F (xk + τkej)− F (xk)

τk
, j = 1, ..., n.

and compute ηp,∆∗(xk;Ak) defined in (12).

Step 2. If ηp,∆∗(xk;Ak) ≥ ϵ/2, go to Step 3. Otherwise, define xk+1 = xk, ∆k+1 = ∆k,
τk+1 =

1
2τk, set k := k + 1 and go to Step 1.

Step 3 Let d∗k be a solution of the trust-region subproblem

min
d∈Rn

h(F (xk) +Akd)

s.t. ∥d∥p ≤ ∆k

xk + d ∈ Ω.

(22)

Compute dk ∈ Bp[0;∆k] ∩ (Ω− {xk}) such that

h(F (xk))− h(F (xk) +Akdk) ≥ θ [h(F (xk))− h(F (xk) +Akd
∗
k)] . (23)

Step 4. Compute

ρk =
h(F (xk))− h(F (xk + dk))

h(F (xk))− h(F (xk) +Akdk)
. (24)

If ρk ≥ α, define xk+1 = xk + dk, ∆k+1 = min {2∆k,∆∗}, τk+1 = τk, set k := k + 1 and go to
Step 1.

Step 5 Set xk+1 = xk, ∆k+1 = 1
2∆k. If τk

√
n ≤ ∆k+1, define τk+1 = τk, Ak+1 = Ak, set

k := k + 1 and go to Step 3. Otherwise, define τk+1 =
1
2τk, set k := k + 1 and go to Step 1.

In TRFD, we have four types of iterations:

1. Unsuccessful iterations of type I (U (1)): those where ηp,∆∗(xk;Ak) < ϵ/2.

2. Successful iterations (S): those where ηp,∆∗(xk;Ak) ≥ ϵ/2 and ρk ≥ α.
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3. Unsuccessful iterations of type II (U (2)): those where ηp,∆∗(xk;Ak) ≥ ϵ/2, ρk < α, and
τk
√
n ≤ ∆k+1.

4. Unsuccessful iterations of type III (U (3)): those where ηp,∆∗(xk;Ak) ≥ ϵ/2, ρk < α, and
τk
√
n > ∆k+1.

The lemma below shows that the finite-difference stepsize τk is always bounded from above by
∆k/

√
n.

Lemma 3.1. Given T ≥ 1, let {τk}Tk=0 and {∆k}Tk=0 be generated by TRFD. Then

τk
√
n ≤ ∆k, (25)

for k = 0, . . . , T .

Proof. We will prove this result by induction over k. In view of the choice of ∆0 at Step 0 of TRFD,
we see that (25) is true for k = 0. Assuming that (25) is true for some k ∈ {0, . . . , T − 1}, we will
show that it is also true for k + 1. Considering our classification of iterations, we have four possible
cases.

Case I: k ∈ U (1).

In this case, by Step 2 of TRFD, we have τk+1 = 1
2τk and ∆k+1 = ∆k. Thus, by the induction

assumption,

τk+1

√
n =

1

2
τk
√
n < τk

√
n ≤ ∆k = ∆k+1,

that is, (25) holds for k + 1.

Case II: k ∈ S.

In this case, by Step 4 of TRFD, we have τk+1 = τk and ∆k+1 ≥ ∆k. Thus, by the induction
assumption,

τk+1

√
n = τk

√
n ≤ ∆k ≤ ∆k+1,

which means that (25) is true for k + 1.

Case III: k ∈ U (2)

In this case, by Step 5 of TRFD, we have τk
√
n ≤ ∆k+1, and τk+1 = τk. Thus

τk+1

√
n = τk

√
n ≤ ∆k+1,

that is, (25) is true for k + 1.

Case IV: k ∈ U (3).

In this case, by Step 5 of TRFD we have τk+1 = 1
2τk and ∆k+1 = 1

2∆k. Thus, by the induction
assumption,

τk+1

√
n =

1

2
τk
√
n ≤ 1

2
∆k = ∆k+1,

and so (25) is true for k + 1, which concludes the proof.
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In view of Lemmas 2.7 and 3.1, the matrices Ak in TRFD satisfy

∥JF (xk)−Ak∥2 ≤
LJ

2
∆k ∀k.

Thanks to this error bound, we can derive the following sufficient condition for an iteration to be
successful.

Lemma 3.2. Suppose that A1-A3 hold. If ψp,∆∗(xk) > ϵ and

∆k ≤
(1− α)θηp,∆∗(xk;Ak)

Lh,pLJcp,2(m)c2,p(n)2
, (26)

then k ∈ S.

Proof. From Step 0 of TRFD, we have α ∈ (0, 1) and θ ∈ (0, 1]. Then, it follows from Lemma 3.1,
(26) and c2,p(n) ≥ 1 that

τk ≤ ∆k√
n
≤

2ηp,∆∗(xk;Ak)

Lh,pLJcp,2(m)c2,p(n)
√
n
.

Since ψp,∆∗(xk) > ϵ, by Lemma 2.10 we get

ηp,∆∗(xk;Ak) ≥ ϵ/2.

Therefore, to conclude that k ∈ S, it remains to show that ρk ≥ α. On the one hand, by A3, (4) and
A2 we have

h(F (xk + dk))− h(F (xk) +Akdk)

= h(F (xk + dk))− h(F (xk) + JF (xk)dk) + h(F (xk) + JF (xk)dk)− h(F (xk) +Akdk)

≤ |h(F (xk + dk))− h(F (xk) + JF (xk)dk)|+ |h(F (xk) + JF (xk)dk)− h(F (xk) +Akdk)|
≤ Lh,p∥F (xk + dk)− F (xk)− JF (xk)dk∥p + Lh,p∥(JF (xk)−Ak)dk∥p
≤ Lh,pcp,2(m)∥F (xk + dk)− F (xk)− JF (xk)dk∥2 + Lh,pcp,2(m)∥JF (xk)−Ak∥2∥dk∥2

≤ Lh,pcp,2(m)
LJ

2
∥dk∥22 + Lh,pcp,2(m)

LJ
√
n

2
τk∥dk∥2

≤ (0.5)Lh,pLJcp,2(m)c2,p(n)
2∥dk∥2p + (0.5)Lh,pLJcp,2(m)c2,p(n)τk

√
n∥dk∥p

≤ (0.5)Lh,pLJcp,2(m)c2,p(n)
2∆2

k + (0.5)Lh,pLJcp,2(m)c2,p(n)τk
√
n∆k.

