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Abstract

This paper develops a parameter-free adaptive proximal bundle method with two important features:
1) adaptive choice of variable prox stepsizes that ”closely fits” the instance under consideration; and 2)
adaptive criterion for making the occurrence of serious steps easier. Computational experiments show that
our method performs substantially fewer consecutive null steps (i.e., a shorter cycle) while maintaining
the number of serious steps under control. As a result, our method performs significantly less number
of iterations than its counterparts based on a constant prox stepsize choice and a non-adaptive cycle
termination criterion. Moreover, our method is very robust relative to the user-provided initial stepsize.
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1 Introduction

Let f, h : Rn → R ∪ {+∞} be proper lower semi-continuous convex functions such that domh ⊆ dom f and
consider the optimization problem

ϕ∗ := min {ϕ(x) := f(x) + h(x) : x ∈ Rn} . (1)

It is said that (1) is a hybrid convex composite optimization (HCCO) problem if there exist nonnegative
scalars M,L and a first-order oracle f ′ : domh → Rn (i.e., f ′(x) ∈ ∂f(x) for every x ∈ domh) satisfying
∥f ′(u) − f ′(v)∥ ≤ 2M + L∥u − v∥ for every u, v ∈ domh. The main goal of this paper is to study the
complexity of adaptive proximal bundle methods (Ad-GPB) for solving the HCCO problem (1) based on a
unified bundle update schemes.

Proximal bundle (PB) methods solve a sequence of prox bundle subproblems

xj = argmin
u∈Rn

{
Γj(u) +

1

2λj
∥u− xc∥2

}
, (2)

where Γj is a bundle approximation of ϕ (i.e., a simple convex function underneath ϕ) and xc is the current
prox center. The prox center is updated to xj (i.e., a serious step is performed) only when the pair (xj , λj)
satisfies a certain error criterion; otherwise, the prox center is kept the same (i.e., a null step is performed).
Regardless of the step performed, the bundle Γj is updated to account for the newest iterate xj . In the
discussion below, a sequence of consecutive null steps followed by a serious step is referred to as a cycle.
Classical PB methods (see e.g. [5, 6, 12, 15, 16, 21, 27]) perform the serious step when xj satisfies a relaxed
descent condition (e.g., see the paragraph containing equation (15) in [18]), which in its unrelaxed form
implies that ϕ(xj) ≤ ϕ(xc). On the other hand, modern PB methods (see e.g. [8, 18, 19, 20]) perform the
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serious step when the best ϕ-valued iterate xj , say yj , satisfies ϕ(yj)−mj ≤ δ where mj is the optimal value
of (2) and δ is a suitably chosen tolerance. Although yj does not necessarily satisfy the descent condition, it
does satisfy a δ-relaxed version of it. It is shown in [18, 19] that if λ > 0 is such that max{λ, λ−1} = O(ε−1),
then modern PB methods with λj = λ for every j achieve an Õ(ε−2) iteration complexity to obtain an
ε-solution regardless of whether domh is bounded or not. In contrast, papers [5, 12] show that the classical
PB methods achieve: i) an O(ε−3) iteration complexity under the assumption that λ = Θ(1) regardless
of whether domh is bounded or not; and ii) an O(ε−2) iteration complexity under the assumption that
λ = Θ(ε−1) for the case where domh is bounded.

The goal of this paper is to develop a parameter-free adaptive modern PB method, namely Ad-GPB, with
two important features: 1) adaptive choice of variable prox stepsizes that ”closely fits” the instance under
consideration; and 2) adaptive criterion for making the occurrence of serious steps easier. Computational
experiments show that Ad-GPB performs substantially fewer consecutive null steps while maintaining the
number of serious steps under control. As a result, Ad-GPB performs significantly less number of iterations
than the Ad-GPB method of [8, 18, 19]. Moreover, in contrast to GPB, Ad-GPB is very robust with respect
to the user-provided initial stepsize.

Several papers (see e.g. [2, 4, 5, 11, 13, 17] of which only [5] deals with complexity analysis), have proposed
ways of generating variable prox stepsizes to improve classical PB methods’ computational performance.
More recently, [8] developed a modern PB method for solving either the convex or strongly convex version
of (1) which: requires no knowledge of the Lipschitz parameters (M,L) and the strong convex parameter
µ of ϕ; and allows the stepsize to change only at the beginning of each cycle. A potential drawback of the
method of [8] is that it can restart a cycle with its current initial prox stepsize λ divided by two if λ is found
to be large, i.e., the method can backtrack. In contrast, by allowing the prox stepsizes to vary within a cycle,
Ad-GPB never has to restart a cycle.

In theory, classical PB methods perform on average O(ε−2) consecutive null iterations while modern
PB methods perform only O(ε−1) consecutive null iterations in the worst case. The explanation for this
phenomenon is due to the more relaxed δ-criterion used by modern PB methods to end a cycle. Our
Ad-GPB method pursues the idea of further relaxing the cycle termination criterion to reduce its overall
number of iterations, and hence improve its computational performance while retaining all the theoretical
guarantees of the modern PB methods of [8, 18, 19]. More specifically, under the simplifying assumption
that ϕ∗ is known, an Ad-GPB cycle stops when, for some universal constant β ∈ (0, 1], the inequality
ϕ(yj)−mj ≤ δ+β[ϕ(yj)−ϕ∗] is satisfied. The addition of the (usually large) term β[ϕ(yj)−ϕ∗] makes this
inequality easier to satisfy, thereby resulting in Ad-GPB performing shorter cycles. Even though the previous
observation assumes that ϕ∗ is known, Ad-GPB removes this assumption, at the expense of assuming that
the domain of h is bounded, by replacing ϕ∗ in the above inequality with a suitable lower bound on ϕ∗.

Organization of the paper. Subsection 1.1 presents basic definitions and notation used throughout the
paper. Section 2 contains two subsections. Subsection 2.1 formally describes problem (1) and the assumptions
made on it. Subsection 2.2 presents a generic bundle update scheme, the Ad-GPB framework, and states the
main iteration-complexity result for Ad-GPB. Section 3 provides a bound on the number of iterations within
a cycle of Ad-GPB. Section 4 contains two subsections. The first (resp, second) one establishes bounds on
the number of cycles and the total number of iterations performed by Ad-GPB under the assumption that
ϕ∗ is known (resp., unknown). Section 5 presents the numerical results comparing Ad-GPB with the two-cut
bundle update scheme against other mordern PB methods.

1.1 Basic definitions and notation

The sets of real numbers and positive real numbers are denoted by R and R++, respectively. Let Rn denote
the standard n-dimensional Euclidean space equipped with inner product and norm denoted by ⟨·, ·⟩ and
∥ · ∥, respectively. Let log(·) denote the natural logarithm and log+(·) denote max{log(·), 0}. Let O denote
the standard big-O notation.

For a given function φ : Rn → (−∞,+∞], let domφ := {x ∈ Rn : φ(x) <∞} denote the effective domain
of φ and φ is proper if domφ ̸= ∅. A proper function φ : Rn → (−∞,+∞] is convex if

φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y)
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for every x, y ∈ domφ and α ∈ [0, 1]. Denote the set of all proper lower semicontinuous convex functions by
Conv (Rn).

The subdifferential of φ at x ∈ domφ is denoted by

∂φ(x) := {s ∈ Rn : φ(y) ≥ φ(x) + ⟨s, y − x⟩ ,∀y ∈ Rn} . (3)

The set of proper closed convex functions Γ such that Γ ≤ ϕ is denoted by B(ϕ) and any such Γ is called a
bundle for ϕ.

The sign function sign : Rn → Rn is defined as

sign(x)i =


−1, if xi < 0,

0, if xi = 0,

1, if xi > 0.

2 Main problem and algorithm

This section contains two subsections. The first one describes the main problem and corresponding assump-
tions. The second one presents the motivation and the description of Ad-GPB, as well as its main complexity
result.

2.1 Main problem

The problem of interest in this paper is (1) which is assumed to satisfy the following conditions for some
constants M ≥ 0 and L ≥ 0:

(A1) h ∈ Conv (Rn) and there exists D ≥ 0 such that

sup
x,y∈domh

∥y − x∥ ≤ D; (4)

(A2) f ∈ Conv (Rn) is such that domh ⊂ dom f , and a subgradient oracle, i.e., a function f ′ : domh→ Rn

satisfying f ′(x) ∈ ∂f(x) for every x ∈ domh, is available;

(A3) for every x, y ∈ domh,
∥f ′(x)− f ′(y)∥ ≤ 2M + L∥x− y∥.

In addition to the above assumptions, it is also assumed that h is simple in the sense that, for any λ > 0
and affine function A, the following two optimization problems

min
u
A(u) + h(u), min

u
A(u) + h(u) +

1

2λ
∥u∥2 (5)

are easy to solve.
We now make three remarks about assumptions (A1)-(A3). First, it can be shown that (A1) implies that

both problems in (5) have optimal solutions. Second, it can also be shown that (A1) implies that the set of
optimal solutions X∗ of problem (1) is nonempty. Third, letting ℓ̃f (·;x) denotes the linearization of f at x,
i.e.,

ℓ̃f (·;x) := f(x) + ⟨f ′(x), · − x⟩ ∀x ∈ domh, (6)

then it is well-known that (A3) implies that for every x, y ∈ domh,

f(x)− ℓ̃f (x; y) ≤ 2M∥x− y∥+ L

2
∥x− y∥2. (7)

Finally, define the composite linearization of the objective ϕ of (1) at x as

ℓϕ(·;x) := ℓ̃f (·;x) + h(·) ∀x ∈ domh. (8)
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2.2 Algorithm

As mentioned in the Introduction, PB uses a bundle (convex) function underneath ϕ(·) to construct subprob-
lem (2) at a given iteration, and then updates Γj to obtain the bundle function Γj+1 for the next iteration.
This subsection describes ways of updating the bundle. Instead of focusing on a specific bundle update
scheme, this subsection describes a generic bundle update framework (BUF) which is a restricted version
of the one introduced in Subsection 3.1 of [19]. It also discusses two concrete bundle update schemes lying
within the framework.

