
ADAPTIVE ALGORITHMS FOR ROBUST PHASE RETRIEVAL

A PREPRINT

Zhong Zheng1, Necdet Serhat Aybat2, Shiqian Ma3, and Lingzhou Xue1

1Department of Statistics, Pennsylvania State University
2Department of Industrial and Manufacturing Engineering, Pennsylvania State University

3Department of Computational Applied Mathematics and Operations Research, Rice University

September, 2024

ABSTRACT

This paper considers the robust phase retrieval, which can be cast as a nonsmooth and nonconvex
optimization problem. We propose two first-order algorithms with adaptive step sizes: the subgradient
algorithm (AdaSubGrad) and the inexact proximal linear algorithm (AdaIPL). Our contribution lies
in the novel design of adaptive step sizes based on quantiles of the absolute residuals. Local linear
convergences of both algorithms are analyzed under different regimes for the hyper-parameters.
Numerical experiments on synthetic datasets and image recovery also demonstrate that our methods
are competitive against the existing methods in the literature utilizing predetermined (possibly
impractical) step sizes, such as the subgradient methods and the inexact proximal linear method.

Keywords

Adaptive Steps, Subgradient Method, Proximal Linear Algorithm, Robust Phase Retrieval.

1 Introduction

Phase retrieval (PR) aims to recover a signal from intensity-or magnitude-based measurements. It finds various
applications in different fields, including X-ray crystallography [1], optics [2], diffraction and array imaging [3],
astronomy [4], and microscopy [5]. Mathematically, PR tries to find the true signal vectors x⋆ or −x⋆ in Rn from
a set of magnitude measurements:

bi = ⟨ai, x⋆⟩2 , for i = 1, 2, . . . ,m, (1)

where ai ∈ Rn and bi ≥ 0, i = 1, 2, . . . ,m. Directly solving the equations (1) is an NP-hard problem [6], and
algorithms based on different designs of objective functions have been well studied in the literature, including Wirtinger
flow [7], truncated Wirtinger flow [8], truncated amplitude flow [9], reshaped Wirtinger flow [10], etc.

In this paper, we focus on the robust phase retrieval (RPR) problem [11], which considers the case where bi might
contain infrequent but arbitrary noise due to measurement errors, i.e.,

bi =

{
⟨ai, x⋆⟩2 , i ∈ I1,
ξi, i ∈ I2,

(2)

in which I1
⋃
I2 = {1, 2 . . . ,m}, I1 ∩ I2 = ∅, and ξi denotes the noise that only exists in measurements in I2, and it

follows an arbitrary distribution. We will call such noisy measurements as corrupted measurements (this is the name
used by [11]). Our objective is to recover x⋆ or −x⋆ using {(ai, bi)}mi=1 without knowing either I1 or I2.

Definition 1.1. xϵ ∈ Rn is an ϵ-optimal solution if ∆(xϵ) ≤ ϵ, where

∆(x) ≜ min{∥x− x⋆∥2, ∥x+ x⋆∥2}. (3)

A PREPRINT

[11] proposed to formulate RPR as an optimization problem employing the nonsmooth ℓ1-loss:

min
x∈Rn

F (x) ≜
1

m

m∑
i=1

∣∣∣⟨ai, x⟩2 − bi

∣∣∣ = h(c(x)), (4)

where h(z) ≜ 1
m∥z∥1 and c(x) ≜ |Ax|2−b is a smooth map in which |·|2 operates element-wise on Ax =

[⟨a1, x⟩, . . . , ⟨am, x⟩]⊤ and b = [b1, . . . , bm]⊤. In the rest of the paper, A ∈ Rm×n such that A = [a1, a2, . . . , am]⊤

denotes the measurement matrix.

In [11], the authors have shown that F is weakly convex; moreover, under some statistical assumptions on (2), F
satisfies some sharpness condition with high probability – here, sharpness implies that minimizers of F (·) coincide with
the true signal vectors. In [11], it is shown that (4) possesses better recoverability than the median truncated Wirtinger
flow algorithm [12] based on the ℓ2-loss.