Then, by Lemma 3.1 and c2,p(n) ≥ 1, we have

h(F (xk + dk))− h(F (xk) +Akdk) ≤ (0.5)Lh,pLJcp,2(m)c2,p(n) (c2,p(n) + 1)∆2
k

≤ Lh,pLJcp,2(m)c2,p(n)
2∆2

k. (27)

On the other hand, by (23) and (12) we have

h(F (xk))− h(F (xk) +Akdk) ≥ θ [h(F (xk))− h(F (xk) +Akd
∗
k)]

= θ∆k

[
1

∆k
(h(F (xk))− h(F (xk) +Akd

∗
k))

]
= θ∆kηp,∆k

(xk;Ak).

11



Since ∆k ≤ ∆∗, it follows from Lemma 2.11 that

h(F (xk))− h(F (xk) +Akdk) ≥ θ∆kηp,∆∗(xk;Ak). (28)

Now, combining (24), (27), (28) and (26), we obtain

1− ρk =
h(F (xk))− h(F (xk) +Akdk)− [h(F (xk))− h(F (xk + dk))]

h(F (xk))− h(F (xk) +Akdk)

=
h(F (xk + dk))− h(F (xk) +Akdk)

h(F (xk))− h(F (xk) +Akdk)
≤
Lh,pLJcp,2(m)c2,p(n)

2∆2
k

θ∆kηp,∆∗(xk;Ak)

=
Lh,pLJcp,2(m)c2,p(n)

2∆k

θηp,∆∗(xk;Ak)
≤ 1− α.

Therefore, ρk ≥ α, and we conclude that k ∈ S.

Now we can obtain a lower bound on the trust-region radii.

Lemma 3.3. Suppose that A1-A3 hold and, given T ≥ 1, let {∆k}Tk=0 be generated by TRFD. If

ψp,∆∗(xk) > ϵ, for k = 0, . . . , T − 1,

then

∆k ≥ (1− α)θϵ

4Lh,pmax {σ, LJ} cp,2(m)c2,p(n)2
≡ ∆min(ϵ), for k = 0, . . . , T. (29)

Proof. First, let us prove by induction that

∆k ≥ min

{
∆0,

(1− α)θϵ

4Lh,pLJcp,2(m)c2,p(n)2

}
≡ ∆̃min(ϵ), for k = 0, . . . , T. (30)

Clearly, the inequality in (30) is true for k = 0. Suppose that the inequality in (30) is true for some
k ∈ {0, . . . , T − 1}. If k ∈ U (1), then ∆k+1 = ∆k ≥ ∆̃min(ϵ) and so (30) holds for k+1. Now, suppose
that k /∈ U (1). In this case, we have ηp,∆∗(xk;Ak) ≥ ϵ/2. Thus, if

∆k ≤ (1− α)θϵ

2Lh,pLJcp,2(m)c2,p(n)2
, (31)

then by Lemma 3.2, k ∈ S. Consequently, Step 4 of TRFD and the induction assumption imply that

∆k+1 = min {2∆k,∆∗} ≥ min {∆k,∆∗} = ∆k ≥ ∆̃min(ϵ).

Now, suppose that (31) is not true. Since in any case we have ∆k+1 ≥ 1
2∆k, we will have

∆k+1 ≥
1

2
∆k >

(1− α)θϵ

4Lh,pLJcp,2(m)c2,p(n)2
≥ ∆̃min(ϵ).

This shows that (30) is true. Finally, it follows from Step 0 of TRFD that

∆0 ≥ τ0
√
n =

ϵ

Lh,pσcp,2(m)c2,p(n)
≥ (1− α)θϵ

4Lh,pmax {σ, LJ} cp,2(m)c2,p(n)2
.

Thus, from the definition of ∆̃min(ϵ) in (30), we see that

∆̃min(ϵ) ≥
(1− α)θϵ

4Lh,pmax {σ, LJ} cp,2(m)c2,p(n)2
= ∆min(ϵ). (32)

Then, combining (30) and (32), we conclude that (29) is true.
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3.1 Worst-Case Complexity Bound for Nonconvex Problems

Given j ∈ {0, 1, 2, . . . , }, let

Sj = {0, 1, . . . , j} ∩ S,

U (i)
j = {0, 1, . . . , j} ∩ U (i), i ∈ {1, 2, 3} .

Also, let
Tg(ϵ) = inf {k ∈ N : ψp,∆∗(xk) ≤ ϵ} (33)

be the index of the first iteration in which {xk}k≥0 reaches an ϵ-approximate stationary point, if it
exists. Our goal is to obtain a finite upper bound for Tg(ϵ). Assuming that Tg(ϵ) ≥ 1, it follows from
the notation above that

Tg(ϵ) =
∣∣∣STg(ϵ)−1 ∪

(
U (1)
Tg(ϵ)−1 ∪ U (2)

Tg(ϵ)−1 ∪ U (3)
Tg(ϵ)−1

)∣∣∣
≤

∣∣STg(ϵ)−1

∣∣+ ∣∣∣U (1)
Tg(ϵ)−1 ∪ U (3)

Tg(ϵ)−1

∣∣∣+ ∣∣∣U (2)
Tg(ϵ)−1 ∪ U (3)

Tg(ϵ)−1

∣∣∣ . (34)

In the next three lemmas, we will provide upper bounds for each of the three terms in (34). To that
end, let us consider the following additional assumption:

A4. There exists flow ∈ R such that f(x) ≥ flow for all x ∈ Rn.