We start by describing the generic BUF.

BUF

Input: λ ∈ R++ and (xc, x,Γ) ∈ Rn × Rn × B(ϕ) such that

x = argmin
u∈Rn

{
Γ(u) +

1

2λ
∥u− xc∥2

}
, (9)

• find bundle Γ+ ∈ B(ϕ) satisfying

Γ+(·) ≥ max{Γ̄(·), ℓϕ(·;x)}, (10)

for some Γ̄(·) ∈ Conv (Rn) such that

Γ̄(x) = Γ(x), x = argmin
u∈Rn

{
Γ̄(u) +

1

2λ
∥u− xc∥2

}
. (11)

Output: Γ+.

Now we make some remarks about BUF. First, observe that if Γ ∈ B(ϕ) and Γ ≥ ℓϕ(·; x̄) for some x̄ ∈ Rn,
then domΓ = domh. Hence, it follows from (10) and the definition of B(ϕ) that the output Γ+ of BUF
satisfies

Γ+ ≤ ϕ, Γ+ ∈ Conv (Rn), domΓ+ = domh.

Second, the bundle update framework of [19] replaces (10) by the weaker inequality Γ+(·) ≥ τ Γ̄(·) + (1 −
τ)ℓϕ(·;x) for some τ ∈ (0, 1) and, as a result, contains the one-cut bundle update scheme described in
Subsection 3.1 of [19]. Even though BUF does not include the one-cut bundle update scheme, it contains
the two other bundle update schemes discussed in [19] (see Subsection 3.1), which for convenience are briefly
described below.

• 2-cut: For this scheme, it is assumed that Γ has the form

Γ = max{Af , ℓ̃f (·;x−)}+ h (12)

where h ∈ Conv(Rn) and Af is an affine function satisfying Af ≤ f . In view of (9), it can be shown
that there exists θ ∈ [0, 1] such that

1

λ
(x− xc) + ∂h(x) + θ∇Af + (1− θ)f ′(x−) ∋ 0, (13)

θAf (x) + (1− θ)ℓf (x;x
−) = max{Af (x), ℓ̃f (x;x

−)}. (14)

The scheme then sets
A+

f (·) := θAf (·) + (1− θ)ℓ̃f (·;x−) (15)

and outputs the function Γ+ defined as

Γ+(·) := max{A+
f (·), ℓ̃f (·;x)}+ h(·). (16)
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• multiple-cut (M-cut): Suppose Γ = Γ(·;C) where C ⊂ Rn is a finite set (i.e., the current bundle
set) and Γ(·;C) is defined as

Γ(·;C) := max{ℓ̃f (·; c) : c ∈ C}+ h(·). (17)

This scheme chooses the next bundle set C+ so that

C(x) ∪ {x} ⊂ C+ ⊂ C ∪ {x} (18)

where
C(x) := {c ∈ C : ℓ̃f (x; c) + h(x) = Γ(x)}, (19)

and then output Γ+ = Γ(·;C+).

The following facts, whose proofs can be found in Appendix D of [19], imply that 2-cut and M-cut schemes
are special implementations of BUF:

(a) If Γ+ is obtained according to 2-cut, then (Γ+, Γ̄) where Γ̄ = A+
f + h satisfies (10) and (11);

(b) If Γ+ is obtained according to M-cut, then (Γ+, Γ̄) where Γ̄ = Γ(·;C(x)) satisfies (10) and (11).

We next give an outline of Ad-GPB. Ad-GPB is an inexact proximal point method which, given the
(k − 1)-th prox center x̂k−1 ∈ Rn, finds a pair (x̂k, λ̂k) of prox stepsize λ̂k > 0 and k-th prox-center x̂k

satisfying a suitable error criterion for being an approximate solution of the prox subproblem

x̂k ≈ argmin
u∈Rn

{
ϕ(u) +

1

2λ̂k

∥u− x̂k−1∥2
}
. (20)

More specifically, Ad-GPB solves a sequence of prox bundle subproblems

xj = argmin
u∈Rn

{
Γj(u) +

1

2λj
∥u− x̂k−1∥2

}
, (21)

where Γj is a bundle approximation of ϕ and λj ≤ λj−1 is an adaptively chosen prox stepsize, until the pair

(x̂k, λ̂k) = (xj , λj) satisfy the approximate error criterion for (20). In contrast to the GPB method of [19],
which can also be viewed in the setting outlined above, Ad-GPB: i) (adaptively) changes λj while computing
the next prox center x̂k; and, ii) Ad-GPB stops the search for the next prox center x̂k using a termination
criterion based not only on the user-provided tolerance (the quantity ε in the description below) as GPB also
does, but also on a suitable primal-dual gap for (20), a feature that considerably speeds up the computation
of x̂k for many subproblems (20).

We now formally describe Ad-GPB. Its description uses the definition of the set of bundles B(ϕ) for the
function ϕ given in Subsection 1.1.

Ad-GPB

0. Let x̂0 ∈ domh, λ1 > 0, 0 ≤ β0 ≤ 1/2, τ ∈ (0, 1), and ε > 0 be given; find Γ1 ∈ B(ϕ) such that

Γ1 ≥ ℓϕ(·; x̂0) and set ℓ̂0 = minu Γ1(u), y0 = x̂0, j0 = 0, j = k = 1, and n̂0 = ℓ̂0;

1. compute xj as in (21) and

mj := Γj(xj) +
1

2λj
∥xj − x̂k−1∥2 (22)

yj := argmin {ϕ(x) : x ∈ {yj−1, xj}} (23)

tj := ϕ(yj)−mj ; (24)
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2. if tj ≤ βk−1[ϕ(yj)− n̂k−1] + ε/4 is violated then perform a null update, i.e.:
if either j = jk−1 + 1 or

tj − τtj−1 ≤ (1− τ)

{
βk−1[ϕ(yj)− n̂k−1]

2
+

ε

8

}
, (25)

then set λj+1 = λj ; else, set λj+1 = λj/2;
set Γj+1 = BUF(x̂k−1, xj ,Γj , λj);

else perform a serious update, i.e.:
set (λ̂k, x̂k, ŷk, Γ̂k, m̂k, t̂k) = (λj , xj , yj ,Γj ,mj , tj);
compute

Γ̂a
k(u) :=

∑k
l=⌈k/2⌉ λ̂lΓ̂l(u)∑k

l=⌈k/2⌉ λ̂l

, ℓ̂k := max
{
ℓ̂k−1, inf

u
Γ̂a
k(u)

}
, (26)

and choose n̂k ∈ [ℓ̂k, ϕ∗];
if ϕ(ŷk)− n̂k ≤ ε, output (x̂k, ŷk), and stop; else compute

ϕ̂a
k :=

∑k
l=⌈k/2⌉ λ̂lϕ(ŷl)∑k

l=⌈k/2⌉ λ̂l

, (27)

ĝk :=
1∑k

l=⌈k/2⌉ λ̂l

k∑
l=⌈k/2⌉

βl−1λ̂l[ϕ(ŷl)− n̂l−1]; (28)

if ĝk ≤ (ϕ̂a
k − n̂k)/2, then set βk = βk−1; else set βk = βk−1/2;

set λj+1 = λj and find Γj+1 ∈ B(ϕ) such that Γj+1 ≥ ℓϕ(·;xj);
set jk = j and k ← k + 1;

end if

3. set j ← j + 1 and go to step 1.

We now introduce some terminology related to Ad-GPB. Ad-GPB performs two types of iterations,
namely, null and serious, corresponding to the kinds of updates performed at the end. The index j counts
the iterations (including null and serious). Let j1 ≤ j2 ≤ . . . denote the sequence of all serious iterations
(i.e., the ones ending with a serious update) and, for every k ≥ 1, define ik = jk−1 +1 and the k-th cycle Ck
as

Ck := {ik, . . . , jk}. (29)

Observe that for every k ≥ 1, we have λ̂k = λjk where λ̂k is computed in the serious update part of step 2
of Ad-GPB. (Hence, index k counts the cycles generated by Ad-GPB.) An iteration j is called good (resp.,
bad) if λj+1 = λj (resp., λj+1 = λj/2). Note that the logic of Ad-GPB implies that ik and jk are good
iterations and that (25) is violated whenever j is a bad iteration.

We next make some remarks about the quantities related to different Γ-functions that appear in Ad-GPB
and the associated quantities ℓ̂k and n̂k. First, the observation immediately following BUF implies that

Γj ≤ ϕ, Γj ∈ Conv (Rn), domΓj = domh ∀j ≥ 1, (30)

which together with the fact that Γ̂k is the last Γj generated within a cycle imply that Γ̂k ∈ Conv (Rn) and

Γ̂k ≤ ϕ. Moreover, the first identity in (26) and the latter conclusion then imply that Γ̂a
k ∈ Conv (Rn) and

Γ̂a
k ≤ ϕ, and hence that infu Γ̂

a
k(u) ≤ infu ϕ(u) = ϕ∗. Second, the facts that dom Γ̂a

k = domh is bounded (see

assumption A1) and Γ̂a
k is a closed convex function imply that infu Γ̂

a
k(u) > −∞. Moreover, the problem

infu Γ̂
a
k(u) has the same format as the first one that appears in (5), and hence is easily solvable by assumption.

