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Convexification techniques have gained increasing interest over the past
decades. In this work, we apply a recently developed convexification tech-
nique for fractional programs by He, Liu and Tawarmalani (2024) to the
problem of determining the edge expansion of a graph. Computing the edge
expansion of a graph is a well-known, difficult combinatorial problem that
seeks to partition the graph into two sets such that a fractional objective
function is minimized.
We give a formulation of the edge expansion as a completely positive pro-

gram and propose a relaxation as a doubly non-negative program, further
strengthened by cutting planes. Additionally, we develop an augmented
Lagrangian algorithm to solve the doubly non-negative program, obtaining
lower bounds on the edge expansion. Numerical results confirm that this
relaxation yields strong bounds and is computationally efficient, even for
graphs with several hundred vertices.
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1 Introduction
Let G = (V,E) be a simple graph on n ≥ 3 vertices. The edge expansion of G is defined
as

h(G) = min
∅6=S⊂V

|∂S|
min{|S|, |V \ S|} ,

where ∂S =
{
{i, j} ∈ E : i ∈ S, j /∈ S

}
is the cut induced by the set S. This graph

parameter is also known under the name Cheeger constant or isoperimetric number or
sparsest cut.

This constant is positive if and only if the graph is connected. A graph with h(G) ≥ c,
for some constant c > 0, is called a c-expander. A graph with h(G) < 1 is said to have
a bottleneck since there are not too many edges across it. The famous conjecture of
Mihail-Vazirani [22, 10] in polyhedral combinatorics claims that the graph (1-skeleton)
of any 0/1-polytope has edge expansion at least 1. This has been proven to be true
for several combinatorial polytopes [22, 18] and bases-exchange graphs of matroids [1],
and a weaker form was established recently for random 0/1-polytopes [20]. The edge
expansion problem arises in several applications. For references and for relations to
similar problems, we refer the reader to the recent paper [12].
The edge expansion problem belongs to the class of combinatorial fractional program-

ming problems. Fractional programming has been studied at least since the sixties of
the 20th century [9, 8]. It finds applications in fields like economics, engineering, and
telecommunications. While there are fractional programs that can be solved in poly-
nomial time [8], the edge expansion problem and many other fractional programs do
not admit polynomial time algorithms. For more details on applications and on known
results of fractional programming, we refer to the comprehensive literature review in [13].
In [12] two exact algorithms based on semidefinite programming to compute h(G)

have been developed. In the first algorithm, the problem is split into several k-bisection
problems. Limiting the number of candidates to be considered for k as well as comput-
ing the k-bisection is done using strong bounds from semidefinite programming. The
other algorithm in [12] uses an idea of Dinkelbach and computes the edge expansion by
considering several parametrized optimization problems, which can all be solved using a
max-cut solver.

We now take a different direction, and instead of transforming the problem into several
instances of known combinatorial optimization problems, we want to obtain strong lower
bounds on the edge expansion itself by using a doubly non-negative relaxation. This
relaxation results from applying a convexification technique for fractional programs,
developed recently by He, Liu and Tawarmalani [13].
The main contributions of this paper are as follows.

• We convexify the edge expansion problem and write it as a completely positive
program.

• We relax this completely positive program to a doubly non-negative program and
strengthen it with additional inequalities.
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• We develop and implement an augmented Lagrangian algorithm tailored for the
derived relaxation.

• The quality of the bounds produced by the relaxation and the effectiveness of our
algorithm are illustrated by numerical results.

• All code and data sets are publicly available as open source.

Outline This paper is structured as follows. We next formulate the problem as a binary
fractional optimization problem and derive a basic doubly non-negative relaxation. In
Section 3.1 we state the main result of [13] that we apply in Section 3.2 to give a
formulation of the edge expansion as a completely positive program. In Section 4, we then
relax the completely positive program to a doubly non-negative programming problem,
propose a facial reduction approach, and prove that the new bound is at least as good
as the one from the basic relaxation. An augmented Lagrangian algorithm for solving
the relaxation is presented in Section 5. Section 6 shows that, indeed, the relaxation is
improving over the basic relaxation significantly and demonstrates the efficiency of the
bounding routine. We conclude the paper in Section 7.

Notation The set of n × n real symmetric matrices is denoted by Sn. The positive
semidefiniteness condition for X ∈ Sn is written as X � 0, and we denote by P�0(X)
the projection of X onto the cone of positive semidefinite matrices. We write X ≥ 0 to
denote that a matrix X is entry wise non-negative and X ∈ DNN if X � 0 and X ≥ 0.
The trace of X is written as tr(X) and defined as the sum of its diagonal elements.
The trace inner product for X,Y ∈ Sn is defined as 〈X,Y 〉 = tr(XY ), and we denote
the Frobenius norm of X by ‖X‖ =

√
〈X,X〉. The operator diag(X) returns the main

diagonal of matrix X as a vector. The operator Diag : Rn → Rn×n yields the diagonal
matrix with its diagonal equal to the vector and Diag(M1,M2, . . . ,Mk) returns the
block-diagonal matrix constructed by the input matrices and by the diagonal matrices
formed from all the arguments, which are vectors. The symbol ⊗ denotes the Kronecker
product. The vector of all ones of size n is denoted by en, the vector of all zeros of size
n is denoted by 0n, and In is the n×n identity matrix. By En, we denote the matrix of
all ones, and ui is the standard unit vector with entry i equal to 1. All the subscripts
are omitted if the size is clear from the context.

2 A basic DNN relaxation for edge expansion
The edge expansion problem can be formulated as the binary fractional optimization
problem

h(G) = min x̄>Lx̄

e>x̄

s.t. 1 ≤ e>x̄ ≤
⌊n

2
⌋

x̄ ∈ {0, 1}n,

(1)
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where L denotes the Laplacian matrix of G that is defined as

Lij =


−1, if {i, j} ∈ E,
deg(i), if i = j and
0, otherwise.

To obtain a doubly non-negative relaxation (DNN) for (1), one can linearize the objective
function by introducing a matrix variable, which results in a matrix lifting relaxation.
Let X = x̄x̄> and ρ = 1

e>x̄
. Then the matrix Ȳ = ρX and the vector ȳ = ρx̄ satisfy the

following conditions. First, we have

e>ȳ = e>(ρx̄) = e>x̄

e>x̄
= 1.

Then, because of the constraints 1 ≤ e>x̄ ≤ bn2 c, it follows that

1
bn2 c
≤ ρ ≤ 1.

From 〈E, Ȳ 〉 = tr
(
ee>(ρx̄x̄>)

)
= (e>x̄)2

e>x̄
= e>x̄ we get

1 ≤ 〈E, Ȳ 〉 ≤
⌊n

2
⌋
.

For x̄i ∈ {0, 1}, we have x̄2
i = x̄i and hence,

diag(Ȳ ) = diag(ρx̄x̄>) = ρx̄ = ȳ.

The non-convex constraint X − x̄x̄> = 0 is relaxed to X − x̄x̄> � 0, which is equivalent

to
(
X x̄
x̄> 1

)
� 0 by the well-known Schur complement. Multiplying by ρ > 0 gives

(
Ȳ ȳ
ȳ> ρ

)
� 0.

Furthermore, the objective function can be written as

x̄>Lx̄

e>x̄
= 〈L,X〉

e>x̄
= 〈L, ρX〉 = 〈L, Ȳ 〉.
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After putting these constraints together and adding
(
Ȳ ȳ
ȳ> ρ

)
≥ 0, we arrive at the

following basic DNN relaxation for the edge expansion problem.

min 〈L, Ȳ 〉
s.t. e>ȳ = 1

1
bn2 c
≤ ρ ≤ 1

1 ≤ 〈E, Ȳ 〉 ≤
⌊n

2
⌋

diag(Ȳ ) = ȳ(
Ȳ ȳ
ȳ> ρ

)
∈ DNN.

(DNNn+1)

We call this a basic DNN relaxation since it does not contain additional cutting planes
such as triangle inequalities, etc. Adding a rank-constraint to (DNNn+1) results in
computing h(G). We will later relate (DNNn+1) to the relaxation which we are going to
derive in the next section.

3 Convexification of the edge expansion
In this section, we apply the recent convexification results of He, Liu, and Tawarmalani
in [13] to reformulate the edge expansion problem. For this, we start by presenting the
main results needed from that paper.

3.1 A convexification technique for fractional programs
The first important result on the convexification for fractional programs is the following.

Theorem 1 (Theorem 2 of [13]). Let f : X ⊆ Rn → Rm with f(x) = (f1(x), . . . , fm(x))>
be a vector of base functions. And let another vector be obtained from the base functions
by dividing each of them with a linear form of f . We then define the following two sets.

F = {f(x) : x ∈ X}

G =
{

f(x)∑
i∈[m] αifi(x) : x ∈ X

}
We assume that F is bounded and there exists ε > 0 such that

∑
i∈[m] αifi(x) > ε for

all x ∈ X . Then,

conv(G) = {g ∈ Rm : g ∈ ρ conv(F), α>g = 1, ρ ≥ 0} (2)

and if f1(x) = 1, then

conv(F) = {f ∈ Rm : f ∈ σ conv(G), f1 = 1, σ ≥ 0}. (3)
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This theorem is used to reformulate quadratic fractional binary optimization problems
to optimization problems over the completely positive cone. Let X ⊆ Rn and L be an
affine set of Rn. We consider the following minimization problem

min
x∈X∩L

x>Bx+ b>x+ b0
x>Ax+ a>x+ a0

(4)

and set q(x) := x>Ax + a>x + a0 to be the denominator of the objective function.
We assume that X ∩ L is non-empty, bounded and that for all elements x ∈ X ∩ L it
holds q(x) > 0. Let further

G′ =
{(1, x, xx>)

q(x) : x ∈ X ∩ L
}
,

then (4) is equivalent to

min
{
〈B, Y 〉+ b>y + b0ρ : (ρ, y, Y ) ∈ G′

}
. (5)

One could equivalently also optimize the linear objective over the convex hull conv(G′).
To do so, the authors of [13] showed an equivalence between the convex hull of G′ and
the convex hull of the set F with

F = {(1, x,X) : x ∈ X , X = xx>}.