1.1 Existing Algorithms and Challenges

In the literature, two kinds of algorithms were proposed for solving (4): (i) proximal-linear (PL)-type algorithms, and (ii)
subgradient-type algorithms. First, we review proximal-linear-type algorithms. For any given z, y ∈ Rn and t > 0, let

F (z; y) ≜ h(c(y) + Jc(y)(z − y)), Ft(z; y) ≜ F (z; y) +
1

2t
∥z − y∥22, (5)

where Jc(·)∈ Rm×n denotes the Jacobian of c(·) and can be written explicitly as Jc(y) = 2diag(Ay)A. In one typical
iteration of a PL-type algorithm, one inexactly solves a subproblem of the form:

xk+1 ≈ argmin
x∈Rn

Ftk(x;x
k), (6)

where tk > 0 is the chosen step size, and “≈” means that xk+1 is an “inexact” solution to the subproblem in (6).
Using the fixed step sizes tk = L−1 for all k ∈ N, with L ≜ 2∥A∥22/m, [11] has proposed the Proximal Linear (PL)
algorithm, and assuming that the L-strongly convex subproblem in (6) is solved exactly for all k ≥ 0, the local quadratic
convergence rate of PL method is shown in terms of iteration counter k, i.e., in the number of exact minimizations
of the form argminx Ftk(x;x

k). However, the total complexity for the PL method is unknown due to unclear cost
of solving the subproblems in the form of (6) to exact optimality – it is worth emphasizing that closed-form solutions
to subproblems are not available and in practice one cannot compute them exactly using iterative methods; therefore,
this method is not practical. On the other hand, for the numerical experiments in [11], each subproblem in the form of
(6) was inexactly solved by the proximal operator graph splitting (POGS) method [13], terminated as suggested in [13],
i.e., when the primal and dual residuals satisfy a predetermined threshold – that said, the convergence analysis was
not provided in [11] for this strategy.

To get better control over the cost of solving (6), under the same fixed step sizes, [14] has proposed the Inexact Proximal
Linear (IPL) algorithm that solves (6) inexactly using one of the following inexact termination conditions:

Ftk(x
k+1;xk)− min

x∈Rn
Ftk(x;x

k) ≤

{
ρl
(
F (xk)− Ftk(x

k+1;xk)
)

(LAC-exact)
ρh

2tk
∥xk+1 − xk∥22 (HAC-exact) (7)

where ρl > 0, ρh ∈ (0, 1/4) are given positive constants. Here, LAC is short for the low accuracy condition, and HAC
is short for the high accuracy condition. Since minx Ftk(x;x

k) is not known in practice, to verify these conditions
one needs to work with sufficient conditions for (7) obtained by replacing minx∈Rn Ftk(x;x

k) with the dual function
values of (6). In [14], (6) is solved through applying the Accelerated Proximal Gradient algorithm (APG) given in [15]
to the dual problem of (6). In [14], it is proven that IPL can compute an ϵ-optimal solution for (4) within O(1/ϵ) inner
iterations in total for inexactly solving a sequence of subproblem in the form of (6), establishing the total complexity
for the double-loop algorithm IPL. Numerical experiments in [14] empirically show that IPL enjoys better numerical
performance in terms of CPU time compared to PL method. However, the efficiency of IPL is still unsatisfying due
to the sublinear convergence rate; that said, there is a room for further improvement for IPL, and this is one of the
objectives of this paper, where we improve the total complexity using diminishing step size strategy which is also
practical.

Next, we review the existing subgradient-type algorithms [16, 17] which can handle (4) while avoiding (inexact)
subproblem solves. Polyak subgradient descent (PSubGrad) is investigated in [17]:

2

A PREPRINT

xk+1 = xk −
(
F (xk)− F (x⋆)

)
ξk/∥ξk∥22, ξk ∈ ∂F (xk), k ∈ N.

Subgradient algorithms with geometrically decaying step sizes (GSubGrad) are proposed in [16]:

xk+1 = xk − λkξk/∥ξk∥2, ξk ∈ ∂F (xk), λk = λ0q
k, k ∈ N, (8)

where λ0 > 0 and q ∈ (0, 1) are constant algorithm parameters. For both algorithms, local linear convergence has
been shown. PSubGrad only works for noiseless robust phase retrieval (1) as it relies on the value of F (x⋆), and
knowing a lower bound is not sufficient for establishing convergence for PSubGrad. Moreover, as discussed in [17],
using fixed step sizes for subgradient algorithms only leads to suboptimal solutions. On the other hand, for GSubGrad,
there is still no practical guidance on properly choosing the hyper-parameters (λ0 and q). More precisely, for any
fixed γ ∈ (0, 1), the results in [17] require setting λ0 = γλ2

s/(LBξ) and q =
√

1− (1− γ)(λs/Bξ)2, explicitly
depending on the unknown quantity λs (see Assumption 2.4), where Bξ ≜ sup{∥ξ∥2: ξ ∈ ∂F (x), x ∈ Tγ} and
Tγ = {x ∈ Rn : ∆(x) ≤ γλs/L}. In summary, for (4) with measurements as in (2), no practical hyper-parameter
choice is known for [16, 17] with theoretical guarantees, and under improper step size choices, these algorithms might
not perform well or even possibly fail to converge [16, 17, 14].

