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Abstract

Bilevel optimization has recently attracted considerable attention due to its abundant applications in
machine learning problems. However, existing methods rely on prior knowledge of problem parameters to
determine stepsizes, resulting in significant effort in tuning stepsizes when these parameters are unknown.
In this paper, we propose two novel tuning-free algorithms, D-TFBO and S-TFBO. D-TFBO employs a
double-loop structure with stepsizes adaptively adjusted by the "inverse of cumulative gradient norms"
strategy. S-TFBO features a simpler fully single-loop structure that updates three variables simultaneously
with a theory-motivated joint design of adaptive stepsizes for all variables. We provide a comprehensive
convergence analysis for both algorithms and show that D-TFBO and S-TFBO respectively require O( 1ϵ )
and O( 1ϵ log

4( 1ϵ )) iterations to find an ϵ-accurate stationary point, (nearly) matching their well-tuned
counterparts using the information of problem parameters. Experiments on various problems show that
our methods achieve performance comparable to existing well-tuned approaches, while being more robust
to the selection of initial stepsizes. To the best of our knowledge, our methods are the first to completely
eliminate the need for stepsize tuning, while achieving theoretical guarantees.

1 Introduction

Bilevel optimization has gained considerable attention recently due to its widespread use in various machine
learning applications, such as meta-learning [23, 7, 66], hyperparameter optimization [73, 20], reinforcement
learning [40, 32], robotics [82], communication [37] and federated learning [78]. In this paper, we study a
standard bilevel optimization problem that takes the following mathematical formulation:

min
x∈Rdx

Φ(x) := f
(
x, y∗(x)

)
s.t. y∗(x) = arg min

y∈Rdy
g(x, y), (1)
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where f and g are jointly continuously differentiable outer (upper-level) and inner (lower-level) functions. In
this paper, we focus on the nonconvex-strongly-convex setting, where the lower-level function g is strongly
convex w.r.t. y and the outer function Φ(x) is possibly nonconvex.

Recent years have witnessed the rapid development of bilevel optimization algorithms, which can be
categorized into approximate implicit differentiation (AID) [36, 14] based, iterative differentiation (ITD) [35,
27] based, and value-function based [41, 48] approaches. However, these methods often require substantial
effort to tune a couple of hyperparameters like stepsizes, which typically depend on unknown problem
parameters (such as Lipschitzness parameters, strong convexity parameters, and optimal function values).
This emphasizes the importance of adaptive and tuning-free methods in bilevel optimization. In this paper,
an algorithm is considered tuning-free if it does not need to know the problem parameters in advance but can
still achieve almost the same convergence rate guarantee as its well-tuned counterpart using this information.
Despite several recent efforts to reduce dependence on problem-specific parameters [19, 2], developing
a fully tuning-free bilevel optimization algorithm remains an open challenge. For instance, [19] utilizes
Polyak’s stepsizes to automate both inner and outer updates but still requires information such as gradient
Lipschitzness parameters and optimal lower-level function values. Similarly, [1] introduces an "on-the-fly"
accumulation strategy for (hyper)gradient norms, which removes the reliance on inner and outer gradient
Lipschitzness parameters but still depends on the strong convexity parameter for the inner AdaNGD-type
updates.

This paper aims to close this gap by introducing two novel fully tuning-free bilevel optimization algorithms
named D-TFBO and S-TFBO (where D and S represent double- and single-loop approaches), along with
a comprehensive convergence analysis demonstrating their competitive performance compared to existing
well-tuned approaches (which tune their hyperparameters like stepsizes based on the problem parameters).
Our key contributions are outlined below.

• Our algorithms are inspired by the "inverse of cumulative gradient norms" strategy introduced by [86, 84],
adapting the stepsizes based on accumulated (hyper)gradient norms. D-TFBO utilizes two optimization
sub-loops: one for solving the inner problem and another for addressing a linear system (LS), which
approximates the Hessian-inverse-vector product of each hypergradient. Unlike previous approaches,
D-TFBO introduces cold-start adaptive stepsizes that accumulate gradients exclusively within the sub-
loops. This method establishes a tighter lower bound on stepsizes, improving gradient complexity. In
contrast, S-TFBO adopts a single-loop structure, where all variables are updated simultaneously in each
iteration. Rather than applying the "inverse of cumulative gradient norms" uniformly to all updates, our
error analysis motivates a joint design of adaptive stepsizes for y, v, and x, which correspond to solving
the inner problem, LS, and outer problem, respectively. For instance, the stepsize for v is coupled with
that for y, while the stepsize for x depends on both y and v.

• Compared to the well-tuned AID methods in [35], our D-TFBO method achieves the same O( 1
T )

convergence rate. Similarly, our S-TFBO method attains an Õ( 1
T ) convergence rate, matching that of

well-tuned counterparts, up to polylogarithmic factors. The complexity analysis shows that D-TFBO and
S-TFBO require O( 1

ϵ2
) and Õ(1ϵ ) gradient computations, respectively, to reach an ϵ-accurate stationary

point. This comparison differs from the observation in well-tuned bilevel optimization, where double-loop
approaches generally achieve lower gradient complexity than single-loop methods [35]. This is because
the inner tuning-free solver requires O(1ϵ ) more iterations than well-tuned methods to achieve ϵ-level
accuracy.

• The theoretical analysis is inspired by the two-stage framework in [86, 84], where the stages describe the
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relationship between the stepsizes and certain constants that depend on the problem parameters. However,
exploring this technical framework in bilevel problems is far more challenging because the stages for
analyzing each stepsize interact with those for other stepsizes, resulting in intertwined multi-stage
dynamics across different variables. For instance, the error analysis for the updates on v must account
for the accumulated gradient norms from the updates on y. This motivates us to couple the stepsize for
v with the adaptive stepsize for y to prevent the propagation of accumulated errors. In addition, our
analysis requires establishing precise upper and lower bounds for all stepsizes to ensure convergence
results that match those achieved under well-tuned stepsizes.

• We validate the effectiveness of our methods through experiments on regularization selection, data
hyper-cleaning, and coreset selection for continual learning. The results show that our methods per-
form comparably to existing well-tuned methods. More importantly, our methods demonstrate greater
robustness to different initial stepsizes, due to the tuning-free design.

2 Related Work

Bilevel Optimization. Bilevel optimization, initially introduced by [9], has been extensively studied for
decades. Early works [29, 75] approached the bilevel problem from a constrained optimization perspective.
More recently, gradient-based methods have gained significant attention for their efficiency and effectiveness.
Among these, Approximate Implicit Differentiation (AID) methods [17, 46, 36, 14] leverage the implicit
derivation of the hypergradient by approximating it through the solution of a linear system. In contrast,
Iterative Differentiation (ITD) methods [54, 22] estimate the hypergradient using automatic differentiation,
employing either forward or reverse mode. Recently, a range of stochastic bilevel methods have been
developed and analyzed, using techniques such as Neumann series [12, 36], recursive momentum [87, 28],
and variance reduction [87]. Another class of methods formulates the lower-level problem as a value-function-
based constraint [41, 83], enabling the solution of bilevel problems without the need for second-order
gradients. A more detailed discussion of related work can be found in the Appendix.
Adaptive and Tuning-free Algorithms. Adaptive gradient descent has achieved remarkable success and is
widely studied and applied in modern machine learning. Early adaptive algorithms trace back to line search
methods, such as backtracking [25], and Polyak’s stepsize [65], both of which have inspired numerous recent
variants [4, 6, 71, 81, 31, 51, 63]. To reduce the computational cost of line search and avoid the reliance
on an unknown optimal function value, the Barzilai-Borwein stepsize [5, 67, 15] was introduced, drawing
inspiration from quasi-Newton schemes. Normalized gradient descent [13, 61, 60] preserves the direction
of the gradient while ignoring its magnitude, removing the need for prior knowledge about the function.
[18] and [58] pioneered AdaGrad, an adaptive gradient-based method, which proved efficient in solving
online convex optimization problems. AdaGrad rapidly evolved for deep learning applications, giving rise to
numerous methods, including popular variants like Adam [16, 69, 53, 85], RMSprop [79], and Adadelta [89].
Specifically, normalized versions of AdaGrad, such as AdaNGDk [42], AcceleGrad [43], and AdaGrad-Norm
[84, 86], introduced adaptive stepsizes that require no problem-specific parameters, making them tuning-free
approaches. Recent work by [55] further established lower bounds for minimizing the deterministic gradient
l1-norm. Additional methods, such as Lipschitzness parameter approximation [56] and restart techniques
[57], have also been explored. A more comprehensive discussion refers to [38].
Adaptive and Tuning-free Bilevel Algorithms. Instead of focusing on single-level problems, [34] extended
Adam to bilevel optimization algorithms. [19] introduced adaptive stepsizes for bilevel problems, based
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on Polyak’s stepsize and line search techniques. Most recently, [2] proposed a novel framework that
applies adaptive normalized gradient descent to the strongly convex inner problem and AdaGrad-Norm
to the nonconvex outer problem, allowing the algorithm to update adaptively with fewer problem-specific
parameters.

3 Algorithm

3.1 Standard Bilevel Optimization

A key challenge in bilevel optimization is calculating the hypergradient ∇Φ(x), which, according to the
implicit function theorem, is given by:

∇Φ(x) = ∇xf
(
x, y∗(x)

)
−∇x∇yg

(
x, y∗(x)

)[
∇y∇yg

(
x, y∗(x)

)]−1∇yf
(
x, y∗(x)

)
,

when g is twice differentiable, ∇yg is continuously differentiable and the Hessian ∇y∇yg
(
x, y∗(x)

)
is

invertible. In practice, y∗(x) is not directly accessible, and one often use an iterative algorithm to obtain an
estimate ŷ instead. Since computing the Hessian inverse is prohibitively expensive, a more efficient way is to
approximate the Hessian-inverse-vector product in the above hypergradient∇Φ(x) by solving the following
linear system:

min
v

R(x, ŷ, v) =
1

2
vT∇y∇yg(x, ŷ)v − vT∇yf(x, ŷ). (2)

Similarly, an iterative algorithm is usually deployed to obtain an approximate solution v̂ of the problem in
eq. (2). Given the approximates ŷ and v̂, the variable x is then updated with a hypergradient estimate given by

∇̄f(x, ŷ, v̂) = ∇xf(x, ŷ)−∇x∇yg(x, ŷ)v̂. (3)

Standard bilevel optimization approaches select the stepsizes for updating y, v, and x based on problem-
specific parameters, such as Lipschitzness and strong convexity parameters [14, 36, 35]. However, these
parameters are often difficult to obtain or approximate in practice, leading to significant tuning efforts. This
challenge motivates the development of adaptive bilevel optimization algorithms that require less to no tuning.

3.2 Existing Adaptive Bilevel Optimization Methods

Among the existing adaptive bilevel methods, the most closely related to this work are [19] and [2]. [19]
utilizes Polyak’s stepsizes and a line search to automate the stepsizes for both inner and outer updates. [2]
applies AdaNGD [42] to solve the inner problem and updates x using the inverse of cumulative hypergradient
norms, where the hypergradient norms are approximated via gradient mapping [61] with Fenchel coupling
[59].

However, these methods are not entirely tuning-free. For instance, the initialization of Polyak’s stepsizes
in [19] depends on Lipschitzness parameters, strong convexity parameters, and the optimal lower-level
function values. While the line search approach in [19] bypasses the need for problem-specific parameters, it
lacks theoretical convergence guarantees. Similarly, [1] requires the strong convexity parameter for the inner
AdaNGD updates.
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Algorithm 1 Double-loop Tuning-Free Bilevel Optimizer (D-TFBO)
1: Input: initialization x0, y0, v0, α0 > 0, β0 > 0, γ0 > 0, total iteration rounds T , and ϵy = ϵv = 1

T

2: for t = 0, 1, 2, ..., T − 1 do
3: p = 0, q = 0, set y0t = y

Pt−1

t−1 , v0t = v
Qt−1

t−1 if t > 0 and y0, v0 otherwise
4: while ∥∇yg(xt, y

p
t )∥2 > ϵy do

5: β2
p+1 = β2

p + ∥∇yg(xt, y
p
t )∥2, yp+1

t = ypt − 1
βp+1
∇yg(xt, y

p
t ), p = p+ 1

6: end while
7: Pt = p

8: while ∥∇vR(xt, y
Pt
t , vqt )∥2 > ϵv do

9: γ2
q+1 = γ2

q + ∥∇vR(xt, y
Pt
t , vqt )∥2, vq+1

t = vqt − 1
γq+1
∇vR(xt, y

Pt
t , vqt ), q = q + 1

10: end while
11: Qt = q

12: α2
t+1 = α2

t + ∥∇̄f(xt, y
Pt
t , vQt

t )∥2, xt+1 = xt − 1
αt+1
∇̄f(xt, y

Pt
t , vQt

t )

13: end for

3.3 Double-Loop Tuning-Free Bilevel Optimization- D-TFBO

As shown in Algorithm 1, our D-TFBO method follows a double-loop structure, where two sub-loops of
iterations are used to solve the lower-level and linear system problems. In the first sub-loop, we employ the
idea of "inverse of cumulative gradient norm" to design the adaptive updates as

yp+1
t ← ypt −

1

βp+1
∇yg(xt, y

p
t ), with β2

p+1 = β2
p + ∥∇yg(xt, y

p
t )∥2.

It can be seen from Algorithm 1 that our D-TFBO algorithm employs a stopping criterion based on the
gradient norm: ∥∇yg(xt, y

p
t )∥2 ≤ ϵy, where ϵy (defaulted to 1/T for convergence analysis) is independent

of problem parameters. The rationale behind this design is that if the stopping criterion is not met (i.e.,
∥∇yg(xt, y

p
t )∥2 > ϵy), the accumulation βp of gradient norms continues to increase. This increase causes the

stepsize 1
βp

to decrease to a value at which a descent in the optimality gap is guaranteed. A similar stopping
criterion applies to the updates of vqt when solving the linear system.

Notably, both sub-loops utilize warm-start variable values but reset the stepsizes at each iteration (cold-
start stepsizes). The warm-start variables ensure that the initial point is reasonably close to the optimal
solution, while the cold-start scheme guarantees stepsizes to achieve stronger lower bounds. Finally, the
update of xt is based on the accumulation of hypergradient estimates ∇̄f(xt, yPt

t , vQt
t ).

Remark 1 (Extension to a tunable version with problem-parameter-free tuning coefficients.). Although
Algorithm 1 is designed as a tuning-free method, a tunable version with the flexibility to preset hyperpa-
rameters can still achieve the same convergence rate and gradient complexity. The stepsizes for {x, y, v}
can be set as {ηx/αt, ηy/βp, ηv/γq} and the sub-loops stopping criteria can be set to {cy/T, cv/T}, where
{ηx, ηy, ηv, cy, cv} are configurable hyperparameters that are independent of the problem parameters such
as strong-convexity and Lipschitzness parameters.

3.4 Single-Loop Tuning-Free Bilevel Optimization- S-TFBO

The two sub-loops in D-TFBO may complicate the implementation, and increase the number of iterations to
meet the stopping criterion. In this section, we propose a much simpler fully single-loop tuning-free bilevel
optimization method named S-TFBO, as described in Algorithm 2.
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Algorithm 2 Single-loop Tuning-Free Bilevel Optimizer (S-TFBO)
1: Input: initialization x0, y0, v0, α0 ≥ 1, β0 > 0, γ0 > 0, number of iteration rounds T
2: for t = 0, 1, 2, ..., T − 1 do
3: β2

t+1 = β2
t + ∥∇yg(xt, yt)∥2

4: γ2
t+1 = γ2

t + ∥∇vR(xt, yt, vt)∥2
5: φt+1 = max{βt+1, γt+1}
6: α2

t+1 = α2
t + ∥∇̄f(xt, yt, vt)∥2

7: yt+1 = yt − 1
βt+1
∇yg(xt, yt)

8: vt+1 = vt − 1
φt+1
∇vR(xt, yt, vt)

9: xt+1 = xt − 1
αt+1φt+1

∇̄f(xt, yt, vt)

10: end for

The design of stepsizes in Algorithm 2 follows a similar idea in Algorithm 1. In each iteration t, we
update αt, βt, γt as accumulations of gradient norms of ∇̄f ,∇yg, and∇vR from the previous t−1 iterations.
We then update variables yt, vt and xt simultaneously with adaptive stepsizes

{
1
βt
, 1
max{βt,γt} ,

1
αtmax{βt,γt}

}
.