Note, that in [13] they omit the constant 1 and write F = {(x, xx>) : x ∈ X}. For a
better understanding, we stick to the notations of Theorem 1 with our definition of F ,
including the constant 1.
Since the feasible set X in G′ is, in contrast to F , also intersected with the affine set L,

Theorem 1 can not be directly applied but needs some facial decomposition.

Proposition 2 (Proposition 3 in [13]). Assume that q(x) > 0 over a non-empty and
bounded set X ∩ L ⊆ Rn and suppose that L = {x ∈ Rn : Cx = d} for some C ∈ Rp×n
and d ∈ Rp. Then,

conv(G′) =
{

(ρ, y, Y ) : (ρ, y, Y ) ∈ ρ conv(F),

〈A, Y 〉+ a>y + a0ρ = 1, ρ ≥ 0,

tr(CY C> − Cyd> − dy>C> + ρdd>) = 0
}
.

For L = Rn, additionally conv(F) =
{
(1, x,X) : (1, x,X) ∈ σ conv(G′), σ ≥ 0

}
holds.

Depending on X , it still remains to characterize the convex hull of F . In the case
of X = Rn≥0 for example, we have that F = {(1, x,X) : x ∈ Rn≥0, X = xx>} and hence
the convex hull of F is

conv(F) =
{

(1, x,X) :
(
X x
x> 1

)
∈ CPn+1

}
,

where CPn+1 denotes the cone of completely positive matrices of dimension (n + 1) ×
(n+ 1). This immediately allows us to state the following corollary.
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Corollary 3 (Corollary 3 in [13]). If X is the non-negative orthant, and suppose that
L = {x ∈ Rn : Cx = d} for some C ∈ Rp×n and d ∈ Rp, then (4) can be formulated as

min 〈B, Y 〉+ b>y + b0ρ

s.t. 〈A, Y 〉+ a>y + a0ρ = 1
tr(CY C> − Cyd> − dy>C> + ρdd>) = 0(
Y y
y> ρ

)
∈ CPn+1.

(6)

To handle binary variables in this setting, one can introduce non-negative slack vari-
ables z̄i for each original variable x̄i and require x̄i+ z̄i = 1. We collect all these variables
in a vector x> = (x̄> z̄>). Let k be the index of z̄i in the variable vector x. Since
we are working with completely positive matrices, it can be shown that by adding the
constraint Xik = 0, we get an exact reformulation, as every extreme ray belonging to
the face implied by this constraint satisfies the binary condition, see Remark 4 in [13].
We are now ready to apply the theory of [13] presented in this section to the problem

of computing the edge expansion of a graph.

3.2 Applying the convexification techniques to the edge expansion
In analogy to the general notation for the objective function of quadratic fractional
problems from Section 3.1 above, we get that for the edge expansion problem B = L,
b = 0, b0 = 0, and A = 0, a = en, a0 = 0. In the next two subsections, we give two
different ways to reformulate (1). The first one is to apply Theorem 1 directly and the
second one is to formulate the problem in such a way that Proposition 2 can be used.

3.2.1 Reformulation with Theorem 1

Referring to the notation from before, we define

G′ =
{(1, x̄, x̄x̄>)

e>x̄
: x̄ ∈ {0, 1}n, 1 ≤ e>x̄ ≤

⌊n
2
⌋}
, and

F ′ =
{

(1, x̄, x̄x̄>) : x̄ ∈ {0, 1}n, 1 ≤ e>x̄ ≤
⌊n

2
⌋}
.

With Theorem 1 we get that

conv(G′) =
{

(ρ, ȳ, Ȳ ) : (ρ, ȳ, Ȳ ) ∈ ρ conv(F ′), e>ȳ = 1, ρ ≥ 0
}

(7)

and h(G) = min{〈L, Ȳ 〉 : (ρ, ȳ, Ȳ ) ∈ conv(G′)} holds. Consequently, we are now in-
terested in describing conv(F ′). Motivated by the proof of Proposition 2 in [13], we
introduce the slack variables s and t to rewrite the linear inequalities as the equations(

e>n 1 0
e>n 0 −1

)
︸ ︷︷ ︸

C̃

·

x̄s
t


︸ ︷︷ ︸
x̃

=
(⌊

n
2
⌋

1

)
︸ ︷︷ ︸

d̃

.
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It then holds that

conv(F ′) =
{

(1, x̃, X̃) : tr(C̃X̃C̃> − C̃x̃d̃> − d̃x̃>C̃> + d̃d̃>) = 0, (1, x̃, X̃) ∈ conv(F)
}

with

F =
{

(1, x̃, X̃) : X̃ = x̃x̃>, x̃> = (x̄> s t), x̄ ∈ {0, 1}n, s, t ∈ R≥0
}
,

where the details of the proof can be found in [13]. Let

L̃ = Diag(L, 02),

then (1) is equivalent to

h(G) = min 〈L̃, Ỹ 〉
s.t. (e>n 0>2 )ỹ = 1

tr(C̃Ỹ C̃> − C̃ỹd̃> − d̃ỹ>C̃> + ρd̃d̃>) = 0
(ρ, ỹ, Ỹ ) ∈ ρ conv(F)
ρ ≥ 0.

(8)

The constraint tr(C̃Ỹ C̃>− C̃ỹd̃>− d̃ỹ>C̃>+ρd̃d̃>) = 0 can also be written as the linear
equality constraint 〈(

C̃>

−d̃>
)

(C̃ −d̃),
(
Ỹ ỹ
ỹ> ρ

)〉
= 0

in the matrix variable and is, therefore, easy to handle. But still, the problem remains
to optimize over the convex hull of F .
In the next subsection, we use the more general Proposition 2 to rewrite (1) as a

completely positive optimization problem.

3.2.2 Reformulation applying Proposition 2

Additionally to the slack variables s, t ∈ R≥0 for the two inequalities of (1), we now
introduce for x̄ ∈ Rn≥0 the slack variables z̄ ∈ Rn≥0. We denote by x the vector collecting
all variables, namely x> = (x̄> z̄> s t), and set

C =

e>n 0>n 1 0
e>n 0>n 0 −1
In In 0n 0n

 ∈ R(n+2)×(2n+2) and d =

bn2 c1
en

 ∈ Rn+2

to formulate the affine set as L = {x ∈ R2n+2 : Cx = d}. We further set the matrix
variable Y and the vector variable y to be of the form

Y =


Y 11 Y 12 Y 13 Y 14

Y 21 Y 22 Y 23 Y 24

Y 31 Y 32 Y 33 Y 34

Y 41 Y 42 Y 43 Y 44

 ∈ S2n+2 and y =


y1

y2

y3

y4

 ∈ R2n+2,
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that is Y is a matrix given in block format with Y 11, Y 22 ∈ Sn and Y 33, Y 44 ∈ R and the
vector y consists of y1, y2 ∈ Rn and y3, y4 ∈ R. For convenience of referring to specific
parts of the matrix/vector, the structure of Y ∈ S2n+2 and y ∈ R2n+2 is implicitly
consistent throughout the rest of this paper.
By Proposition 2 and the remark after it holds that

h(G) = min 〈L, Y 〉
s.t. (e>n 0>n 0>2 )y = 1

tr(CY C> − Cyd> − dy>C> + ρdd>) = 0
diag(Y 12) = 0(
Y y
y> ρ

)
∈ CP2n+3,

(9)

where L = Diag(L, 0n+2) or L = 1
2 Diag(I2 ⊗ L, 02). Note the similarity to the vector

lifting procedure applied in [27] to the bisection problem. There, two vectors, each
indicating the vertices in the first and second partition, respectively, are lifted into the
space of (2n+ 1)× (2n+ 1).

In the following sections of this paper, we are going to consider the exact reformula-
tion (9).

4 A DNN relaxation of the reformulated problem
To optimize over the cone of completely positive matrices is NP-hard. But we can use
the fact that every completely positive matrix is doubly non-negative, i.e., it is positive
semidefinite and its entries are non-negative, to derive a DNN relaxation of (9), which
is

min 〈L, Y 〉
s.t. (e>n 0>n+2)y = 1

tr(CY C> − Cyd> − dy>C> + ρdd>) = 0
diag(Y 12) = 0

Ỹ =
(
Y y
y> ρ

)
∈ DNN.

(DNN-P)

Let M = (C −d), then we can rewrite the trace constraint in (DNN-P) as

tr(CY C> − Cyd> − dy>C> + ρdd>) = tr
(
MỸM>

)
= tr

(
M>MỸ

)
= 0.

One can easily see that there exists no positive definite matrix Ỹ fulfilling the trace con-
straint, as for any positive definite matrix Ỹ we have tr(MỸM>) > 0. Hence, (DNN-P)
has no Slater point. To obtain strict feasibility and reduce the dimension of the matrix
variable Ỹ , we perform a facial reduction.
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4.1 Facial reduction
In this section, we apply facial reduction to (DNN-P) in order to obtain a formulation
with a Slater feasible point. For this, we first state the following helpful proposition,
which is a variant of Proposition 1 in [5] but with ρ in the bottom-right corner of Ỹ
instead of 1.

Proposition 4. Let M = (C −d) and

Ỹ =
(
Y y
y> ρ

)
� 0,

then the following three statements are equivalent.