Stochastic algorithms are also studied in [18, 19, 20, 21, 22] where the proximal-linear type and the subgradient-type
methods are unified. In addition, [17] and [23] also analyze the nonconvex landscape. These type of methods and their
analysis are beyond the scope of our paper.

1.2 Proposed Algorithms: AdaSubGrad and AdaIPL

In this paper, we propose to incorporate an adaptive step size strategy within subgradient and inexact-proximal linear
algorithm frameworks for improving their convergence behavior both in theory and practice. Next, we give some
definitions. Throughout we set L ≜ 2∥A∥22/m. For a p̃ ∈ (0, 1) such that mp̃ ∈ N+, let

ri(·) ≜|⟨ai, ·⟩2 − bi|, ∀ i ∈ [m]; rp̃(·) ≜ the p̃-th quantile of {ri(·)}mi=1, (9)

i.e., rp̃(x) denotes the (mp̃)-th order statistics of absolute residuals {ri(x)}mi=1 at any given x. Quantile operator is
known for its robustness to outliers; hence, it helps us design a step size strategy that would be robust to the corrupted
measurements for (4), i.e., when the true measurement vector is corrupted by a sparse noise vector with non-zero entries
having arbitrarily large magnitudes.

1.2.1 AdaSubGrad

We propose a subgradient method with adaptive step sizes (AdaSubGrad). The step size αk at iteration k ∈ N is chosen
as follows:

αk = G rp̃(xk), ∀ k ∈ N, (10)
where G > 0 is an algorithm parameter. AdaSubGrad iterates are computed as

xk+1 = xk − αkξ
k/∥ξk∥22, ξk ∈ ∂F (xk), ∀ k ∈ N. (11)

According to [24, Theorem 10.6, Corollary 10.9], the subdifferential of weakly convex function F has the form
∂F (x) ≜ [Jc(x)]

⊤∂h(c(x)) for x ∈ Rn, where Jc(x) ∈ Rm×n denotes the Jacobian of c at x. One can calculate a
subgradient ξk ∈ ∂F (xk) as ξk = 2

m

∑m
i=1

〈
ai, x

k
〉

sign
(〈

ai, x
k
〉2 − bi

)
ai for any k ∈ N. Our proposed method

AdaSubGrad is formally stated in Algorithm 1.

Algorithm 1 Subgradient Algorithm with Adaptive Step Sizes (AdaSubGrad)

Input: Initial point x0 ∈ Rn, parameter G > 0, percentile p̃ ∈ (0, 1) such that mp̃ ∈ N+.
for k = 0, 1, . . . , do

Update xk+1 using (11) with αk given in (10).
end for

Note that in our choice of the step size αk, we adopt the quantile design, i.e., rp̃(xk); the main motivation be-
hind our choice is that under a fairly reasonable data generating process discussed in Section 3, one can show that
αk = Θ(F (xk)− F (x⋆)) for all k ∈ N with high probability. Therefore, AdaSubGrad will exhibit a similar conver-
gence behavior with the Polyak subgradient algorithm. More precisely, we prove that for sufficiently small G > 0,
AdaSubGrad enjoys a local linear convergence.

3

A PREPRINT

1.2.2 AdaIPL

Second, we introduce the inexact proximal linear algorithm with adaptive step sizes (AdaIPL). Given some positive
constant G > 0, let

tk ≜ min{L−1, G rp̃(xk)}. (12)
In AdaIPL, iterates are computed by inexactly solving (6) with tk chosen as in (12) such that for all k ∈ N either
(LAC-exact) or (HAC-exact) given in (7) holds. Since minx∈Rn Ftk(x;x

k) appearing in (7) is not available in practice,
in AdaIPL we replace (7) with a practical one as described next. Given tk ≤ 1

L = m
2∥A∥2

2
, (6) is convex and can be

equivalently written as

min
z∈Rn

Hk(z) ≜
1

2tk
∥z∥22+∥Bkz − dk∥1, (13)

after the change of variables: z ≜ x− xk and setting Bk ≜ 2
mdiag(Axk)A and dk ≜ 1

m

(
b− |Axk|2

)
. The problem

in (13) has the following min-max and dual forms:

min
z∈Rn

max
λ∈Rm: ∥λ∥∞≤1

Hk(z, λ) ≜
1

2tk
∥z∥22+λ⊤(Bkz − dk), (14a)

max
λ∈Rm: ∥λ∥∞≤1

Dk(λ) ≜ − tk
2

∥∥λ⊤Bk

∥∥2
2
− λ⊤dk. (14b)

Let zk(λ) ≜ −tkB
⊤
k λ and λk(z) ≜ sign (Bkz − dk). Using zk ≜ xk+1 − xk, we can rewrite (7) as

Hk(z
k)− min

z∈Rn
Hk(z) ≤

{
ρl
(
Hk(0)−Hk(z

k)
)
, (LAC-exact)

ρh

2tk
∥zk∥22, (HAC-exact), (15)

where ρl > 0, ρh ∈ (0, 1/4) are given positive constants. As minz∈Rn Hk(z) may not be easily available, we provide
sufficient conditions for (LAC-exact) and (HAC-exact) conditions in (15) that can be checked in practice. Due to weak
duality, we have

Hk(z
k)− min

z∈Rn
Hk(z) ≤ Hk(z

k)−Dk(λ), ∀ λ ∈ Rm : ∥λ∥∞≤ 1.