The next lemma provides an upper bound on
∣∣STg(ϵ)−1

∣∣.
Lemma 3.4. Suppose that A1-A4 hold and that Tg(ϵ) ≥ 1. Then

|STg(ϵ)−1| ≤
8Lh,pmax {σ, LJ} cp,2(m)c2,p(n)

2(f(x0)− flow)

α(1− α)θ2
ϵ−2. (35)

Proof. Let k ∈ STg(ϵ)−1, that is, ηp,∆∗(xk;Ak) ≥ ϵ/2 and ρk ≥ α. Then, by (23), (12), ∆k ≤ ∆∗ and
Lemma 2.11, we have

f(xk)− f(xk+1) = h(F (xk))− h(F (xk + dk))

≥ α [h(F (xk))− h(F (xk) +Akdk)]

≥ αθ [h(F (xk))− h(F (xk) +Akd
∗
k)]

= αθ∆k

[
1

∆k
(h(F (xk))− h(F (xk) +Akd

∗
k))

]
= αθ∆kηp,∆k

(xk;Ak)

≥ αθ∆kηp,∆∗(xk;Ak)

≥ αθϵ

2
∆k.

Consequently, it follows from Lemma 3.3 that

f(xk)− f(xk+1) ≥
α(1− α)θ2

8Lh,pmax {σ, LJ} cp,2(m)c2,p(n)2
ϵ2 when k ∈ STg(ϵ)−1. (36)
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Let Sc
Tg(ϵ)−1 = {0, 1, . . . , Tg(ϵ)− 1} \STg(ϵ)−1. Notice that, when k ∈ Sc

Tg(ϵ)−1, then f(xk+1) = f(xk).

Thus, it follows from A4 and (36) that

f(x0)− flow ≥ f(x0)− f(xTg(ϵ)) =

Tg(ϵ)−1∑
k=0

f(xk)− f(xk+1)

=
∑

k∈STg(ϵ)−1

f(xk)− f(xk+1) +
∑

k∈Sc
Tg(ϵ)−1

f(xk)− f(xk+1)

=
∑

k∈STg(ϵ)−1

f(xk)− f(xk+1)

≥ |STg(ϵ)−1|
α(1− α)θ2

8Lh,pmax {σ, LJ} cp,2(m)c2,p(n)2
ϵ2,

which implies that (35) is true.

The next lemma provides an upper bound on
∣∣∣U (1)

Tg(ϵ)−1 ∪ U (3)
Tg(ϵ)−1

∣∣∣.
Lemma 3.5. Suppose that A1-A3 hold and that Tg(ϵ) ≥ 2. If T ∈ {2, . . . , Tg(ϵ)}, then∣∣∣U (1)

T−1 ∪ U (3)
T−1

∣∣∣ ≤ ⌈∣∣∣∣log2( τ0
√
n

∆min(ϵ)

)∣∣∣∣⌉ , (37)

where ∆min(ϵ) is defined in (29).

Proof. Suppose by contradiction that∣∣∣U (1)
T−1 ∪ U (3)

T−1

∣∣∣ > ⌈∣∣∣∣log2( τ0
√
n

∆min(ϵ)

)∣∣∣∣⌉ . (38)

Notice that ∣∣∣U (1)
0 ∪ U (3)

0

∣∣∣ ≤ 1 and
∣∣∣U (1)

k+1 ∪ U (3)
k+1

∣∣∣ ≤ ∣∣∣U (1)
k ∪ U (3)

k

∣∣∣+ 1, ∀k. (39)

It follows from (38) and (39) that there exists k∗ ∈ {0, . . . , T − 2} such that∣∣∣U (1)
k∗

∪ U (3)
k∗

∣∣∣ = ⌈∣∣∣∣log2( τ0
√
n

∆min(ϵ)

)∣∣∣∣⌉ .
In view of (39), for any k ∈ N ∩ [k∗, T − 1] we have

∣∣∣U (1)
k ∪ U (3)

k

∣∣∣ ≥ ∣∣∣U (1)
k∗

∪ U (3)
k∗

∣∣∣ ≥ ∣∣∣∣log2( τ0
√
n

∆min(ϵ)

)∣∣∣∣ ≥ − log2

(
∆min(ϵ)

τ0
√
n

)
.

Thus

−
∣∣∣U (1)

k ∪ U (3)
k

∣∣∣ ≤ log2

(
∆min(ϵ)

τ0
√
n

)
,

and so

τk = (0.5)

∣∣∣U(1)
k ∪U(3)

k

∣∣∣
τ0 = 2

−
∣∣∣U(1)

k ∪U(3)
k

∣∣∣
τ0 ≤

∆min(ϵ)√
n

. (40)
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By (40), the definition of ∆min(ϵ) in (29), and c2,p(n) ≥ 1, we have

τk ≤ ϵ

Lh,pLJcp,2(m)c2,p(n)
√
n
.

Since we also have ψp,∆∗(xk) > ϵ, it follows from Lemma 2.10 that ηp,∆∗(xk) ≥ ϵ/2. Therefore, the

k-th iteration is not an unsuccessful iteration of type I, i.e., k /∈ U (1) . In addition, (40) and Lemma
3.3 imply that

τk
√
n ≤ ∆min(ϵ) ≤ ∆k+1,

which means that the k-th iteration is not an unsuccessful iteration of type III, i.e., k /∈ U (3) . In

summary, k /∈ U (1) ∪ U (3) and so ∣∣∣U (1)
k ∪ U (3)

k

∣∣∣ = ∣∣∣U (1)
k−1 ∪ U (3)

k−1

∣∣∣ .
Thus, for any k∗ < k ≤ T − 1,∣∣∣U (1)

k ∪ U (3)
k

∣∣∣ = ∣∣∣U (1)
k−1 ∪ U (3)

k−1

∣∣∣ = . . . =
∣∣∣U (1)

k∗
∪ U (3)

k∗

∣∣∣
In particular, ∣∣∣U (1)

T−1 ∪ U (3)
T−1

∣∣∣ = ∣∣∣U (1)
k∗

∪ U (3)
k∗

∣∣∣ = ⌈∣∣∣∣log2( τ0
√
n

∆min(ϵ)

)∣∣∣∣⌉ ,
contradicting (38).