1. Cy = ρd and diag(CY C>) = ρd2, where the square is to be interpreted element-
wise.

2. MỸM> = 0, or equivalently tr(MỸM>) = 0.

3. MỸ = 0.

Proof. Assume that Cy = ρd and diag(CY C>) = ρd2 holds. Let c>i denote the i-th row
of C. It then holds that

(MỸM>)ii = (c>i −di)Ỹ
(
ci
−di

)
= c>i Y ci − 2dic>i y + ρd2

i = ρd2
i − 2ρd2

i + ρd2
i = 0.

Hence, the diagonal and therefore also the trace of MỸM> is zero. Since Ỹ is positive
semidefinite, also MỸM> is positive semidefinite, leading to the conclusion that the
equality MỸM> = 0 has to hold.

For the second part of the proof, assume that tr(MỸM>) = 0. Since Ỹ � 0, we can
write Ỹ = UU> for some matrix U . Plugging in, we obtain

0 = tr(MỸM>) = tr(MUU>M>) = ‖MU‖2,

which is equivalent to MU = 0 and therefor MỸ = MUU> = 0.
Finally, assume that MỸ = 0 holds. To prove the equality Cy = ρd, we take a closer

look at the last column of MỸ . The i-th entry in the last column is

0 = (c>i −di)
(
y
ρ

)
= c>i y − ρdi,

yielding the desired equality Cy = ρd. From MỸ = 0 we get that MỸM> = 0. To
prove that diag(CY C>) = ρd2 holds, we consider the diagonal of MỸM>. For the i-th
entry of the diagonal, it holds that

0 = (c>i −di)Ỹ
(
ci
−di

)
= c>i Y ci − 2dic>i y + ρd2

i = c>i Y ci − ρd2
i .

Hence, diag(CY C>)i = c>i Y ci = ρd2
i holds, which closes the proof.
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For the facial reduction of (DNN-P), let W be a matrix such that its columns form
an orthonormal basis of the nullspace of M . It then holds that

{Ỹ � 0 : MỸ = 0} = {WRW> : R � 0}. (10)

Lemma 5. The vectors

wn+1 =


0n
en
bn2 c
−1
1

 and wi =


ui
−ui
−1
1
0

 for i ∈ {1, . . . , n}

form a basis of ker(M), where ui is the i-th unit vector with entry 1 at position i and 0
everywhere else.

Proof. Since the rank ofM is n+2, the dimension of ker(M) is (2n+3)−(n+2) = n+1.
Moreover, it is easy to check that the vectors w1, . . . , wn+1 are linearly independent and
satisfy Mwi = 0 for i ∈ [n+ 1].

To obtain the required matrix W ∈ R(2n+3)×(n+1), one can take as columns of W the
orthonormalized basis vectors from Lemma 5. We can then rewrite (DNN-P) as

min 〈L̃, Ỹ 〉
s.t. (e>n 0>n+2)y = 1

diag(Y 12) = 0

Ỹ =
(
Y y
y> ρ

)
= WRW> ≥ 0

R � 0,

(DNN-PFR)

with L̃ = Diag(L, 0n+3). We will show later in this section in Proposition 13 that one can
also equivalently set L̃ = 1

2 Diag(I2 ⊗ L, 03). The reformulation (DNN-PFR) is indeed
a strictly feasible formulation of (DNN-P). To prove this, we apply the following result
of Hu, Sotirov, and Wolkowicz [16] on the existence of a Slater feasible point for DNN
relaxations.

Theorem 6 (Theorem 3.15 in [16]). Let

Q =
{
x ∈ R2n+2 : A

((
xx> x
x> 1

))
= 0, x ≥ 0

}
,

where A is a linear transformation, and suppose aff(conv(Q)) = L with dim(L) = n.
Then there exist C with full row rank and d such that

L =
{
x ∈ R2n+2 : Cx = d

}
.
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Let M = (C −d) and W be a matrix such that its columns form a basis of ker(M). Let
further J =

{
(i, j) : xixj = 0 ∀x ∈ Q

}
and let J c be its complement. Then there exists

a Slater point R̂ for the set

Q̂R =
{
R ∈ Sn+1 : R � 0,

(
WRW>

)
J c ≥ 0,

(
WRW>

)
J = 0, A

(
WRW>

)
= 0

}
of feasible points.

With the help of this, we can now state the following result on Slater feasibility.

Theorem 7. Relaxation (DNN-PFR) has a Slater feasible point.

Proof. Let x> = (x̄> z̄> s t), then

Q =
{
x ∈ R2n+2

≥0 : x̄iz̄i = 0 ∀i ∈ [n], x̄+ z̄ = en, e
>
n x̄+ s =

⌊n
2
⌋
, e>n x̄− t = 1

}
=
{
x ∈ Z2n+2

≥0 : x̄+ z̄ = en, e
>
n x̄+ s =

⌊n
2
⌋
, e>n x̄− t = 1

}
=
{
x ∈ Z2n+2

≥0 : Cx = d
}
.

With Ghouila-Houri’s characterization of totally unimodular matrices one can show
that C is totally unimodular and hence conv(Q) =

{
x ∈ R2n+2

≥0 : Cx = d
}
. One

can further show that

aff(conv(Q)) =
{
x ∈ R2n+2 : Cx = d

}
,

which follows from the fact that aff({x ∈ R2n+2 : Ax ≤ b}) = {x ∈ R2n+2 : A=x = b=}.
From the constraints we can see that the index set J (see Theorem 6) is J = {(i, n+ i) :
1 ≤ i ≤ n} ∪ {(n + j, j) : 1 ≤ j ≤ n}. In A(X) we have the constraints CX:,(2n+3) = d

and Xi,(n+i) = 0 for all 1 ≤ i ≤ n. On the matrices of the form WRW>, the first type
of constraints is redundant, since M(WRW>):,(2n+3) = 0 holds for all matrices R as the
columns of W span the kernel of M .

The second kind of constraints is WRW>J = 0. Hence, by Theorem 6, there exists a
matrix R̂ ∈ Sn+1 such that R̂ � 0, (WR̂W>)J c > 0 and

(
WR̂W>

)
J = 0. Let

κ =
n∑
i=1

(WR̂W>)i,(2n+3) > 0,

then 1
κR̂ is a strictly feasible solution of (DNN-PFR).

Proposition 4 was not only helpful for the facial reduction, but we can also use it to
identify several redundant constraints, as shown in the next section.
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4.2 Properties of (DNN-P) and (DNN-PFR)

In this section, we state several properties of (DNN-P) and (DNN-PFR). Some of these
properties are useful for the algorithm that we derive in Section 5.
As already mentioned, we make in particular use of the result from Proposition 4

stating that every feasible solution of (DNN-P) satisfies MỸ = 0 and MỸM> = 0.
Note, that for feasible solutions WRW> of (DNN-PFR) it holds that MWRW> = 0
and hence all results in this section apply to both Ỹ andWRW>. The first result focuses
on the last row/column of feasible matrices, in particular bounds on ρ and connections
between the entries in y are given.

Proposition 8. Every feasible point of (DNN-P) and (DNN-PFR) satisfies
1
bn2 c
≤ ρ ≤ 1.

Moreover, it holds that y1 ≤ ρ, y2 ≤ ρ, y2 = ρen − y1, y3 = ρbn2 c − 1, and y4 = 1− ρ.

Proof. From the last column of the matrix equality MỸ = 0 it follows that Cy = ρd
and hence

(e>n 0>n 1 0)y = ρ
⌊n

2
⌋

(e>n 0>n 0 −1)y = ρ

(In In 0n 0n)y = ρen

holds. Remember, that for simplicity we denoted y = (y1 y2 y3 y4) with y1, y2 ∈ Rn
and y3, y4 ∈ R. From the constraint e>n y1 = 1 and the equations above, it follows
that y3 = ρbn2 c − 1. By the non-negativity of y3, we get that ρ ≥ 1

bn
2 c

has to hold.
With the same argumentation, we get that y4 = 1− ρ ≥ 0 holds for every feasible point,
proving the claimed upper bound on ρ. From the last of the above derived constraints
and non-negativity, we get y1 = ρen − y2 ≥ 0 and y2 = ρen − y1 ≥ 0, which implies
that y1 ≤ ρ and y2 ≤ ρ has to be satisfied.

Similarly, we can show the following connections between the submatrices Y 11, Y 22

and Y 12 and the vectors y1 and y2.

Proposition 9. Every feasible solution Ỹ of (DNN-P) and (DNN-PFR) satisfies

Y 11
ij + (Y 12)>ij = y1

j and
Y 22
ij + Y 12

ij = y2
j

for all 1 ≤ i, j ≤ n.

Proof. By considering the equations

0 = (MỸ )(2n+i),j = Y 11
ij + Y 21

ij − y1
j and

0 = (MỸ )(2n+i),(n+j) = Y 12
ij + Y 22

ij − y2
j

for 1 ≤ i, j ≤ n, one immediately obtains the above stated result.

13



We can further show that the bounds on the sum of the entries in Y 11 are already
implied by the constraints in (DNN-P) and (DNN-PFR) as well.

Proposition 10. Every feasible point of (DNN-P) and (DNN-PFR) satisfies

1 ≤ 〈E, Y 11〉 ≤
⌊n

2
⌋
.

Proof. From the positive semidefiniteness of the matrix variable, it follows that

0 ≤ (e>n 0>n+2 −1)
(
Y y
y> ρ

)( en
0n+2
−1

)

= e>n Y
11en − 2(e>n 0n+2)>y + ρ

= 〈E, Y 11〉 − 2 + ρ.

Since ρ ≤ 1, we obtain the lower bound 1 ≤ 〈E, Y 11〉.
Considering Proposition 8 and

0 = (MỸ )1,(2n+1) = e>n Y
13 + Y 33 −

⌊n
2
⌋
y3 = e>n Y

13 + Y 33 −
⌊n

2
⌋2
ρ+

⌊n
2
⌋
,

yields
e>n Y

13 + Y 33 =
⌊n

2
⌋2
ρ−

⌊n
2
⌋
.