However, the stepsizes for v and x are not straightforward and require careful designs guided by our theoretical
analysis, as elaborated below.
Design of stepsize for vt. Instead of simply using 1

γt
, we introduce 1

φt
:= 1

max{βt,γt} as the stepsize. This
adjustment is necessary because∇vR(xt, yt, vt) involves the approximation error ∥yt − y∗(xt)∥2. Since this
error is proportional to ∥∇yg(xt, yt)∥2, using 1

βt
helps control this error and prevents it from exploding after

accumulation, as validated in our theoretical analysis later.
Design of stepsize for xt. Similarly, we use 1

αtφt
as the stepsize for updating xt, where the coupled factor

1
φt

is introduced to mitigate the approximation errors from the yt and vt updates, leading to a more stable
convergence.

Remark 2 (Extension to a tunable version with problem-parameter-free tuning coefficients.). Similarly
to Remark 1, Algorithm 2 can extend to a tunable version with the same convergence rate and gradient
complexity. The stepsizes for {x, y, v} can be set as {ηx/αtφt, ηy/βt, ηv/φt}, where {ηx, ηy, ηv} are
configurable hyperparameters that are independent of the problem parameters.

4 Theoretical Analysis

4.1 Technical Challenges

Compared to existing single-level tuning-free approaches, fully tuning-free bilevel optimization poses unique
challenges that have not been addressed well.

• Compared to single-level problems, bilevel problems involve interdependent variable updates, resulting
in more complex and interconnected stepsize designs.

• The stages for analyzing each stepsize interact with those of other stepsizes, leading to intertwined
multi-stage dynamics across various variables.

• The optimization error of each variable can accumulate (hyper)gradient norms from previous iterations
due to the adaptive stepsize designs, complicating the error analysis.
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In Section 4.2, we introduce the standard definitions and assumptions. Next, in Section 4.3 and 4.4, we
provide a detailed convergence analysis, explaining how we address the above challenges.

4.2 Assumptions and Definitions

We make the following definitions and assumptions for outer- and inner-objective functions, as also adopted
by [24, 12, 39].

Definition 1. A mapping f is L-Lipschitz continuous if ∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥ for ∀x1, x2.

Since the outer objective function Φ(x) is non-convex, we aim to find an ϵ-accurate stationary point, as
defined below.

Definition 2. An output x̄ of an algorithm is the ϵ-accurate stationary point of the objective function Φ(x) if
∥∇Φ(x̄)∥2 ≤ ϵ, where ϵ ∈ (0, 1).

Assumption 1. Functions f(x, y) and g(x, y) are twice continuously differentiable and g(x, y) is µ strongly
convex w.r.t. y, for x ∈ Rdx , y ∈ Rdy .

The following assumption imposes the Lipschitz continuity on the outer and inner functions and their
derivatives.

Assumption 2. Function f(x, y) is Lf,0-Lipschitz continuous; the gradients∇f(x, y) and∇g(x, y) are Lf,1

and Lg,1-Lipschitz continuous, respectively; the second-order gradients ∇x∇yg(x, y) and ∇y∇yg(x, y) are
Lg,2-Lipschitz continuous.

Rather than directly using the Lipschitz continuity parameters as bounds on gradients-which can cause
dimensional inconsistencies during logarithmic operations-we offer the following remark:

Remark 3. Assumption 2 indicates that there exist constants Cfx , Cfy , Cgxy and Cgyy such that ∥∇xf(x, y)∥ ≤
Cfx , ∥∇yf(x, y)∥ ≤ Cfy , ∥∇x∇yg(x, y)∥ ≤ Cgxy

and ∥∇y∇yg(x, y)∥ ≤ Cgyy
.

Assumption 3. There exists m ∈ R such that infxΦ(x) ≥ m.

Next, we present the main convergence theorems for Algorithm 1 and Algorithm 2, along with key
propositions that provide insights into these theorems. A proof sketch is provided in Appendix C.

4.3 Convergence and Complexity Analysis for Algorithm 1

Firstly, we explain the two-stage framework used in our analysis.

Proposition 1. Suppose the iteration rounds to update {x, y, v} are {T1, T2, T3} and {αt, βt, γt} are gener-
ated by Algorithm 1 or 2. For any Cα ≥ α0, Cβ ≥ β0, Cγ ≥ γ0, we have

(a) either αt ≤ Cα for any t ≤ T1, or ∃k1 ≤ T1 such that αk1 ≤ Cα, αk1+1 > Cα;

(b) either βt ≤ Cβ for any t ≤ T2, or ∃k2 ≤ T2 such that βk2 ≤ Cβ , βk2+1 > Cβ;

(c) either γt ≤ Cγ for any t ≤ T3, or ∃k3 ≤ T3 such that γk3 ≤ Cγ , γk3+1 > Cγ .
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The analysis for each stepsize is divided into two cases. Let us take (a) as an illustration example. Case
1: the accumulation αt of gradient norms is bounded by a constant Cα before the end of the iteration. In
this case, the average gradient norm square can be bound as C2

α
T1

, which decreases with T1. Case 2: the
accumulation αT1 exceeds Cα, and hence αt experiences two stages: in stage 1, αt ≤ Cα, and in stage 2,
αt > Cα. The error analysis for stage 1 is similar to that of case 1. In stage 2, the stepsizes are small enough
to show the gradient norm decreases via a descent lemma.

Proposition 2. Recall that for tth iteration, the sub-loops in Algorithm 1 aim to find yPt
t and vQt

t such that
∥∇yg(xt, y

Pt
t )∥2 ≤ ϵy and ∥∇vR(xt, y

Pt
t , vQt

t )∥2 ≤ ϵv. Under Assumptions 1, 2, we have
Pt ≤

log(C2
β/β

2
0)

log(1 + ϵy/C2
β)

+
βmax

µ
log
(L2

g,1(βmax − Cβ)

ϵy

)
,

Qt ≤
log(C2

γ/γ
2
0)

log(1 + ϵv/C2
γ)

+
γmax

µ
log
(C2

gyy(γmax − Cγ)

ϵv

)
,

where {Cβ, Cγ}, βmax, γmax are denied in eq. (5), eq. (22), eq. (29) in the Appendix, respectively.

Proposition 2 provides upper bounds on Pt and Qt, which correspond to the total numbers of iterations
of the two sub-loops. This result is the same as that of the standard AdaGrad-Norm in the strongly convex
setting [86]. For the sub-loop for y, in Case 1 above, the loop terminates within log(C2

β/β
2
0)/log(1 + ϵy/C

2
β)

steps; and in Case 2, it takes at most log(C2
β/β

2
0)/log(1 + ϵy/C

2
β) steps for stage 1 and it takes at most

βmax
µ log(L2

g,1(βmax − Cβ)/ϵy) steps for stage 2. For ϵy small enough, it can be seen that Pt takes an order of
1/ϵy, which is typically larger than those obtained with well-tuned stepsizes. Based on this proposition, we
can derive the following convergence results.

Theorem 1. Suppose Assumptions 1,2,3 are satisfied. By setting ϵy = 1/T and ϵv = 1/T , the iterates
generated by Algorithm 1 satisfy

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
c1(Cα + 2c1)

T
= O

( 1
T

)
,

where Cα and c1 are constants defined in eq. (5) and eq. (37), respectively.

Corollary 1. Under the same setting Theorem 1, to achieve an ϵ-accurate stationary point, Algorithm 1 needs
T = O(1/ϵ), {Pt, Qt} = O(1/ϵ), and the gradient complexity (i.e., the number of gradient evaluations) is
Gc(ϵ) = O(1/ϵ2).

Theorem 1 shows that the convergence rate of Algorithm 1 matches that of the standard double-loop
bilevel algorithms [36, 35]. According to Proposition 2, the sub-loops for updating y and v require O(1/ϵy)
iterations to ensure an ϵy-level approximation accuracy, which is worse than the O(1) results achieved by
well-tuned bilevel optimization methods. This is because more iterations are needed to ensure high accuracy
in both sub-loops, due to the lack of information about the Lipschitzness parameters and strong convexity
parameters. Consequently, the gradient complexity of our D-TFBO method is worse than those of well-tuned
double-loop methods by an order of 1/ϵ.
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4.4 Convergence and Complexity Analysis for Algorithm 2

Differently from D-TFBO that uses sub-loops to achieve high-accurate y and v iterates, the main challenge for
analyzing S-TFBO lies in dealing with the accumulated approximations errors for updating all variables over
iterations. In the following propositions, we will show how we upper-bound such cumulative approximation
errors and lower-bound the adaptive stepsizes.

First, we present a descent result for the objective function Φ(·).
Proposition 3. Under Assumptions 1, 2, for Algorithm 2, suppose the total iteration number is T . No matter
k1 in Proposition 1 exists or not, we always have

Φ(xt+1)− Φ(xt) ≤−
1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

2αt+1φt+1

(
1− LΦ

αt+1φt+1

)
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
+

L̄2

µ2

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1
.

If in addition, k1 in Proposition 1 exists, then for t ≥ k1, we further have

Φ(xt+1)− Φ(xt) ≤−
1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

4αt+1φt+1
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
+

L̄2

µ2

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1
,

where L̄ := max
{
2(C2

fy
L2
g,2/µ

2 + L2
f,1)

1
2 ,
√
2Cgyy

}
.

It can be seen from Proposition 1 that we derive two distinct forms of descent results for the objec-
tive function based on the relationship between αt+1 and Cα (whose form is specified in eq. (41) in the
appendix). Their key difference is that the second inequality is tighter for the case t ≥ k1 by eliminating
a term of LΦ

2α2
t+1φ

2
t+1
∥∇̄f(xt, yt, vt)∥2. Both upper bounds consist of two parts: (i) the approximation er-

rors O(∥∇yg(xt, yt)∥2 + ∥∇vR(xt, yt, vt)∥2)/(αt+1φt+1) induced by the updates on y and v; (ii) the descent
term −∥∇Φ(xt)∥2/(αt+1φt+1). It can be seen that there exists a trade-off: a smaller αtφt leads to a more
notable descent, but larger approximation errors. However, due to the lack of information about the problem
parameters, the value of αtφt remains unknown, making it infeasible to determine the optimal trade-off.
Instead, we adjust this trade-off based on an overall bound on the descent and approximation errors, derived
by telescoping all descent inequalities.

Next, we investigate the upper bounds on the summations of the positive error terms in Proposition 3.

Proposition 4. Under Assumptions 1, 2, for any 0 ≤ k0 < t, for the positive error terms in Proposition 3, we
have the upper bounds in terms of logarithmic functions as

t∑
k=k0

∥∇yg(xk, yk)∥2

βk+1
≤ a2 log(t+ 1) + b2,

t∑
k=k0

∥∇vR(xk, yk, vk)∥2

φk+1
≤ a3 log(t+ 1) + b3,

where a2, b2, a3, b3 are defined in eq. (75) in the Appendix.

Proposition 5. Under Assumptions 1, 2, 3, suppose the total iteration rounds is T . For any case in
Proposition 1, we have the upper-bound of φt and αt in Algorithm 2 as

φt ≤ a1 log(t) + b1, αt ≤Cα +
(
a4 log(t) + b4 + 4(Φ(x0)− inf

x
Φ(x))

)
φt,

where a1, b1 are defined in eq. (65) and a4, b4 are defined in eq. (79) in the Appendix.
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Proposition 4 provides the upper bounds on the accumulated positive error terms in Proposition 3, and
Proposition 5 shows that the cumulative gradient norms for all variables increase only logarithmically. By
rearranging the terms and taking the average, we have the upper bound for the average squared hypergradient
norm 1

T

∑T−1
t=0 ∥∇Φ(xt)∥2, establishing the final convergence rate of Algorithm 2, as shown in the following

theorem and corollary.

Theorem 2. Suppose Assumptions 1,2,3 are satisfied. The iterates generated by Algorithm 2 satisfy

1

T

T∑
t=0

∥∇Φ(xt)∥2 ≤
1

2T

[(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))2(
a1 log(T ) + b1

)2
+ Cα

(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))(
a1 log(T ) + b1

)]
= O

( log4(T )
T

)
,

where {Cα, a1, b1, a4, b4} = O(1) are defined in eq. (41), eq. (65), eq. (79) in the Appendix.

Corollary 2. Under the same setting Theorem 2, to achieve an ϵ-accurate stationary point, Algorithm 2
needs T = O

(
1
ϵ log

4(1ϵ )
)

and the gradient complexity is Gc(ϵ) = O
(
1
ϵ log

4(1ϵ )
)
.

Theorem 2 shows that the proposed Algorithm 2 achieves a convergence rate of O(log4(T )/T ) and
a gradient complexity of O

(
1
ϵ log

4(1ϵ )
)
, both of which nearly match the results in [35] of the standard

well-tuned bilevel optimization methods up to polylogarithmic factors.

Remark 4. Note that the difference of 1
ϵ in gradient complexity between double-loop and single-loop methods

has not been observed in previous works on well-tuned bilevel optimization. This difference stems from the
design of the sub-loops. In previous double-loop works, carefully selected stepsizes are used to ensure that the
iterates of each sub-loop converge linearly, up to an approximation error caused by the shift in x. However,
due to the precise control of stepsizes, tuning-free approaches can only guarantee a sub-linear convergence
for each sub-loop (as shown in Proposition 2).

5 Experiments
In this section, we evaluate the effectiveness of our proposed algorithm on practical applications including
regularization selection, data hyper-cleaning [22], and coreset selection for continual learning [30]. Our
implementation is based on the benchmark provided in [14] and [30], respectively. Please refer to Appendix B
for more details about practical implementation, experiment configurations, and additional plots.

5.1 Regularization Selection
The selection of regularization can be framed as a bilevel optimization problem, where the inner objective fo-
cuses on optimizing the model parameters θ on the training set ST = {(dtraini , ytraini )}1≤i≤n, while the outer
objective aims to determine the best regularization term λ on the validation set SV = {(dvalj , yvalj )}1≤j≤m.
Denote the model parameters by θ ∈ Rp and regularization term by λ ∈ Rp, then the outer and inner problems
can be formulated as

f(θ, λ) =
1

m

m∑
j=1

l
(
(dvalj , yvalj ), θ

)
; g(θ, λ) =

1

n

n∑
i=1

l
(
(dtraini , ytraini ), θ

)
+R(θ, λ),
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where the loss l((di, yi), θ) = log(1 + exp(−yid⊤i θ), and R(θ, λ) = 1
2

∑p
k=1 exp(λk)θ

2
k represents the

regularization, where each element θk is regularized with strength exp(λk). We compare our proposed
algorithm with benchmark bilevel algorithms including AmIGO [3], BSA [24], FSLA [45], MRBO [87],
SOBA [14], StocBiO [36], SUSTAIN [39], TTSA [33], VRBO [87] on the Covtype dataset. More details are
provided in Appendix B.
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Figure 1: Comparison with other bilevel methods. (a) Regularization selection on Covtype dataset. (b) Data
hyper-cleaning on MNIST dataset.

As shown in Figure 1(a), our D-TFBO achieves the fastest convergence rate, while S-TFBO converges
slightly more slowly but remains comparable to other well-tuned methods.

5.2 Data Hyper-Cleaning
The training set ST = {(dtraini , ytraini )}1≤i≤n have been corrupted in this scenario, where the label of a data
sample could be replaced by a random label with a certain probability p. It is important to note that we
do not have prior knowledge about which data samples have been corrupted. The objective is to develop a
model that can effectively fit the corrupted training set while performing well on the clean validation set
SV = {(dvalj , yvalj )}1≤j≤m. We conduct experiments on the MNIST dataset, where we aim to learn a set of
weights λ, one for each training sample, in addition to the model parameters θ. Hence, the outer and inner
problems are

f(θ, λ) =
1

m

m∑
j=1

l
(
(dvalj , yvalj ), θ

)
; g(θ, λ) =

1

n

n∑
i=1

σ(λi)l
(
(dtraini , ytraini ), θ

)
+ C∥θ∥2,

where σ(·) is sigmoid function, C is a regularization constant, and loss function l((di, yi), θ) = 1/(1 +

exp(−yid⊤i θ)). Ideally, we would like the weights to be 0 for the corrupted sample and 1 for the clean sample.
More details can be found in Appendix B. We compare the performance with other bilevel optimization meth-
ods including AmIGO [3], BSA [24], FSLA [45], MRBO [87], SOBA [14], StocBiO [36], SUSTAIN [39],
VRBO [87]. The results presented in Figure 1(b) demonstrate that our algorithms achieve a convergence rate
comparable to other baselines.
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Table 1: Results on Split CIFAR100. The best and second best results are in bold and underlined.