Consider a generic solver such that when initialized from an arbitrary (zk0 , λ
k
0), it generates a primal-dual iterate

sequence {(zkj , λk
j)}∞j=0 ⊂ Rn × Rm for the k-th subproblem satisfying supj∈N∥λ

j
k∥∞≤ 1, and after jk iterations it

computes a primal-dual pair (zk, λk) = (zkjk , λ
k
jk
) such that

Hk(z
k)−Dk(λ

k) ≤

{
ρl
(
Hk(0)−Hk(z

k)
)
, (LAC)

ρh

2tk
∥zk∥22, (HAC).

(16)

Since (16) is a sufficient condition on (15), for AdaIPL we can can adopt the practical condition given in (16) instead of
the condition in (15).
Lemma 1.2. (LAC) and (HAC) imply (LAC-exact) and (HAC-exact), respectively.

Algorithm 2 Inexact Proximal Linear Algorithm with Adaptive Step Sizes (AdaIPL)

Input: Initial point x0 ∈ Rn, ρl > 0 or ρh ∈ (0, 1/4), percentile p̃ ∈ (0, 1) s.t. mp̃ ∈ N+.
Set Cond to either (LAC) or to (HAC) in (16)
for k = 0, 1, . . . , do

Compute tk as in (12)
Compute xk+1 by inexactly solving (6) such that Cond holds

end for

A pseudocode for AdaIPL is given in Algorithm 2. It is only a prototype algorithm because the method for inexactly
solving (6) is not fixed at this point. We will discuss this issue later in Section 6.2. For AdaIPL, the step size tk uses the
quantile design such that under the data generation process introduced in Section 3, tk = Θ(∆(xk)) for all k ≥ 0 with
high probability, where ∆(·) is defined in (3). Analysis in Section 6 will show that under adaptive step sizes, we can
reach a better balance between main iteration complexity and subproblem iteration complexity compared to IPL with
fixed step sizes proposed in [14]. We will show that for any choice of algorithm parameter G > 0, AdaIPL enjoys local
linear convergence in terms of total iteration complexity associated with inexactly solving all the subproblems in the
form of (6).

4

A PREPRINT

Algorithm Ideal Complexity Step sizes Tuning
PL[11] Unknown Fixed N/A

IPL-LAC[14] O(C2
Sκ

2
0∥x⋆∥2/ϵ) Fixed N/A

IPL-HAC [14] O(C2
Sκ

3
0∥x⋆∥2/ϵ) Fixed N/A

PSubGrad[17] O(κ2
0 log

1
ϵ) Adaptive Hard

GSubGrad[16] O(κ2
0 log

1
ϵ) Predetermined Hard

AdaSubGrad (this work) O(κ2
0 log

1
ϵ) Adaptive Easy

AdaIPL-LAC (this work) O(CSκ0 log
1
ϵ) Adaptive Easy

AdaIPL-HAC (this work) O(CSκ0 log
1
ϵ) Adaptive Easy

Table 1: Comparison of algorithms for RPR. In the first column, for IPL and AdaIPL, “-LAC” and “-HAC” correspond to
(LAC) and (HAC) conditions, respectively. The second column compares the total complexity under the ideal choices
of hyper-parameters for finding an ϵ-optimal point when ϵ > 0 is small enough. κ0 ≥ 1 denotes the condition number,
CS≥ 1 is a factor related to solving (6), and O(·) only hides numerical constants. The third column characterizes the
types of step sizes for each algorithm. The fourth column summarizes the level of difficulties for hyper-parameter
tuning. “N/A” here means that PL and IPL that employ fixed step sizes do not need tuning –refer to the second bullet
point in Section 1.2.3 for explanations of “Easy” and “Hard”.

1.2.3 Summary of Contributions

We propose AdaSubGrad and AdaIPL with adaptive step sizes chosen based on the quantiles of absolute residuals.
To the best of our knowledge, we are the first to use quantile-based adaptive step sizes for robust phase retrieval to
design practical methods that do not require intensive hyper-parameter tuning; moreover, unlike [16], the convergence
guarantees of our methods do not need the algorithm parameters to satisfy some conditions involving unknown problem
constants. The proposed algorithms enjoy the following advantages over existing algorithms.