Plugging this into (MỸM>)1,1 = 0, we can then derive

0 = e>n Y
11en + Y 33 +

⌊n
2
⌋2
ρ+ 2e>n Y 13 − 2

⌊n
2
⌋
e>n y

1 − 2
⌊n

2
⌋
y3

= e>n Y
11en + Y 33 +

⌊n
2
⌋2
ρ+ 2e>n Y 13 − 2

⌊n
2
⌋
− 2

⌊n
2
⌋(⌊n

2
⌋
ρ− 1

)
= e>n Y

11en + Y 33 + 2e>n Y 13 −
⌊n

2
⌋2
ρ

= e>n Y
11en + e>n Y

13 −
⌊n

2
⌋
.

Due to the non-negativity, it holds that e>n Y 13 ≥ 0 and therefore 〈E, Y 11〉 ≤ bn2 c.

In addition to the non-negativity, we can derive the following upper bounds on the
entries of all feasible matrices.
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Proposition 11. Every feasible solution of (DNN-P) and (DNN-PFR) satisfies

y3 ≤
⌊n

2
⌋
− 1,

y4 ≤ 1− 1
bn2 c

,

Y 33 ≤
⌊n

2
⌋2
−
⌊n

2
⌋
,

Y 44 ≤
⌊n

2
⌋
− 1,

Y 34 ≤
⌊n

2
⌋
− 1,

Y 13, Y 23 ≤
⌊n

2
⌋
− 1, and

Y 14, Ŷ 24 ≤ 1− 1
bn2 c

.

Proof. The first two inequalities follow directly from Proposition 8, namely

y3 = ρ
⌊n

2
⌋
− 1 ≤

⌊n
2
⌋
− 1 and

y4 = 1− ρ ≤ 1− 1
bn2 c

.

From 0 = (MỸ )1,(2n+1) = e>n Y
13 + Y 33 − bn2 cy

3, we obtain

Y 33 =
⌊n

2
⌋
y3 − e>n Y 13 ≤

⌊n
2
⌋2
−
⌊n

2
⌋
,

using the upper bound on y3 and Y ≥ 0. Similarly, we can derive the upper bound
for Y 34. It holds that 0 = (MỸ )1,(2n+2) = e>n Y

14 + Y 34 − bn2 cy
4, hence

Y 34 =
⌊n

2
⌋
y4 − e>n Y 14 ≤

⌊n
2
⌋
− 1.

For the upper bound on Y 44, consider the equations

0 = (MỸ )2,(2n+2) = e>n Y
14 − Y 44 − y4 ⇔ e>n Y

14 = Y 44 + y4

0 = (MỸM>)2,2 = 〈E, Y 11〉+ Y 44 + ρ− 2e>n Y 14 − 2 + 2y4.

Plugging in the first into the second equation, we get

Y 44 = 〈E, Y 11〉+ ρ− 2 ≤
⌊n

2
⌋
− 1,

since 〈E, Y 11〉 ≤ bn2 c (cf. Proposition 10) and ρ ≤ 1. Next, observe that

0n = (MỸ )3:(n+2),(2n+1) = Y 13 + Y 23 − y3en and
0n = (MỸ )3:(n+2),(2n+2) = Y 14 + Y 24 − y4en

imply that (Y 13 + Y 23)i = y3 and (Y 14 + Y 24)i = y4 has to hold for all i ∈ [n]. Due to
the non-negativity of Y , each of the summands on the left-hand side is bounded by the
right-hand side of the equations.
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We have already shown that Y 11 and ρ satisfy the inequality constraints of the ba-
sic relaxation (DNNn+1). In the subsequent section, we now want to strengthen our
new relaxation (DNN-P) with further valid (in)equalities and compare it to the basic
relaxation.

4.3 Strengthening and comparison to the basic DNN relaxation
Recall, that the constraint Ỹ ∈ DNN is the relaxation of Ỹ ∈ CP2n+3, which is equivalent
to (ρ, y, Y ) ∈ ρ conv({(1, x, xx>) : x ∈ R2n+2

≥0 }), where we set x> = (x̄> z̄> s t).
Since the variables x̄ and z̄ are supposed to be binary, we can add the following diagonal
constraints.

diag(Y 11) = y1, diag(Y 22) = y2. (11)

These constraints can be added to (DNN-PFR) without losing strict feasibility, as pre-
sented in the following proposition.

Proposition 12. Relaxation (DNN-PFR) with the additional diagonal constraints (11)
has a Slater feasible point.

Proof. Note, that in the proof of Theorem 7 we can add to the description of Q the
constraint x̄ix̄i = x̄i and z̄iz̄i = z̄i for all 1 ≤ i ≤ n without any impact on aff(conv(Q)).
Hence, (DNN-PFR) with the diagonal constraint (11) has a Slater feasible point as
well.

To be able to compare (DNN-P) to the basic relaxation (DNNn+1), we first present
the following result on the objective function.

Proposition 13. Every feasible point Ỹ of (DNN-P) and (DNN-PFR) satisfies

Y 22 = Y 11 + ρE − en(y1)> − y1e>n

and therefore 〈
Y,Diag(L, 0n+2)

〉
= 1

2
〈
Y,Diag(I2 ⊗ L, 02)

〉
.

Proof. Using Proposition 9 and then Proposition 8, we get

Y 11
ij + Y 11

ji − Y 22
ij − Y 22

ji = y1
j − Y 12

ji + y1
i − Y 12

ij − y2
j + Y 12

ij − y2
i + Y 12

ji

= y1
j + y1

i − (ρ− y1
j )− (ρ− y1

i ).

From the symmetry of Ỹ it follows that Y 11, Y 22 ∈ Sn and hence,

Y 22
ij = Y 11

ij + ρ− y1
i − y1

j .

It then holds that 〈L, Y 22〉 = 〈L, Y 11〉 due to the properties of the Laplacian matrix L,
which closes our proof.
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Theorem 14. Relaxation (DNN-P) with the diagonal constraint

diag(Y 11) = y1 (12)

is at least as good as (DNNn+1).

Proof. To prove the theorem, we construct for every feasible point of the formula-
tion (DNN-P) + (12) a feasible point for (DNNn+1) with the same objective function
value. Let Ỹ ∈ S2n+3 be a matrix satisfying all constraints in (DNN-P) and (12).
From Propositions 8 and 10 and the constraint (12), we get that the submatrix(

Y 11 y1

(y1)> ρ

)
satisfies all constraints of (DNNn+1). Due to Proposition 13, it holds that the objective
function values are the same and hence (DNN-P) is at least as good as (DNNn+1).

Remark 15. Theorem 14 also works without adding the constraint diag(Y 11) = y1 if
we remove the constraint diag(Ȳ ) = ȳ from (DNNn+1), i.e., (DNN-P) is at least as good
as (DNNn+1) without the diagonal constraint.

With the same argumentation as for the diagonal constraints, we can further strengthen
relaxation (DNN-P) by adding scaled facet defining inequalities for the boolean quadric
polytope (BQP) on y1, y2 and the left upper 2n× 2n block of Ỹ . The scaled (multiplied
with ρ) BQP inequalities are

Yij ≤ yi (13a)
Yij + Yik − Yjk ≤ yi (13b)
yi + yj − Yij ≤ ρ (13c)

yi + yj + yk − Yij − Yik − Yjk ≤ ρ (13d)

for all 1 ≤ i, j, k ≤ 2n. Indeed, similarly as in [26] for the vector-lifted DNN relaxation of
the graph bisection problem, we can show that constraints (13a) and (13c) are already
implied by the constraints in (DNN-P) and (DNN-PFR).

Proposition 16. Every feasible solution Ỹ of (DNN-P) and (DNN-PFR) satisfies the
scaled BQP inequalities (13a) and (13c).

Proof. From Proposition 9 and Ỹ ≥ 0 it follows that Yij ≤ yj for all 1 ≤ i, j ≤ 2n, which
is (13a).
By Proposition 13 and Y 22 ≥ 0 we get that Y 11

ij + ρ − y1
i − y1

j ≥ 0 holds, which is
equivalent to (13c) for 1 ≤ i, j ≤ n. For 1 ≤ i ≤ n and (n+ 1) ≤ j ≤ 2n, let k = j − n,
then (13c) can be written as

ρ ≥ y1
i + y2

k − Y 12
k = y1

i + Y 22
ik = Y 11

ik − y1
k + ρ,

where the first equality follows from Proposition 9 and the second follows from Proposi-
tion 13. Hence, for this choice of i and j, (13c) is equivalent to (13a). In the same way,
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one can prove the case (n+ 1) ≤ i ≤ 2n and 1 ≤ j ≤ n. For the case (n+ 1) ≤ i, j ≤ 2n
let k = n − i and ` = n − j. Applying Proposition 8 and Proposition 13 we obtain
that (13c) can be written as

ρ ≥ y2
k + y2

` − Y 22
k` = 2ρ− y1

k − y1
` − Y 22

k` = ρ− Y 11
k` ,

which is equivalent to Y 11 ≥ 0 and thus valid for every feasible solution of (DNN-P)
and (DNN-PFR).

Corollary 17. Relaxation (DNN-P) with the diagonal constraint

diag(Y 11) = y1

is at least as good as (DNNn+1) with the additional constraints

Ȳij ≤ ȳi
ȳi + ȳj − Ȳij ≤ ρ

for 1 ≤ i, j ≤ n.

Proof. The statement follows from the proof of Theorem 14 and Proposition 16.