Method
Balanced Imbalanced

AT FGTT AT FGTT

k-means features 57.82±0.69 0.070±0.003 45.44±0.76 0.037±0.002
k-means embedding 59.77±0.24 0.061±0.001 43.91±0.15 0.044±0.001
Uniform Sampling 58.99±0.54 0.074±0.004 44.73±0.11 0.033±0.007
iCaRL 60.74±0.09 0.044±0.026 44.25±2.04 0.042±0.019
Grad Matching 59.17±0.38 0.067±0.003 45.44±0.64 0.038±0.001
GCR 58.73±0.43 0.073±0.013 44.48±0.05 0.035±0.005
Greedy Coreset 59.39±0.16 0.066±0.017 43.80±0.01 0.039±0.007
PBCS 55.64±2.26 0.062±0.001 39.87±1.12 0.076±0.011
BCSR 61.60±0.14 0.051±0.015 47.30±0.57 0.022±0.005

S-TFBO 58.90±0.75 0.046±0.009 45.78±0.70 0.036±0.005
D-TFBO 59.54±0.45 0.041±0.005 46.68±0.72 0.029±0.002

5.3 Coreset Selection for Continual Learning
Coreset selection aims to improve training efficiency by selecting a subset of the most informative data
samples, which can be used as an approximation of the entire dataset. Thus, the model that minimizes the
loss on the coreset can also minimize the loss on the entire dataset. Following the design in [30], we apply the
proposed algorithms to coreset selection for continual learning. The inner problem learns model parameters
θ, and the outer problem determines the distribution λ (0 ≤ λ(i) ≤ 1 and ∥λ∥1 = 1) over the entire dataset

f(θ, λ) =
n∑

i=1

li(θ) + CR(λ); g(θ, λ) =
n∑

i=1

λ(i)li(θ),

where n is the sample size, C is a constant, λ(i) is the i-th entry. R(λ) = −
∑K

i=1 E(λ + δz)[i] denotes
the smoothed top-K regularizer, where δ is a constant and z ∼ N (0, 1), λ[i] is the i-th largest component.
The regularizer encourages the distribution to have K non-zero entries, corresponding to the size of the
selected coreset. Following [90], we use the Split CIFAR100 dataset and conduct experiments in the balanced
and imbalanced scenarios. We compare the proposed algorithms with various methods, including k-means
features [62], k-means embedding [72], Uniform Sampling, iCaRL [68], Grad Matching [11], GCR [80],
Greedy Coreset [8], PBCS [90], and BCSR [30], with the last three being bilevel optimization-based methods.
We evaluate the performance using the average accuracy and forgetting measure across all tasks after learning
task T . The former is defined as AT = 1

T

∑T
i=1 aT,i, where aT,i is the test accuracy of the i-th task after

learning task T . The latter is defined as FGTT = 1
T

∑T
i=1[maxj∈1,··· ,T−1(aj,i − aT,i)]. The results are

shown in Table 1. Each experiment is repeated three times and the average is reported. It can be observed
that our D-TFBO achieves the best FGTT under the balanced setting and the second-best performance under
the imbalanced setting.
Sensitivity analysis w.r.t. different initial learning rates. The tuning-free design provides another benefit.
The proposed algorithms demonstrate more robustness compared to the [30]. We conduct a simple sensitivity
analysis under the balanced setting, regarding the learning rates in the inner and outer loops. Specifically, we
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Table 2: Experiment results of sensitivity analysis on Split CIFAR100. The initial values refer to the constant
learning rates in BCSR or α0,β0,γ0 in S-TFBO and D-TFBO.

Method initial = 2 initial = 4 initial = 6 initial = 8 Relative Average Change

BCSR 59.42 56.25 58.75 57.55 5.8%
S-TFBO 58.85 58.55 58.69 58.47 0.4%
D-TFBO 59.71 59.62 59.11 59.08 0.3%

set the initial learning rates in [30] and α0, β0, γ0 in S-TFBO and D-TFBO for the inner and outer loops to
{2, 4, 6, 8}, where the original values are set to 5. We run one experiment for each learning rate. Further,
we compare the changes in average accuracy AT . We also compute the average and report the relative
change compared to the results presented in Table 1. The code is available at https://github.com/
OptMN-Lab/tfbo.

6 Conclusion

We introduce two fully tuning-free bilevel optimization algorithms, D-TFBO and S-TFBO. Both methods
adaptively update stepsizes without requiring prior knowledge of problem parameters, while achieving
convergence rates comparable to their well-tuned counterparts. The experimental results show that our
tuning-free design performs comparably to existing well-tuned methods and is more robust to initial stepsizes.
We anticipate that the proposed algorithms and the developed analysis can be extended to the stochastic
setting, and the proposed algorithms may be applied to other applications such as meta-learning, few-shot
learning, and fair machine learning.
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Supplementary material

A Supplementary Related Work on Bilevel Optimization

Initially introduced by [9], bilevel optimization has been extensively studied for decades. Early works [29,
75, 26, 76] solved the bilevel problem from a constrained optimization perspective. More recently, gradient-
based bilevel methods have gained significant attention for their efficiency and effectiveness in addressing
machine learning problems. Among them, approaches based on Approximate Implicit Differentiation
(AID) [17, 46, 64, 52, 27, 36, 3, 33] exploit the implicit derivation of the hypergradient, approximating it by
solving a linear system.

On the other hand, approaches based on Iterative Differentiation (ITD) [54, 22, 21, 73, 27] estimate the
hypergradient by employing automatic differentiation, utilizing either forward or reverse mode.

A series of stochastic bilevel approaches has been developed and analyzed recently, utilizing Neumann
series [12, 36, 3], recursive momentum [87, 34, 28], and variance reduction [87, 14], etc. For the lower-level
problem with multiple solutions, several approaches were proposed based on upper- and lower-level gradient
aggregation [70, 50, 44], barrier types of regularization [48, 47], penalty-based formulations [74], primal-dual
techniques [77], and dynamic system-based methods [49]. Another class of approaches formulated the lower-
level problem as a value-function-based constraint [41, 83] to solve bilevel problems without second-order
gradients.

B Specifications of Experiments

B.1 Practical Implementation

For regularization selection and data hyper-cleaning, we use the benchmark provided in [14]. For coreset
selection, we use the codebase from [30]. We implement D-TFBO using “for loops” as an approximation,
since the magnitude of ∥∇vR(x, y, v)∥ in Algorithm 1 varies across different experiments. Specifically, the
number of loops for updating y and v in regularization selection and data hyper-cleaning are both set to 10,
while the numbers of loops for updating y and v in coreset selection are 5 and 3, respectively.
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Figure 2: Comparison of running time with other bilevel optimization methods.
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B.2 Configuration

We adopt the default configuration for regularization selection and data hyper-cleaning. The batch size is 64.
The maximum iterations are 2048 and 512, respectively. The data corruption ratio in hyper-cleaning is 0.1.
For coreset selection, we also use the default configuration except for the leaning rates, due to the tuning-free
design. The α0, β0, and γ0 values are set to 5.

B.3 Additional Results

For regularization and data hyper-cleaning, we also present the loss curves regarding running time in Figure 2.
Our methods exhibit a faster running time than other baselines on the Covtype dataset.

C Proof Sketch

The proofs of Propositions 1, 2, 3, 4 and 5 can be found in Lemma 4, 9, 11, 15,17, respectively. In this
section, we present a high level proof sketch that outlines the convergence and gradient complexity analysis
of Algorithm 1 and Algorithm 2, emphasizing the key challenges and our technical innovations.
Proof sketch of Algorithm 1:
Step 1: We first discuss the two-stage framework in our problem in Lemma 4 and we develop two forms of
descent lemma of the objective function in Lemma 7 based on the two stages of αt in Lemma 4.
Step 2: We developed upper bounds of αt under the two stages in Lemma 4.
Step 3: We provide the maximum iteration numbers for the sub-loops approximating y∗(xt) and v∗(xt).
Step 4: Combining the results in Step 1 and Step 2, we telescope and take the average of the inequalities in
the descent lemma of the objective function, then we obtain the convergence rate.
Step 5: Combining the maximum iteration numbers in Step 3 and convergence rate in Step 4, we obtain the
gradient computation complexity to find ϵ-stationary point. Then the proof is complete.
Proof sketch of Algorithm 2:
Step 1: We first discuss the two-stage framework in our problem in Lemma 4 and we develop two forms of
descent lemma of the objective function in Lemma 11 based on the two stages of αt in Lemma 4.
Step 2: We develop a rough upper bound of two important components in the descent lemma in Lemma 11:∑t

k=k2
∥∇yg(xk,yk)∥2

βk+1
and

∑t
k=k3

∥∇vR(xk,yk,vk)∥2
φk+1

, where k2 and k3 represents the second stage in Lemma 4.
Step 3: Following the results in Step 2 and the upper bound of vt in Lemma 10, we obtain a two-way
relationship between φt+1 and

∑t
k=0

∥∇̄f(xk,yk,vk)∥2
α2
k+1

, which further indicates the logarithmic upper bounds

of both terms in Lemma 15 and Lemma 16, respectively.
Step 4: Incorporating the results from Step 3 into the rough bounds from Step 2, we can also obtain the
logarithmic upper bounds of

∑t
k=k2

∥∇yg(xk,yk)∥2
βk+1

and
∑t

k=k3
∥∇vR(xk,yk,vk)∥2

φk+1
in Lemma 16.

Step 5: We rearrange the terms in Lemma 11 and incorporate in the results in Step 4, we obtain two forms of
the upper bound of αt in Lemma 17.
Step 6: Combining the results in Steps 3, 4, 5, we telescope and take the average of the inequalities in the
descent lemma of the objective function, then we obtain the convergence rate.
Step 7: Without sub-loops, via the convergence rate in Step 6, we can directly obtain the gradient computation
complexity to find ϵ-stationary point. Then the proof is complete.
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D Proofs of Preliminary Lemmas

Lemma 1 ([84] Lemma 3.2). For any non-negative a1, ..., aT , and a1 ≥ 1, we have

T∑
l=1

al∑l
i=1 ai

≤ log

(
T∑
l=1

al

)
+ 1. (4)

Lemma 2. Under Assumptions 1, 2, we have basic properties as follows:

(a) Φ(x) is LΦ-smooth w.r.t x, where LΦ :=
(
Lf,1 +

Lg,2Cfy

µ

)(
1 +

Cgxy

µ

)2
;

(b) y∗(x) is Ly-Lipschitz continuous w.r.t. x, where Ly :=
Cgxy

µ ;

(c) the gradient estimator ∇̄f(x, y, v) is (Lg,2∥v∥ + Lf,1) -Lipschitz continuous w.r.t. (x, y), and Lg,1-
Lipschitz continuous w.r.t. v;

(d) ∇̄f(x, y, v) can be bounded as ∥∇̄f(x, y, v)∥ ≤ Cgxy∥v∥+ Cfx .

Proof. The proof of (a) and (b) can refer to [24]. For (c), under Assumption 2, we have

∥∇̄f(x1, y1, v)− ∇̄f(x2, y2, v)∥ ≤∥∇x∇yg(x1, y1)−∇x∇yg(x2, y2)∥ · ∥v∥
+ ∥∇xf(x1, y1)−∇xf(x2, y2)∥
≤(Lg,2∥v∥+ Lf,1)(∥x1 − x2∥+ ∥y1 − y2∥)

∥∇̄f(x, y, v1)− ∇̄f(x, y, v2)∥ ≤∥∇x∇yg(x, y)∥ · ∥v1 − v2∥ ≤ Lg,1∥v1 − v2∥.

By Assumption 2 and Remark 3, we can easily prove (d) as

∥∇̄f(x, y, v)∥ ≤ ∥∇x∇yg(x, y)∥ · ∥v∥+ ∥∇xf(x, y)∥ ≤ Cgxy∥v∥+ Cfx .

Then the proof is complete.

Lemma 3. Under Assumptions 1, 2, we have basic properties of linear system function R in eq. (2) as
follows:

(a) R(x, y, v) is µ-strongly convex and Cgyy -smooth w.r.t. v;

(b) ∇vR(x, y, v) is (Lg,2∥v∥+ Lf,1)-Lipschitz continuous w.r.t. (x, y);

(c) ∇vR(x, y, v) can be bounded as ∥∇vR(x, y, v)∥ ≤ Cgyy∥v∥+ Cfy ;

(d) v∗(x) in eq. (2) can be bounded as ∥v∗(x)∥ ≤ Cfy

µ , and v̂∗(x, y) := argminv R(x, y, v) can also be

bounded as ∥v̂∗(x, y)∥ ≤ Cfy

µ ;

(e) v∗(x) is Lv-Lipschitz continuous w.r.t. x and v̂∗(x, y) is L̄v-Lipschitz continuous w.r.t. y, where
Lv :=

(
Lf,1

µ +
CfyLg,2

µ2

)
(1 + Ly) and L̄v :=

Lf,1

µ +
CfyLg,2

µ2 .
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Proof. First of all, since ∇v∇vR(x, y, v) = ∇y∇yg(x, y), we know µI ⪯ ∇y∇yg(x, y). Thus, according
to Assumptions1,2, we have

∥∇v∇vR(x, y, v1)−∇v∇vR(x, y, v2)∥ ≤ ∥∇y∇yg(x, y)∥∥v1 − v2∥ ≤ Cgyy∥v1 − v2∥.

Then (a) is proved. Next, by using Lipschitz continuity in Assumption 2, we have

∥∇vR(x1, y1, v)−∇vR(x2, y2, v)∥ ≤∥∇y∇yg(x1, y1)−∇y∇yg(x2, y2)∥ · ∥v∥
+ ∥∇yf(x1, y1)−∇yf(x2, y2)∥
≤(Lg,2∥v∥+ Lf,1)(∥x1 − x2∥+ ∥y1 − y2∥).

Then (b) is proved. By Assumption 2, we can easily prove (c) as

∥∇vR(x, y, v)∥ ≤ ∥∇y∇yg(x, y)∥ · ∥v∥+ ∥∇yf(x, y)∥ ≤ Cgyy∥v∥+ Cfy .

Next, for v̂∗(x, y), we have

∇vR
(
x, y, v̂∗(x, y)

)
= ∇y∇yg(x, y)v̂

∗(x, y)−∇yf(x, y) = 0,

which indicates that

∥v̂∗(x, y)∥ =
∥∥[∇y∇yg(x, y)

]−1∇yf(x, y)
∥∥ ≤ ∥∥[∇y∇yg(x, y)

]−1∥∥ · ∥∇yf(x, y))∥ ≤
Cfy

µ
.

Since v∗(x) is a special case as v∗(x) = v̂∗(x, y∗(x)), (d) is proved. The proof of the first part of (e) can
refer to Lemma 4 in [88]; for the second part, we have

∥v̂∗(x, y1)− v̂∗(x, y2)∥
=
∥∥[∇y∇yg(x, y1)]

−1∇yf(x, y1)− [∇y∇yg(x, y2)]
−1∇yf(x, y2)

∥∥
≤
∥∥[∇y∇yg(x, y1)]

−1
(
∇yf(x, y1)−∇yf(x, y2)

)∥∥
+
∥∥([∇y∇yg(x, y1)]

−1 − [∇y∇yg(x, y2)]
−1
)
∇yf(x, y2)

∥∥
≤Lf,1

µ
∥y1 − y2∥+ Cfy

∥∥([∇y∇yg(x, y1)]
−1
(
∇y∇yg(x, y2)−∇y∇yg(x, y1)

)
[∇y∇yg(x, y2)]

−1
)∥∥

≤
(
Lf,1

µ
+

CfyLg,2

µ2

)
∥y1 − y2∥.

Thus, the second part of (e) is proved and the proof of Lemma 3 is complete.

Lemma 4. Suppose the iteration rounds to update {x, y, v} are {T1, T2, T3} and {αt, βt, γt} are generated
by Algorithm 1 or 2. For any Cα ≥ α0, Cβ ≥ β0, Cγ ≥ γ0, we have

(a) either αt ≤ Cα for any t ≤ T1, or ∃k1 ≤ T1 such that αk1 ≤ Cα, αk1+1 > Cα;

(b) either βt ≤ Cβ for any t ≤ T2, or ∃k2 ≤ T2 such that βk2 ≤ Cβ , βk2+1 > Cβ;

(c) either γt ≤ Cγ for any t ≤ T3, or ∃k3 ≤ T3 such that γk3 ≤ Cγ , γk3+1 > Cγ .

Proof. The proof resembles the Lemma 4.1 in [84]. Here we only prove part (a), and the other two are similar.
Note that if αT1 > Cα, then there must exist k1 ≤ T1 such that αk1 ≤ Cα, αk1+1 > Cα, because Cα ≥ α0

and the sequence {αk} is monotonically increasing. Otherwise, we have αt ≤ αT1 ≤ Cα for any t ≤ T1.
This completes the proof of part (a).
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E Proof of Theorem 1

We define some notation for convenience before proving Theorem 1.