Its optimal value, which is a lower bound on ϕ∗ as already observed above, is used to update the lower bound
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ℓ̂k−1 for ϕ∗ to a possibly sharper one, namely, ℓ̂k ≥ ℓ̂k−1. Thus, the choice of n̂k in the line following (26)
makes sense. For the sake of future reference, we note that

ϕ∗ ≥ n̂k ≥ ℓ̂k ≥ inf
u

Γ̂a
k(u). (31)

Third, obvious ways of choosing n̂k in the interval [ℓ̂k, ϕ∗] are: i) n̂k = ϕ∗; and ii) n̂k = ℓ̂k. While choice i)
requires knowledge of ϕ∗, choice ii) does not and can be easily implemented in view of the previous remark.

Moreover, if ϕ∗ is known and n̂k is chosen as in i), then there is no need to compute l̂k, and hence the min
term in (26), at the end of every cycle.

We now make some other relevant remarks about Ad-GPB. First, it follows from (30) and the definition
of xj in (21) that xj ∈ domh for every j ≥ 1. Second, an induction argument using (23) and the fact that
y0 = x̂0 ∈ domh imply that yj ∈ {x̂0, x1, . . . , xj} ⊂ domh and

yj ∈ Argmin {ϕ(x) : x ∈ {x̂0, x1, . . . , xj}} (32)

(hence, ϕ(yj+1) ≤ ϕ(yj)) for every j ≥ 1. Third, the cycle-stopping criterion, i.e., the inequality in the first
line of step 2, is a relaxation of the one used by GPB method of [19], in the sense its right-hand side has
the extra term βk−1[ϕ(yj) − n̂k−1] involving the relaxation factor βk−1. The addition of this term allows
earlier cycles to terminate in less number of inner iterations, and hence speeds up the overall performance
of the method. The quantities in (27) and (28) are used to update βk−1 at the end of the k-th cycle (see
’if’ statement after (28)). Fourth, the condition imposed on Γj+1 at the end of a serious iteration (see the
second line below (28)) does not completely specify it. An obvious way (cold start) of choosing this Γj+1 is
to set it to be ℓϕ(·;xj); another way (warm start) is to choose it using the update rule of an null iteration,
i.e., Γj+1 = BUF(x̂k−1, xj ,Γj , λj) since (10) implies the required condition on Γj+1.

We now comment on the inexactness of ŷk as a solution of prox subproblem (20) and as a solution of (1)
upon termination of Ad-GPB. The fact that Γ̂k ≤ ϕ and the fact that t̂k = tjk imply that the primal gap of

(20) at ŷk is upper bounded by t̂k + ∥ŷk − x̂k−1∥2 /(2λ̂k). Hence, if the inequality for stopping the cycle in
step 2 holds, then we conclude that ŷk is an εk-solution of (20), where

εk :=
ε

4
+ βk−1[ϕ(ŷk)− n̂k−1] +

∥ŷk − x̂k−1∥2

2λ̂k

.

Finally, if the test inequality before (27) in step 2 holds, then the second component ŷk of the pair output
by Ad-GPB satisfies ϕ(ŷk)− ϕ∗ ≤ ε due to the fact that n̂k ≤ ϕ∗.

Lastly, Ad-GPB never restarts a cycle, i.e., attempts to inexactly solve two or more subproblems (20)
with the same prox center x̂k−1. Instead, Ad-GPB has a key rule for updating the inner stepsize λj which

always allows it to inexactly solve subproblem (20) with λ̂k set to be the last λj generated within the k-th
cycle (see the second line of the serious update part of Ad-GPB).

We now state the main complexity result for Ad-GPB whose proof is postponed to the end of Section 4.

Theorem 2.1 Define

t̄ := 2MD +
L

2
D2, (33)

K̄(ε) := 2

⌈
2D2Q̄

ε

(
M2

ε
+

L

16
+

1

λ1Q̄

)
+ log+

{
β0(ϕ(x̂0)− n̂0)

ε

}
+ 1

⌉
(34)

where

Q̄ =
128(1− τ)

τ
. (35)

Then, Ad-GPB finds a pair (ŷk, n̂k) ∈ domϕ × R satisfying ϕ(ŷk) − ϕ∗ ≤ ϕ(ŷk) − n̂k ≤ ε in at most 4K̄(ε)
cycles and

4K̄(ε)

(
1 + τ

1− τ
log+

[
8t̄ε−1

]
+ 2

)
+ log+2

(
Q̄λ1

(
M2

ε
+

L

16

))
(36)

iterations.
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We now make some remarks about Theorem 2.1. First, in terms of τ and ε only, it follows from Theorem
2.1 that the iteration complexity of Ad-GPB to find a ε-solution of (1) is Õ

(
ε−2τ−1 + (1− τ)−1)

)
. Hence,

when τ ∈ (0, 1) satisfies τ−1 = O(1) and τ = 1−Ω(ε2), the total iteration complexity of Ad-GPB is Õ(ε−2).
Moreover, under the assumption that τ ∈ (0, 1) satisfies τ−1 = O(1), Ad-GPB performs

• O(ε−2) cycles whenever τ = 1−Θ(1);

• more generally, O(ε−α) cycles whenever τ = 1−Θ(ε2−α) for some α ∈ [0, 2].

3 Bounding cycle lengths

The main goal of this section is to derive a bound (Proposition 3.5 below) on the number of iterations within
a cycle.

Recall from (29) that ik (resp., jk) denotes the first (resp., last) iteration index of the k-th cycle of
Ad-GPB. The first result describes some basic facts about the iterations within any given cycle.

Lemma 3.1 For every j ∈ Ck \ {ik}, the following statements hold:

a) there exists function Γ̄j−1(·) such that

max
{
Γ̄j−1(·), ℓf (·;xj−1) + h(·)

}
≤ Γj(·) ≤ ϕ(·), (37)

Γ̄j−1 ∈ Conv(Rn), Γ̄j−1(xj−1) = Γj−1(xj−1), (38)

xj−1 = argmin
u∈Rn

{
Γ̄j−1(u) +

1

2λj−1
∥u− x̂k−1∥2

}
; (39)

b) for every u ∈ Rn, we have

Γ̄j−1(u) +
1

2λj−1
∥u− x̂k−1∥2 ≥ mj−1 +

1

2λj−1
∥u− xj−1∥2. (40)

Proof: a) This statement immediately follows from (10), (11), and the facts that Γj is the output of the
BUF blackbox with input λj−1 and (xc, x,Γ) = (xc

j−1, xj−1,Γj−1) and xc
j−1 = x̂k−1.

b) Using (39) and the fact that f = Γ̄j−1 + ∥ · −x̂k−1∥2/(2λj−1) is λ−1
j−1 strongly convex, we have for

every u ∈ domh,

Γ̄j−1(u) +
1

2λj−1
∥u− x̂k−1∥2 ≥ Γ̄j−1(xj−1) +

1

2λj−1
∥xj−1 − x̂k−1∥2 +

1

2λj−1
∥u− xj−1∥2.

The statement follows from the above inequality and the second identity in (38).
The next result presents some basic recursive inequalities for {tj}.

Lemma 3.2 For every j ∈ Ck \ {ik}, the following statements hold:

a) for every τ ′ ∈ [0, 1], there holds

tj − τ ′tj−1 ≤ 2M(1− τ ′)∥xj − xj−1∥ −
(

τ ′

2λj−1
− (1− τ ′)L

2

)
∥xj − xj−1∥2 −

1− τ ′

2λj
∥xj − x̂k−1∥2;

b) if λj−1 ≤ τ/(2(1− τ)L), then we have

tj − τtj−1 ≤
4M2(1− τ)2λj−1

τ
. (41)
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Proof: a) Inequality (37) implies that for every τ ′ ∈ [0, 1], we have

Γj(xj) ≥ max
{
Γ̄j−1(xj), ℓϕ(xj ;xj−1)

}
≥ (1− τ ′)ℓϕ(xj ;xj−1) + τ ′Γ̄j−1(xj).

The definition of mj in (22), the above inequality, and (40) with u = xj , imply that

mj ≥ (1− τ ′)ℓϕ(xj ;xj−1) + τ ′Γ̄j−1(xj) +
1

2λj
∥xj − x̂k−1∥2

= (1− τ ′)

[
ℓϕ(xj ;xj−1) +

1

2λj
∥xj − x̂k−1∥2

]
+ τ ′

[
Γ̄j−1(xj) +

1

2λj
∥xj − x̂k−1∥2

]
λj≤λj−1

≥ (1− τ ′)

[
ℓϕ(xj ;xj−1) +

1

2λj
∥xj − x̂k−1∥2

]
+ τ ′

[
Γ̄j−1(xj) +

1

2λj−1
∥xj − x̂k−1∥2

]
(40)

≥ (1− τ ′)

[
ℓϕ(xj ;xj−1) +

1

2λj
∥xj − x̂k−1∥2

]
+ τ ′

[
mj−1 +

1

2λj−1
∥xj − xj−1∥2

]
.