Our numerical tests suggest that (13b) leads to a better improvement of the DNN
relaxation than (13d). The diagonal constraint yields a small improvement only, and
therefore we will not consider it for our relaxation.
Solving the relaxation with non-negativity and scaled triangle inequalities with interior

point solvers in a reasonable time is not possible due to the number of constraints. In
the next section, we therefore introduce an augmented Lagrangian algorithm to compute
the strengthened DNN relaxation.

5 Solving the DNN relaxation
5.1 An augmented Lagrangian algorithm
Problem (DNN-PFR) strengthened by a subset T of the scaled BQP inequalities (13b)
can be written as

min
〈
W>L̃W,R

〉
s.t. A

(
WRW>

)
= b

B
(
WRW>

)
≤ 0

WRW> ≥ 0
R � 0,

(DNN-PFRC)

where A : S2n+3 → Rp is the operator corresponding to the linear equality constraints
from (DNN-PFR) and B : S2n+3 → Rq is the operator corresponding to the BQP inequal-
ities in T . Note that p denotes the number of equality constraints and is equal to 3n+ 1
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if the diagonal constraint is included and n+ 1 otherwise. The number of BQP inequal-
ities in T is denoted by q. We define the Lagrangian function with respect to the primal
variable R � 0 and the dual variables ν ∈ Rp, µ ∈ Rq, S ∈ S2n+3 and Z ∈ Sn+1 corre-
sponding to the equality constraints, inequality constraints, non-negativity and positive
semidefiniteness constraint, as

L(R; ν, µ, S, Z) =
〈
W>L̃W,R

〉
+ ν>

(
b−A

(
WRW>

))
+ µ>B

(
WRW>

)
−
〈
WRW>, S

〉
− 〈R,Z〉

= b>ν −
〈
W>

(
A>ν − B>µ+ S − L̃

)
W + Z,R

〉
.

The Lagrange dual function is then defined by

g(ν, µ, S, Z) = inf
R∈Sn+1

L(R; ν, µ, S, Z) =
{
b>ν if W>

(
A>ν − B>µ+ S − L̃

)
W + Z = 0,

−∞ else,

and the dual problem of (DNN-PFRC) is given by maxν,µ≥0,S≥0,Z�0 g(ν, µ, S, Z), that is

max b>ν

s.t. W>
(
A>ν − B>µ+ S − L̃

)
W + Z = 0

ν ∈ Rp, µ ≥ 0, S ≥ 0, Z � 0.
(DNN-DFRC)

We propose to use the augmented Lagrangian approach to approximately solve the
above dual problem. By introducing a Lagrange multiplier R for the dual equality
constraint, and a penalty parameter α > 0, the augmented Lagrangian function Lα can
be written as

Lα(ν, µ, S, Z;R) = b>ν −
〈
W>

(
A>ν − B>µ+ S − L̃

)
W + Z,R

〉
− 1

2α

∥∥∥W>(A>ν − B>µ+ S − L̃
)
W + Z

∥∥∥2

= b>ν − 1
2α

∥∥∥W>(A>ν − B>µ+ S − L̃
)
W + Z + αR

∥∥∥2
+ α

2 ‖R‖
2.

Note that the Lagrangian dual of (DNN-DFRC) is again (DNN-PFRC), which justifies
our choice of the dual variable name R. The augmented Lagrangian method for solv-
ing (DNN-DFRC) consists in maximizing Lα(ν, µ, S, Z;Rk) for a fixed α > 0 and Rk to
get νk ∈ Rp, µk ≥ 0, Sk ≥ 0 and Zk � 0. Then the primal matrix R is updated using

Rk+1 = Rk −
1
α

(
W>

(
A>νk − B>µk + Sk − L̃

)
W + Zk

)
, (14)

see [2]. By construction, the primal matrix Ỹ is then given by

Ỹ = WRW>. (15)

In the augmented Lagrangian method, as opposed to the penalty method, the penalty
parameter α does not necessarily need to go to zero in order to guarantee convergence.
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However, to avoid problem-specific tuning of the penalty parameter, we let α→ 0. De-
creasing α makes the subproblem in each iteration harder to solve due to ill-conditioning.
First-order methods are particularly sensitive to ill-conditioning, hence, we use here a
quasi-Newton method to solve the inner problem.
For given α > 0 and R � 0, the inner maximization problem

max b>ν − 1
2α

∥∥∥W>(A>ν − B>µ+ S − L̃
)
W + Z + αR

∥∥∥2
+ α

2 ‖R‖
2

s.t. ν ∈ Rp, µ ≥ 0, S ≥ 0, Z � 0
(16)

can be further simplified by eliminating the matrix Z as follows. Define

M = W>
(
A>ν − B>µ+ S − L̃

)
W + αR.

For fixed ν, µ and S, the optimal Z of problem (16) is the same as

arg min
Z�0

‖Z +M‖2,

which is the projection of −M onto the cone of positive semidefinite matrices. It is
well known that the solution Z = P�0(−M) = −P�0(M) can be computed from the
eigenvalue decomposition of M , see [14].
By eliminating Z in (16) we get

max b>ν − 1
2α

∥∥∥P�0
(
W>

(
A>ν − B>µ+ S − L̃

)
W + αR

)∥∥∥2
+ α

2 ‖R‖
2

s.t. ν ∈ Rp, µ ≥ 0, S ≥ 0.
(17)

Let Fα(ν, µ, S) denote the objective function of (17). We can then state the following
properties of the objective function.

Proposition 18. Let α > 0 and Fα(ν, µ, S) be the objective function of (17). The
function Fα(ν, µ, S) is concave and differentiable, with partial gradients given by

∇SFα(ν, µ, S) = − 1
α
WP�0

(
W>

(
A>ν − B>µ+ S − L̃

)
W + αR

)
W>,

∇νiFα(ν, µ, S) = bi −
1
α

〈
Ai,WP�0

(
W>

(
A>ν − B>µ+ S − L̃

)
W + αR

)
W>

〉
∇µjFα(ν, µ, S) = 1

α

〈
Bj ,WP�0

(
W>

(
A>ν − B>µ+ S − L̃

)
W + αR

)
W>

〉
for all 1 ≤ i ≤ p, and 1 ≤ j ≤ q.

Proof. Let f : Rn+1 → R be defined by f(x) = 1
2‖x+‖2, where x+ is the vector of

length n + 1 with
(
x+
)
i

= max(0, xi). Then f is a convex and differentiable function
with gradient ∇f(x) = x+. Note that the objective function Fα can be written as

Fα(ν, µ, S) = b>ν − 1
α
g
(
W>

(
A>ν − B>µ+ S − L̃

)
W + αR

)
+ α

2 ‖R‖
2
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where the function g : Sn+1 → R is defined by

g(X) = 1
2‖P�0(X)‖2 = 1

2

n+1∑
i=1

(max(0, λi(X)))2 = f(λ(X)),

where λ(X) denotes the vector containing all eigenvalues of X. From [4, §5.2] we have
that the function g is convex and differentiable with gradient ∇g(X) = P�0(X). Hence,
we can conclude that Fα is concave and differentiable.

To obtain the gradients, we apply the chain rule. For this, let D1, D2, D3 ∈ Sn+1

where D1 is independent of ν, D2 is independent of µ and D3 is independent of S. Let
further M1 : Rp → Sn+1, M2 : Rq → Sn+1 and N : S2n+3 → Sn+1 be linear operators
defined by

M1ν = W>(A>ν)W =
p∑
i=1

νi
(
W>AiW

)
,

M2µ = W>(B>µ)W =
q∑
j=1

µj
(
W>BjW

)
and

N (S) = W>SW.

Their adjoints are (M∗1X)i = 〈W>AiW,X〉, (M∗2X)j = 〈W>BjW,X〉 and N ∗(X) =
WXW>, respectively. Now, applying the chain rule, we get

∇ν [g (M1ν +D1)] =M∗1∇g(M1ν +D1),
∇µ [g (−M2µ+D2)] = −M∗2∇g(−M2µ+D2) and
∇S [g(N (S) +D3)] = N ∗∇g(N (S) +D3),

verifying our stated gradients.

Using this proposition allows that for a fixed α > 0 and R the function −Fα is
minimized using the L-BFGS-B algorithm [6].
To make the algorithm efficient in practice, for a fixed set of cuts T and α, we perform

only one iteration of the augmented Lagrangian method, i.e., we approximately solve the
inner problem (17), update R by (14), and proceed to search for new violated inequalities
in WRW> and add them to T . If we find no or only a few violations, we reduce α and
repeat until the penalty parameter α is smaller than a certain threshold. At the end, we
perform several augmented Lagrangian iterations with the same α and without adding
new cuts.
A similar solution technique was also used in [19], where the penalty method is applied

to the dual problem and the resulting nonlinear function is minimized using a quasi-
Newton method, and in [15], where the augmented Lagrangian method is used to solve
an SDP relaxation strengthened by cutting planes. We have extended this methodology
to facially reduced DNN programs.
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5.2 Post processing to derive a valid lower bound
Our approach yields a dual solution (ν, µ, S, Z) of moderate precision. In particular, the
constraint W>(A>ν − B>µ + S − L̃)W + Z = 0 does not necessarily hold. However,
because of weak duality, every feasible solution of the dual (DNN-DFRC) gives a lower
bound on the optimal value of (DNN-PFRC). To derive a safe dual lower bound, we
adapt the methods of [7] and [17], where the post-processing of [17] is for SDPs and was
adapted by [7] for DNNs. Both approaches are based on the following Lemma.

Lemma 19 (Lemma 3.1 in [17]). Let A,B ∈ S2n+3 with

b ≤ λmin(B), 0 ≤ λmin(A), λmax(A) ≤ a

for some b, a ∈ R. Then the inequality

〈A,B〉 ≥ a
∑

i:λi(B)<0
λi(B) ≥ a(2n+ 3) min{0, b}

holds.