E.1 Notation

Here, we define the following constants as thresholds for parameters βp, γq, αt in Algorithm 1 as

Cα := max
{
2LΦ, α0

}
, Cβ := max

{
Lg,1, β0

}
, Cγ := max

{
Cgyy , γ0

}
. (5)

E.2 Proofs of Preliminary Lemmas

Lemma 5. Under Assumptions 1, 2, for any t ≥ 0 in Algorithm 1, we have

∥yPt
t − y∗(xt)∥2 ≤

ϵy
µ2

,
∥∥vQt

t − v̂∗(xt, y
Pt
t )
∥∥2 ≤ ϵv

µ2
,

where ϵy and ϵv are sub-loop stopping criteria in Algorithm 1.

Proof. For the kth iteration, according to the stop criteria of the sub-loops, we have

∥∇yg(xt, y
Pt
t )∥2 ≤ ϵy, ∥∇vR(xt, y

Pt
t , vQt

t )∥2 ≤ ϵv.

By using Assumptions 1,2, we have

∥yPt
t − y∗(xt)∥2 ≤

1

µ2

∥∥∇yg(xt, y
Pt
t )−∇yg

(
xt, y

∗(xt)
)∥∥2 ≤ ϵy

µ2
,∥∥vQt

t − v̂∗(xt, y
Pt
t )
∥∥2 ≤ 1

µ2

∥∥∇vR(xt, y
Pt
t , vQt

t )−∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2 ≤ ϵv

µ2
,

since ∥∇yg(xt, y
∗(xt))∥2 = 0 and

∥∥∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2 = 0. Thus, the proof is complete.

Lemma 6. Under Assumptions 1, 2, for any t ≥ 0 in Algorithm 1, we have ∥∇̄f(xt, yPt
t , vQt

t )∥2 ≤ C2
f ,

where Cf :=
(
2C2

gxy ϵv

µ2 +
4C2

gxy
C2

fy

µ2 + 4C2
fy

) 1
2 .

Proof. For the kth iteration, we have

∥∇̄f(xt, y
Pt
t , vQt

t )∥2

≤2
∥∥∇̄f(xt, y

Pt
t , vQt

t )− ∇̄f
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2 + 2

∥∥∇̄f(xt, y
Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2

=2
∥∥∇x∇yg(xt, y

Pt
t )
(
vQt

t − v̂∗(xt, y
Pt
t )
)∥∥2 + 2∥∇x∇yg(xt, y

Pt
t )v̂∗(xt, y

Pt
t )−∇yf(xt, y

Pt
t )∥2

≤2
∥∥∇x∇yg(xt, y

Pt
t )
∥∥2 · ∥vQt

t − v̂∗(xt, y
Pt
t )∥2 + 2∥∇x∇yg(xt, y

Pt
t )v̂∗(xt, y

Pt
t )−∇yf(xt, y

Pt
t )∥2

(a)

≤
2C2

gxy
ϵv

µ2
+

4C2
gxy

C2
fy

µ2
+ 4C2

fy ,

where (a) uses Assumption 1, Remark 3, Lemma 3 and Lemma 5. Then, the proof is complete.
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E.3 Descent in Objective Function

Lemma 7. Under Assumptions 1, 2, for Algorithm 1, suppose the total iteration number is T . No matter k1
in Lemma 4 exists or not, we always have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1
∥∇Φ(xt)∥2 −

1

2αt+1

(
1− LΦ

2αt+1

)
∥∇̄f(xt, yPt

t , vQt
t )∥2 + ϵ′

2αt+1
. (6)

If in addition, k1 in Lemma 4 exists, then for t ≥ k1, we further have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1
∥∇Φ(xt)∥2 −

1

4αt+1
∥∇̄f(xt, yPt

t , vQt
t )∥2 + ϵ′

2αt+1
, (7)

where ϵ′ := L̄2

µ2 (ϵy + ϵv) and L̄ := max
{
2
(C2

fy
L2
g,2

µ2 + L2
f,1 + C2

gyy L̄
2
v

) 1
2 ,
√
2Cgyy

}
.

Proof. From Lemma 2, we have Φ(x) is LΦ-smooth. So we can apply the descent lemma to Φ as

Φ(xt+1) ≤Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+
LΦ

2
∥xt+1 − xt∥2

=Φ(xt)−
1

αt+1

〈
∇Φ(xt), ∇̄f

(
xt, y

Pt
t , vQt

t

)〉
+

LΦ

2α2
t+1

∥∥∇̄f(xt, yPt
t , vQt

t

)∥∥2
=Φ(xt)−

1

2αt+1
∥∇Φ(x)∥2 − 1

2αt+1

∥∥∇̄f(xt, yPt
t , vQt

t

)∥∥2
+

1

2αt+1

∥∥∇Φ(xt)− ∇̄f(xt, yPt
t , vQt

t

)∥∥2 + LΦ

2α2
t+1

∥∥∇̄f(xt, yPt
t , vQt

t

)∥∥2, (8)

where the approximation error∥∥∇Φ(xt)− ∇̄f
(
xt, y

Pt
t , vQt

t

)∥∥2
=
∥∥∇̄f(xt, y

∗(xt), v
∗(xt)

)
− ∇̄f

(
xt, y

Pt
t , vQt

t

)∥∥2
≤2
∥∥∇̄f(xt, y

∗(xt), v
∗(xt)

)
− ∇̄f

(
xt, y

Pt
t , v∗(xt)

)∥∥2
+ 2
∥∥∇̄f(xt, y

Pt
t , v∗(xt)

)
− ∇̄f

(
xt, y

Pt
t , vQt

t

)∥∥2
≤4
∥∥∇y∇yg(xt, y

∗(xt))v
∗(xt)−∇y∇yg

(
xt, y

Pt
t

)
v∗(xt)

∥∥2
+ 4
∥∥∇yf

(
xt, y

∗(xt)
)
−∇yf(xt, y

Pt
t )
∥∥2 + 2

∥∥∇y∇yg(xt, y
Pt
t )
(
v∗(xt)− vQt

t

)∥∥2
(a)

≤4
(C2

fy
L2
g,2

µ2
+ L2

f,1

)
∥yPt

t − y∗(xt)∥2 + 2C2
gyy
∥vQt

t − v∗(xt)∥2

≤4
(C2

fy
L2
g,2

µ2
+ L2

f,1

)
∥yPt

t − y∗(xt)∥2 + 4C2
gyy
∥vQt

t − v̂∗(xt, y
Pt
t )∥2 + 4C2

gyy
∥v̂∗(xt, y

Pt
t )− v∗(xt)∥2

(b)

≤4

(
C2

fy
L2
g,2

µ2
+ L2

f,1 + C2
gyy

L̄2
v

)
∥yPt

t − y∗(xt)∥2 + 4C2
gyy
∥vQt

t − v̂∗(xt, y
Pt
t )∥2

≤L̄2
(
∥yPt

t − y∗(xt)∥2 + ∥vQt

t − v̂∗(xt, y
∗(xt))∥2

)
, (9)

where (a) uses Assumption 2, Remark 3 and Lemma 3; (b) uses v∗(xt) = v̂∗
(
xt, y

∗(xt)
)

and Lemma 3. By
using Lemma 5, we have ∥∥∇Φ(xt)− ∇̄f(xt, yPt

t , vQt
t

)∥∥2 ≤ L̄2

µ2
(ϵy + ϵv) =: ϵ′. (10)
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By plugging eq. (10) into eq. (8), we obtain (6).
Now if in addition, k1 in Lemma 4 exists, then for t ≥ k1, we have αt+1 > Cα ≥ 2LΦ. From (6) we can
immediately obtain (7). Thus, the proof is complete.

E.4 The bound of αt

Lemma 8. Under Assumptions 1, 2, 3, suppose the number of total iteration rounds in Algorithm 1 is T . If
there exists k1 ≤ T described in Lemma 4, we have

αt ≤Cα, t ≤ k1;

αt ≤Cα + 2c0 +
2tϵ′

α0
, t ≥ k1,

where we define

c0 := 2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

. (11)

When such k1 does not exist, we have αt ≤ Cα for any t ≤ T .

Proof. According to Lemma 4, the proof can be split into the following three cases.
Case 1: if αT ≤ Cα, for any t < T , we have the upper bound of αt+1 as αt+1 ≤ Cα.
Case 2: if αT > Cα, there exists k1 ≤ T described in Lemma 4. Then we have the upper bound of αt+1 as
αt+1 ≤ Cα for any t < k1.
Case 3: in the remaining proof, we only consider and explore the case k1 ≤ t ≤ T when αT > Cα.
From Lemma 7, for k ≥ k1, we have

Φ(xk+1) ≤Φ(xk)−
1

2αk+1
∥∇Φ(xk)∥2 −

1

4αk+1
∥∇̄f(xk, yPk

k , vQk
k )∥2 + ϵ′

2αk+1
,

which indicates that

∥∇̄f(xk, yPk
k , vQk

k )∥2

αk+1
≤ 4
(
Φ(xk)− Φ(xk+1)

)
+

2ϵ′

αk+1
.

By taking summation over k = k1, . . . , t, we have

t∑
k=k1

∥∇̄f(xk, yPk
k , vQk

k )∥2

αk+1
≤4

t∑
k=k1

(
Φ(xk)− Φ(xk+1)

)
+

t∑
k=k1

2ϵ′

αk+1

=4
(
Φ(xk1)− Φ(xt+1)

)
+

t∑
k=k1

2ϵ′

αk+1
. (12)

For Φ(xk1), by telescoping (6), we get

Φ(xk1) ≤Φ(x0) +
k1−1∑
k=0

LΦ

4α2
k+1

∥∇̄f(xk, yPk
k , vQk

k )∥2 +
k1−1∑
k=0

ϵ′

2αk+1
. (13)

26



Plugging eq. (13) into eq. (12), we obtain

t∑
k=k1

∥∇̄f(xk, y
Pk

k , vQk

k )∥2

αk+1
≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

k1−1∑
k=0

LΦ

α2
k+1

∥∇̄f(xk, y
Pk

k , vQk

k )∥2 +
t∑

k=0

2ϵ′

αk+1

≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦ

∑k1−1
k=0 ∥∇̄f(xk, y

Pk

k , vQk

k )∥2

α2
0

+

t∑
k=0

2ϵ′

αk+1

≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦα
2
k1

α2
0

+
2(t+ 1)ϵ′

α0

≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

α2
0

+
2(t+ 1)ϵ′

α0
. (14)

Inspired by [84] and using telescoping, we have

αt+1 =αt +
∥∇̄f(xt, yPt

t , vQt
t )∥2

αt+1 + αt

≤αt +
∥∇̄f(xt, yPt

t , vQt
t )∥2

αt+1

≤αk1 +
t∑

k=k1

∥∇̄f(xk, yPk
k , vQk

k )∥2

αk+1

≤Cα + 4
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

α2
0

+
2(t+ 1)ϵ′

α0
.

Thus, the proof is complete.

E.5 Convergence Analysis of Sub-loops

Lemma 9. Recall that for the tth iteration, the sub-loops in Algorithm 1 aim to find yPt
t and vQt

t such that
∥∇yg(xt, y

Pt
t )∥2 ≤ ϵy and ∥∇vR(xt, y

Pt
t , vQt

t )∥2 ≤ ϵv. Here we prove that

Pt ≤ P ′ :=
log(C2

β/β
2
0)

log(1 + ϵy/C2
β)

+
βmax

µ
log
(L2

g,1(βmax − Cβ)

ϵy

)
, (15a)

Qt ≤ Q′ :=
log(C2

γ/γ
2
0)

log(1 + ϵv/C2
γ)

+
γmax

µ
log
(C2

gyy(γmax − Cγ)

ϵv

)
, (15b)

where βmax := Cβ + Lg,1

(2ϵy
µ2 +

2C2
gxy

C2
f

µ2α2
0

+ 2 log(Cβ/β0) + 1
)

and γmax := Cγ + Cgyy

(2ϵy
µ2 +

8C2
fy

µ2 +

2 log(Cγ/γ0) + 1
)
.

Proof. The proof is split into the following two parts.
Part I: maximum number for convergence of g(xt, yPt

t ).
Inspired by [86], we split the analysis into the following two cases.
Case 1: k2 does not exist before we find Pt. This indicates βPt < Cβ . Referring to Lemma 2 in [86], we

have Pt <
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

and therefore the desired upper bound for Pt holds. This can be proved as follows. If
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Pt ≥
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

, we have the following result.

β2
Pt

=β2
Pt−1 + ∥∇yg(xt, y

Pt−1
t )∥2

=β2
Pt−1

(
1 +
∥∇yg(xt, y

Pt−1
t )∥2

β2
Pt−1

)
≥β2

0

Pt−1∏
p=0

(
1 +
∥∇yg(xt, y

p
t )∥2

β2
p

)
≥β2

0

(
1 +

ϵy
C2
β

)Pt

≥ C2
β. (16)

This contradicts βPt < Cβ .
Case 2: k2 exists and Pt ≥ k2. Here we have βk2 ≤ Cβ and βk2+1 > Cβ .

Firstly, we prove k2 ≤
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

. Similar to Case 1, if k2 >
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

, following eq. (16)by replacing

Pt with k2, we have

β2
k2 ≥ β2

0

(
1 +

ϵy
C2
β

)k2
> C2

β,

which contradicts βk2 ≤ Cβ .
Secondly, referring to Lemma 3 in [86], we have the bound of ∥yk2t − y∗(xt)∥2 as

∥yk2t − y∗(xt)∥2

=

∥∥∥∥yk2−1
t − ∇yg(xt, y

k2−1
t )

βk2
− y∗(xt)

∥∥∥∥2
=∥yk2−1

t − y∗(xt)∥2 +
∥∥∥∥∇yg(xt, y

k2
t )

βk2

∥∥∥∥2 − 2

〈
yk2−1
t − y∗(xt),

∇yg(xt, y
k2−1
t )

βk2

〉
(a)

≤∥yk2−1
t − y∗(xt)∥2 +

∥∥∥∥∇yg(xt, y
k2−1
t )

βk2

∥∥∥∥2 − 2

βk2Lg,1

∥∥∇yg(xt, y
k2−1
t )−∇yg

(
xt, y

∗(xt)
)∥∥2

≤∥yk2−1
t − y∗(xt)∥2 +

∥∇yg(xt, y
k2−1
t )∥2

β2
k2

≤∥y0t − y∗(xt)∥2 +
k2−1∑
p=0

∥∇yg(xt, y
p
t )∥2

β2
p+1

(b)

≤∥yPt−1

t−1 − y∗(xt)∥2 +
k2−1∑
p=0

∥∇yg(xt, y
p
t )∥2/β2

0∑p
k=0 ∥∇yg(xt, ykt )∥2/β2

0

(c)

≤2∥yPt−1

t−1 − y∗(xt−1)∥2 + 2∥y∗(xt−1)− y∗(xt)∥2 + log

( k2−1∑
p=0

∥∇yg(xt, y
p
t )∥2

β2
0

)
+ 1

(d)

≤ 2ϵy
µ2

+
2C2

gxy∥∇̄f(xt−1, y
Pt−1

t−1 , v
Qt−1

t−1 )∥2

µ2α2
t

+ log

( k2−1∑
p=0

∥∇yg(xt, y
p
t )∥2

β2
0

)
+ 1
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(e)

≤ 2ϵy
µ2

+
2C2

gxyC
2
f

µ2α2
0

+ 2 log(Cβ/β0) + 1, (17)

where (a) uses Assumptions 1,2; (b) refers to the warm start of y0t ; (c) uses Lemma 1; (d) uses Lemmas 2 and
5; (e) follows from Lemma 6 and βk2 ≤ Cβ .
Last, following [86], for all P > k2, we have the bound of ∥yPt − y∗(xt)∥2 as

∥yPt − y∗(xt)∥2 =∥yP−1
t − y∗(xt)∥2 +

∥∇yg(xt, y
P−1
t )∥2

β2
P

−
2
〈
yP−1
t − y∗(xt),∇yg(xt, y

P−1
t )

〉
βP

≤∥yP−1
t − y∗(xt)∥2 −

1

βP

(
2− Lg,1

βP

)〈
yP−1
t − y∗(xt),∇yg(xt, y

P−1
t )

〉
(a)

≤∥yP−1
t − y∗(xt)∥2 −

1

βP

〈
yP−1
t − y∗(xt),∇yg(xt, y

P−1
t )

〉
(b)

≤
(
1− µ

βP

)
∥yP−1

t − y∗(xt)∥2

(c)

≤e−µ(P−k2)/βP ∥yk2t − y∗(xt)∥2

(d)