• Our algorithms enjoy the best theoretical convergence rates. For finding an ϵ-optimal solution, we define the total
complexity of subgradient-type algorithms as the number of iterations and the total complexity for proximal-linear-
type algorithms as the total iterations used for inexactly solving all the subproblems (6). Under the ideal situation
in terms of hyper-parameters that will be explained in Section 6, Table 1 summarizes the total complexity of all
candidate algorithms for finding an ϵ-optimal solution where ϵ is sufficiently small. Here, κ0 ≥ 1 is the condition
number of RPR that will be explained in Section 3, CS =

√
mmaxi∈[m]∥ai∥2/∥A∥2 is a constant factor related to

the complexity of solving (6), and we treat ρl, ρh in (LAC) and (HAC) in (16) as numerical constants. AdaSubGrad
enjoys a local linear rate comparable to other subgradient algorithms, and AdaIPL enjoys a better local linear rate in
terms of the condition number.

• Our algorithms enjoy a linear rate even under imperfect choices of hyper-parameters: AdaIPL shows local linear
convergence for any G > 0, and AdaSubGrad enjoys local linear convergence when G is sufficiently small. In
contrast, PSubGrad[17] relies on the value of F (x⋆), and GSubGrad[16] only converges under their specific choice
of parameters depending on unknown constants for (4). The difficulty of tuning hyper-parameters is summarized in
Table 1.

• We conduct numerical tests comparing AdaSubGrad and AdaIPL against the other state-of-the-art methods for solving
the RPR problem. Empirical results show that both AdaSubGrad and AdaIPL are robust to parameter selection and
perform better than the others.

Notations. For any m0 ∈ N+, we denote [m0] = {1, 2 . . .m0}. Sn−1 = {x ∈ Rn : ∥x∥2= 1}. 1[·] is the indicator
function that takes logic statements as its argument, it returns 1 when its argument is true and 0 otherwise when its
argument is false. For x ∈ R, we let sign(x) = 1[x > 0]− 1[x < 0]. We also adopted the Landau notation, i.e., for
f, g : R+ → R+, we use f = O(g) and f = Ω(g) if there exists some C0 > 0 and n0 ∈ R+ such that f(n) ≤ C0g(n)
and f(n) ≥ C0g(n), respectively, for all n ≥ n0; moreover, if f = O(g) and f = Ω(g), then we use f = Θ(g).

Organization. Section 2 introduces basic properties of F (·). Section 3 discusses the data generation process and
key conditions for our adaptive step sizes, and in Section 4, we give the proof of Theorem 3.4 that provides us with
a proper statistical foundation for our convergence analysis.

Section 5 establishes the convergence rate of AdaSubGrad, and Section 6 shows the convergence rate of AdaIPL. In
Section 7, we provide the proofs of the results given in Section 6. Finally, after the numerical experiments in Section 8,
we conclude the paper with a brief discussion in Section 9.

5

A PREPRINT

2 Basic Properties of F (·)

In this section, we provide some basic results regarding the important properties of F (·). Throughout this section,
L ≜ 2∥A∥22/m.

Lemma 2.1 (Lemma 6 in [14], local Lipschitz continuity). For any r ≥ 0,

sup
x,y∈Rn

{ |F (x)− F (y)|
∥x− y∥2

: ∆(x) ≤ r, ∆(y) ≤ r, x ̸= y
}
≤ L(∥x⋆∥2+r).

Lemma 2.2 (Absolute deviation bound). For all x ∈ Rn, it holds that

|F (x)− F (x⋆)|≤
L

2
∥x− x⋆∥2∥x+ x⋆∥2. (17)

Proof. When x ∈ {x⋆,−x⋆}, the relationship holds; otherwise, for u = (x− x⋆)/∥x− x⋆∥2 and v = (x+ x⋆)/∥x+
x⋆∥2, we have |F (x)−F (x⋆)|≤ 1

m

∑m
i=1|(a⊤i x)2−(a⊤i x⋆)

2| which is equal to ∥x−x⋆∥2∥x−x⋆∥2 1
m

∑m
i=1|u⊤aia

⊤
i v|.

Note that
1

m

m∑
i=1

|u⊤aia
⊤
i v|≤

(
u⊤

(
1

2m

m∑
i=1

aia
⊤
i

)
u+ v⊤

(
1

2m

m∑
i=1

aia
⊤
i

)
v

)
≤ L/2.

This completes the proof.