This leads us to the following theorem of [17, 7] adapted for facially reduced DNNs.

Theorem 20. Consider the facially reduced primal problem (DNN-PFRC), let R∗ be an
optimal solution and let p∗ be its optimal value. Given ν ∈ Rp, µ ∈ Rq and S ∈ S2n+3

with µ ≥ 0 and S ≥ 0, set

Z̃ = W>
(
L̃−A>ν + B>µ− S

)
W

and suppose that z ≤ λmin(WZ̃W>). Assume r ∈ R such that r ≥ λmax(WR∗W>) is
known. Then the inequality

p∗ ≥ b>ν + r
∑

i:λi

(
WZ̃W>

)
<0

λi(WZ̃W>) ≥ b>ν + r(2n+ 3) min{0, z} (18)

holds.

Proof. Let R∗ be optimal for (DNN-PFRC), then〈
W>L̃W,R∗

〉
− b>ν =

〈
L̃,WR∗W>

〉
−
〈
A(WR∗W>), ν

〉
=
〈
L̃−A>ν,WR∗W>

〉
=
〈
W>

(
L̃−A>ν

)
W,R∗

〉
=
〈
W>(S − B>µ)W + Z̃, R∗

〉
=
〈
S,WR∗W>

〉
−
〈
B>µ,WR∗W>

〉
+
〈
Z̃, R∗

〉
≥ −

〈
B>µ,WR∗W>

〉
+
〈
Z̃, R∗

〉
= −µ>B

(
WR∗W>

)
+
〈
Z̃, R∗

〉
≥
〈
Z̃, R∗

〉

22



holds, where the first inequality follows from the fact that S ≥ 0 and WR∗W> ≥ 0,
and the second inequality follows from the fact that µ ≥ 0 and B

(
WR∗W>

)
≤ 0.

Consequently, with Lemma 19 the inequality

p∗ =
〈
W>L̃W,R∗

〉
≥ b>ν +

〈
Z̃, R∗

〉
= b>ν +

〈
WZ̃W>,WR∗W>

〉
≥ b>ν + r

∑
i:λi

(
WZ̃W>

)
<0

λi(WZ̃W>) ≥ b>ν + r(2n+ 3) min{0, z}

holds.

Given that we know an upper bound on the largest eigenvalue of WR∗W>, where R∗
is an optimal solution of (DNN-PFRC) and hence also feasible for (DNN-PFR), we
can compute a safe lower bound on (DNN-PFRC) by applying Theorem 20 in a post-
processing step. To this end, we state an upper bound on the largest eigenvalue of all
feasible solutions Ỹ of (DNN-PFR) in the next Proposition. Again, note thatWR∗W> =
Ỹ ∗ is optimal for (DNN-P) under the assumption that R∗ is optimal for (DNN-PFR).
Proposition 21. Let Ỹ = WRW> be a feasible solution of (DNN-PFR), then

λmax(Ỹ ) ≤ tr(Ỹ ) ≤
⌊n

2
⌋2

+ n

holds.
Proof. Since the matrix Ỹ is positive semidefinite, its eigenvalues are non-negative and
therefore the trace gives an upper bound on the largest eigenvalue.
From Propositions 8 and 11 we already know that ρ ≤ 1 and Y 33+Y 44 ≤

⌊
n
2
⌋2−1 holds

for every feasible solution. For the submatrices Y 11 and Y 22 of Ỹ , consider for i ∈ [n]
the equations

0 = (MỸM>)2+i,2+i = Y 11
ii + Y 22

ii + ρ+ 2Y 12
ii − 2y1

i − 2y2
i .

Since Y 12
ii = 0, this yields the equality Y 11

ii + Y 22
ii = 2(y1

i + y2
i ) − ρ. Summing over all

indices i ∈ [n] gives

tr(Y 11) + tr(Y 22) =
n∑
i=1

(Y 11
ii + Y 22

ii ) = 2(e>n y1 + e>n y
2)− nρ

= 2
(
e>n y

1 + e>n (ρen − y1)
)
− nρ = nρ,

where we used the equality y2 = ρen − y1 from Proposition 8. To sum up, we obtain

tr(Ỹ ) = tr(Y 11) + tr(Y 22) + Y 33 + Y 44 + ρ

≤ (n+ 1)ρ+
⌊n

2
⌋2
− 1 ≤

⌊n
2
⌋2

+ n,

which is the claimed upper bound.

We summarize our bounding routine in Algorithm 1. Note that separating the BQP
inequalities (13b) can be done in O(n3) by complete enumeration.
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Algorithm 1 Computation of DNN bound with BQP inequalities
input: α > 0, matrices L̃, W , initial Ỹ , T = ∅, nbqp - maximum number of BQP inequalities
to be added in one iteration.
while α is sufficiently large do

Get an approximate maximizer of (17) by using L-BFGS-B method.
Update R and Ỹ according to (14) and (15).
Remove inactive BQP inequalities from T .
Add the nbqp most violated BQP inequalities for Ỹ to T .
if the number of new violated inequalities added is below a threshold then

Reduce α.
end if

end while
Perform extra augmented Lagrangian iterations (with the previous α, without adding new
cuts).
Compute Z̃ = W>(L̃−A>ν + B>µ− S

)
W .

Use (18) with r̄ =
⌊

n
2
⌋2 + n to compute a valid lower bound LB.

output: LB

6 Numerical results
We implemented Algorithm 1 in Julia [3] version 1.10.0. For computing the basic
DNN bound (DNNn+1) we are using Mosek v10.2.3 [23] with the modeling language
JuMP [21]. We use the Julia package LBFGSB v0.4.1 [24] as a wrapper to the L-BFGS-B
solver. All computations were carried out on an AMD EPYC 7343 with 16 cores
with 4.00 GHz and 1024GB RAM, operated under Debian GNU/Linux 11. The code
is available at the arXiv page of this paper and at https://github.com/melaniesi/
CheegerConvexificationBounds.jl.

The initial value of α is set to 1, and we stop reducing it once the penalty parameter α
is smaller than 10−5. We start to add violated cuts after the first five iterations. In each
iteration, we then add the 500 most violated cuts, where we consider a BQP inequality
to be violated if the violation is at least 10−3. In case we find less than 50 new violated
cuts, we reduce α by a factor of 3

5 . Cuts are removed from T if the corresponding dual
value is smaller than 10−5. The cuts are added for the upper left n× n submatrix Y 11

only. We perform at most 500 augmented Lagrangian iterations additionally at the
end with constant α and stop as soon as the correction of the post processing is smaller
than 0.01. We set the parameters of the L-BFGS-B solver to maxiter=2000, factr=1e8,
and m = 10.
As benchmark instances, we use all instances already considered in [12] with less

than 400 vertices and larger grlex and grevlex instances, cf. [11]. In [12] only grlex and
grevlex instances with up to 92 vertices were considered, whereas we include all instances
with fewer than 400 vertices. The benchmark set consists of graphs of random 0/1-
polytopes, graphs of grlex and grevlex polytopes, instances from the 10th DIMACS
challenge and some network instances. The edge expansion was computed in [12] for all
instances considered therein. It was shown in [11] that the edge expansion of all grlex
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instances is 1. Upper bounds, conjectured to be the edge expansion of the larger grevlex
instances are taken from [25].

6.1 Comparing (DNNn+1) with (DNN-P)

In Section 4.3 we proved that our new relaxation (DNN-P) is at least as good as the
basic relaxation (DNNn+1). We now compute these two bounds for several instances in
order to show the significant dominance of our new relaxation. Table 1 is structured
as follows. In the first three columns, we list the name of the instance, the number of
vertices n, and the number of edges m. The edge expansion, or if not known, an upper
bound on it, is reported in the fourth column UB of the table. In column 5 we report
the lower bound (DNNn+1) computed with Mosek, and in column 6 the relative gap of
this lower bound to the upper bound. The relative gap is computed with the formula

UB− LB
UB , (19)

where LB denotes a lower bound on the edge expansion, and UB denotes the upper bound
on the edge expansion. In the last two columns of Table 1 we report the bound (DNN-P)
approximated by Algorithm 1 without BQP inequalities and without the diagonal con-
straint (11) and its relative gap to the upper bound.
Note that all reported bounds are rounded to two decimal places.
Table 1 shows that except for the instance malariagenes-HVR1, the DNN relax-

ation (DNN-P) of dimension 2n + 3 drastically reduces the relative gap to the upper
bound compared to the basic DNN relaxation (DNNn+1) of dimension n+ 1. The rela-
tive gap of (DNNn+1) is between 21% and 72% for all of our instances, with an average
relative gap of 46.9%. The average relative gap of (DNN-P) is 8.6%. For 19 instances,
the relative gap of (DNN-P) is at most 1%. Especially for most of the grlex instances,
we were able to obtain a lower bound that is close to the optimum. For 9 instances, this
bound rounded to two decimal places is equal to the rounded optimal values. Still, there
are several benchmark instances with a relative gap of (DNN-P) being above 10%.