≤e−µ(P−k2)/βP

(
2ϵy
µ2

+
2C2

gxyC
2
f

µ2α2
0

+ 2 log(Cβ/β0) + 1

)
, (18)

where (a) uses βP ≥ Cβ ≥ Lg,1; (b) uses Assumption 1; (c) follows from βP ≥ Cβ ≥ Lg,1 ≥ µ and
1−m ≤ e−m for 0 < m < 1; (d) refers to eq. (17). Inspired by Lemma 4 in [86], we have the upper-bound
of βP as

βP = βP−1 +
∥∇yg(xt, y

P−1
t )∥2

βP + βP−1
≤ βk2 +

P−1∑
p=k2

∥∇yg(xt, y
p
t )∥2

βp+1
. (19)

To further bound the last term of the right-hand side of eq. (19), using Assumption 2, we have the following
result:

∥yPt − y∗(xt)∥2

=∥yP−1
t − y∗(xt)∥2 +

∥∇yg(xt, y
P−1
t )∥2

β2
P

−
2
〈
yP−1
t − y∗(xt),∇yg(xt, y

P−1
t )

〉
βP

(a)

≤∥yP−1
t − y∗(xt)∥2 +

∥∇yg(xt, y
P−1
t )∥2

β2
P

− 2∥∇yg(xt, y
P−1
t )−∇yg(xt, y

∗(xt))∥2

βPLg,1

(b)

≤∥yP−1
t − y∗(xt)∥2 −

∥∇yg(xt, y
P−1
t )∥2

βPLg,1

≤∥yk2t − y∗(xt)∥2 −
P−1∑
p=k2

∥∇yg(xt, y
p
t )∥2

βp+1Lg,1
, (20)

where (a) uses Assumptions 1,2; (b) refers to βP ≥ Cβ ≥ Lg,1. By rearranging eq. (20) and using eq. (17),
we have

P−1∑
p=k2

∥∇yg(xt, y
p
t )∥2

βp+1
≤Lg,1

(
∥yk2t − y∗(xt)∥2 − ∥yPt − y∗(xt)∥2

)
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≤Lg,1∥yk2t − y∗(xt)∥2

≤Lg,1

(
2ϵy
µ2

+
2C2

gxyC
2
f

µ2α2
0

+ 2 log(Cβ/β0) + 1

)
. (21)

Plugging eq. (21) into eq. (19), we obtain the upper-bound of βP as

βP ≤ Cβ + Lg,1

(
2ϵy
µ2

+
2C2

gxyC
2
f

µ2α2
0

+ 2 log(Cβ/β0) + 1

)
=: βmax. (22)

Then, by plugging eq. (22) into eq. (18), we have the upper bound of ∥yPt − y∗(xt)∥2 as

∥yPt − y∗(xt)∥2 ≤ e−µ(P−k2)/βmax

(
2ϵy
µ2

+
2C2

gxyC
2
f

µ2α2
0

+ 2 log(Cβ/β0) + 1

)
. (23)

Recall we have the upper bound k2 ≤
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

. Note that P ′ defined in (15a) satisfies

P ′ ≥ k2 +
βmax

µ
log
(
L2
g,1(βmax − Cβ)/ϵy

)
.

By replacing P with P ′ in eq. (23), we have

∥∇yg(xt, y
P ′
t )∥2 ≤ L2

g,1∥yP
′

t − y∗(xt)∥2 ≤ e−µ(P ′−k2)/βmaxL2
g,1(βmax − Cβ) ≤ ϵy.

Therefore, Pt ≤ P ′ and this completes the proof of (15a).
Part II: maximum number for convergence of R(xt, y

Pt
t , vQt

t ).
Similarly to Part I, we split the analysis into the following two cases.

Case 1: k3 does not exist before we find Qt. This indicates γQt < Cγ . Then we have Qt <
log(C2

γ/γ
2
0)

log(1+ϵv/C2
γ)

.

Otherwise, if Qt ≥
log(C2

γ/γ
2
0)

log(1+ϵv/C2
γ)

, we have the following result.

γ2Qt
=γ2Qt−1 + ∥∇vR(xt, y

Pt
t , vQt−1

t )∥2

=γ2Qt−1

(
1 +
∥∇vR(xt, y

Pt
t , vQt−1

t )∥2

γ2Qt−1

)
≥γ20

Qt−1∏
q=0

(
1 +
∥∇vR(xt, y

Pt
t , vQt−1

t )∥2

γ2Qt−1

)
≥γ20

(
1 +

ϵv
C2
γ

)Qt

≥ C2
γ .

This contradicts γQt < Cγ .
Case 2: k3 exists and Qt ≥ k3. Here we have γk3 ≤ Cγ and γk3+1 > Cγ .

Firstly, we have k3 ≤
log(C2

γ/γ
2
0)

log(1+ϵv/C2
γ)

. Similar to Case 1, if k3 >
log(C2

γ/γ
2
0)

log(1+ϵv/C2
γ)

, following eq. (16), by replacing
Qt with k3, we have

γ2k3 ≥ γ20

(
1 +

ϵv
C2
γ

)k3
> C2

γ ,
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which contradicts γk3 ≤ Cγ .
Secondly, referring to Lemma 3 in [86], we have the bound of ∥vk3t − v∗(xt)∥2 as following:∥∥vk3t − v̂∗(xt, y

Pt
t )
∥∥2 =∥∥∥∥vk3−1

t − ∇vR(xt, y
Pt
t , vk3−1

t )

γk3
− v̂∗(xt, y

Pt
t )

∥∥∥∥2
=
∥∥vk3−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∥∥∥∇vR(xt, y

Pt
t , vk3−1

t )

γk3

∥∥∥∥2
− 2

γk3

〈
vk3−1
t − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vk3−1

t )
〉

(a)

≤
∥∥vk3−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∥∥∥∇vR(xt, y

Pt
t , vk3−1

t )

γk3

∥∥∥∥2
− 2

γk3Cgyy

∥∥∇vR(xt, y
Pt
t , vk3−1

t )−∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2

≤
∥∥vk3−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∥∥∥∇vR(xt, y

Pt
t , vk3−1

t )

γk3

∥∥∥∥2
≤
∥∥v0t − v̂∗(xt, y

Pt
t )
∥∥2 + k3−1∑

q=0

∥∥∥∥∇vR(xt, y
Pt
t , vqt )

γk3

∥∥∥∥2
(b)

≤
∥∥v0t − v̂∗(xt, y

Pt
t )
∥∥2 + k3−1∑

q=0

∥∇vR(xt, y
Pt
t , vqt )∥2/γ20∑q

k=0 ∥∇vR(xt, y
Pt
t , vkt )∥2/γ20

(c)

≤2
∥∥vPt−1

t−1 − v̂∗(xt−1, y
Pt−1

t−1 )
∥∥2 + 2

∥∥v̂∗(xt−1, y
Pt−1

t−1 )− v̂∗(xt, y
Pt
t )
∥∥2

+ log

( k3−1∑
q=0

∥∇vR(xt, y
Pt
t , vkt )∥2/γ20

)
+ 1

≤2
∥∥vPt−1

t−1 − v̂∗(xt−1, y
Pt−1

t−1 )
∥∥2 + 4

∥∥v̂∗(xt−1, y
Pt−1

t−1 )
∥∥2 + 4

∥∥v̂∗(xt, yPt
t )
∥∥2

+ log

( k3−1∑
q=0

∥∇vR(xt, y
Pt
t , vkt )∥2/γ20

)
+ 1

(d)

≤ 2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1, (24)

where (a) uses Lemma 3 and ∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)
= 0; (b) refers to the warm start of v0t ; (c) uses

Lemma 1; (d) follows from Lemma 3,5 and γk3 ≤ Cγ .
Last, similar to Part I, for all Q > k3, we explore the bound of ∥vQt − v∗(xt)∥2 as∥∥vQt − v̂∗(xt, y

Pt
t )
∥∥2

=
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∇vR(xt, y

Pt
t , vQ−1

t )∥2

γ2Q

−
2
〈
vQ−1
t − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vQ−1

t )
〉

γQ
(a)

≤
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 − 1

γQ

(
2−

Cgyy

γQ

)〈
vQ−1
t − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vQ−1

t )
〉
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(b)

≤
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 − 1

γQ

〈
vQ−1
t − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vQ−1

t )
〉

(c)

≤
(
1− µ

γQ

)∥∥vQ−1
t − v̂∗(xt, y

Pt
t )
∥∥2

(d)

≤e−µ(Q−k3)/γQ
∥∥vk3t − v̂∗(xt, y

Pt
t )
∥∥2

(e)

≤e−µ(Q−k3)/γQ
(2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1

)
, (25)

where (a) uses Lemma 3; (b) follows from γQ > Cγ ≥ Cgyy ; (c) uses ∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)
= 0 and

Lemma 3; (d) follows from γQ ≥ Cγ ≥ Cgyy ≥ µ and 1 −m ≤ e−m for 0 < m < 1; (e) uses eq. (24).
Similar to eq. (19), we have the upper-bound of γQ as

γQ = γQ−1 +
∥∇vR(xt, y

Pt
t , vQ−1

t )∥2

γQ + γQ−1
≤ γk3 +

Q−1∑
q=k3

∥∇vR(xt, y
Pt
t , vqt )∥2

γq+1
. (26)

To further bound the last term on the right-hand side of eq. (26), we can have the following result:

∥∥vQt − v̂∗(xt, y
Pt
t )
∥∥2 =∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∇vR(xt, y

Pt
t , vQ−1

t )∥2

γ2Q

−
2
〈
vQt − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vQ−1

t )
〉

γQ
(a)

≤
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∥∇vR(xt, y

Pt
t , vQ−1

t )∥2

γ2Q

−
2
∥∥∇vR(xt, y

Pt
t , vQ−1

t )−∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2

γQCgyy

(b)

≤
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 − ∥∥∇vR(xt, y

Pt
t , vQ−1

t )
∥∥2

γQCgyy

≤
∥∥vk3t − v̂∗(xt, y

Pt
t )
∥∥2 − Q−1∑

q=k3

∥∥∇vR(xt, y
Pt
t , vqt )

∥∥2
γq+1Cgyy

, (27)

where (a) uses Lemma 3; (b) refers to γQ ≥ Cγ ≥ Cgyy . By rearranging eq. (27) and using eq. (24), we have

Q−1∑
q=k3

∥∥∇vR(xt, y
Pt
t , vqt )

∥∥2
γq+1

≤Cgyy

(∥∥vk3t − v̂∗(xt, y
Pt
t )
∥∥2 − ∥∥vQt − v̂∗(xt, y

Pt
t )
∥∥2)

≤Cgyy

(
2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1

)
. (28)

Plugging eq. (23) into eq. (20), we obtain the upper-bound of γQ as

γQ ≤ Cγ + Cgyy

(
2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1

)
=: γmax. (29)
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Then, we have the upper bound of ∥vQt − v̂∗(xt, y
Pt
t )∥2 as

∥∥vQt − v̂∗(xt, y
Pt
t )
∥∥2 ≤ e−µ(Qt−k3)/γmax

(
2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1

)
. (30)

Recall we have the upper bound k3 ≤
log(C2

γ/γ
2
0)

log(1+ϵv/C2
γ)

. Note that Q′ defined in (15b) satisfies

Q′ ≥ k3 +
γmax

µ
log
(
C2
gyy(γmax − Cγ)/ϵv

)
.

By replacing Q with Q′ in eq. (30), we have

∥∇vR(xt, y
Pt
t , vQ

′

t )∥2 ≤ C2
gyy

∥∥vQ′

t − v̂∗(xt, y
Pt
t )
∥∥2 ≤ e−µ(Q′−k3)/γmax(γmax − Cγ) ≤ ϵv.

Therefore, Qt ≤ Q′ and this completes the proof of (15b). Thus, the proof is complete.

E.6 Proof of Theorem 1

Here we suppose the total iteration round is T . According to Lemma 4, the proof can be split into the
following two cases.
Case 1: k1 does not exist. Based on Lemma 4, we have αT ≤ Cα. Then by Lemma 7 we have

∥∇Φ(xt)∥2

αt+1
≤ 2
(
Φ(xt)− Φ(xt+1)

)
+

LΦ

2α2
t+1

∥∇̄f(xt, yPt
t , vQt

t )∥2 + ϵ′

αt+1
,

where ϵ′ is defined in Lemma 7. By taking the average, we have

1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αt+1
≤ 2

T

(
Φ(x0)− Φ(xT )

)
+

LΦ

2α2
0

1

T

T−1∑
t=0

∥∥∇̄f(xt, yPt
t , vQt

t )
∥∥2 + 1

T

T−1∑
t=0

ϵ′

αt+1

≤ 1

T

(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

ϵ′

α0
=

c0
T

+
ϵ′

α0
, (31)

where c0 is defined by eq. (11) in Lemma 8.
Case 2: k1 exists. For t < k1, according to Lemma 7, we still have

∥∇Φ(xt)∥2

αt+1
≤ 2
(
Φ(xt)− Φ(xt+1)

)
+

LΦ

2α2
t+1

∥∇̄f(xt, yPt
t , vQt

t )∥2 + ϵ′

αt+1
. (32)

For t ≥ k1, we have αt ≥ Cα. Using Lemma 7, we have

∥∇Φ(xt)∥2

αt+1
≤ 2
(
Φ(xt)− Φ(xt+1)

)
+

ϵ′

αt+1
. (33)

By merging eq. (32) and eq. (33), and taking an average from t = 0, ..., T − 1, we have

1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αt+1
=
1

T

k1−1∑
t=0

∥∇Φ(xt)∥2

αt+1
+

1

T

T−1∑
t=k1

∥∇Φ(xt)∥2

αt+1
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≤ 2

T

(
Φ(x0)− Φ(xT )

)
+

LΦ

2α2
0

1

T

k1−1∑
t=0

∥∥∇̄f(xt, yPt
t , vQt

t )
∥∥2 + 1

T

T−1∑
t=0

ϵ′

αt+1

≤ 1

T

(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

ϵ′

α0
=

c0
T

+
ϵ′

α0
, (34)

where c0 is defined in Lemma 8. This result is the same as eq. (31). Thus, for both Case 1 and Case 2, we
have

1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αT
≤ 1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αt+1
≤ 1

T

(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

ϵ′

α0
,

which indicates that

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
[
1

T

(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

ϵ′

α0

]
αT

(a)

≤ 1

T

[(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

Tϵ′

α0

]
×
[
Cα + 4

(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

α2
0

+
2Tϵ′

α0

]
, (35)

where (a) uses Lemma 8. To achieve the O(1/T ) convergence rate, we need ϵ′ = O(1/T ) in eq. (35). This
can be guaranteed by taking ϵy = 1/T and ϵv = 1/T , which implies (see Lemma 7)

ϵ′ =
1

T

[( 2

µ2

(Lg,2Cfy

µ
+ Lf,1

)
+ 1
)
L2
g,1L̄

2 +
2L̄2

µ2

]
. (36)

For symbol convenience, here we define

c1 := c0 +
1

α0

[( 2

µ2

(Lg,2Cfy

µ
+ Lf,1

)
+ 1
)
L2
g,1L̄

2 +
2L̄2

µ2

]
, (37)

where c0 is defined in eq. (11). Thus, we can obtain

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
c1(Cα + 2c1)

T
= O

( 1
T

)
.

Thus, Theorem 1 is proved.

E.7 Complexity Analysis of Algorithm 1 (Proof of Corollary 1)

Recall in Theorem 1, we take ϵy = 1/T , ϵv = 1/T , and we obtain

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
c1(Cα + 2c1)

T
.
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To achieve ϵ-accurate stationary point, we need

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
c1(Cα + 2c1)

T
≤ ϵ i.e., T = O(1/ϵ). (38)

Recall in Lemma 9, we have

Pt ≤
log(C2

β/β
2
0)

log(1 + ϵy/C2
β)

+
βmax

µ
log
(L2

g,1(βmax − Cβ)

ϵy

)
≤

log(C2
β/β

2
0)

log(1 + 1/C2
βT )

+
βmax

µ
log
(TL2

g,1(βmax − Cβ)

1

)
= O

(
1

log(1 + ϵ)
+ log

(1
ϵ

))
.

When ϵ is sufficiently small, we have

Pt = O
(

1

log(1 + ϵ)
+ log

(1
ϵ

))
= O

(
1

ϵ
+ log

(1
ϵ

))
= O(1/ϵ). (39)

Similarly, we have

Qt = O
(

1

log(1 + ϵ)
+ log

(1
ϵ

))
= O

(
1

ϵ
+ log

(1
ϵ

))
= O(1/ϵ). (40)

We denote Gc(ϵ) as the gradient complexity, then we have

Gc(ϵ) = T ·max
t
{Pt +Qt} = O(1/ϵ2).