Lemma 2.3 (Weak Convexity [11]). The inequality below holds for any x, y ∈ Rn:

|F (x)− F (x; y)| ≤ 1

2t
∥x− y∥22, ∀ t : 0 < t ∈ (0, 1/L]. (18)

Next, similar to [11], [16], and [17], we make the following sharpness assumption.

Assumption 2.4 (Condition C1 in [11]). There exists λs > 0 such that

F (x)− F (x⋆) ≥ λs∆(x), ∀x ∈ Rn, (19)

where F is defined in (4) and ∆(·) is defined in (3).

Under some data generation process, in [11, Proposition 4], it is proven that (19) holds with high probability when m/n
is large enough and the proportion of corrupted measurements is small enough.

Lemma 2.5 (Lemma 7 in [14]). Under Assumption 2.4, for any r ≥ 0,

{x ∈ Rn : ∆(x) ≤ E(r)} ⊆ {x ∈ Rn : F (x)− F (x⋆) ≤ r} ⊆ {x ∈ Rn : ∆(x) ≤ r/λs},

implying E(r) ≤ r/λs, where E(r)≜
(√

L2∥x⋆∥22+4rL− L∥x⋆∥2
)
/(2L).

Lemma 2.6. Assumption 2.4 implies that λs ≤ L∥x⋆∥2/2.

Proof. Consider x ∈ Rn such that ∥x− x⋆∥2= ∆(x). Based on Lemma 2.2 and Assumption 2.4, we have λs∆(x) ≤
F (x) − F (x⋆) ≤ (L/2)∆(x)∥x + x⋆∥2, which implies that λs ≤ (L/2)∥x + x⋆∥2. Letting x = 0, we have
λs ≤ L∥x⋆∥2/2.

Some differentiability properties of F (·) Recall F (·) = h(c(·)), where h : Rm → R and c : Rn → Rm such
that h(·) = ∥·∥1/m and c(·) = |A · |2−b; hence, ∂F (x) = [Jc(x)]

⊤∂h(c(x)) for x ∈ Rn as defined in (11). For
any fixed x̄ ∈ Rn, let cx̄(x) ≜ c(x̄) + [Jc(x̄)](x − x̄) for all x ∈ Rn; hence, cx̄(·) is an affine function. Consider
F (·; x̄) defined in (5). Since F (·; x̄) = h(cx̄(·)), the function F (x; x̄) is convex in x, and ∂F (x; x̄) |x=x̄ can be written
as [Jc(x̄)]

⊤∂h(cx̄(x̄)) = [Jc(x̄)]
⊤∂h(c(x̄)). Thus, ∂F (x̄) = ∂F (x; x̄)|x=x̄ for any x̄ ∈ Rn. Next, based on this

observation, we provide a useful inequality for F (·).
For any x̄ ∈ Rn and v ∈ ∂F (x̄), since we have v ∈ F (x; x̄)|x=x̄ and F (·; x̄) is convex, we have F (x; x̄)− F (x̄) =
F (x; x̄) − F (x̄; x̄) ≥ ⟨x − x̄, v⟩. Together with F (x; x̄) ≤ F (x) + L∥x − x̄∥22/2, which follows from (18), we can
conclude that

F (x)− F (x̄)− ⟨x− x̄, v⟩+ L∥x− x̄∥22/2 ≥ 0, ∀ x, x̄ ∈ Rn, ∀ v ∈ ∂F (x̄). (20)

6

A PREPRINT

3 Data Generation Process and Key Conditions

In this section, we provide the statistical background and some key conditions for RPR. We first introduce the assumption
for the data generation process of RPR.
Assumption 3.1. Suppose that the following conditions hold:

(a) Given non-negative integers m1,m2, let a1, a2 . . . am1+m2
in Rn be random vectors following independent

and identical distributions, represented by a generic random variable a, which follows a σ2-subGaussian
distribution with 0 as mean and Σ as covariance matrix. The true signal vector x⋆ ∈ Rn\{0} satisfies (2) such
that I1 = [m1], I2 = [m1 +m2] \ [m1], and ξi for i ∈ I2 is a non-negative random variable following an
arbitrary distribution.

(b) Suppose κst≜ infu,v∈Sn−1 E[|⟨a, u⟩⟨a, v⟩|] and pfail ≜
m2

m1+m2
< 1

2 satisfy κst − 2pfail∥Σ∥2> 0.

(c) Given p̃ ∈ (pfail, 1− pfail), suppose that there exists κ > 0 such that

p0 ≜ inf
u,v∈Sn−1

P(min{|⟨a, u⟩ |, |⟨a, v⟩ |} ≥ κ) >
1− p̃

1− pfail
.