Using this inequality and the definition of tj in (24), we have

tj − τ ′tj−1 = [ϕ(yj)−mj ]− τ ′[ϕ(yj−1)−mj−1]

= [ϕ(yj)− τ ′ϕ(yj−1)]− [mj − τ ′mj−1]

≤ [ϕ(yj)− τ ′ϕ(yj−1)]− (1− τ ′)

[
ℓϕ(xj ;xj−1) +

1

2λj
∥xj − x̂k−1∥2

]
− τ ′

2λj−1
∥xj − xj−1∥2

= [ϕ(yj)− τ ′ϕ(yj−1)− (1− τ ′)ϕ(xj)]

+ (1− τ ′) [ϕ(xj)− ℓϕ(xj ;xj−1)]−
1− τ ′

2λj
∥xj − x̂k−1∥2 −

τ ′

2λj−1
∥xj − xj−1∥2

≤ (1− τ ′) [ϕ(xj)− ℓϕ(xj ;xj−1)]−
1− τ ′

2λj
∥xj − x̂k−1∥2 −

τ ′

2λj−1
∥xj − xj−1∥2,

where the last inequality is due to the definition of yj in (23). The conclusion of the statement now follows
from the above inequality and relation (7) with (y, x) = (xj−1, xj).

b) Using the assumption of this statement and statement a) with τ ′ = τ , we easily see that

tj − τtj−1 ≤ 2M(1− τ)∥xj − xj−1∥ −
τ

4λj−1
∥xj − xj−1∥2.

The statement now follows from the above inequality and the inequality 2ab− b2 ≤ a2 with

a =
2M(1− τ)

√
λj−1√

τ
, b =

√
τ∥xj − xj−1∥
2
√

λj−1

.

The next result describes some properties about the stepsizes λj within any given cycle. It uses the fact
that if j is a bad iteration of Ad-GPB, then (25) is violated (see step 2 of Ad-GPB and the first paragraph
following Ad-GPB).

Lemma 3.3 Define

λ := min

{
τε

128(1− τ)M2
,

τ

8(1− τ)L

}
; (42)

where τ is an input to Ad-GPB, and M and L are as in Assumption 3. Then, the following statements hold:

a) for every index j ∈ Ck, we have
λj ≥ min {λ, λik} ;

b) the number of bad iterations in Ck is bounded by log+2 (λik/λ) .
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Proof: a) Assume for contradiction that there exists j ∈ Ck such that

λj < min {λ, λik} , (43)

and that j is the smallest index in Ck satisfying the above inequality. We claim that this assumption implies
that

λj−2

4
≤ λj−1

2
= λj . (44)

Before showing the claim, we argue that (44) implies the conclusion of the lemma. Indeed, noting that (42)
and (44) implies that λj−2 ≤ 4λ ≤ τ/(2(1− τ)L), it follows from (41) with j = j − 1 and the definition of λ
in (42) that

tj−1 − τtj−2

(41)

≤ 4(1− τ)2λj−2M
2

τ
≤ 16(1− τ)2λjM

2

τ
≤ 16(1− τ)2λM2

τ
(42)

≤ (1− τ)
ε

8
≤ (1− τ)

(
βk−1(ϕ(yj−1)− n̂k−1)

2
+

ε

8

)
,

where the last inequality is due to the fact that ϕ(yj−1) − n̂k−1 ≥ 0. This conclusion then implies that
(25) holds for iteration j − 1, and hence that λj = λj−1 due to the logic of step 2 of Ad-GPB. Since this
contradicts (44), statement (a) follows.

We will now show the above claim, i.e., that the definition of j implies (44). Indeed, since the logic of
step 2 implies that λik+1 = λik and j is the smallest index in Ck satisfying (43), we conclude that j ≥ ik +2
and λj ̸= λj−1. Using these conclusions and the fact that the logic of step 2 of Ad-GPB implies that either
λi = λi−1 or λi = λi−1/2 for every i ∈ Ck \ {ik}, we then conclude that both the inequality and the identity
in (44) hold.

b) Since λj+1 = λj (resp., λj+1 = λj/2) if j is a good (resp., bad) iteration, we easily see that λik/λ̂k =
2sk . This observation together with (a) then implies that statement (b) holds.

It follows from Lemma 3.3(b) that the number of bad iterations within the k-th cycle Ck is finite.
Proposition 3.5 below provides a bound on |Ck|, and hence shows that every cycle Ck terminates. Before
showing this result, we state a technical result which provides some key properties about the sequence {tj}.

Lemma 3.4 The following statements hold:

a) if j ∈ Ck \ {ik}, then tj ≤ tj−1.

b) if j ∈ Ck \ {ik} is a good iteration that is not the last one in Ck, then

tj −
ε

8
≤ 2τ

1 + τ

(
tj−1 −

ε

8

)
;

c) if j ∈ Ck is not the last iteration of Ck, then

tj −
ε

8
≤

(
2τ

1 + τ

)j−ik−sk (
tik −

ε

8

)
(45)

where sk denotes the number of bad iterations within cycle k.

Proof: a) The statement immediately follows from Lemma 3.2(a) with τ ′ = 1.
b) Assume that j ∈ Ck \ {ik} is a good iteration that is not the last one in Ck. This together with the

logic of the Ad-GPB imply that (25) is satisfied and the cycle-stopping criterion is violated at iteration j,
i.e.,

tj −
ε

4
> βk−1(ϕ(yj)− n̂k−1). (46)
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These two observations then imply that

tj −
ε

8

(25)

≤ τtj−1 + (1− τ)

[
βk−1(ϕ(yj)− n̂k−1)

2
+

ε

8

]
− ε

8

= τ
(
tj−1 −

ε

8

)
+

1− τ

2
[βk−1(ϕ(yj)− n̂k−1)]

(46)

≤ τ
(
tj−1 −

ε

8

)
+

1− τ

2

(
tj −

ε

4

)
≤ τ

(
tj−1 −

ε

8

)
+

1− τ

2

(
tj −

ε

8

)
,

which can be easily seen to imply that statement b) holds.
c) If j − ik − sk ≤ 0, then (45) obviously follows. Assume then that j − ik − sk > 0. The fact that there

are at least j − ik − sk good iterations in {ik + 1, . . . , j}, and statements a) and b), imply that

tj −
ε

8
≤

(
tik −

ε

8

)(
2τ

1 + τ

)j−ik−sk

. (47)

and thus (45) follows.

Proposition 3.5 For every cycle index k ≥ 1 generated by Ad-GPB, its size is bounded by |Ck| ≤ sk +
N̄k(ε) + 1 where sk denotes the number of bad iterations within it and N̄k(·) is defined as

N̄k(ε) :=

⌈
1 + τ

1− τ
log+

[
8tikε

−1
]⌉

. (48)

Proof: If tik < ε/8, then the cycle-stopping criterion is satisfied with j = ik. This implies that |Ck| = 1,
and hence that the result trivially holds in this case. From now on, assume tik ≥ ε/8 and suppose for
contradiction that |Ck| > sk + N̄k(ε) + 1. This implies that there exists a nonnegative integer J ≥ ik such
that J + 1 ∈ Ck and

J − ik + 2 > sk + N̄k(ε) + 1 (49)

because the left-hand side of (49) is the cardinality of the index set {ik, . . . , J + 1}. Since J is not the last
iteration of Ck, the cycle-stopping criterion in step 2 of Ad-GPB is violated with j = J , i.e.,

tJ > βk−1[ϕ(yJ)− n̂k−1] +
ε

4
≥ ε

4
.

This observation together with Lemma 3.4(c) with j = J then imply that

ε

8
≤ tJ −

ε

8
≤

(
2τ

1 + τ

)J−ik−sk (
tik −

ε

8

)
≤

(
2τ

1 + τ

)J−ik−sk

tik ,

which together with the definition of N̄k(ε) in (48) can be easily seen to imply that

J − ik − sk ≤ N̄k(ε)− 1.

Since this conclusion contradicts (49), the conclusion of the proposition follows.
We now make some remarks about Proposition 3.5. First, the bound on the length of each cycle depends

on the number of bad iterations within it. Second, to obtain the overall iteration complexity of Ad-GPB,
it suffices to derive a bound on the number of cycles generated by Ad-GPB, which is the main goal of the
subsequent section.

4 Bounding the number of cycles

This section establishes a bound on the number of cycles generated by Ad-GPB. It contains two subsections.
The first one considers the (much simpler) case where ϕ∗ is known and n̂k in step 2 of Ad-GPB is set to ϕ∗

11



for every k ≥ 1. The second one considers the general case where n̂k is an arbitrary scalar satisfying the
condition in step 2 of Ad-GPB.

We start by stating two technical results that are used in both subsections.
The first one describes basic facts about the sextuple (λ̂k, x̂k, ŷk, Γ̂k, m̂k, t̂k) generated at the end of the

k-th cycle.