Therefore Corollary 1 is proved.
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F Proof of Theorem 2

We define some notation for convenience before proving Theorem 2.

F.1 Notation

Below, we define several preset constants for notational convenience at their first use. We first define some
Lipschitzness parameters for Φ(x) as

LΦ :=
(
Lf,1 +

Lg,2Cfy

µ

)(
1 +

Cgxy

µ

)2
L̄ :=max

{
2
(C2

fy
L2
g,2

µ2
+ L2

f,1

) 1
2
,
√
2Cgyy

}
.

Next, we define the following constants as thresholds for parameters βk, γk, αk as

Cα :=max
{2LΦ

φ0
, α0

}
,

Cβ :=max
{
µ+ Lg,1,

2µLg,1

µ+ Lg,1
, β0, 64a

2
0, 1
}
,

Cγ :=max
{
2(µ+ Cgyy),

µCgyy

µ+ Cgyy

, γ0, 64a
2
0, 1, Cgyy

}
,

Cφ :=Cβ + Cγ , (41)

where the constant α0 is defined as

a0 :=
((4(µ+ Cgyy

)2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1
) (µ+ Lg,1)

2L2
y

µLg,1Cβ

+
4(µ+ Cgyy

)(µ+ Lg,1)L
2
y

µ3Lg,1φ0

(Lg,2Cfy

µ
+ Lf,1

)2
+

4(µ+ Cgyy
)2L2

v

µCgyy
γ0

.

F.2 A rough bound of vk

Lemma 10. Under Assumptions 1, 2, for any t ≥ 0 in Algorithm 2, we have ∥vt∥ ≤
√
2
µ φt+1 +

√
2Cfy

µ

√
t.

Proof. By strong convexity of g in Assumption 1, we have

t∑
k=1

µ2∥vk∥2 ≤
t∑

k=1

∥∇y∇yg(xk, yk)vk∥2

≤
t∑

k=1

2∥∇y∇yg(xk, yk)vk −∇yf(xk, yk)∥2 +
t∑

k=1

2∥∇yf(xk, yk)∥2

=

t∑
k=1

2∥∇vR(xk, yk, vk)∥2 +
t∑

k=1

2∥∇yf(xk, yk)∥2

≤2γ2t+1 + 2tC2
fy ,
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which indicates that for any t ≥ 0, ∥vt∥ can be bounded as

∥vt∥ ≤
(
2γ2t+1 + 2tC2

fy

) 1
2

µ
≤
(
2φ2

t+1 + 2tC2
fy

) 1
2

µ
≤
√
2
(
φt+1 +

√
tCfy

)
µ

. (42)

Then the proof is complete.

F.3 Descent in Objective Function

Lemma 11. Under Assumptions 1, 2, for Algorithm 2, suppose the total iteration number is T . No matter k1
in Lemma 4 exists or not, we always have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

2αt+1φt+1

(
1− LΦ

αt+1φt+1

)
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
+

L̄2

µ2

∥∥∇vR(xt, yt, vt)
∥∥2

αt+1φt+1
. (43)

If in addition, k1 in Lemma 4 exists, then for t ≥ k1, we further have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

4αt+1φt+1
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
+

L̄2

µ2

∥∥∇vR(xt, yt, vt)
∥∥2

αt+1φt+1
, (44)

where L̄ := max
{
2
(C2

fy
L2
g,2

µ2 + L2
f,1

) 1
2 ,
√
2Cgyy

}
.

Proof. From Lemma 2, we have Φ(x) is LΦ-smooth. So we can apply the descent lemma to Φ as

Φ(xt+1) ≤Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+
LΦ

2
∥xt+1 − xt∥2

=Φ(xt)−
1

αt+1φt+1
⟨∇Φ(xt), ∇̄f(xt, yt, vt)⟩+

LΦ

2α2
t+1φ

2
t+1

∥∇̄f(xt, yt, vt)∥2

=Φ(xt)−
1

2αt+1φt+1
∥∇Φ(x)∥2 − 1

2αt+1φt+1
∥∇̄f(xt, yt, vt)∥2

+
1

2αt+1φt+1
∥∇Φ(xt)− ∇̄f(xt, yt, vt)∥2 +

LΦ

2α2
t+1φ

2
t+1

∥∇̄f(xt, yt, vt)∥2, (45)

and the approximation error

∥∇Φ(xt)− ∇̄f(xt, yt, vt)∥2

=
∥∥∇̄f(xt, y∗(xt), v∗(xt))− ∇̄f(xt, yt, vt)∥∥2
≤2
∥∥∇̄f(xt, y∗(xt), v∗(xt))− ∇̄f(xt, yt, v∗(xt))∥∥2 + 2

∥∥∇̄f(xt, yt, v∗(xt))− ∇̄f(xt, yt, vt)∥∥2
≤4
∥∥∇y∇yg

(
xt, y

∗(xt)
)
v∗(xt)−∇y∇yg(xt, yt)v

∗(xt)
∥∥2

+ 4
∥∥∇yf

(
xt, y

∗(xt)
)
−∇yf(xt, yt)

∥∥2 + 2
∥∥∇y∇yg(xt, yt)

(
v∗(xt)− vt

)∥∥2
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≤4
(C2

fy
L2
g,2

µ2
+ L2

f,1

)
∥yt − y∗(xt)∥2 + 2C2

gyy∥vt − v∗(xt)∥2

≤L̄2
(
∥yt − y∗(xt)∥2 + ∥vt − v∗(xt)∥2

)
, (46)

where the third inequality used results from Lemma 3. By plugging eq. (46) into eq. (45), we have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

2αt+1φt+1

(
1− LΦ

αt+1φt+1

)
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2αt+1φt+1

(
∥yt − y∗(xt)∥2 + ∥vt − v∗(xt)∥2

)
. (47)

Note that g(x, y) is µ-strongly convex in y and R(x, y, v) is µ-strongly convex in v. So here we can bound
the approximation gaps ∥yt − y∗(xt)∥2 + ∥vt − v∗(xt)∥2 by ∥∇yg(xt, yt)∥2 and ∥∇vR(xt, yt, vt)∥2 as

∥yt−y∗(xt)∥2 + ∥vt − v∗(xt)∥2

(a)

≤ 1

µ2

∥∥∇yg(xt, yt)−∇yg
(
xt, y

∗(xt)
)∥∥2 + 1

µ2

∥∥∇vR(xt, yt, vt)−∇vR
(
xt, yt, v

∗(xt)
)∥∥2

(b)

≤ 1

µ2

∥∥∇yg(xt, yt)
∥∥2 + 2

µ2

∥∥∇vR(xt, yt, vt)∥2

+
2

µ2

∥∥∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)∥∥2
(c)

≤ 1

µ2

∥∥∇yg(xt, yt)
∥∥2 + 2

µ2

∥∥∇vR(xt, yt, vt)∥2 +
2

µ2

(
Lg,2Cfy

µ
+ Lf,1

)2

∥yt − y∗(xt)∥2

(d)

≤
[
1

µ2
+

2

µ4

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2 + 2

µ2

∥∥∇vR(xt, yt, vt)
∥∥2, (48)

where (a) and (d) use the strong convexity; (b) and (d) result from∇yg
(
x, y∗(x)

)
= 0 and∇vR

(
x, y∗(x), v∗(x)

)
=

0; (c) uses Lemma 3. By plugging eq. (48) into eq. (47), we obtain eq. (43).
Now if in addition, k1 in Lemma 4 exists, then for t ≥ k1, we have αt+1 > Cα ≥ 2LΦ/φ0. From (43) we
can immediately obtain (44). Thus, the proof is complete.

Note that to further explore the bounds of the right-hand side of eq. (43) and eq. (44) in the above lemma, we
next show the (summed) bounds of ∥∇yg(xt,yt)∥2

βt+1
and ∥∇vR(xt,yt,vt)∥2

φt+1
.

Lemma 12. Under Assumptions 1, 2, for Algorithm 2, suppose the total iteration rounds is T . If k2 in
Lemma 4 exists within T iterations, for all integer t ∈ [k2, T ], we have

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
≤

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0
+

(µ+ Lg,1)
2L2

y

µLg,1

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

.

Proof. For k2 ≤ t < T , we have βk2 ≤ Cβ and βt+1 > Cβ . For any positive scalar λ̄t+1, using Young’s
inequality, we have

∥yt+1 − y∗(xt+1)∥2 ≤ (1 + λ̄t+1)∥yt+1 − y∗(xt)∥2 +
(
1 +

1

λ̄t+1

)
∥y∗(xt)− y∗(xt+1)∥2. (49)
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For the first term on the right hand side of eq. (49), we have

∥yt+1 − y∗(xt)∥2

=
∥∥∥yt − 1

βt+1
∇yg(xt, yt)− y∗(xt)

∥∥∥2
=∥yt − y∗(xt)∥2 +

1

β2
t+1

∥∇yg(xt, yt)∥2 −
2

βt+1

〈
yt − y∗(xt),∇yg(xt, yt)

〉
(a)

≤
(
1− 2µLg,1

βt+1(µ+ Lg,1)

)
∥yt − y∗(xt)∥2 +

1

βt+1

(
1

βt+1
− 2

µ+ Lg,1

)
∥∇yg(xt, yt)∥2

(b)

≤
(
1− 2µLg,1

βt+1(µ+ Lg,1)

)
∥yt − y∗(xt)∥2 −

1

βt+1(µ+ Lg,1)
∥∇yg(xt, yt)∥2, (50)

where (a) uses Lemma 3.11 in [10]; (b) follows from βt+1 ≥ Cβ ≥ µ + Lg,1. By plugging eq. (50) into
eq. (49), we have

∥yt+1 − y∗(xt+1)∥2

≤(1 + λ̄t+1)

(
1− 2µLg,1

βt+1(µ+ Lg,1)

)
∥yt − y∗(xt)∥2 − (1 + λ̄t+1)

1

βt+1(µ+ Lg,1)
∥∇yg(xt, yt)∥2

+
(
1 +

1

λ̄t+1

)
∥y∗(xt)− y∗(xt+1)∥2. (51)

By rearranging the terms in eq. (51), we have

(1+λ̄t+1)
1

βt+1(µ+ Lg,1)
∥∇yg(xt, yt)∥2

≤(1 + λ̄t+1)

(
1− 2µLg,1

βt+1(µ+ Lg,1)

)
∥yt − y∗(xt)∥2 − ∥yt+1 − y∗(xt+1)∥2

+
(
1 +

1

λ̄t+1

)
∥y∗(xt)− y∗(xt+1)∥2.

We take λ̄t+1 :=
2µLg,1

βt+1(µ+Lg,1)
. Since βt+1 > Cβ ≥ 2µLg,1

µ+Lg,1
in eq. (41), we have λ̄t+1 ≤ 1. Then we have

∥∇yg(xt, yt)∥2

βt+1
≤(1 + λ̄t+1)

∥∇yg(xt, yt)∥2

βt+1

≤(µ+ Lg,1)
(
∥yt − y∗(xt)∥2 − ∥yt+1 − y∗(xt+1)∥2

)
+

2(µ+ Lg,1)

λ̄t+1
∥y∗(xt)− y∗(xt+1)∥2

=(µ+ Lg,1)
(
∥yt − y∗(xt)∥2 − ∥yt+1 − y∗(xt+1)∥2

)
+

(µ+ Lg,1)
2βt+1

µLg,1
∥y∗(xt)− y∗(xt+1)∥2

(a)

≤ (µ+ Lg,1)
(
∥yt − y∗(xt)∥2 − ∥yt+1 − y∗(xt+1)∥2

)
+

(µ+ Lg,1)
2L2

yβt+1

µLg,1
∥xt − xt+1∥2,
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where (a) uses Lemma 2. Summing the above inequality over k = k2, . . . , t, we have

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

≤
t∑

k=k2−1

∥∇yg(xk, yk)∥2

βk+1

≤(µ+ Lg,1)∥yk2−1 − y∗(xk2−1)∥2 +
(µ+ Lg,1)

2L2
y

µLg,1

t∑
k=k2−1

βk+1∥xk − xk+1∥2

(a)

≤ µ+ Lg,1

µ2

∥∥∇yg(xk2−1, yk2−1)−∇yg
(
xk2−1, y

∗(xk2−1)
)∥∥2

+
(µ+ Lg,1)

2L2
y

µLg,1

t∑
k=k2−1

βk+1

α2
k+1φ

2
k+1

∥∇̄f(xk, yk, vk)∥2

≤µ+ Lg,1

µ2
∥∇yg(xk2−1, yk2−1)∥2 +

(µ+ Lg,1)
2L2

y

µLg,1

t∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

(b)

≤
(µ+ Lg,1)C

2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1

t∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

(c)

≤
(µ+ Lg,1)C

2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0
+

(µ+ Lg,1)
2L2

y

µLg,1

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

, (52)

where (a) uses Assumption 1; (b) results from ∥∇yg(xk2−1, yk2−1)∥2 ≤ β2
k2
≤ C2

β; (c) denotes φ0 =

max{β0, γ0}. Then, the proof is complete.

Lemma 13. Under Assumptions 1, 2, for Algorithm 2, suppose the total iteration rounds is T . If k3 in
Lemma 4 exists within T iterations, for all integer t ∈ [k3, T ), we have

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤
4(µ+ Cgyy)C

2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy)C

2
γ

µ2

+
4(µ+ Cgyy)(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2 k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy)

2L2
v

µCgyyCγ

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+

(
4(µ+ Cgyy)

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1
.
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Proof. For k3 ≤ t < T , we have γt+1 > Cγ . For any positive scalar λ̂t+1, using Young’s inequality, we have

∥vt+1 − v∗(xt+1)∥2 ≤ (1 + λ̂t+1)∥vt+1 − v∗(xt)∥2 +
(
1 +

1

λ̂t+1

)
∥v∗(xt)− v∗(xt+1)∥2. (53)

For the first term on the right hand side of eq. (53), we have

∥vt+1 − v∗(xt)∥2

=
∥∥∥vt − 1

φt+1
∇vR(xt, yt, vt)− v∗(xt)

∥∥∥2
=∥vt − v∗(xt)∥2 +

1

φ2
t+1

∥∇vR(xt, yt, vt)∥2 −
2

φt+1

〈
vt − v∗(xt),∇vR(xt, yt, vt)

〉
. (54)

For the last term of the right-hand side of eq. (54), we have

−⟨vt − v∗(xt),∇vR(xt, yt, vt)
〉

=− ⟨vt − v∗(xt),∇vR(xt, yt, vt)−∇vR
(
xt, yt, v

∗(xt)
)〉

− ⟨vt − v∗(xt),∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)〉
(a)

≤ − 1

µ+ Cgyy

∥∥∇vR(xt, yt, vt)−∇vR
(
xt, yt, v

∗(xt)
)∥∥2 − µCgyy

µ+ Cgyy

∥vt − v∗(xt)∥2

+
µ+ Cgyy

2µCgyy

∥∥∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)∥∥2
+

µCgyy

2(µ+ Cgyy)
∥vt − v∗(xt)∥2

(b)

≤ − 1

2(µ+ Cgyy)
∥∇vR(xt, yt, vt)∥2 +

1

µ+ Cgyy

∥∇vR
(
xt, yt, v

∗(xt)
)
∥2

+
µ+ Cgyy

2µCgyy

∥∥∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)∥∥2
−

µCgyy

2(µ+ Cgyy)
∥vt − v∗(xt)∥2

(c)
= − 1

2(µ+ Cgyy)
∥∇vR(xt, yt, vt)∥2 −

µCgyy

2(µ+ Cgyy)
∥vt − v∗(xt)∥2

+

(
1

µ+ Cgyy

+
µ+ Cgyy

2µCgyy

)∥∥∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)∥∥2
(d)

≤ − 1

2(µ+ Cgyy)
∥∇vR(xt, yt, vt)∥2 −

µCgyy

2(µ+ Cgyy)
∥vt − v∗(xt)∥2

+

(
1

µ+ Cgyy

+
µ+ Cgyy

2µCgyy

)(
Lg,2∥v∗(xt)∥+ Lf,1

)2∥yt − y∗(xt)∥2

(e)

≤ − 1

2(µ+ Cgyy)
∥∇vR(xt, yt, vt)∥2 −

µCgyy

2(µ+ Cgyy)
∥vt − v∗(xt)∥2

+

(
1

µ+ Cgyy

+
µ+ Cgyy

2µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2

∥yt − y∗(xt)∥2, (55)
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where (a) follows from Lemma 3.11 in [10]; (b) uses −∥a− b∥2 ≤ −1
2∥a∥

2 + ∥b∥2 since ∥a− b+ b∥2 ≤
2∥a − b∥2 + 2∥b∥2; (c) uses ∇vR

(
xt, y

∗(xt), v
∗(xt)

)
= 0; (d) and (e) follow from Lemma 3. Plugging

eq. (55) into eq. (54), we have

∥vt+1 − v∗(xt)∥2

≤
(
1−

µCgyy

(µ+ Cgyy)φt+1

)
∥vt − v∗(xt)∥2 +

1

φt+1

(
1

φt+1
− 1

µ+ Cgyy

)∥∥∇vR
(
xt, yt, vt

)∥∥2
+

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2 1

φt+1
∥yt − y∗(xt)∥2

(a)

≤
(
1−

µCgyy

(µ+ Cgyy)φt+1

)
∥vt − v∗(xt)∥2 −

1

2(µ+ Cgyy)φt+1

∥∥∇vR
(
xt, yt, vt

)∥∥2
+

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2 1

φt+1
∥yt − y∗(xt)∥2, (56)

where (a) follows from φt+1 ≥ γt+1 ≥ Cγ ≥ 2(µ+ Cgyy). Combining eq. (56) with eq. (53), we have

∥vt+1 − v∗(xt+1)∥2

≤(1 + λ̂t+1)

(
1−

µCgyy

(µ+ Cgyy)φt+1

)
∥vt − v∗(xt)∥2

− (1 + λ̂t+1)
1

2(µ+ Cgyy)φt+1

∥∥∇vR
(
xt, yt, vt

)∥∥2
+ (1 + λ̂t+1)

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2 1

φt+1
∥yt − y∗(xt)∥2

+
(
1 +

1

λ̂t+1

)
∥v∗(xt)− v∗(xt+1)∥2. (57)

By rearranging the terms in eq. (57), we have

(1 + λ̂t+1)
1

2(µ+ Cgyy)φt+1

∥∥∇vR
(
xt, yt, vt

)∥∥2
≤(1 + λ̂t+1)

(
1−

µCgyy

(µ+ Cgyy)φt+1

)
∥vt − v∗(xt)∥2 − ∥vt+1 − v∗(xt+1)∥2

+ (1 + λ̂t+1)

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2 1

φt+1
∥yt − y∗(xt)∥2

+
(
1 +

1

λ̂t+1

)
∥v∗(xt)− v∗(xt+1)∥2. (58)

We now take λ̂t+1 :=
µCgyy

(µ+Cgyy )φt+1
. Since φt+1 ≥ γt+1 ≥ Cγ ≥

µCgyy

µ+Cgyy
in eq. (41), we have λ̂t+1 ≤ 1.