Remark 3.6. By the definition of τ0 (at Step 0 of TRFD) and the definition of ∆min(ϵ) in (29), we
have

τ0
√
n

∆min(ϵ)
=

4max {σ, LJ} c2,p(n)
σ(1− α)θ

. (41)

The lemma below provides an upper bound on
∣∣∣U (2)

Tg(ϵ)−1 ∪ U (3)
Tg(ϵ)−1

∣∣∣.
Lemma 3.7. Suppose that A1-A3 hold and that Tg(ϵ) ≥ 1. If T ∈ {1, . . . , Tg(ϵ)}, then∣∣∣U (2)

T−1 ∪ U (3)
T−1

∣∣∣ ≤ log2

(
4Lh,pmax {σ, LJ} cp,2(m)c2,p(n)

2∆0

(1− α)θ
ϵ−1

)
+ |ST−1|. (42)

Proof. By the update rules for ∆k in TRFD, we have

∆k+1 =
1

2
∆k, if k ∈ U (2)

T−1 ∪ U (3)
T−1,

∆k+1 = ∆k, if k ∈ U (1)
T−1,

∆k+1 ≤ 2∆k, if k ∈ ST−1.

In addition, by Lemma 3.3 we have

∆k ≥ ∆min(ϵ) for k = 0, . . . , T,
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where ∆min(ϵ) is defined in (29). Thus, considering νk = 1/∆k, it follows that

2νk = νk+1, if k ∈ U (2)
T−1 ∪ U (3)

T−1, (43)

νk = νk+1, if k ∈ U (1)
T−1, (44)

1

2
νk ≤ νk+1, if k ∈ ST−1, (45)

and
νk ≤ ∆min(ϵ)

−1 for k = 0, . . . , T. (46)

In view of (43)-(46), we have

2

∣∣∣U(2)
T−1∪ U(3)

T−1

∣∣∣
(0.5)|ST−1| ν0 ≤ νT ≤ ∆min(ϵ)

−1.

Then, taking the logarithm in both sides we get∣∣∣U (2)
T−1 ∪ U (3)

T−1

∣∣∣− |ST−1| ≤ log2

(
∆min(ϵ)

−1

ν0

)
= log2

(
∆0

∆min(ϵ)

)
,

which together with (29) implies that (42) is true.

Now, combining the previous results, we obtain the following worst-case complexity bound on the
number of iterations required by TRFD to find an ϵ-approximate stationary point.

Theorem 3.8. Suppose that A1-A4 hold and let Tg(ϵ) be defined by (33). Then

Tg(ϵ) ≤
16Lh,pmax {σ, LJ} cp,2(m)c2,p(n)

2(f(x0)− flow)

α(1− α)θ2
ϵ−2 +

⌈∣∣∣∣log2(4max {σ, LJ} c2,p(n)
σ(1− α)θ

)∣∣∣∣⌉
+ log2

(
4Lh,pmax {σ, LJ} cp,2(m)c2,p(n)

2∆0

(1− α)θ
ϵ−1

)
+ 1. (47)

Proof. If Tg(ϵ) ≤ 1, then (47) is clearly true. Let us assume that Tg(ϵ) ≥ 2. By (34),

Tg(ϵ) ≤
∣∣STg(ϵ)−1

∣∣+ ∣∣∣U (1)
Tg(ϵ)−1 ∪ U (3)

Tg(ϵ)−1

∣∣∣+ ∣∣∣U (2)
Tg(ϵ)−1 ∪ U (3)

Tg(ϵ)−1

∣∣∣ .
Then, (47) follows directly from Lemmas 3.4, 3.5 and 3.7, together with (41).

Since each iteration of TRFD requires at most (n + 1) evaluations of F ( · ), from Theorem 3.8 we
obtain the following upper bound on the total number of evaluations of F ( · ) required by TRFD to
find an ϵ-approximate stationary point.

Corollary 3.9. Suppose that A1-A4 hold and let FETg(ϵ)−1 be the total number of function evalua-
tions executed by TRFD up to the (Tg(ϵ)− 1)-st iteration. Then

FETg(ϵ)−1 ≤ (n+ 1)

[
16Lh,p max {σ, LJ} cp,2(m)c2,p(n)

2(f(x0)− flow)

α(1− α)θ2
ϵ−2

+

⌈∣∣∣∣log2 (4max {σ, LJ} c2,p(n)
σ(1− α)θ

)∣∣∣∣⌉+ log2

(
4Lh,p max {σ, LJ} cp,2(m)c2,p(n)

2∆0

(1− α)θ
ϵ−1

)
+ 1

]
.
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In view of Corollary 3.9, TRFD needs no more than

O
(
n c2,p(n)

2cp,2(m)Lh,pLJ(f(x0)− flow)ϵ
−2

)
evaluations of F ( · ) to find xk such that ψp,∆∗(xk) ≤ ϵ. In what follows, Tables 1 and 2 specify this
complexity bound for the L1 and Minimax problems with respect to different choices of the p-norm
used in TRFD.

L1 Problems: case h(z) = ∥z∥1 ∀z ∈ Rm

p-norm in TRFD Lh,p cp,2(m) c2,p(n) Evaluation Complexity Bound

p = 1 1
√
m 1 O

(
n
√
mLJ(f(x0)− flow)ϵ

−2
)

p = 2
√
m 1 1 O

(
n
√
mLJ(f(x0)− flow)ϵ

−2
)

p = ∞ m 1
√
n O

(
n2mLJ(f(x0)− flow)ϵ

−2
)

Table 1: Complexity bounds for problems with objective function of the form f( · ) = ∥F ( · )∥1.