Lemma 4.1 For every cycle index k of Ad-GPB, the following statements hold:

a) Γ̂k ∈ Conv (Rn), Γ̂k ≤ ϕ, and dom Γ̂k = domh;

b) we have

t̂k ≤ βk−1[ϕ(ŷk)− n̂k−1] +
ε

4
;

c) x̂k, ŷk ∈ domh, ϕ(ŷk) ≤ ϕ̂a
k, and ϕ(ŷk) ≤ ϕ(ŷk−1), where by convention ŷ0 = x̂0;

d) ℓ̂k ≥ ℓ̂k−1 and βk ≤ βk−1;

e) for every given u ∈ domh, we have

ϕ(ŷk)− Γ̂k(u) ≤ t̂k +
1

2λ̂k

[
∥u− x̂k−1∥2 − ∥u− x̂k∥2

]
; (50)

Proof: a) It follows from (30) and the fact that Γ̂k is the last Γj generated within the k-th cycle.
b) It follows from the fact that the cycle-stopping criterion in the first line of step 2 of Ad-GPB is satisfied

at iteration jk and the definitions of the quantities t̂k and ŷk in step 2 of Ad-GPB.
c) It follows from the first two remarks in the paragraph containing (32), the definition of ϕ̂a

k in (27), and
the fact that x̂k (resp., ŷk) is the last xj (resp., yj) generated within the k-th cycle.

d) The first inequality in (d) follows from the definition ℓ̂k in (26). Moreover, the rule for updating βk

in step 2 of Ad-GPB implies that βk ≤ βk−1.
e) Observe that (30) and the definitions of the quantities x̂k, m̂k, Γ̂k, and λ̂k in step 2 of Ad-GPB, imply

that (x̂k, m̂k) is the pair of optimal solution and optimal value of

min

{
Γ̂k(u) +

1

2λ̂k

∥u− x̂k−1∥2 : u ∈ Rn

}
. (51)

The above observation, the fact that Γ̂k(·) + 1/(2λ̂k)∥ · −x̂k−1∥2 is 1/λ̂k-strongly convex, together imply
that, for the given u ∈ domh, we have

m̂k +
1

2λ̂k

∥u− x̂k∥2 ≤ Γ̂k(u) +
1

2λ̂k

∥u− x̂k−1∥2, (52)

and hence that

ϕ(ŷk)− Γ̂k(u) +
1

2λ̂k

∥u− x̂k∥2≤ϕ(ŷk)− m̂k +
1

2λ̂k

∥u− x̂k−1∥2 = t̂k +
1

2λ̂k

∥u− x̂k−1∥2,

where the equality is due to the definition of t̂k in step 2 of Ad-GPB. This shows that (50), and hence
statement (e), holds.

The next result provides a uniform upper (resp., lower) bound on the sequence {tik} (resp. λ̂k), and also
a bound on the total number of bad iterations generated by Ad-GPB.

Lemma 4.2 For every cycle index k ≥ 1 generated by Ad-GPB, the following statements hold:

a) λ̂k ≥ min{λ, λ1} where λ is as in (42);

b)
∑k

l=1 sl ≤ log+2 (λ1/λ) where sl denotes the number of bad iterations within cycle l.
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c) we have tik ≤ t̄ where t̄ is as in (33).

Proof: a) Using the facts that λik = λ̂k−1 (see step 2 of Ad-GPB) and Lemma 3.3(a) with j = jk, we
conclude that

λ̂k ≥ min
{
λ, λ̂k−1

}
.

The statement then follows by using the above inequality recursively and the convention that λ̂0 = λ1.
b) Since the last iteration of a cycle is not bad and λj+1/λj is equal to 1/2 (resp., equal to 1) if j is a bad

iteration, we easily see that λ̂l/λ̂l−1 = (1/2)sl , or equivalently, log2 λ̂l−1 − log2 λ̂l = sl, for every cycle l of

Ad-GPB, under the convention that λ̂0 := λ1. Statement (c) now follows by summing the above inequality
from l = 1 to k and using statement a).

c) Using the facts that ϕ = f + h and Γik(·) ≥ ℓ̃f (·; x̂k−1) + h(·) (see the serious update in step 2 of
Ad-GPB), and the definition of tj , mj and yj in (24), (22) and (23), respectively, we have

tik
(24)
= ϕ(yik)−mik

(23)

≤ ϕ(xik)−mik

(22)
= ϕ(xik)− Γik(xik)−

1

2λik

∥xik − x̂k−1∥2

≤ f(xik)− ℓ̃f (xik ; x̂k−1)−
1

2λik

∥xik − x̂k−1∥2

(7)

≤ 2M∥xik − x̂k−1∥+
L

2
∥xik − x̂k−1∥2. (53)

Statement c) now follows from the above inequality, Assumption 4, and the fact that xik , x̂k−1 ∈ domh.
It follows from Lemma 4.2(b) and the definition of λ in (42) that the overall number of bad iterations is

O
(
log2

(
(1− τ)

(
M2

ε
+ L

)))
.

4.1 Case where ϕ∗ is known

This subsection considers the special case of Ad-GPB where ϕ∗ is known and

β0 =
1

2
, n̂k = ϕ∗ ∀k ≥ 1. (54)

Even though the general result in Theorem 2.1 holds for this case, the simpler proof presented here covering
the above case helps to understand the proof of the more general case given in Subsection 4.2 and has the
advantage that it does not assume that domh is bounded.

For convenience, the simplified version of Ad-GPB, referred to as Ad-GPB*, is explicitly stated below.

Ad-GPB*

0. Let x0 ∈ domh, λ1 > 0, τ ∈ (0, 1), and ε > 0 be given; find Γ1 ∈ B(ϕ) such that Γ1 ≥ ℓϕ(·; x̂0) and set
y0 = x̂0, j0 = 0, j = k = 1;

1. compute xj ,mj , yj , and tj as in (21), (22), (23), and (24), respectively;

2. if tj ≤ (ϕ(yj)− ϕ∗)/2 + ε/4 is violated then perform a null update, i.e.:
set Γj+1 = BU(x̂k−1, xj ,Γj , λj);
if either j = jk−1 + 1 or

tj − τtj−1 ≤ (1− τ)

[
ϕ(yj)− ϕ∗

4
+

ε

8

]
, (55)

then set λj+1 = λj ; else, set λj+1 = λj/2;
else perform a serious update, i.e.:
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set λj+1 = λj and find Γj+1 ∈ B(ϕ) such that Γj+1 ≥ ℓϕ(·;xj);

set jk = j and (λ̂k, x̂k, ŷk, Γ̂k, m̂k, t̂k) = (λj , xj , yj ,Γj ,mj , tj);
if ϕ(ŷk)− ϕ∗ ≤ ε, then output (x̂k, ŷk), and stop;
k ← k + 1;

3. set j ← j + 1 and go to step 1.

We now make some remarks about Ad-GPB*. First, even though the parameter β0 can be arbitrarily
chosen in (0, 1/2], Ad-GPB* is stated with β0 = 1/2 for simplicity. Second, if Ad-GPB* reaches step 2 then
the primal gap ϕ(yj)−ϕ∗ is greater than ε because of step 2 and is substantially larger than this lower bound
at its early cycles. Hence, the right-hand side (ϕ(yj)− ϕ∗)/2 + ε/4 of its cycle termination criterion in step
2 is always larger than 3ε/4 and is substantially larger than 3ε/4 at its early cycles. Since, in contrast, GPB
terminates a cycle when the inequality tj ≤ ε/2 is satisfied, the cycle termination of Ad-GPB* is always
looser, and potentially much looser at its early cycles, than that of GPB.

The next lemma formally shows that Ad-GPB* is a specific instance of Ad-GPB.

Lemma 4.3 The following statements hold:

a) Ad-GPB* is a special instance of Ad-GPB with β0 and {n̂k} chosen as in (54); moreover, βk = 1/2
for every cycle index k ≥ 1;

b) for every cycle index k of Ad-GPB*, we have

t̂k ≤ [ϕ(ŷk)− ϕ∗]/2 + ε/4. (56)

Proof: a) The first claim of (a) is obvious. To show that βk = 1/2 for every index cycle k ≥ 1 generated
by Ad-GPB, it suffices to show that βk = βk−1 because β0 = 1/2. Indeed, using (54), the facts that
βl ≤ β0 = 1/2 for l ≥ 0 due to Lemma 4.1(c), and the definitions of ϕa

k and ĝk in (28) and (27), respectively,
we conclude that

ĝk ≤
1

2
∑k

l=⌈k/2⌉ λ̂l

k∑
l=⌈k/2⌉

λ̂l[ϕ(ŷl)− ϕ∗] =
ϕ̂a
k − ϕ∗

2
,

and hence that βk = βk−1 due to the update rule for βk at the end of step 2 of Ad-GPB.
b) This statement follows from (a), Lemma 4.1(b), and the fact that β0 = 1/2.
Let d0 denote the distance of the initial point x̂0 ∈ domh to the set of optimal solutions X∗, i.e.,

d0 := ∥x̂0 − x̂∗∥, where x̂∗ := argmin {∥x̂0 − x∗∥ : x∗ ∈ X∗}. (57)

Lemma 4.4 If K ≥ 1 is a cycle index generated by Ad-GPB, then we have

K∑
k=1

λ̂k[ϕ(ŷk)− ϕ∗] ≤
ε

2

K∑
k=1

λ̂k + d20. (58)

Proof: Relation (50) with u = x̂∗, and the facts that Γ̂k ≤ ϕ and ϕ∗ = ϕ(x̂∗), imply that

λ̂k[ϕ(ŷk)− ϕ∗] ≤ λ̂k[ϕ(ŷk)− Γ̂k(x̂∗)]

≤ λ̂k t̂k +
1

2
∥x̂∗ − x̂k−1∥2 −

1

2
∥x̂k − x̂∗∥2

≤ λ̂k

[
ϕ(ŷk)− ϕ∗

2
+

ε

4

]
+

1

2
∥x̂∗ − x̂k−1∥2 −

1

2
∥x̂k − x̂∗∥2

where the last inequality is due to (56). Simplifying the above inequality and summing the resulting inequality
from k = 1, . . . ,K, we conclude that

1

2

K∑
k=1

λ̂k[ϕ(ŷk)− ϕ∗] ≤
ε

4

K∑
k=1

λ̂k +
1

2
∥x̂∗ − x̂0∥2 −

1

2
∥x̂K − x̂∗∥2.
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The statement now follows from the above inequality and (57).
We are now ready to prove Theorem 4.5.