Then we get

∥∇vR(xt, yt, vt)∥2

φt+1
<(1 + λ̂t+1)

∥∇vR(xt, yt, vt)∥2

φt+1

(a)

≤2(µ+ Cgyy
)
(
∥vt − v∗(xt)∥2 − ∥vt+1 − v∗(xt+1)∥2

)
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+ 4(µ+ Cgyy
)

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2 ∥yt − y∗(xt)∥2

φt+1

+ 2(µ+ Cgyy
)

(
1 +

(µ+ Cgyy
)φt+1

µCgyy

)
L2
v∥xt − xt+1∥2

(b)

≤2(µ+ Cgyy
)
(
∥vt − v∗(xt)∥2 − ∥vt+1 − v∗(xt+1)∥2

)
+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 ∥yt − y∗(xt)∥2

φt+1

+
4(µ+ Cgyy

)2L2
vφt+1

µCgyy

∥xt − xt+1∥2, (59)

where (a) multiplies both sides of eq. (58) by 2(µ + Cgxy) and uses λ̂t+1 ≤ 1; (b) uses φt+1 ≥ γt+1 ≥
Cγ ≥

µCgyy

µ+Cgyy
. Take summation of eq. (59) and we have

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤
t∑

k=k3−1

∥∇vR(xk, yk, vk)∥2

φk+1

≤2(µ+ Cgyy
)∥vk3−1 − v∗(xk3−1)∥2 +

4(µ+ Cgyy )
2L2

v

µCgyy

t∑
k=k3−1

φk+1∥xk − xk+1∥2

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 t∑
k=k3−1

∥yk − y∗(xk)∥2

φk+1

≤2(µ+ Cgyy
)∥vk3−1 − v∗(xk3−1)∥2 +

4(µ+ Cgyy )
2L2

v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 t∑
k=k3−1

∥yk − y∗(xk)∥2

φk+1

≤2(µ+ Cgyy
)∥vk3−1 − v∗(xk3−1)∥2 +

4(µ+ Cgyy )
2L2

v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 t∑
k=k3−1

∥yk − y∗(xk)∥2

βk+1

(a)

≤2(µ+ Cgyy
)∥vk3−1 − v∗(xk3−1)∥2 +

4(µ+ Cgyy )
2L2

v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∥∇yg(xk, yk)−∇yg
(
xk, y

∗(xk)
)∥∥2

βk+1

(b)

≤2(µ+ Cgyy
)∥vk3−1 − v∗(xk3−1)∥2 +

4(µ+ Cgyy )
2L2

v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1
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(c)

≤
2(µ+ Cgyy

)

µ2

∥∥∇vR
(
xk3−1, yk3−1, vk3−1

)
−∇vR

(
xk3−1, yk3−1, v

∗(xk3−1)
)∥∥2

+
4(µ+ Cgyy )

2L2
v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1

(d)

≤
4(µ+ Cgyy )

µ2

∥∥∇vR
(
xk3−1, y

∗(xk3−1), v
∗(xk3−1)

)
−∇vR

(
xk3−1, yk3−1, v

∗(xk3−1)
)∥∥2

+
4(µ+ Cgyy

)

µ2

∥∥∇vR(xk3−1, yk3−1, vk3−1)−∇vR
(
xk3−1, y

∗(xk3−1), v
∗(xk3−1)

)∥∥2
+

4(µ+ Cgyy )
2L2

v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1

(e)

≤
4(µ+ Cgyy )

µ2

(
Lg,2Cfy

µ
+ Lf,1

)2

∥yk3−1 − y∗(xk3−1)∥2

+
4(µ+ Cgyy )

µ2
∥∇vR(xk3−1, yk3−1, vk3−1)∥2 +

4(µ+ Cgyy )
2L2

v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1
, (60)

where (a) uses Assumption 1; (b) results from∇yg
(
x, y∗(x)

)
= 0; (c) uses the strong convexity in Lemma 3;

(d) uses ∇vR
(
x, y∗(x), v∗(x)

)
= 0; (e) follows from Lemma 3.

Our next step is bounding ∥yk3−1 − y∗(xk3−1)∥2 on the right hand side of eq. (60) in two cases. The first
case is βk3 ≤ Cβ . In this case, by using strong convexity of g and the definition of βk3 , we can easily have

∥yk3−1 − y∗(xk3−1)∥2 ≤
1

µ2

∥∥∇yg
(
xk3−1, yk3−1)−∇yg(xk3−1, y

∗(xk3−1)
)∥∥2

=
1

µ2
∥∇yg(xk3−1, yk3−1))∥2 ≤

β2
k3

µ2
≤

C2
β

µ2
. (61)

The second case is βk3 > Cβ . This indicates that k2 exists and k3 > k2 based on Lemma 4. By plugging
λ̄k3−1 :=

2µLg,1

βk3−1(µ+Lg,1)
into eq. (51), and noting λ̄k3−1 ≤ 1, we have

∥yk3−1 − y∗(xk3−1)∥2 ≤∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)βk3−1

µLg,1
∥y∗(xk3−2)− y∗(xk3−1)∥2

(a)

≤∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)L

2
yβk3−1

µLg,1
∥xk3−2 − xk3−1∥2

=∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)L

2
yβk3−1

µLg,1

∥∇̄f(xk3−2, yk3−2, vk3−2)∥2

α2
k3−1φ

2
k3−1

≤∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)L

2
y

µLg,1

∥∇̄f(xk3−2, yk3−2, vk3−2)∥2

α2
k3−1φk3−1
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≤∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)L

2
y

µLg,1φ0

∥∇̄f(xk3−2, yk3−2, vk3−2)∥2

α2
k3−1

≤∥yk2−1 − y∗(xk2−1)∥2 +
(µ+ Lg,1)L

2
y

µLg,1φ0

k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

(b)

≤
C2

β

µ2
+

(µ+ Lg,1)L
2
y

µLg,1φ0

k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

, (62)

where (a) uses Lemma 2; (b) uses eq. (61) by replacing k3 by k2 since βk2 ≤ Cβ (see Lemma 4). By
combining eq. (61) and eq. (62), we obtain a general upper bound of ∥yk3−1 − y∗(xk3−1)∥2 as

∥yk3−1 − y∗(xk3−1)∥2 ≤
C2

β

µ2
+

(µ+ Lg,1)L
2
y

µLg,1φ0

k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

, (63)

where we define
∑n

k=m lk = 0 for any m > n and non-negative sequence {lk}. By plugging eq. (63) into
eq. (60) and using ∥∇vR(xk3−1, yk3−1, vk3−1)∥2 ≤ γ2k3 ≤ C2

γ , we have

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤
4(µ+ Cgyy)C

2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy)C

2
γ

µ2

+
4(µ+ Cgyy)(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2 k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy)

2L2
v

µCgyyCγ

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+

(
4(µ+ Cgyy)

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1
.

Then, the proof is complete.

Supported by Lemma 12 and Lemma 13, we derive upper bounds of βt and φt.

Lemma 14. Suppose the total iteration rounds of Algorithm 2 is T . Under Assumptions 1, 2, if k2 in Lemma 4
exists within T iterations, we have

βt+1 ≤Cβ , t < k2;

βt+1 ≤
(
Cβ +

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
+

(µ+ Lg,1)
2L2

y

µLg,1Cβ

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1

, t ≥ k2.

When such k2 does not exist, βt+1 ≤ Cβ holds for any t < T .

Proof. According to Lemma 4, the proof can be split into the following three cases.
Case 1: k2 does not exist: In this case, based on Lemma 4, we have βT ≤ Cβ , and hence βt+1 ≤ Cβ for any
t < T because βt is non-decreasing with t.
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Case 2: k2 exists and t < k2: In this case, based on Lemma 4, we have βt+1 ≤ Cβ .
Case 3: k2 exists and t ≥ k2: Inspired by [84] and using telescoping, we have

βt+1 =βt +
∥∇yg(xt, yt)∥2

βt+1 + βt

≤βt +
∥∇yg(xt, yt)∥2

βt+1

≤βk2 +
t∑

k=k2

∥∇yg(xk, yk)∥2

βk+1

(a)

≤
(
Cβ +

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
+

(µ+ Lg,1)
2L2

y

µLg,1Cβ

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1

, (64)

where (a) uses lemma 12. Thus, the proof is complete.

Lemma 15. Under Assumptions 1, 2, suppose the total iteration rounds of Algorithm 2 is T . If at least one of
k2 and k3 in Lemma 4 exists, we denote kmin := min{k2, k3}. Then we have the upper bound of φt as{

φt ≤Cφ, t ≤ kmin;

φt ≤a1 log(t) + b1, t > kmin,

where a1, b1 are defined as

a1 := 6a0, b1 := 4a0 log
(
1 +

Cgxy b̄+ Cfx + α0

Cgxy ā

)
+ 4a0 log(Cgxy ā) + 4a0 + 2b0, (65)

in which we define constants

ā :=

√
2

µ
, b̄ :=

√
2Cfy

µ
,

a0 :=

((4(µ+ Cgyy
)2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

)
(µ+ Lg,1)

2L2
y

µLg,1Cβ

+
4(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )

2L2
v

µCgyy
γ0

,

b0 :=Cβ + Cγ +
4(µ+ Cgyy )C

2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy

)C2
γ

µ2

+
(4(µ+ Cgyy

)2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2

(C2
β

β0
− β0

)
+

[(4(µ+ Cgyy )
2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

](
(µ+ Lg,1)C

2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
. (66)

When such k2 and k3 do not exist, we have φt ≤ Cφ for all t ≤ T .

Proof. To begin with, we first show the following result as the first two lines of eq. (64): since βt and γt are
positive and increasing monotonically with t, we can easily have

0 ≤min{β2
t+1, γ

2
t+1} −min{β2

t , γ
2
t }
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=
(
β2
t+1 + γ2t+1 −max{β2

t+1, γ
2
t+1}

)
−
(
β2
t + γ2t −max{β2

t , γ
2
t }
)

(a)
=(β2

t+1 + γ2t+1)− (β2
t + γ2t )− (φ2

t+1 − φ2
t ),

where (a) uses the definition φt := max{βt, γt}. Similar to eq. (64), we have

φ2
t+1 − φ2

t ≤(β2
t+1 − β2

t ) + (γ2t+1 − γ2t ) = ∥∇yg(xt, yt)∥2 + ∥∇vR(xt, yt, vt)∥2,

which indicates that

φt+1 ≤φt +
∥∇yg(xt, yt)∥2

φt+1 + φt
+
∥∇vR(xt, yt, vt)∥2

φt+1 + φt

≤φt +
∥∇yg(xt, yt)∥2

βt+1 + βt
+
∥∇vR(xt, yt, vt)∥2

φt+1

≤φt +
∥∇yg(xt, yt)∥2

βt+1
+
∥∇vR(xt, yt, vt)∥2

φt+1
. (67)

Note that, to simplify the proof, we define
∑n

k=m lk = 0 for any m > n and non-negative sequence {lk}.
According to the definitions of k2 and k3 in Lemma 4, the proof can be split into the following four cases.
Case 1: neither k2 nor k3 exists: for any t ∈ (0, T ), we can easily have φt = max{βt, γt} ≤ max{Cβ , Cγ} ≤
Cφ.
Case 2: k2 exists but k3 does not: by using the third line of eq. (64), for any t ∈ (0, T ), we have

φt+1 ≤ βt+1 + γt+1 ≤ Cβ +
t∑

k=k2

∥∇yg(xk, yk)∥2

βk+1
+ Cγ , (68)

where we take
∑t

k=k2
∥∇yg(xk,yk)∥2

βk+1
= 0 for any t < k2.

Case 3: k3 exists but k2 does not: from the second line of eq. (67), for any t ∈ (0, T ), we have

φt+1

(a)

≤φt +
∥∇yg(xt, yt)∥2

βt+1 + βt
+
∥∇vR(xt, yt, vt)∥2

φt+1

≤φk3 +
t∑

k=k3

∥∇yg(xk, yk)∥2

βk+1 + βk
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤βk3 + γk3 +

t∑
k=k3

∥∇yg(xk, yk)∥2

βk+1 + βk
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

(b)
=βt+1 + γk3 +

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤βt+1 + Cγ +

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤Cβ + Cγ +
t∑

k=k3

∥∇vR(xk, yk, vk)∥2

φk+1
, (69)
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where (a) uses the second line of eq. (67); and we take
∑t

k=k3
∥∇vR(xk,yk,vk)∥2

φk+1
= 0 for any t < k3; (b) uses

the first line of eq. (64).
Case 4: both k2 and k3 exist: from the third line of eq. (69), for any t ∈ (0, T ), we have

φt+1 ≤βk3 + γk3 +

t∑
k=k3

∥∇yg(xk, yk)∥2

βk+1
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

(a)

≤βk2 +

k3−1∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
+ Cγ +

t∑
k=k3

∥∇yg(xk, yk)∥2

βk+1
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

=Cβ + Cγ +

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1
, (70)

where (a) uses the third line of eq. (64); and we take
∑k3−1

k=k2

∥∇yg(xk,yk)∥2
βk+1

= 0 when k2 ≥ k3, and∑t
k=k2

∥∇yg(xk,yk)∥2
βk+1

= 0 for any t < k2 and
∑t

k=k3
∥∇vR(xk,yk,vk)∥2

γk+1
= 0 for any t < k3. It is easy to see

that the upper bound of φt+1 in eq. (70) is the largest among all cases. Thus, in the remaining proof, we only
explore the upper bound of φt in Case 4.
To further explore the bound of φt, we need to use some auxiliary results and bounds. So we split them into
three parts as follows.
Part I: an auxiliary bound of

∑ ∥∇̄f(xk,yk,vk)∥2
α2
k+1

.