Minimax Problems: case h(z) = maxi=1,...,m {zi} ∀z ∈ Rm

p-norm in TRFD Lh,p cp,2(m) c2,p(n) Evaluation Complexity Bound

p = 1 1
√
m 1 O

(
n
√
mLJ(f(x0)− flow)ϵ

−2
)

p = 2 1 1 1 O
(
nLJ(f(x0)− flow)ϵ

−2
)

p = ∞ 1 1
√
n O

(
n2LJ(f(x0)− flow)ϵ

−2
)

Table 2: Complexity bounds for problems with objective function of the form f( · ) =
maxi=1,...,m {Fi( · )}.

Notice that in both cases, considering TRFD with p = 1 or p = 2, we obtain evaluation complexity
bounds of O

(
nϵ−2

)
, with linear dependence on the number of variables n. This represents an

improvement over the bound of O
(
n2ϵ−2

)
established in [8] for a model-based derivative-free trust-

region method for composite nonsmooth optimization.

3.2 Worst-Case Complexity Bound for Convex Problems

Let us consider the additional assumptions:

A5. Fi( · ) is convex for i = 1, . . . ,m.

A6. h( · ) is monotone, i.e., h(u) ≤ h(v) if ui ≤ vi for i = 1, . . . ,m.

A7. f( · ) = h(F ( · )) has a global minimizer x∗ on Ω and

D0 ≡ sup
x∈Lf (x0)

{∥x− x∗∥p} < +∞,

for Lf (x0) = {x ∈ Ω : f(x) ≤ f(x0)}.

The lemma below establishes the relationship between the stationarity measure and the functional
residual when the reference radius r is sufficiently large.

Lemma 3.10. Suppose that A1, A2, A5, A6 and A7 hold, and let xk ∈ Lf (x0). If r ≥ D0, then

ψp,r(xk) ≥
1

r
(f(xk)− f(x∗)).
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Proof. By A2 and A5, for each i ∈ {1, . . . ,m} we have

Fi(xk + s) ≥ F (xk) + ⟨∇Fi(xk), s⟩, ∀s ∈ Ω− {xk} .

Thus, it follows from A6 that

h(F (xk + s)) ≥ h(F (xk) + JF (xk)s), ∀s ∈ Ω− {xk},

and so
min

s∈Ω−{xk}
∥s∥p≤r

h(F (xk + s)) ≥ min
s∈Ω−{xk}
∥s∥p≤r

h(F (xk) + JF (xk)s). (48)

Let s∗ = x∗ − xk. Then s∗ ∈ Ω − {xk} and, by A7 and r ≥ D0, we also have ∥s∗∥p ≤ D0 ≤ r.
Therefore

min
s∈Ω−{xk}
∥s∥p≤r

h(F (xk + s)) = h(F (xk + s∗)) = h(F (x∗)) = f(x∗). (49)

Combining (48) and (49), we obtain

f(x∗) ≥ min
s∈Ω−{xk}
∥s∥p≤r

h(F (xk) + JF (xk)s),

which implies that

ψp,r(xk) =
1

r

h(F (xk))− min
s∈Ω−{xk}
∥s∥p≤r

h(F (xk) + JF (xk)s)

 ≥ 1

r
(f(xk)− f(x∗)) ,

which concludes the proof.

The lemma below provides a lower bound on the approximate stationarity measure in terms of the
functional residual.

Lemma 3.11. Suppose that A1-A3 and A5-A7 hold, and let {xk} be generated by TRFD. If ∆∗ ≥ D0,
then

ηp,∆∗(xk;Ak) ≥
f(xk)− f(x∗)(

LJ
σ + 1

)
∆∗

whenever k /∈ U (1).

Proof. Suppose that k /∈ U (1). In this case, we have ηp,∆∗(xk;Ak) ≥ ϵ/2. Then, it follows from
Lemma 2.9 and from the definition of τ0 at Step 0 of TRFD that

ψp,∆∗(xk) ≤ |ψp,∆∗(xk)− ηp,∆∗(xk;Ak)|+ |ηp,∆∗(xk;Ak)|

≤
Lh,pLJcp,2(m)c2,p(n)

√
n

2
τk + ηp,∆∗(xk;Ak)

≤
Lh,pLJcp,2(m)c2,p(n)

√
n

2
τ0 + ηp,∆∗(xk;Ak)

=
LJϵ

2σ
+ ηp,∆∗(xk;Ak)

≤
(
LJ

σ
+ 1

)
ηp,∆∗(xk;Ak).
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Therefore, by Lemma 3.10, we obtain

ηp,∆∗(xk;Ak) ≥
ψp,∆∗(xk)(
LJ
σ + 1

) ≥ f(xk)− f(x∗)(
LJ
σ + 1

)
∆∗

.

Therefore, the statement is proved.

Next we establish an upper bound for f(xk)−f(x∗)
∆k

when the functional residual is sufficiently large.

Lemma 3.12. Suppose that A1-A3 and A5-A7 hold, and let {xk}Tk=0 be generated by TRFD. If
∆∗ ≥ ∆0 and

f(xk)− f(x∗) > ∆∗ϵ for k = 0, . . . , T − 1, (50)

then(
1

∆k

)
(f(xk)− f(x∗)) ≤ max

{(
1

∆0

)
(f(x0)− f(x∗)),

2
(
LJ

σ + 1
)
∆∗Lh,pLJcp,2(m)c2,p(n)

2

(1− α)θ

}
≡ β (51)

for k = 0, . . . , T .

Proof. By the definition of β, (51) is true for k = 0. Suppose that (51) is true for some k ∈
{0, . . . , T − 1}. Let us show that it is also true for k + 1.