Theorem 4.5 Ad-GPB* finds an iterate ŷk satisfying ϕ(ŷk)− ϕ∗ ≤ ε in at most K̂(ε) cycles and

log+2

(
Q̄λ1

(
M2

ε
+

L

16

))
+

(
1 + τ

1− τ
log+

[
8t̄ε−1

]
+ 2

)
K̂(ε) (59)

iterations, where Q̄ is as in (35) and

K̂(ε) :=

⌈
2d20Q̄

ε

(
M2

ε
+

L

16
+

1

λ1Q̄

)⌉
. (60)

Proof: We first prove that Ad-GPB finds an iterate ŷk satisfying ϕ(ŷk) − ϕ∗ ≤ ε in at most K̂(ε) cycles.
Suppose for contradiction that Ad-GPB generates a cycle K > K̂(ε). Since the Ad-GPB did not stop at
any of the previous iterations, we have that ϕ(ŷk) − ϕ∗ > ε for every k = 1, . . . ,K − 1. Using the previous
observation, inequality (58), the fact that K − 1 ≥ K̂(ε), and Lemma 4.2(a), we conclude that

d20
ε

(58)

≥ 1

ε

K−1∑
k=1

λ̂k[ϕ(ŷk)− ϕ∗]−
1

2

K−1∑
k=1

λ̂k >

K−1∑
k=1

λ̂k −
1

2

K−1∑
k=1

λ̂k

≥ 1

2
min {λ, λ1} (K − 1) ≥ 1

2
min {λ, λ1} K̂(ε).

The definition of K̂(ε) in (60), the above inequality, and some simple algebraic manipulation on the min
term, yield the desired contradiction.

Let k̄ ≤ K̂(ε) denote the numbers of cycles generated by Ad-GPB*. Proposition 3.5, and statements (b)
and (c) of Lemma 4.2, then imply that the total number of iterations performed by Ad-GPB* until it finds
an iterate ŷk satisfying ϕ(ŷk)− ϕ∗ ≤ ε is bounded by

k̄∑
k=1

|Ck| ≤
k̄∑

k=1

(
1 + τ

1− τ
log+

[
8t̄ε−1

]
+ 2 + sk

)
≤ log+2

λ1

λ
+

(
1 + τ

1− τ
log+

[
8t̄ε−1

]
+ 2

)
K̂(ε)

and hence by (59), due to the definitions of Q̄ and λ in (35) and (42), respectively.

4.2 General case where ϕ∗ is unknown

As already mentioned above, this subsection considers the general case (see step 2 of Ad-GPB) where n̂k is

in the interval [ℓ̂k, ϕ∗], where ℓ̂k is as in (26), and derives an upper bound on the number of cycles generated
by Ad-GPB.

Lemma 4.6 For every cycle index k of Ad-GPB, we have:

ϕ̂a
k − n̂k ≤ ĝk +

D2

2
∑k

l=⌈k/2⌉ λ̂l

+
ε

4
(61)

where D is as in (4).

Proof: Let u ∈ domh be given. Multiplying (50) by λ̂k and summing the resulting inequality from k =
⌈k/2⌉, . . . , k, we have

k∑
l=⌈k/2⌉

λ̂l[ϕ(ŷl)− Γ̂l(u)] ≤
k∑

l=⌈k/2⌉

(
λ̂lt̂l +

1

2

[
∥u− x̂l−1∥2 − ∥u− x̂l∥2

])

≤
k∑

l=⌈k/2⌉

λ̂l

[
βl−1[ϕ(ŷl)− n̂l−1] +

ε

4

]
+

1

2
∥u− x̂⌈k/2⌉−1∥2 −

1

2
∥x̂k − u∥2,
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where the last inequality is due to Lemma 4.1(b). Dividing both sides of the above inequality by
∑k

l=⌈k/2⌉ λ̂l,

and using the definition of ϕ̂a
k, Γ̂

a
k(·), and ĝk in (27), (26), and (28), respectively, we have

ϕ̂a
k − Γ̂a

k(u) ≤ ĝk +
ε

4
+
∥u− x̂⌈k/2⌉−1∥2

2
∑k

l=⌈k/2⌉ λ̂l

≤ ĝk +
ε

4
+

D2

2
∑k

l=⌈k/2⌉ λ̂l

,

where the last inequality is due to Assumption (A4) and the fact that u ∈ domh and x̂⌈k/2⌉−1 ∈ domh
where the last inclusion is due to Lemma 4.1(c). Inequality (61) now follows from (31) and by maximizing
the above inequality relative to u ∈ domh.

Lemma 4.7 For every cycle index k of Ad-GPB, the following statements hold:

a) If βk = βk−1, then we have

ϕ̂a
k − n̂k ≤

D2∑k
l=⌈k/2⌉ λ̂l

+
ε

2
; (62)

b) If βk = βk−1/2, then we have

ϕ̂a
k − n̂k

2
< ĝk ≤ β⌈ k

2 ⌉−1(ϕ(x̂0)− n̂0) (63)

where ϕ̂a
k is as in (27).

Proof: a) The update rule for βk just after equation (28) and the assumption that βk = βk−1 imply that

ĝk ≤ (ϕ̂a
k − n̂k)/2. This observation and inequality (61) then immediately imply (62).

b) The first inequality in (63) follows from the assumption that βk = βk−1/2 and the update rule for βk

just after equation (28). Moreover, using the definition of ĝk in (28), the fact that βl−1 ≤ β⌈k/2⌉−1 for every

l ≥ ⌈k/2⌉ due to Lemma 4.1(d), and the fact that n̂k ≥ ℓ̂k for every k ≥ 1 in (31) we conclude that

ĝk ≤
β⌈k/2⌉−1∑k
l=⌈k/2⌉ λ̂l

k∑
l=⌈k/2⌉

λ̂l[ϕ(ŷl)− n̂l−1] ≤
β⌈k/2⌉−1∑k
l=⌈k/2⌉ λ̂l

k∑
l=⌈k/2⌉

λ̂l[ϕ(ŷl)− ℓ̂l−1] ≤ β⌈k/2⌉−1[ϕ(ŷ0)− ℓ̂0],

where the last inequality is because statements (c) and (d) of Lemma 4.1 imply that ϕ(ŷl) ≤ ϕ(ŷ0) and

ℓ̂l ≥ ℓ̂0 for every l ≥ 1. The above inequality, the convention that ŷ0 = x̂0, and the fact that n̂0 = ℓ̂0 (see
step 0 of Ad-GPB) then imply the second inequality in (63).

We are now ready to prove the main result of this paper.
Proof of Theorem 2.1 To simplify notation, let K̄ = K̄(ε). It is easy to see that

D2

K̄

(
1

λ
+

1

λ1

)
≤ ε

4
,

1

2K̄−2
(ϕ(x̂0)− n̂0) <

ε

β0
. (64)

We first prove that Ad-GPB finds an iterate ŷk satisfying ϕ(ŷk)− n̂k ≤ ε in at most 4K̄ cycles. Suppose
for contradiction that Ad-GPB generates a cycle K ≥ 4K̄ + 1. Since the Ad-GPB did not stop at cycles
from 1 to K − 1, we have that

ϕ(ŷk)− n̂k > ε ∀k ∈ {1, . . . , 4K̄}. (65)

We then have that

βk =
βk−1

2
∀k ∈ {K̄, . . . , 4K̄} (66)

since otherwise we would have some βk = βk−1 for some k ∈ {K̄, . . . , 4K̄}, and this together with (65),
Lemma 4.1(c), Lemma 4.7(a), and Lemma 4.2(a), would yield the contradiction that

ε < ϕ(ŷk)− n̂k

L.4.1(c)

≤ ϕ̂a
k − n̂k

L.4.7(a)

≤ D2∑k
l=⌈k/2⌉ λ̂l

+
ε

2

L.4.2(a)

≤ 2D2

kmin{λ, λ1}
+

ε

2

≤ 2D2

K̄

(
1

λ
+

1

λ1

)
+

ε

2

(64)

≤ ε

2
+

ε

2
= ε,
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where the last inequality is due to the first inequality in (64). Relations (65) and (66), and Lemmas 4.1(c)
and 4.7(b), all with k = 4K̄, then yield

ε
(65)
< ϕ(ŷ4K̄)− n̂4K̄

L.4.1(c)

≤ ϕ̂a
4K̄ − n̂4K̄

L.4.7(b)

≤ 2β2K̄−1(ϕ(x̂0)− n̂0)
(66)

≤ 1

2K̄−2
βK̄(ϕ(x̂0)− n̂0)

(64)
<

βK̄

β0
ε

where the last inequality is due to the second inequality in (64). Since βK̄ ≤ β0, the above inequality gives
the desired contradiction, and hence the first conclusion of theorem holds.

To show the second conclusion of the theorem, let k̄ ≤ 4K̄ denote the numbers of cycles generated by
Ad-GPB. Proposition 3.5, and statements (b) and (c) of Lemma 4.2 then imply that the total number of
iterations that Ad-GPB finds an iterate ŷk satisfying ϕ(ŷk)− n̂k ≤ ε is bounded by

k̄∑
k=1

|Ck| ≤
k̄∑

k=1

(
1 + τ

1− τ
log+

[
8t̄ε−1

]
+ 2 + sk

)
≤ log+2

λ1

λ
+ 4K̄

(
1 + τ

1− τ
log+

[
8t̄ε−1

]
+ 2

)
and hence by (36), due to the definitions of Q̄ and λ in (35) and (42), respectively.

5 Computational experiments

This section reports the computational results of Ad-GPB* and two corresponding practical variants against
other modern PB methods and the subgradient method. It contains two subsections. The first one presents
the computational results for a simple l1 feasibility problem. The second one showcases the computational
results for the Lagrangian cut problem appeared in the area of integer programming.

All the methods tested in the following two subsections are terminated based on the following criterion:

ϕ(xk)− ϕ∗ ≤ ε̄[ϕ(x0)− ϕ∗] (67)

where ε̄ = 10−6, 10−5 or 10−4. All experiments were performed in MATLAB 2023a and run on a PC with
a 16-core Intel Core i9 processor and 32 GB of memory.