To further explore Case 4, we begin with a common term
∑t

k=k0
∥∇̄f(xk,yk,vk)∥2

α2
k+1

for any k0 ≤ t. Recall in

Lemma 10, we have

∥vk∥ ≤
√
2

µ
φk+1 +

√
2Cfy

µ

√
k =: āφk+1 + b̄

√
k,

where ā and b̄ refer to eq. (66). According to Lemma 1, since α0 ≥ 1, for any integer t > 0, we have

t∑
k=k0

∥∇̄f(xk, yk, vk)∥2

α2
k+1

≤
t∑

k=0

∥∇̄f(xk, yk, vk)∥2

α2
k+1

≤ log

( t∑
k=0

∥∇̄f(xk, yk, vk)∥2 + α2
0

)
+ 1

(a)

≤ log

( t∑
k=0

(
Cgxy āφk+1 + Cgxy b̄

√
k + Cfx

)2
+ α2

0

)
+ 1

≤ log

(( t∑
k=0

Cgxy āφk+1 + Cgxy b̄
√
k + Cfx + α0

)2)
+ 1

=2 log

( t∑
k=0

Cgxy āφk+1 + Cgxy b̄
√
k + Cfx + α0

)
+ 1

≤2 log
(
(t+ 1)(Cgxy āφt+1 + Cgxy b̄

√
t+ Cfx + α0)

)
+ 1
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=2 log(t+ 1) + 2 log
(
Cgxy āφt+1 + Cgxy b̄

√
t+ Cfx + α0

)
+ 1

≤2 log(t+ 1) + 2 log
(
(Cgxy āφt+1 + Cgxy b̄+ Cfx + α0)

√
t
)
+ 1

≤3 log(t+ 1) + 2 log(Cgxy āφt+1 + Cgxy b̄+ Cfx + α0) + 1, (71)

where (a) follows from Remark 3 and Lemma 10. Therefore, we obtain the upper bound of
∑t

k=k0

∥∇̄f(xk,yk,vk)∥2

α2
k+1

for any k0 ≤ t in eq. (71). Part I is completed.
Part II: a more general bound of

∑ ∥∇yg(xk,yk)∥2
βk+1

.

In Lemma 12, we show the bound of
∑t

k=k2
∥∇yg(xk,yk)∥2

βk+1
when k2 exists. In Part II, we further provide a

rough bound of
∑t

k=k̃
∥∇yg(xk,yk)∥2

βk+1
for any potential k̃ ≤ T . Firstly, if k̃ ≥ k2, it is easy to have

t∑
k=k̃

∥∇yg(xk, yk)∥2

βk+1
≤

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
;

secondly, if k̃ < k2, we have

t∑
k=k̃

∥∇yg(xk, yk)∥2

βk+1
≤

k2−1∑
k=k̃

∥∇yg(xk, yk)∥2

βk+1
+

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

≤
∑k2−1

k=k̃
∥∇yg(xk, yk)∥2

β0
+

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

≤
β2
k2
− β2

k̃

β0
+

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

≤
C2
β − β2

0

β0
+

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

=
C2
β

β0
− β0 +

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
.

Combining these two situations, since Cβ ≥ β0, for any k̃ ≤ t, we have

t∑
k=k̃

∥∇yg(xk, yk)∥2

βk+1
≤
C2
β

β0
− β0 +

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

(a)

≤
C2
β

β0
− β0 +

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

+
(µ+ Lg,1)

2L2
y

µLg,1

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

, (72)

where (a) uses Lemma 12. Thus, Part II is completed.
Part III: the bound of φt in Case 4.

49



Here, we explore the upper bound of φt in Case 4. Recalling eq. (70), we have

φt+1 ≤Cβ + Cγ +
t∑

k=k2

∥∇yg(xk, yk)∥2

βk+1
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1
= Cβ + Cγ = Cφ,

for t ≤ kmin := min{k2, k3}. For t > kmin, we have

φt+1 ≤Cβ + Cγ +

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

(a)

≤Cβ + Cγ +

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

+
4(µ+ Cgyy )C

2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy

)C2
γ

µ2

+
4(µ+ Cgyy

)(µ+ Lg,1)L
2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2 k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy )

2L2
v

µCgyy
Cγ

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1

(b)

≤
[(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

] t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

+ Cβ + Cγ +
4(µ+ Cgyy

)C2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )C

2
γ

µ2

+
(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2

(C2
β

β0
− β0

)
+

4(µ+ Cgyy
)(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2 t∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy

)2L2
v

µCgyyCγ

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

(c)

≤
((4(µ+ Cgyy

)2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

)
(µ+ Lg,1)

2L2
y

µLg,1

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+
4(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2 t∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy

)2L2
v

µCgyy
Cγ

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+ Cβ + Cγ +
4(µ+ Cgyy

)C2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy

)C2
γ

µ2

+
(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2

(C2
β

β0
− β0

)
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+

[(4(µ+ Cgyy
)2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

](
(µ+ Lg,1)C

2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
≤
[((4(µ+ Cgyy

)2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

)
(µ+ Lg,1)

2L2
y

µLg,1Cβ

+
4(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2] t∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy )

2L2
v

µCgyy
γ0

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+ Cβ + Cγ +
4(µ+ Cgyy

)C2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )C

2
γ

µ2

+
(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2

(C2
β

β0
− β0

)
+

[(4(µ+ Cgyy
)2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

](
(µ+ Lg,1)C

2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
(d)
=:a0

t∑
k=min{k2−1,k3−1}

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+ b0

≤a0
t∑

k=min{k2,k3}

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+ a0 + b0

(e)

≤a0

[
3 log(t+ 1) + 2 log

(
φt+1 +

Cgxy
b̄+ Cfx + α0

Cgxy ā

)
+ 2 log(Cgxy ā) + 1

]
+ a0 + b0, (73)

where (a) uses Lemma 13; (b) uses the first line in eq. (72) by replacing k̃ with k3 − 1; (c) results from
eq. (52); (d) refers to eq. (66); (e) uses eq. (71). Since min{k2, k3} ≤ T , we have φt+1 ≥ min{Cβ, Cγ} ≥
max{64a20, 1}, which indicate that
(i) if 8a0 ≤ 1, we have

4a0 log(φt+1) ≤
log(φt+1)

2
≤ φt+1

2
≤ φt+1;

(ii) if 8a0 > 1, we have

φt+1 − 4a0 log(φt+1) = φt+1 − 8a0 log(
√
φt+1) ≥ 8a0

(√
φt+1 − log(

√
φt+1)

)
≥ 0.

Combining (i) and (ii), we have 4a0 log(φt+1) ≤ φt+1. Then we obtain

φt+1 ≤a0
[
3 log(t+ 1) + 2 log

(
φt+1 +

Cgxy
b̄+ Cfx + α0

Cgxy
ā

)
+ 2 log(Cgxy

ā) + 1

]
+ a0 + b0

≤a0
[
3 log(t+ 1) + 2 log(φt+1) + 2 log

(
1 +

Cgxy
b̄+ Cfx + α0

Cgxy
ā

)
+ 2 log(Cgxy

ā) + 1

]
+ a0 + b0

≤1

2
φt+1 + a0

[
3 log(t+ 1) + 2 log

(
1 +

Cgxy
b̄+ Cfx + α0

Cgxy ā

)
+ 2 log(Cgxy ā) + 1

]
+ a0 + b0,

which indicates that

φt+1 ≤6a0 log(t+ 1) + 4a0 log
(
1 +

Cgxy b̄+ Cfx + α0

Cgxy ā

)
+ 4a0 log(Cgxy ā) + 4a0 + 2b0

51



(a)
=:a1 log(t+ 1) + b1, (74)

where (a) refers to eq. (65). Thus, Part III is completed and the proof of this lemma is completed.

Lemma 16. Under Assumptions 1, 2, for any integer k0 ∈ [0, t), we have the upper bounds in terms of
logarithmic functions as

t∑
k=k0

∥∇̄f(xk, yk, vk)∥2

α2
k+1

≤ 5 log(t+ 1) + c2,

t∑
k=k0

∥∇yg(xk, yk)∥2

βk+1
≤ a2 log(t+ 1) + b2,

t∑
k=k0

∥∇vR(xk, yk, vk)∥2

φk+1
≤ a3 log(t+ 1) + b3,

where referring to eq. (65), eq. (66), c2, a2, b2, a3, b3 are defined as

c2 :=2 log
(
Cgxy āa1 + Cgxy āb1 + Cgxy b̄+ Cfx + α0

)
+ 1,

a2 :=
5(µ+ Lg,1)

2L2
y

µLg,1Cβ
, b2 :=

(µ+ Lg,1)
2L2

y

µLg,1Cβ
c2 +

(C2
β

β0
− β0 +

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
,

a3 :=
20(µ+ Cgyy

)(µ+ Lg,1)L
2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2

+
20(µ+ Cgyy

)2L2
v

µCgyyCγ

+
(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 a2
µ2

,

b3 :=
C2

γ

γ0
− γ0 +

4(µ+ Cgyy
)C2

β

µ4

(Lg,2Cfy

µ
+ Lf,1

)2
+

4(µ+ Cgyy )C
2
γ

µ2

+

(
4(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(Lg,2Cfy

µ
+ Lf,1

)2
+

4(µ+ Cgyy
)2L2

v

µCgyyCγ

)
c2

+
(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 b2
µ2

. (75)

Proof. Based on the logarithmic-function form bound in Lemma 15, we can further have the logarithmic-
function form bounds of the components in Lemma 11 as the following 3 parts.
Part I: the bound of

∑ ∥∇̄f(xk,yk,vk)∥2
α2
k+1

in terms of logarithmic function.

Firstly, we bound
∑t

k=k0
∥∇̄f(xk,yk,vk)∥2

α2
k+1

for arbitrary k0 < t. Back to eq. (71), by plugging in eq. (74), we

have

t∑
k=k0

∥∇̄f(xk, yk, vk)∥2

α2
k+1

≤3 log(t+ 1) + 2 log(Cgxy āφt+1 + Cgxy b̄+ Cfx + α0) + 1

(a)

≤3 log(t+ 1) + 2 log
(
Cgxy āa1 log(t+ 1) + Cgxy āb1 + Cgxy b̄+ Cfx + α0

)
+ 1

≤3 log(t+ 1) + 2 log
(
Cgxy āa1(t+ 1) + Cgxy āb1 + Cgxy b̄+ Cfx + α0

)
+ 1
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≤3 log(t+ 1) + 2 log
(
(Cgxy āa1 + Cgxy āb1 + Cgxy b̄+ Cfx + α0)(t+ 1)

)
+ 1

≤5 log(t+ 1) + 2 log
(
Cgxy āa1 + Cgxy āb1 + Cgxy b̄+ Cfx + α0

)
+ 1

(b)
=:5 log(t+ 1) + c2, (76)

where (a) results from eq. (74); (b) refers to eq. (75).
Part II: the bound of

∑ ∥∇yg(xk,yk)∥2
βk+1

in terms of logarithmic function.

Secondly, we bound
∑t

k=k0
∥∇yg(xk,yk)∥2

βk+1
. We split this part into two cases using Lemma 4.

Case 1: If βt+1 ≤ Cβ , we have

t∑
k=k0

∥∇yg(xk, yk)∥2

βk+1
≤
∑t

k=k0
∥∇yg(xk, yk)∥2

β0
≤

β2
t+1 − β2

k0

β0
≤

C2
β − β2

0

β0
=

C2
β

β0
− β0 ≤ b2.

Case 2: If βt+1 > Cβ , we have k2 ≤ t, where k2 refers to Lemma 4. Then we can use eq. (72), which
indicates

t∑
k=k0

∥∇yg(xk, yk)∥2

βk+1

≤
(
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β
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2
β
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y

µLg,1φ0
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2L2

y

µLg,1φ0

)
(a)
=:a2 log(t+ 1) + b2, (77)

where the second inequality uses (76), and (a) refers to eq. (75). Since the upper bound of Case 2 is larger,
we take eq. (77) as our final result.
Part III: the bound of

∑ ∥∇vR(xk,yk,vk)∥2
φk+1

in terms of logarithmic function.

Last, we bound
∑t

k=k0
∥∇vR(xk,yk,vk)∥2

φk+1
. We split this part into two cases using Lemma 4.

Case 1: If γt+1 ≤ Cγ , we have

t∑
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≤
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φ0
≤

C2
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γ0

≤
C2
γ

γ0
− γ0 ≤ b3.

Case 2: If γt+1 > Cγ , we have k3 ≤ t, where k3 refers to Lemma 4.

t∑
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2
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µ
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+
4(µ+ Cgyy)C

2
γ

µ2
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+
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2
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µ
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k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
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(
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2
y
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µ
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v
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)
+

(
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2
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)(
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µ
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)2 1
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(
a2 log(t+ 1) + b2

)
(d)
=:a3 log(t+ 1) + b3, (78)

where (a) allows
∑k3−1

k=k0
∥∇vR(xk,yk,vk)∥2

φk+1
= 0 when k0 ≥ k3; (b) uses Cγ ≥ γ0 and Lemma 13; (c) follows

from eq. (76) and eq. (77); (d) refers to eq. (75). Since the upper bound of Case 2 is larger, we take eq. (78)
as our final result.
Thus, the proof is complete.

Next, we show the upper bound of αt.

Lemma 17 (The upper bound of αt). Under Assumptions 1, 2, 3, suppose the number of total iteration
rounds in Algorithm 2 is T . If there exists k1 ≤ T described in Lemma 4, we haveαt ≤Cα, t ≤ k1;

αt ≤Cα +
(
a4 log(t) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))
φt, t ≥ k1,

where a4, b4 are defined as

a4 :=
2L̄2a2
µ2Cα

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]
+

4L̄2a3
µ2Cα

b4 :=
2L̄2b2
µ2Cα

[
1 +

2
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(Lg,2Cfy

µ
+ Lf,1

)2]
+

4L̄2b3
µ2Cα

+
2LΦ

φ2
0

C2
α

α2
0

, (79)

and the upper bound of φt := max{βt, γt} refers to Lemma 15. When such k1 does not exist, we have
αt ≤ Cα for any t ≤ T .

Proof. According to Lemma 4, the proof can be split into the following three cases.
Case 1: if αT ≤ Cα, for any t < T , we have the upper bound of αt+1 as αt+1 ≤ Cα.
Case 2: if αT > Cα, there exists k1 ≤ T described in Lemma 4. Then we have the upper bound of αt+1 as
αt+1 ≤ Cα for any t < k1.
Case 3: in the remaining proof, we only consider and explore the case k1 ≤ t ≤ T when αT > Cα.
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From Lemma 11, for k ≥ k1, we have

Φ(xk+1) ≤Φ(xk)−
1
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,

which indicates that

∥∇̄f(xk, yk, vk)∥2
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≤ 4
(
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.

By taking summation, we have

t∑
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(
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. (80)

For Φ(xk1), by telescoping eq. (43) in Lemma 11, we get

Φ(xk1) ≤Φ(x0) +
LΦ

2

k1−1∑
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. (81)

By plugging eq. (81) into eq. (80), we have
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0
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≤4
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x
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)
, (82)

where (a) plugs in eq. (77) and eq. (78); (b) refers to eq. (79). This immediately implies

t∑
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(
a4 log(t+ 1) + b4 + 4

(
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Similarly, we can have the upper bound of αt+1 as

αt+1 ≤αk1 +
t∑
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(
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x
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))
φt+1. (84)

Then the upper bound of αt+1 is proved.

F.4 Proof of Theorem 2

Here we still assume the total iteration rounds of Algorithm 2 is T . According to Lemma 4, the proof can be
split into the following two cases.
Case 1: If αT ≤ Cα, then by Lemma 11 and Lemma 17, we have
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By taking the average, we have
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where (a) uses Lemma 16 with k0 = 0.
Case 2: If αT > Cα, by Lemma 4, there exists k1 ≤ T0 such that αk1 ≤ Cα, αk1+1 > Cα.
Then for t < k1 when αT > Cα, from Lemma 11, we have
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For t ≥ k1 when αT > Cα, from Lemma 11, we have
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By taking the average, we can merge t < k1 and t ≥ k1 as
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where (a) uses Lemma 16 by plugging in k0 = 0.
Note that Case 1 and Case 2 indicate the same result. Thus, we have
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+ Cα

(
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.

where (a) follows from Lemma 17; (b) results from Lemma 15. Thus, the proof is finished.

F.5 Complexity Analysis of Algorithm 2 (Proof of Corollary 2)

Recall in Theorem 2, we know that there exist a constant M such that

1
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.

When we set the iteration number T = MN
ϵ log4(Mϵ ) and assume the constant N = 124, we have
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where (a) follows from the inequality log(log(Mϵ )) ≤
1
4 log(

M
ϵ ) for sufficiently small ϵ; (b) holds because

log(N) + 2 log(Mϵ ) ≤ N
1
4 log(Mϵ ) for N = 124 and ϵ is sufficiently small. Thus, to achieve ϵ-accurate

stationary point, we require T = MN
ϵ log4(Mϵ ) = O

(
1
ϵ log

4(1ϵ )
)
, and the gradient complexity is given by

Gc(ϵ) = Ω(T ) = O
(
1
ϵ log

4(1ϵ )
)
.
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