Case 1: k ∈ U (1) ∪ S

In this case, we have ∆k+1 ≥ ∆k. Since f(xk+1) ≤ f(xk), it follows that(
1

∆k+1

)
(f(xk+1)− f(x∗)) ≤

(
1

∆k

)
(f(xk)− f(x∗)) ≤ β,

where the last inequality is the induction assumption. Therefore, (51) holds for k + 1 in this case.

Case 2: k ∈ U (2) ∪ U (3)

In this case we have

∆k+1 =
1

2
∆k. (52)

In addition, in view of (50) and ∆∗ ≥ D0, it follows from Lemma 3.10 that ψp,∆∗(xk) > ϵ. Therefore,
we must have

∆k >
(1− α)θηp,∆∗(xk;Ak)

Lh,pLJcp,2(m)c2,p(n)2
(53)

since otherwise, by Lemma 3.2, we would have k ∈ S, contradicting our assumption that k ∈
U (2) ∪ U (3). Notice that (53) is equivalent to(

1

∆k

)
ηp,∆∗(xk;Ak) <

Lh,pLJcp,2(m)c2,p(n)
2

(1− α)θ
.
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Finally, it follows from (52), Lemma 3.11 and (53) that(
1

∆k+1

)
(f(xk+1)− f(x∗)) =

(
2

∆k

)
(f(xk+1)− f(x∗)) ≤

(
2

∆k

)
(f(xk)− f(x∗))

≤
2
(
LJ
σ + 1

)
∆∗

∆k
ηp,∆∗(xk;Ak)

< 2

(
LJ

σ
+ 1

)
∆∗

Lh,pLJcp,2(m)c2,p(n)
2

(1− α)θ

=
2
(
LJ
σ + 1

)
∆∗Lh,pLJcp,2(m)c2,p(n)

2

(1− α)θ

≤ β,

that is, (51) also holds for k + 1 in this case.

Let
Tf (ϵ) = inf {k ∈ N : f(xk)− f(x∗) ≤ ∆∗ϵ} (54)

be the index of the first iteration in which {xk}k≥0 reaches a ∆∗ϵ-approximate solution of (1), if it
exists. Our goal is to establish a finite upper bound for Tf (ϵ). In this context, the lemma below

provides an upper bound on
∣∣∣STf (ϵ)−1

∣∣∣.
Lemma 3.13. Suppose that A1-A7 hold. Given ϵ > 0, if Tf (ϵ) ≥ 2 and ∆∗ ≥ D0, then

∣∣∣STf (ϵ)−1

∣∣∣ ≤ 1 +

(
LJ
σ + 1

)
β

αθ
ϵ−1, (55)

where β is defined in (51).

Proof. Let k ∈ STf (ϵ)−2. By Lemmas 2.11, 3.11 and 3.12, we have

f(xk)− f(xk+1) ≥ α [h(F (xk))− h(F (xk) +Akdk)]

≥ αθ [h(F (xk))− h(F (xk) +Akd
∗
k)]

= αθ∆kηp,∆k
(xk;Ak)

≥ αθ∆kηp,∆∗(xk;Ak)

≥ αθ∆k
f(xk)− f(x∗)(

LJ
σ + 1

)
∆∗

=
αθ(f(xk)− f(x∗))2(

LJ
σ + 1

)
∆∗

(
1
∆k

)
(f(xk)− f(x∗))

≥ αθ(f(xk)− f(x∗))2(
LJ
σ + 1

)
∆∗β

. (56)

Denoting δk = f(xk)− f(x∗), (56) becomes

δk − δk+1 ≥
αθ(

LJ
σ + 1

)
∆∗β

δ2k.
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Consequently,

1

δk+1
− 1

δk
=
δk − δk+1

δkδk+1
≥

αθ(
LJ
σ

+1
)
∆∗β

δ2k

δ2k
=

αθ(
LJ
σ + 1

)
∆∗β

. (57)

Since δk+1 = δk for any k ∈ {0, ..., Tf (ϵ)− 2} \ STf (ϵ)−2, it follows from (57) that

1

δTf (ϵ)−1
− 1

δ0
=

Tf (ϵ)−2∑
k=0

1

δk+1
− 1

δk
=

∑
k∈STf (ϵ)−2

1

δk+1
− 1

δk

≥
∣∣∣STf (ϵ)−2

∣∣∣ αθ(
LJ
σ + 1

)
∆∗β

.

Therefore

∆∗ϵ < f(xTf (ϵ)−1)− f(x∗) = δTf (ϵ)−1 ≤

(
LJ
σ + 1

)
∆∗β

αθ
∣∣∣STf (ϵ)−2

∣∣∣ ,
which implies that ∣∣∣STf (ϵ)−1

∣∣∣ ≤ 1 +
∣∣∣STf (ϵ)−2

∣∣∣ ≤ 1 +

(
LJ
σ + 1

)
β

αθ
ϵ−1,

that is, (55) is true.

The next lemma establishes the relationship between Tf (ϵ) and Tg(ϵ).

Lemma 3.14. Suppose that A2, A5, A6 and A7 hold, and let Tf (ϵ) and Tg(ϵ) be defined by (54)
and (33), respectively. If ∆∗ ≥ D0, then Tf (ϵ) ≤ Tg(ϵ).

Proof. Suppose by contradiction that Tf (ϵ) > Tg(ϵ). In this case, by ∆∗ ≥ D0 and Lemma 3.10, we
would arrive at the contradiction

ϵ <
1

∆∗
(f(xTg(ϵ))− f(x∗)) ≤ ψp,∆∗(xTg(ϵ)) ≤ ϵ.

Therefore, we must have Tf (ϵ) ≤ Tg(ϵ).

The following theorem gives an upper bound on the number of iterations required by TRFD to reach
a ∆∗ϵ-approximate solution of (1).