Now we describe the algorithm details used in the following two subsections. We first describe Polyak
subgradient method. Given xk, it computes

xk+1 = argmin x

{
ℓϕ(x;xk) +

1

2λpol(xk)
∥x− xk∥2

}
where

λpol(x) :=
ϕ(x)− ϕ∗

∥g(x)∥2
(68)

where g(x) ∈ ∂f(x). Next we describe five GPB related methods, namely: GPB, Ad-GPB*, Ad-GPB**,
Pol-Ad-GPB*, and Pol-GPB. A cycle k ≥ 1 of Ad-GPB*, regardless of the way its initial prox stepsize is
chosen, is called good if the prox stepsizes λj do not change (i.e., the inequality (25) is not violated) within
it. First, GPB is stated in [18, 19]. Second, Ad-GPB* is stated in Subsection 4.1. Third, Ad-GPB** is a
corresponding variant of Ad-GPB* that allows the prox stepsize to increase at the beginning of its initial
cycles. Specifically, if k̄ denotes the largest cycle index for which cycles 1 to k̄ are good then Ad-GPB**
sets λik+1

= 2λ̂k for every k ≤ k̄ and afterwards sets λik+1
= λ̂k for every k > k̄ as Ad-GPB* does, where

λ̂k and ik+1 are defined in step 2 of Ad-GPB* and (29), respectively. The motivation behind Ad-GPB**
is to prevent Ad-GPB or Ad-GPB* from generating only small λj ’s due to a poor choice of initial prox
stepsize λ1. Pol-GPB and Pol-Ad-GPB* are two Polyak-type variants of GPB and Ad-GPB* where the
initial prox stepsize for the kth-cycle is set to λik = 40λpol(x̂k−1). The above five methods all update the
bundle Γ according to the 2-cut update scheme described in Subsection 2.2. Finally, Ad-GPB*, Ad-GPB**
and Pol-Ad-GPB* use τ = 0.95.
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5.1 l1 feasibility problem

This subsection reports the computational results on a l1 feasibility problem. It contains two subsections.
The first one presents computational results of Ad-GPB* and Ad-GPB** against GPB method in [18, 19].
The second one showcases the computational results of Pol-Ad-GPB* and Pol-GPB against subgradient
method with Polyak stepsize.

We start by describing the l1 feasibility problem. The problem can be formulated as:

ϕ∗ := min
x≥0

f(x) := ∥Ax− b∥1 (69)

where A ∈ Rm×n and b ∈ Rn are known. We consider two different ways of generating the data, i.e., sparse
and dense ways. For dense problems, matrix A is randomly generated in the form A = NU where the entries
of the matrix N ∈ Rm×n (resp., U ∈ Rn×n) are i.i.d sampled from the standard normal N (0, 1) (resp.,
uniform U [0, 100]) distribution. For sparse problem, matrix A is randomly generated in the form A = DN
where the nonzero entries of the sparse matrix N ∈ Rm×n are i.i.d sampled from the standard normal N (0, 1)
distribution and D is a diagonal matrix where the diagonal of D are i.i.d sampled from U [0, 1000]. In both
cases, vector b is determined as b = Ax∗ where x∗ = (v∗)

2 for some vector v∗ ∈ Rn whose entries are i.i.d
sampled from the standard Normal distribution N (0, 1). Finally, we generated x0 = (v0)

2 for some vector
v0 ∈ Rn whose entries are i.i.d. sampled from the uniform distribution over (0, 1). Clearly, x∗ is a global
minimizer of (69), whose optimal value f∗ equals zero in both cases. We test our methods on six dense and
six sparse instances.

We now describe some details about all the tables that appear in this subsection. We set the target ε̄ in
(67) as 10−5 for dense instances and 10−4 for sparse instances. The quantities θm, θn and θs are defined as
θm = m/103, θn = n/103, and θs := nnz(A)/mn, where nnz(A) is the number of non-zero entries of A. An
entry in each table is given as a fraction with the numerator expressing the (rounded) number of iterations
and the denominator expressing the CPU running time in seconds. An entry marked as ∗/∗ indicates that
the CPU running time exceeds the allocated time limit. The bold numbers highlight the method that has
the best performance for each instance.

5.1.1 Ad-GPB* versus GPB

This subsection presents computational results of GPB method in [18, 19] against Ad-GPB* and Ad-GPB**.
To check how sensitive the three methods are relative to the initial choice of prox stepsize λ1, we test

them for λ1 = αλpol(x0) where α ∈ {0.01, 1, 100}. The computational results for the above three methods
are given in Table 1 (resp., Table 2) for six sparse (resp., dense) instances. The time limit is four hours for
Table 1 and two hours for Table 2.

ALG. GPB Ad-GPB* Ad-GPB**

(θm, θn, θs)

α
10−2 1 102 10−2 1 102 10−2 1 102

(1,20,10−2) 68.3K
125

153.7K
314

∗
∗

26.1K
36

19.6K
27

23.3K
33

17.8K
26

21.3K
31

23.3K
34

(3,30,10−2) 164.2K
450

120.8K
381

∗
∗

59.8K
152

39.5k
102

62.4K
164

55.4K
144

36.3K
94

62.4K
165

(5,50,10−2) 123.4K
811

99.4K
654

∗
∗

62.8K
409

32.7K
212

64.5K
409

59.1K
387

32.1K
211

64.5K
420

(10,100,10−3) 152.2K
928

132.0K
837

∗
∗

67.4K
363

40.5K
226

66.9K
360

61.8K
337

44.4K
242

66.9K
360

(20,200,10−3) 136.2K
7119

111.2K
5725

∗
∗

78.4K
2636

41.3K
1401

76.0K
2577

67.9K
2384

40.8K
1441

76.0K
3280

(50,500,10−4) 148.1K
12574

130.1K
11864

∗
∗

70.4K
3947

42.9K
2460

65.0K
3803

67.1K
3820

43.0K
2392

65.0K
3610

Table 1: Numerical results for sparse instances. A relative tolerance of ε̄ = 10−4 is set and a time limit of
14400 seconds (4 hours) is given.
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ALG. GPB Ad-GPB* Ad-GPB**

(θm, θn)

α
10−2 1 102 10−2 1 102 10−2 1 102

(0.5,1.5) 9354.7K
1502

3323.6K
462

∗
∗

74.2K
6

47.9K
5

49.7K
5

53.8K
5

56.4K
6

49.7K
5

(1,3) ∗
∗

5384.9K
3114

∗
∗

86.7K
42

81.9K
40

87.0K
43

137.3K
70

79.0K
41

143.1K
75

(2,6) ∗
∗

221.8K
1214

59.0K
509

305.6K
1552

181.4K
911

134.7K
677

136.7K
685

176.6K
882

133.9K
669

(1.5,0.5) 1630.7K
181

495.1K
55

∗
∗

135.5K
13

102.5K
10

113.1K
11

128.4K
13

104.6K
10

117.8K
11

(3,1) 2170.7K
869

502.5K
199

∗
∗

233.5K
100

155.5K
65

166.5K
74

180.8K
71

156.7K
64

175.5K
73

(6,2) ∗
∗

757.9K
3542

∗
∗

351.4K
1779

242.4K
1211

276.6K
1376

304.0K
1515

238.0K
1151

276.6K
1340

Table 2: Numerical results for dense instances. A relative tolerance of ε̄ = 10−5 is set and a time limit of
7200 seconds (2 hours) is given.

The results in Tables 1 and 2 show that Ad-GPB* and Ad-GPB** are generally at least two to three
times faster than GPB in terms of CPU running time. Second, it also shows that Ad-GPB* and Ad-GPB**
are more robust to initial stepsize than GPB. We also observe that Ad-GPB** generally performs slightly
better for small initial stepsize than Ad-GPB* which accounts for the increase of stepsize at the end of the
cycle.

5.1.2 Polyak type methods

This subsection considers two Polyak-type variants of GPB and Ad-GPB* where the initial prox stepsize for
the kth-cycle is set to λik = 40λpol(x̂k−1). These two variants in turn are compared with the subgradient
method with Polyak stepsize (see (68)) and the Ad-GPB* and Ad-GPB** variants described in Subsection
5.1.1.

The computational results for the above five methods are given in Table 3 (resp., Table 4) for six sparse
(resp., dense) instances. The results for Ad-GPB* and Ad-GPB** are the same ones that appear in Tables
1 and 2 with α = 1. They are duplicated here for the sake of convenience.

(θm, θn, θs) Pol-Sub Pol-GPB Pol-Ad-GPB* Ad-GPB* Ad-GPB**
(1,20,10−2) 431.3K/354 33.8K/58 15.5K/22 19.6K/27 21.3K/31
(3,30,10−2) 413.3K/786 126.9K/392 21.2K/60 39.5K/102 36.3K/94
(5,50,10−2) 389.8k/2440 91.4K/581 19.7K/128 32.7K/212 32.1K/211

(10,100,10−3) 473.2k/2092 137.12K/876 21.3K/157 40.5K/226 44.4K/242
(20,200,10−3) */* 115.7K/5576 25.9K/1070 41.3K/1401 40.8K/1441
(50,500,10−4) */* 133.0K/13754 25.5K/1847 42.9K/2460 43.0K/2392

Table 3: Numerical results for sparse instances. A relative tolerance of ε̄ = 10−4 is set and a time limit of
14400 seconds (4 hours) is given.
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(θm, θn) Pol-Sub Pol-GPB Pol-Ad-GPB* Ad-GPB* Ad-GPB**
(0.5,1.5) 479.8K/36.5 143.2K/22.8 73.5K/9.4 47.9K/5 56.4K/6
(1,3) 1644.3K/1440 390.3K/196.7 144.4K/72.1 81.9K/40 79.0K/41
(2,6) 354.5K/2513 46.4K/233 182.5K/959 181.4K/911 176.6K/882

(1.5,0.5) 699.4K/79.5 109.9K/12.0 56.5K/5.6 102.5K/10 104.6K/10
(3,1) 1034.6K/1046 147.8K/57.9 89.2K/38.8 155.5K/65 156.7K/64
(6,2) */* 136.1K/602 143.1K/713 242.4K/1211 238.0K/1151

Table 4: Numerical results for dense instances. A relative tolerance of ε̄ = 10−5 is set and a time limit of
7200 seconds (2 hours) is given.