Table 1: Comparison of DNN relaxations without additional constraints.
Instance (DNNn+1) (DNN-P)

n m UB bound gap (%) bound gap (%)

rand01-9-153-0 153 4081 18.75 14.33 23.6 17.75 5.3
rand01-9-153-1 153 4044 18.49 14.48 21.7 17.57 5.0
rand01-9-153-2 153 4107 19.00 14.26 25.0 17.83 6.2
rand01-8-164-0 164 1868 5.77 3.66 36.5 4.85 15.9
rand01-8-164-1 164 1837 5.35 3.28 38.8 4.68 12.5
rand01-8-164-2 164 1808 5.74 2.82 51.0 4.71 18.1
rand01-9-178-0 178 4590 17.08 13.33 22.0 16.07 5.9
rand01-9-178-1 178 4467 16.71 11.35 32.1 15.37 8.0
rand01-9-178-2 178 4537 16.75 10.67 36.3 15.64 6.7
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Table 1 (cont.): Comparison of DNN relaxations without additional constraints.
Instance (DNNn+1) (DNN-P)

n m UB bound gap (%) bound gap (%)

rand01-8-189-0 189 1768 4.22 2.61 38.2 3.46 18.2
rand01-8-189-1 189 1745 4.04 2.47 38.8 3.36 16.9
rand01-8-189-2 189 1719 4.06 2.28 43.8 3.33 17.9
rand01-9-203-0 203 4900 15.14 11.11 26.6 14.00 7.5
rand01-9-203-1 203 4781 14.84 9.87 33.5 13.54 8.8
rand01-9-203-2 203 4720 14.38 8.86 38.4 13.38 7.0
rand01-9-228-0 228 5065 13.24 8.94 32.4 12.02 9.2
rand01-9-228-1 228 4927 9.00 4.35 51.7 8.88 1.3
rand01-9-228-2 228 4984 12.82 7.12 44.5 11.77 8.2
rand01-9-253-0 253 5258 11.87 7.25 39.0 10.67 10.1
rand01-9-253-1 253 5053 9.00 4.34 51.8 8.89 1.2
rand01-9-253-2 253 5072 11.22 6.68 40.5 10.09 10.1
rand01-10-256-0 256 11056 30.48 20.20 33.7 29.38 3.6
rand01-10-256-1 256 10611 28.84 17.22 40.3 27.69 4.0
rand01-10-256-2 256 10746 29.38 22.28 24.1 28.13 4.2
rand01-9-278-0 278 5224 10.07 5.99 40.5 8.89 11.7
rand01-9-278-1 278 5007 9.00 4.14 54.0 8.05 10.6
rand01-9-278-2 278 5132 9.92 6.11 38.4 8.65 12.8
rand01-10-281-0 281 11828 28.90 20.21 30.1 27.71 4.1
rand01-10-281-1 281 11490 27.79 15.11 45.6 26.46 4.8
rand01-10-281-2 281 11454 27.75 19.31 30.4 26.44 4.7

grlex-7 29 119 1.00 0.51 49.3 0.98 1.7
grlex-8 37 176 1.00 0.47 53.0 1.00 0.1
grlex-9 46 249 1.00 0.43 56.6 1.00 0.2
grlex-10 56 340 1.00 0.41 58.5 1.00 0.5
grlex-11 67 451 1.00 0.41 59.5 0.99 0.9
grlex-12 79 584 1.00 0.39 60.8 0.99 0.8
grlex-13 92 741 1.00 0.38 62.3 0.99 1.0
grlex-14 106 924 1.00 0.37 63.2 1.00 0.3
grlex-15 121 1135 1.00 0.36 63.6 1.00 0.0
grlex-16 137 1376 1.00 0.36 64.3 0.99 0.9
grlex-17 154 1649 1.00 0.35 65.1 1.00 0.1
grlex-18 172 1956 1.00 0.34 65.6 0.99 0.8
grlex-19 191 2299 1.00 0.34 65.9 0.99 0.8
grlex-20 211 2680 1.00 0.34 66.3 0.98 1.8
grlex-21 232 3101 1.00 0.33 66.8 0.99 0.9
grlex-22 254 3564 1.00 0.33 67.1 1.00 0.0
grlex-23 277 4071 1.00 0.33 67.3 0.98 2.3
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Table 1 (cont.): Comparison of DNN relaxations without additional constraints.
Instance (DNNn+1) (DNN-P)

n m UB bound gap (%) bound gap (%)

grlex-24 301 4624 1.00 0.32 67.5 0.99 1.0
grlex-25 326 5225 1.00 0.32 67.9 0.94 5.9
grlex-26 352 5876 1.00 0.32 68.1 0.99 0.9
grlex-27 379 6579 1.00 0.32 68.2 0.96 3.7

grevlex-7 29 119 2.46 1.73 29.7 2.12 14.0
grevlex-8 37 176 2.83 1.90 33.0 2.35 17.2
grevlex-9 46 249 2.96 2.02 31.6 2.52 14.8
grevlex-10 56 340 3.22 2.21 31.6 2.77 14.1
grevlex-11 67 451 3.67 2.43 33.8 3.06 16.4
grevlex-12 79 584 3.92 2.61 33.4 3.31 15.7
grevlex-13 92 741 4.00 2.77 30.9 3.51 12.3
grevlex-14 106 924 4.47 2.95 33.9 3.76 16.0
grevlex-15 121 1135 4.83 3.17 34.4 4.03 16.6
grevlex-16 137 1376 4.99 3.36 32.6 4.28 14.1
grevlex-17 154 1649 5.27 3.53 33.0 4.49 14.7
grevlex-18 172 1956 5.67 3.72 34.4 4.75 16.3
grevlex-19 191 2299 5.94 3.93 33.7 5.02 15.5
grevlex-20 211 2680 6.06 4.13 31.9 5.26 13.2
grevlex-21 232 3101 6.53 4.30 34.1 5.50 15.7
grevlex-22 254 3564 6.83 4.49 34.3 5.74 16.0
grevlex-23 277 4071 6.99 4.70 32.7 6.02 13.9
grevlex-24 301 4624 7.35 4.90 33.4 6.16 16.3
grevlex-25 326 5225 7.72 5.08 34.3 6.28 18.7
grevlex-26 352 5876 7.94 5.27 33.7 6.27 21.0
grevlex-27 379 6579 8.13 5.48 32.6 6.55 19.4

karate 34 78 0.59 0.24 59.2 0.55 6.7
chesapeake 39 170 2.17 0.87 59.8 2.16 0.4
dolphins 62 159 0.29 0.09 69.4 0.29 0.1
lesmis 77 254 0.30 0.11 64.8 0.30 1.3
polbooks 105 441 0.37 0.18 50.0 0.31 14.9
adjnoun 112 425 1.00 0.37 62.9 0.99 0.9
football 115 613 1.07 0.76 29.3 0.97 9.4
jazz 198 2742 1.00 0.30 70.1 0.99 1.5
celegansneural 297 2148 1.00 0.43 56.7 0.92 8.2

moviegalaxies-567 52 146 0.38 0.18 52.7 0.38 1.1
moviegalaxies-52 59 119 0.54 0.18 65.7 0.43 19.2
terrorists-911 62 152 0.22 0.09 57.3 0.21 3.3
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Table 1 (cont.): Comparison of DNN relaxations without additional constraints.
Instance (DNNn+1) (DNN-P)

n m UB bound gap (%) bound gap (%)

train-terrorists 64 243 0.60 0.17 72.0 0.59 1.9
highschool 70 274 0.91 0.41 55.7 0.68 25.8
blumenau-drug 75 181 0.50 0.19 62.0 0.47 6.8
sp-office 92 9827 3.37 1.72 48.9 3.13 7.1
swingers 96 232 0.33 0.14 58.8 0.32 2.9
game-thrones 107 352 0.40 0.12 69.2 0.39 2.7
revolution 141 160 0.10 0.04 59.9 0.08 21.0
foodweb 183 2494 1.00 0.50 50.1 0.98 2.1
cintestinalis 205 2575 1.00 0.46 53.8 0.98 2.0
malariagenes-HVR1 307 2812 0.24 0.11 53.6 0.11 52.3

6.2 Detailed numerical tests of (DNN-PFRC)

In the following we now compare (DNN-P) to relaxation (DNN-PFRC) including ad-
ditional scaled BQP inequalities, both computed approximately with our Algorithm 1.
We omit instances from the table presenting computational results in this subsection
where we could not get an improvement from our cutting planes. For several of these
instances, the bound from (DNN-P) is already close to the optimal value, hence further
improvement from cutting planes cannot be expected.
Table 2 is structured as follows. The first four columns describe the instance, i.e.,

the name of the instance, the number of vertices n, the number of edges m, and an
upper bound UB on the edge expansion are given. In the next 3 columns, we report
computational results for computing (DNN-P). Column 5 lists the lower bound on h(G)
obtained by Algorithm 1, in column 6 the number of edgesm, and an upper bound UB on
the edge expansion are given. In the next 3 columns, we report computational results for
computing (DNN-P). Column 5 lists the lower bound on h(G) obtained by Algorithm 1,
column 6 displays the relative gap (19), and in column 7 the wall-clock time in seconds
needed to compute the lower bound is reported. The same numbers (bound, relative
gap, computation time) for computing (DNN-PFRC) with Algorithm 1 are shown in the
subsequent 3 columns. In the second to last column of the table, we report the number
of cutting planes left in the last iteration of the algorithm, i.e., the number of cuts that
were added and not removed by the algorithm. The total number of iterations needed
by the algorithm to compute the DNN relaxation strengthened by scaled BQP cuts is
given in the last column of the table.
Table 2 shows that for all graphs of random 0/1-polytopes, except 3 instances, the

lower bound (DNN-PFRC) yields a relative gap below 1%. The computation time for all
instances from graphs of random 0/1-polytopes was less than 49 minutes and 11.4 min-
utes on average. For the grlex instances, we were able to obtain for 5 further instances
a lower bound that is, rounded to two decimal places, equal to the optimum by adding
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cutting planes to the DNN relaxation. Considering the grevlex instances, there is only
one instance where (DNN-PFRC) yields a relative gap below 1% compared to a relative
gap of 12.3% from (DNN-P). Nevertheless, also for this class of benchmark instances, we
were able to significantly reduce the relative gap to the upper bound/optimum by adding
BQP inequalities, namely from an average of 15.8% to 4.4%. A similar observation can
be made from the computational results on the DIMACS and network instances. In
total, for 10 instances (DNN-PFRC) rounded to 2 decimal places closes the gap to the
optimum h(G).
Overall, our computational results demonstrate that in case the cutting planes improve