Next, we briefly discuss this assumption. First, (a) in Assumption 3.1 is a combination of Model M2 and Assumption
A4 in [11]. Let m ≜ m1 + m2 denote the total number of measurements, i.e., |I1|= m1, |I2|= m2; moreover,
pfail =

m2

m1+m2
represents the proportion of corrupted measurements – when m2 = pfail = 0, this model reduces

to noiseless phase retrieval problem. We observe {(ai, bi)}mi=1 without knowing which measurements are corrupted.
We also guarantee that {ai : i ∈ I1} and {ai : i ∈ I2} are mutually independent and they follow a σ2-subGaussian
distribution. Below we argue that the aforementioned subGaussian assumption in (a) provides statistical stability
guarantees for the recovery process. That said, before proceeding in this direction, it is essential to emphasize that F (·)
is weakly convex without any statistical assumption.
Remark 3.2. [11, Lemma 3.1] shows that under Assumption 3.1(a), when m/n is large enough, the weak convexity
parameter L is close to 2∥Σ∥2 with high probability.
Remark 3.3. According to [11, Proposition 4], under (a) and (b) in Assumption 3.1, the sharpness condition in (19)
holds with high probability when κst > 0,m/n is large and pfail is sufficiently small, in which case, λs is close to
∥x⋆∥2(κst − 2pfail∥Σ∥2). More importantly, (19) implies that {x⋆,−x⋆} = argminx∈Rn F (x).

Using weak convexity and sharpness properties, we can define a condition number κ0 ≜ L∥x⋆∥2/(2λs) for F defined
in (4); under (19), Lemma 2.6 shows that κ0 ≥ 1.

Since κst ≤ infu∈Sn−1 E(a⊤u)2, we argue that L∥x⋆∥2/(2λs) is related to the condition number of Σ and pfail. Indeed,
from Remarks 3.2 and 3.3, for κst > 0, m/n large and pfail sufficiently small,

κ0 ≜ L∥x⋆∥2/(2λs) ≈
1

κst/∥Σ∥2−2pfail
. (21)

Therefore, κ0 represents how ill-conditioned the RPR problem is.

Assumption 3.1(c) is new to the RPR literature and is the key to guarantee that tk and αk are proportional to Θ(∆(xk)).
Indeed, consider p̃ ∈ (pfail, 1− pfail), which can always be set to p̃ = 1

2 as 1
2 clearly belongs to this interval, and recall

that we use p̃-th percentile of the residuals at xk to define αk and tk as in (10) and (12), respectively, e.g., for p̃ = 1
2 ,

both αk and tk are set based on the median value of {ri(xk)}mi=1. Statistically, it means that for any ∥u∥2= 1, the
distribution of ⟨a, u⟩ should not concentrate too close around 0 ∈ Rn.

Next, we provide an example that (a), (b), and (c) of Assumption 3.1 hold simultaneously. Let p̃ = 1
2 and a ∼ N(0, In),

which indicates that κst = 2/π (see [11, Example 4]) and Σ = In. Thus, when 0 < pfail ≤ 1/(2π), we have that
κst − 2pfail∥Σ∥2≥ 1/π > 0. Moreover, for p0(w) ≜ infu,v∈Sn−1 P(min{|⟨a, u⟩ |, |⟨a, v⟩ |} ≥ w), it holds that
limw→0 p0(w) = 1; and, we also have 1−p̃

1−pfail
≤ 1/(2− 1/π) < 1. Therefore, we can conclude that κ > 0 satisfying

Assumption 3.1(c) exists.

Next, we argue that rp̃(x) = Θ(F (x)− F (x⋆)) with high probability.
Theorem 3.4. Suppose that Assumption 3.1 holds and p̃ ∈ (pfail, 1− pfail),mp̃ ∈ N. There exists positive constants
uL, uH , ρ1, ρ2, ρ3, depending on Σ, σ, κst, κ, p0, pfail, p̃, such that when m ≥ ρ1n,

P
(
rp̃(x) ∈

[
uL(F (x)− F (x⋆)), uH(F (x)− F (x⋆))

]
, ∀x ∈ Rn

)
≥ 1− ρ2 exp(−mρ3). (22)

7

A PREPRINT

The detailed proof of Theorem 3.4 will be provided in Section 4.

Finally, using (19) and (22) implies the following conclusions for AdaSubGrad and AdaIPL.

Corollary 3.5. Under Assumption 2.4, suppose the event in (22) hold.

(a) When 0 < G < 2/uH , the AdaSubGrad step size αk in (10) satisfies that

αk ∈
[
c1(F (xk)− F (x⋆)), c2(F (xk)− F (x⋆))

]
, ∀k ∈ N,

where c1 ≜ uLG, c2 ≜ uHG and they satisfy 0 < c1 ≤ c2 < 2.