Tables 3 and 4 demonstrate that PB methods generally outperform Pol-Subgrad in terms of CPU running
time. Additionally, Pol-Ad-GPB* stands out as a particularly effective variant, outperforming other methods
in eight out of twelve instances.

5.2 Lagrangian cut problem

This subsection presents the numerical results comparing Ad-GPB* and Pol-Ad-GPB* against GPB and
Pol-Sub on a convex nonsmooth optimization problem that has broad applications in the field of integer
programming (see e.g. [28]).

The problem considered in this subsection arises in the context of solving the the stochastic binary
multi-knapsack problem

min cTx+ P (x)
s.t. Ax ≥ b

x ∈ {0, 1}n
(70)

where P (x) := Eξ [Pξ(x)] and

Pξ(x) := min q(ξ)T y (71)

s.t. Wy ≥ h− Tx

y ∈ {0, 1}n

for every x ∈ {0, 1}n. In the second-stage problem, only the objective vector q(ξ) is a random variable.
Moreover, it is assumed that its support Ξ is a finite set, i.e., q(·) has a finite number of scenarios ξ’s.

Benders decomposition (see e.g. [7, 26]) is an efficient cutting-plane approach for solving (70) which
approximates P (·) by pointwise maximum of cuts for P (·). Specifically, an affine function A(·) such that
P (x′) ≥ A(x′) for every x′ ∈ {0, 1}n is called a cut for P (·); moreover, a cut for P (·) is tight at x if
P (x) = A(x). Benders decomposition starts with a cut A0 for P (·) and compute a sequence {xk} of iterates
as follows: given cuts {Ai(·)}k−1

i=0 for P (·), it computes xk as

xk = argmin xc
Tx+ Pk(x) (72)

s.t. Ax ≥ b

x ∈ {0, 1}n

where
Pk(·) = max

i=0,··· ,k−1
Ai(·);

it then uses xk to generate a new cut Ak for P (·) and repeats the above steps with k replaced by k + 1.
Problem (72) can be easily formulated as an equivalent linear integer programming problem.
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We now describe how to generate a Lagrangian cut for P (·) using a given point x ∈ {0, 1}n. First, for
every ξ ∈ Ξ, (71) is equivalent to

min
y,u

q(ξ)T y

s.t. Wy + Tu ≥ h

y ∈ {0, 1}n, u ∈ [0, 1]n

u− x = 0.

By dualizing the constraint u− x = 0, we obtain the Lagrangian dual (LD) problem

Dξ(x) := max
π

Lξ(x;π) (73)

where

Lξ(x;π) := min
y,u

q(ξ)T y − πT (u− x) (74)

s.t. Wy + Tu ≥ d

y ∈ {0, 1}n, u ∈ [0, 1]n.

Let πξ(x) denote an optimal solution of (73). The optimal values Pξ(·) and Dξ(·) of (71) and (73),
respectively, are known to satisfy the following two properties for every ξ ∈ Ξ and x ∈ {0, 1}n:

(i) Pξ(x
′) ≥ Dξ(x

′) ≥ Dξ(x) + ⟨πξ(x), x
′ − x⟩ for every x′ ∈ {0, 1}n;

(ii) Pξ(x) = Dξ(x).

Property (i) can be found in many textbooks dealing with Lagrangian duality theory and property (ii) has
been established in [28]. Defining

π(x) := E[πξ(x)]

and taking expectation of the relations in (i) and (ii), we easily see that

P (x′) ≥ P (x) + ⟨π(x), x′ − x⟩ ∀x′ ∈ {0, 1}n,

and hence that Ax(·) := P (x) + ⟨π(x), · − x⟩ is a tight cut for P (·) at x.
Computation of P (x) assumes that the optimal value Pξ(·) of (71) can be efficiently computed for every

ξ ∈ Ξ. Computation of π(x) assumes that an optimal solution of (73) can be computed for every ξ ∈ Ξ.
Noting that (73) is an unconstrained convex nonsmooth optimization problem in terms of variable π and its
optimal value Dξ(x) is the (already computed) optimal value Pξ(x) of (71), we use the Ad-GPB* variant
of Ad-GPB to obtain a near optimal solution ≈ πξ(x) of (73). For the purpose of this subsection, we use
several instances of (73) to benchmark the methods described at the beginning of this section.

For every (ξ, x) ∈ Ξ × {0, 1}n, recall that using Ad-GPB* to solve (73) requires the ability to evaluate
Lξ(x, ·) and compute a subgradient of −Lξ(x, ·) at every π ∈ Rn. The value Lξ(x, π) is evaluated by solving
MILP (74). Moreover, if (uξ(x;π), yξ(x;π))) denotes an optimal solution of (74), then uξ(x;π) yields a
subgradient of −Lξ(x, ·) at π. It is worth noting (73) is a non-smooth convex problem that does not seem
to be tractable by the methods discussed in the papers (see e.g. [3, 9, 10, 14, 22, 23, 24, 25]) for solving
min-max smooth convex-concave saddle-point problems, mainly due to the integrality condition imposed on
the decision variable y in (74).

Next we describe how the data of (70) and (71) is generated. We generate three random instances of
(70), each following the same methodology as in [1]. We set n = 240 and Ξ = {1, . . . , 20} with each scenario
ξ ∈ Ξ being equiprobable. We generate matrices A1, A2 ∈ R50×120, T1,W ∈ R5×120, and vector c ∈ R240,
with all entries i.i.d. sampled from the uniform distribution over the integers {1, . . . , 100}. We then set
A = [A1 A2] and T = [T1 0] where the zero block of T is 5×120. Twenty vectors {q(ξ)}ξ∈Ξ with components
i.i.d. sampled from {1, . . . , 100} are generated. Finally, we set b = 3(A11+A21)/4 and h = 3(W1+ T11)/4
where 1 denotes the vector of ones.

For each randomly generated instance of (70), we run Benders decomposition started from x0 = 1
to obtain three iterates x1, x2, and x3. Each P (xk) and π(xk) for k = 1, 2, 3 are computed using the
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twenty randomly generated vectors {q(ξ)}ξ∈Ξ as described above, and hence each iteration solves twenty LD
subproblems as in (73). Hence, each randomly generated instance of (70) yields a total of sixty LD instances
as in (73). The total time to solve these sixty LD instances are given in Table 5 for the three instances of
(70) (named I1, I2 and I3 in the table) and all the benchmarked methods considered in this section. In this
comparison, both Ad-GPB* and GPB set the initial stepsize λ1 to λpol(π0) where the entries of π0 are i.i.d.
generated from the uniform distribution in (0, 1).

GPB Ad-GPB* Pol-Subgrad Pol-Ad-GPB*
I1 751s 600s 1390s 98s
I2 721s 550s 1503s 32s
I3 1250s 963s 5206s 98s

Table 5: Numerical results for solving LD subproblems. A relative tolerance of ε̄ = 10−6 is set.

Table 5 shows that Ad-GPB* consistently outperforms GPB. Additionally, it shows that Pol-Ad-GPB*
once again surpasses all other methods.

6 Concluding remarks

This paper presents a parameter-free adaptive proximal bundle method featuring two key ingredients: i) an
adaptive strategy for selecting variable proximal step sizes tailored to specific problem instances, and ii) an
adaptive cycle-stopping criterion that enhances the effectiveness of serious steps. Computational experiments
reveal that our method significantly reduces the number of consecutive null steps (i.e., shorter cycles) while
maintaining a manageable number of serious steps. As a result, it requires fewer iterations than methods
employing a constant proximal step size and a non-adaptive cycle termination criterion. Moreover, our
approach demonstrates considerable robustness to variations in the initial step size provided by the user.

We now discuss some possible extensions of our results. Recall that the complexity analysis of Ad-GPB*
assumes that domh is bounded, i.e., Lemma 4.2(c) uses it to give a simple proof that tik is bounded in terms
of (M,L) and the diameter D of domh. Using more complex arguments as those used in Appendix A of
[19], we can show that the complexity analysis of Ad-GPB* can be extended to the setting where domh is
unbounded.

We finally discuss some possible extensions of our analysis in this paper. First, establishing the iteration
complexity for Ad-GPB to the case where ϕ∗ is unknown and domh is unbounded is a more challenging
and interesting research topic. Second, it would be interesting to analyze the complexities of Pol-GPB and
Pol-Ad-GPB* described in Subsection 5 as they both performed well in our computational experiments.
Finally, our current analysis does not apply to the one-cut bundle update scheme (see Subsection 3.1 of [19])
since it is not a special case of BUF as already observed in the second remark following BUF. It would be
interesting to extend the analysis of this paper to establish the complexity of Ad-GPB based on the one-cut
bundle update scheme.
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[15] C. Lemaréchal. An extension of davidon methods to non differentiable problems. In Nondifferentiable
optimization, pages 95–109. Springer, 1975.
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