the DNN relaxation of the edge expansion, the improvement is substantial. We were able
to compute strong lower bounds on the edge expansion by computing (DNN-PFRC), a
DNN of dimension up to 761× 761 and up to 4 272 cutting planes, with Algorithm 1 in
less than 69 minutes.
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Table 2: Computational results of Algorithm 1.
Instance (DNN-P) (DNN-PFRC)

n m UB bound gap (%) time (s) bound gap (%) time (s) cuts iterations

rand01-9-153-0 153 4081 18.75 17.75 5.3 67.0 18.67 0.4 136.6 1117 34
rand01-9-153-1 153 4044 18.49 17.57 5.0 68.9 18.43 0.3 105.9 907 30
rand01-9-153-2 153 4107 19.00 17.83 6.2 77.3 18.94 0.3 167.5 1406 63
rand01-8-164-0 164 1868 5.77 4.85 15.9 114.7 5.74 0.5 283.6 2073 78
rand01-8-164-1 164 1837 5.35 4.68 12.5 162.7 5.33 0.4 211.1 1510 56
rand01-8-164-2 164 1808 5.74 4.71 18.1 216.0 5.70 0.8 521.3 2782 57
rand01-9-178-0 178 4590 17.08 16.07 5.9 96.8 16.97 0.6 165.0 1978 43
rand01-9-178-1 178 4467 16.71 15.37 8.0 121.8 16.60 0.7 395.0 2174 70
rand01-9-178-2 178 4537 16.75 15.64 6.7 112.5 16.67 0.5 223.8 1737 62
rand01-8-189-0 189 1768 4.22 3.46 18.2 163.4 4.21 0.2 482.6 2278 48
rand01-8-189-1 189 1745 4.04 3.36 16.9 295.1 4.03 0.3 593.5 1963 91
rand01-8-189-2 189 1719 4.06 3.33 17.9 291.1 4.05 0.2 792.6 2723 73
rand01-9-203-0 203 4900 15.14 14.00 7.5 167.1 15.09 0.3 304.7 1787 100
rand01-9-203-1 203 4781 14.84 13.54 8.8 175.4 14.81 0.2 456.1 2133 51
rand01-9-203-2 203 4720 14.38 13.38 7.0 176.6 14.34 0.2 348.6 1770 50
rand01-9-228-0 228 5065 13.24 12.02 9.2 269.4 13.16 0.5 637.2 2491 41
rand01-9-228-1 228 4927 9.00 8.88 1.3 524.4 8.93 0.7 1111.7 2972 545
rand01-9-228-2 228 4984 12.82 11.77 8.2 505.3 12.74 0.6 529.4 1660 45
rand01-9-253-0 253 5258 11.87 10.67 10.1 797.6 11.77 0.8 1364.5 3234 61
rand01-9-253-1 253 5053 9.00 8.89 1.2 656.4 8.94 0.6 1283.1 3124 547
rand01-9-253-2 253 5072 11.22 10.09 10.1 536.6 11.18 0.4 915.9 2609 50
rand01-10-256-0 256 11056 30.48 29.38 3.6 302.0 30.24 0.8 486.6 1020 41
rand01-10-256-1 256 10611 28.84 27.69 4.0 775.0 28.82 0.1 719.0 2122 42
rand01-10-256-2 256 10746 29.38 28.13 4.2 318.6 29.17 0.7 469.5 2128 49
rand01-9-278-0 278 5224 10.07 8.89 11.7 878.5 9.79 2.8 760.7 2204 49
rand01-9-278-1 278 5007 9.00 8.05 10.6 1180.1 8.30 7.8 2922.7 4272 580
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Table 2 (cont.): Computational results of Algorithm 1.
Instance (DNN-P) (DNN-PFRC)

n m UB bound gap (%) time (s) bound gap (%) time (s) cuts iterations

rand01-9-278-2 278 5132 9.92 8.65 12.8 763.3 9.76 1.6 1737.8 3091 61
rand01-10-281-0 281 11828 28.90 27.71 4.1 408.3 28.66 0.8 680.6 2068 52
rand01-10-281-1 281 11490 27.79 26.46 4.8 1103.3 27.66 0.5 858.7 2233 48
rand01-10-281-2 281 11454 27.75 26.44 4.7 418.1 27.54 0.8 693.2 1997 38

grlex-7 29 119 1.00 0.98 1.7 2.9 1.00 0.0 1.4 316 27
grlex-12 79 584 1.00 0.99 0.8 26.2 1.00 0.3 27.6 1423 47
grlex-13 92 741 1.00 0.99 1.0 43.2 1.00 0.3 47.6 885 60
grlex-16 137 1376 1.00 0.99 0.9 119.8 1.00 0.3 142.1 774 70
grlex-20 211 2680 1.00 0.98 1.8 575.5 0.99 1.1 570.3 974 526
grlex-23 277 4071 1.00 0.98 2.3 1415.0 0.99 1.2 1455.7 1278 527
grlex-24 301 4624 1.00 0.99 1.0 1542.0 1.00 0.0 1663.3 968 308
grlex-25 326 5225 1.00 0.94 5.9 2231.8 0.96 3.9 2250.9 443 525

grevlex-7 29 119 2.46 2.12 14.0 1.0 2.34 4.8 3.7 1613 40
grevlex-8 37 176 2.83 2.35 17.2 2.2 2.62 7.6 9.4 1843 48
grevlex-9 46 249 2.96 2.52 14.8 4.2 2.85 3.6 9.5 1449 50
grevlex-10 56 340 3.22 2.77 14.1 7.2 3.13 2.8 26.1 2136 66
grevlex-11 67 451 3.67 3.06 16.4 11.2 3.46 5.6 39.0 1488 93
grevlex-12 79 584 3.92 3.31 15.7 24.8 3.74 4.5 53.6 2151 73
grevlex-13 92 741 4.00 3.51 12.3 40.8 3.99 0.3 103.8 1652 77
grevlex-14 106 924 4.47 3.76 16.0 54.4 4.28 4.4 153.6 1488 98
grevlex-15 121 1135 4.83 4.03 16.6 80.5 4.59 5.0 172.7 1904 66
grevlex-16 137 1376 4.99 4.28 14.1 111.7 4.88 2.1 305.2 1250 369
grevlex-17 154 1649 5.27 4.49 14.7 163.2 5.13 2.5 330.8 2106 192
grevlex-18 172 1956 5.67 4.75 16.3 211.6 5.40 4.8 352.8 1533 150
grevlex-19 191 2299 5.94 5.02 15.5 267.5 5.71 3.8 529.0 1377 229
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Table 2 (cont.): Computational results of Algorithm 1.
Instance (DNN-P) (DNN-PFRC)

n m UB bound gap (%) time (s) bound gap (%) time (s) cuts iterations

grevlex-20 211 2680 6.06 5.26 13.2 454.4 5.98 1.3 746.1 1183 242
grevlex-21 232 3101 6.53 5.50 15.7 585.1 6.23 4.6 772.6 1830 124
grevlex-22 254 3564 6.83 5.74 16.0 792.7 6.51 4.8 1134.0 2240 178
grevlex-23 277 4071 6.99 6.02 13.9 956.5 6.74 3.6 1310.9 1237 212
grevlex-24 301 4624 7.35 6.16 16.3 1836.0 6.70 8.9 1860.5 1558 544
grevlex-25 326 5225 7.72 6.28 18.7 2544.0 7.28 5.8 2984.0 2317 463
grevlex-26 352 5876 7.94 6.27 21.0 2169.6 7.51 5.5 4133.8 2373 557
grevlex-27 379 6579 8.13 6.55 19.4 2747.3 7.64 6.0 3515.5 1450 537

karate 34 78 0.59 0.55 6.7 5.5 0.59 0.0 5.2 518 28
polbooks 105 441 0.37 0.31 14.9 114.2 0.35 3.0 175.6 1033 40
football 115 613 1.07 0.97 9.4 86.4 1.07 0.0 118.1 382 28
celegansneural 297 2148 1.00 0.92 8.2 2595.9 0.96 3.6 3844.4 841 541

moviegalaxies-52 59 119 0.54 0.43 19.2 21.0 0.54 0.3 21.5 402 27
train-terrorists 64 243 0.60 0.59 1.9 46.7 0.60 0.1 24.6 293 28
highschool 70 274 0.91 0.68 25.8 33.4 0.90 1.7 52.4 1140 61
blumenau-drug 75 181 0.50 0.47 6.8 46.6 0.49 2.5 71.4 785 77
sp-office 92 9827 3.37 3.13 7.1 64.9 3.29 2.4 89.8 1333 50
game-thrones 107 352 0.40 0.39 2.7 127.3 0.40 0.4 108.5 279 32
revolution 141 160 0.10 0.08 21.0 242.2 0.09 7.9 233.7 1110 34
malariagenes-HVR1 307 2812 0.24 0.11 52.3 3225.4 0.23 4.4 2620.7 1608 477
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7 Conclusion
This work demonstrates the effectiveness of the convexification technique by He, Liu, and
Tawarmalani [13] in addressing the challenging problem of computing the edge expansion
of a graph. By formulating the edge expansion as a completely positive program and
introducing a doubly non-negative relaxation enhanced by cutting planes, we have de-
veloped a new approach for obtaining strong lower bounds. The augmented Lagrangian
algorithm further improves the computational efficiency of solving this relaxation. Ad-
ditionally, we provide a post processing routine to derive valid lower bounds. Numerical
results show that our approach yields tight bounds and performs efficiently even for large
graphs. For several instances, the rounded bound is equal to the optimal value or yields
a very small relative gap. Some possible extensions of our approach would be to further
strengthen the relaxation by adding McCormick inequalities.
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