Theorem 3.15. Suppose that A1-A7 and let Tf (ϵ) be defined by (54). If ∆∗ ≥ D0, then

Tf (ϵ) ≤2

[
1 +

(LJ
σ + 1)β

αθ
ϵ−1

]
+

⌈∣∣∣∣log2(4max {σ, LJ} c2,p(n)
σ(1− α)θ

)∣∣∣∣⌉
+ log2

(
4Lh,pmax {σ, LJ} cp,2(m)c2,p(n)

2∆0

(1− α)θ
ϵ−1

)
, (58)

where β is defined in (51).
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Proof. If Tf (ϵ) ≤ 1, then (58) is true. Let us assume that Tf (ϵ) ≥ 2. As in the proof of Theorem
3.8, we have

Tf (ϵ) ≤
∣∣∣STf (ϵ)−1

∣∣∣+ ∣∣∣U (1)
Tf (ϵ)−1 ∪ U (3)

Tf (ϵ)−1

∣∣∣+ ∣∣∣U (2)
Tf (ϵ)−1 ∪ U (3)

Tf (ϵ)−1

∣∣∣ . (59)

By Lemma 3.14, we have Tf (ϵ) ≤ Tg(ϵ). Thus, it follows from Lemmas 3.5 and 3.7 that∣∣∣U (1)
Tf (ϵ)−1 ∪ U (3)

Tf (ϵ)−1

∣∣∣ ≤ ⌈∣∣∣∣log2( τ0
√
n

∆min(ϵ)

)∣∣∣∣⌉ (60)

and ∣∣∣U (2)
Tf (ϵ)−1 ∪ U (3)

Tf (ϵ)−1

∣∣∣ ≤ log2

(
4Lh,pmax {σ, LJ} cp,2(m)c2,p(n)

2∆0

(1− α)θ
ϵ−1

)
+ |STf (ϵ)−1|, (61)

where ∆min(ϵ) is defined in (29). Then, combining (59), Lemma 3.13, (60), (61) and (41), we conclude
that (58) is true.

Since each iteration of TRFD requires at most (n + 1) evaluations of F ( · ), from Theorem 3.15 we
obtain the following upper bound on the total number of evaluations of F ( · ) required by TRFD to
find a ∆∗ϵ-approximate solution of (1).

Corollary 3.16. Suppose that A1-A7 hold and let FETf (ϵ)−1 be the total number of function evalu-
ations executed by TRFD up to the (Tf (ϵ)− 1)-st iteration. If ∆∗ ≥ D0, then

FETf (ϵ)−1 ≤ (n+ 1)

[
2

[
1 +

(LJ
σ + 1)β

αθ
ϵ−1

]
+

⌈∣∣∣∣log2(4max {σ, LJ} c2,p(n)
σ(1− α)θ

)∣∣∣∣⌉
+ log2

(
4Lh,pmax {σ, LJ} cp,2(m)c2,p(n)

2∆0

(1− α)θ
ϵ−1

)]
.

In view of Corollary 3.16 and the definition of β in (51), if h( · ) is monotone and the components
Fi( · ) are convex, then TRFD, with a sufficiently large ∆∗, needs no more than

O
(
n c2,p(n)

2cp,2(m)Lh,pLJ∆∗ϵ
−1

)
function evaluations to find xk such that

f(xk)− f(x∗) ≤ ∆∗ϵ.

Thus, given ϵf > 0, if we use TRFD with ϵ = ϵf/∆∗, then it will need no more than

O
(
n c2,p(n)

2cp,2(m)Lh,pLJ∆
2
∗ϵ

−1
f

)
function evaluations to find xk such that

f(xk)− f(x∗) ≤ ϵf .

Table 3 below specifies the complexity bound for the Minimax problem, which is a composite nons-
mooth problem of the form (1) whose function h( · ) is monotone.
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Minimax Problems: case h(z) = maxi=1,...,m {zi} ∀z ∈ Rm

p-norm in TRFD Lh,p cp,2(m) c2,p(n) Evaluation Complexity Bound

p = 1 1
√
m 1 O

(
n
√
mLJ∆

2
∗ϵ

−1
f

)
p = 2 1 1 1 O

(
nLJ∆

2
∗ϵ

−1
f

)
p = ∞ 1 1

√
n O

(
n2LJ∆

2
∗ϵ

−1
f

)
Table 3: Complexity bounds for problems with objective function of the form f( · ) =
maxi=1,...,m {Fi( · )}.

When Ω is a polyhedron, for p = 1 and p = ∞, the computation of ηp,∆∗(xk; ∆k) and dk in
TRFD can be performed by solving linear programming problems. The complexity bounds in Table
3 suggest that one should use p = 1 when

√
m < n, and p = ∞ otherwise. On the other hand, the

best complexity bound, of O
(
nϵ−1

)
, is obtained with p = 2. However, in this case, the computation

of ηp,∆∗(xk; ∆k) and dk requires solving linear problems subject to a quadratic constraint.

4 Numerical experiments

We performed numerical experiments with Matlab implementations of TRFD. Specifically, two classes
of test problems were considered: unconstrained L1 problems (see subsection 4.1) and unconstrained
Minimax problems (see subsection 4.2). We compared TRFD against Manifold Sampling Primal [13]
and against the derivative-free trust-region method proposed in [11]. For each problem, a budget of
100 simplex gradients was allowed to each solver2. In addition, our implementations of TRFD were
equipped with the following stopping criteria:

∆k ≤ 10−13 or ηp,∆∗(xk;Ak) ≤ 10−13.

Implementations are compared using data profiles [18]3, where a code M is said to solve a given
problem when it reaches xM such that

f(x0)− f(xM )

f(x0)− f(xBest)
≥ 1− Tolerance,

where f(xBest) is the lowest function value found among all the methods. All experiments were
performed with MATLAB (R2023a) on a PC with microprocessor 13-th Gen Intel(R) Core(TM)
i5-1345U 1.60 GHz and 32 GB of RAM memory.

4.1 L1 problems

Here we considered problems of the form

min
x∈Rn

∥F (x)∥1.

2One simplex gradient corresponds to n + 1 function evaluations, with n being the number of variables of the
problem.

3The data profiles were generated using the code data profile.m, freely available at the website
https://www.mcs.anl.gov/~more/dfo/.
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We tested 53 functions F : Rn → Rm defined by Moré and Wild [18], for which 2 ≤ n ≤ 12 and
2 ≤ m ≤ 65. The following codes were compared:

- TRFD-L1: Implementation of TRFD with p = 1 and parameters ϵ = 10−15, α = 0.15, Lh,p = 1,
∆0 = max{1, τ0

√
n}, ∆∗ = 1000 and

σ =
ϵ

Lh,pcp,2(m)c2,p(n)
√
n
√
eps

,

where eps is the machine precision, c1,2(m) =
√
m and c2,1(n) = 1. The computation of ηp,∆∗(xk; ∆k)

and dk is performed using the MATLAB function linprog.m.

- MS-P: Implementation of Manifold Sampling Primal [13], freely available on
GitHub4. The initial parameters are given in the file check inputs and initialize.m, while the outer
function h( · ) was provided by the file one norm.m.

- DFL1S: Implementation of the trust-region method in [11] adapted to the case h( · ) = ∥ · ∥1.
Data profiles are shown in Figure 1. As we can see, in this particular test set, TRFD-L1 outperforms
both MS-P and DFL1S, being able to solve a higher percentage of problems within the allowed
budget of 100(n+ 1) evaluations of F ( · ) across all the tolerances considered.
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Figure 1: Data profiles of TRFD-L1, MS-P and DFL1S on L1 problems

4https://github.com/POptUS/IBCDFO.
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4.2 Minimax problems

We also considered problems of the form

min
x∈Rn

max
i=1,...,m

{Fi(x)}.

We tested 43 functions F : Rn → Rm defined by Lukšan and Vlcek [16] and Di Pillo et al. [6], for
which 2 ≤ n ≤ 50 and 2 ≤ m ≤ 130. On these problems, the following codes were compared:

- TRFD-M Implementation of TRFD with p = 1 if
√
m < n, and p = ∞ if

√
m ≥ n. Parameters

are the same used in TRFD-L1, with constants Lh,1 = 1, Lh,∞ = 1, c1,2(m) =
√
m, c2,1(n) = 1,

c∞,2(m) = 1 and c2,∞(n) =
√
n. Subproblems are solved using the MATLAB function linprog.m.

- TRFD-M2 Implementation of TRFD with p = 2. Parameters are the same used in TRFD-L1,
with constants Lh,2 = 1, c2,2(m) = 1 and c2,2(n) = 1. Subproblems are solved using the MATLAB
function fmincon.m.

- MS-P: Implementation of Manifold Sampling Primal [13], with the outer function h( · ) provided
by the file pw maximum.

- DFMS: Implementation described in Section 7 of [11].

Figure 2 presents the data profiles comparing TRFD-M, MS-P and DFMS. As shown, TRFD-M and
MS-P exhibited similar performances and both outperformed DFMS across all tolerances considered.
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Figure 2: Data profiles of TRFD-M, MS-P and DFMS on Minimax problems
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We also compared TRFD-M2 against MS-P and TRFD-M. The data profiles are shown in Figure
3. For tolerances 10−3 and 10−5, TRFD-M2 performed slightly better than MS-P and TRFD-M.
However, for tolerance 10−7, both MS-P and TRFD-M outperformed TRFD-M2.

0 20 40 60 80 100

Number of simplex gradients

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

er
ce

nt
ag

e 
of

 p
ro

bl
em

s 
so

lv
ed

Tolerance 10-1

TRFD-M2
MS-P
TRFD-M

0 20 40 60 80 100

Number of simplex gradients

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e 

of
 p

ro
bl

em
s 

so
lv

ed

Tolerance 10-3

TRFD-M2
MS-P
TRFD-M

0 20 40 60 80 100

Number of simplex gradients

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e 

of
 p

ro
bl

em
s 

so
lv

ed

Tolerance 10-5

TRFD-M2
MS-P
TRFD-M

0 20 40 60 80 100

Number of simplex gradients

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e 

of
 p

ro
bl

em
s 

so
lv

ed

Tolerance 10-7

TRFD-M2
MS-P
TRFD-M

Figure 3: Data profiles of TRFD-M2, MS-P and TRFD-M on Minimax problems

5 Conclusion

In this paper, we introduced TRFD, a derivative-free trust-region method for minimizing composite
functions of the form f(x) = h(F (x)) over a convex set Ω. In the proposed method, trial points
are obtained by minimizing models of the form h(Mk(xk + d)) subject to the constraints ∥d∥p ≤ ∆k

and xk + d ∈ Ω. Unlike existing model-based derivative-free methods for composite nonsmooth
optimization, in which Mk(xk + d) is built as a linear or quadratic interpolation model of F around
xk, TRFD employs Mk(xk + d) = F (xk)+Akd, where Ak is an approximation for the Jacobian of F
at xk, constructed using finite differences defined by a stepsize τk. Special rules for updating τk and
∆k allowed us to establish improved evaluation complexity bounds for TRFD in the nonconvex case.
In particular, for L1 and Minimax problems, we proved that TRFD with p = 1 and p = 2 requires no
more than O(nϵ−2) evaluations of F ( · ) to find an ϵ-approximate stationary point. Moreover, under
the assumptions that h( · ) is monotone and that the components of F ( · ) are convex, we established a
complexity bound for the number of evaluations of F ( · ) that TRFD requires to find an ϵ-approximate
minimizer of f( · ) on Ω. For Minimax problems, our bound reduces to O(nϵ−1) when we use p = 1
or p = 2 in TRFD. We concluded by presenting numerical results comparing implementations of
TRFD against two model-based derivative-free trust-region methods, namely, Manifold Sampling
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[13] and the derivative-free method from [11]. For L1 problems, TRFD outperformed the other two
solvers, while for Minimax problems, TRFD demonstrated a competitive performance with Manifold
Sampling.
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