(b) For any k ∈ N, if ∆(xk) ≤ ∥x⋆∥2, then there exists gk ∈ [gL, gH] such that the AdaIPL step size tk in (12) satisfies
tk = min{L−1, gk∆(xk)}, where gL ≜ GλsuL and gH ≜ 3GL∥x⋆∥2uH/2.

Proof. (a) is a direct conclusion of (22). For (b), we only need to prove that for any x ∈ Rn with ∆(x) ≤ ∥x⋆∥, we
have (gL/G)∆(x) ≤ rp̃(x) ≤ (gH/G)∆(x). The first inequality follows from (19) and (22). For the second one, (22)
implies that rp̃(x) ≤ uH(F (x) − F (x⋆)). By Lemma 2.2, |F (x) − F (x⋆)|≤ L

2 ∥x − x⋆∥2∥x + x⋆∥2. In addition,
we have that L

2 ∥x− x⋆∥2∥x+ x⋆∥2≤ L
2∆(x)(∆(x) + 2∥x∥⋆) ≤ 3L∥x⋆∥2∆(x)/2 = gH/(GuH). Thus, the second

inequality is also proved.

Note that larger choices for G lead to larger c1, c2, gL, gH coefficients.

4 Proof of Theorem 3.4

Fix x ∈ Rn. First, we recall an upper on F (x) − F (x⋆). According to Lemma 2.2, one has F (x) − F (x⋆) ≤
L
2 ∥x− x⋆∥2∥x+ x⋆∥2, in which L = 2∥A∥22/m can be equivalently written as L = 2

∥∥ 1
m

∑m
i=1 aia

⊤
i

∥∥
2
. Moreover,

Lemma 4.1 stated below shows that L is close to 2∥Σ∥2 when m/n is large, where Σ is given in Assumption 3.1 and
∥Σ∥2= supu∈Sn−1 E ⟨a, u⟩2. Throughout the proof, we adopt the notation ∆̃(x)≜∥x− x⋆∥2∥x+ x⋆∥2 for brevity.

Lemma 4.1. (Lemma 3.1 in [11]) Let Assumption 3.1 hold. Then for all t ≥ 0,

P

(∥∥∥∥∥ 1

m

m∑
i=1

aia
⊤
i − Σ

∥∥∥∥∥
2

≥ 11σ2 max

{√
4n

m
+ t,

4n

m
+ t

})
≤ exp(−mt).

Next, we begin the proof. It contains two main components.

4.1 rp̃(x) = Θ(∆̃(x)) with high probability

Next, we review the definitions related to (10) and (12) regarding our choice of αk and tk. Let ri(x) = |⟨ai, x⟩2 − bi|
for all i = 1, 2 . . . ,m.

Definition 4.2. Given x ∈ Rn, for any i ∈ [m], let r(i)(x) denote the i-th order statistic based on {ri(x)}mi=1, which
indicates that r(1)(x) ≤ . . . ≤ r(m)(x). Similarly, for any i ∈ [m1], let r̃(i)(x) denote the i−th order statistic based on
{ri(x)}m1

i=1. Moreover, for any given percentile p̃ ∈ (0, 1) such that mp̃ ∈ N, we define rp̃(x)≜r(mp̃)(x).

Remark 4.3. Recall that pfail = (m−m1)/m is the fraction of corrupted measurements, and by definition mpfail =
m−m1 ∈ Z+. We assume that pfail < 1

2 and p̃ ∈ (pfail, 1− pfail). For the sake of simplicity of notation, we assume
that mp̃ ∈ Z+; hence, m(p̃−pfail) ∈ Z, and note that mp̃ < m(1−pfail) = m1. Thus, the order statistics r̃(m(p̃−pfail)),
r̃(mp̃) and r(mp̃) are all well defined.

Next, we compare r(mp̃)(x) to the mean and quantiles of the noiseless samples.

Lemma 4.4. Suppose that Assumption 3.1 holds. If pfail < p̃ < 1 − pfail, then for any x ∈ Rn, r̃(m(p̃−pfail))(x) ≤
r(mp̃)(x) ≤ r̃(mp̃)(x); moreover,

r̃(mp̃)(x) ≤
1

m(1− pfail − p̃)

m1∑
i=mp̃+1

r̃(i)(x) ≤
1− pfail

(1− pfail − p̃)

1

m1

m1∑
i=1

ri(x).

8

A PREPRINT

Proof. We denote A1 ≜ {i ∈ [m] : ri(x) ≤ r(mp̃)(x)}, A2 ≜ {i ∈ [m1] : ri(x) ≤ r(mp̃)(x)}, A3 ≜ {i ∈ [m] :

ri(x) ≤ r̃(mp̃)(x)} and A4 ≜ {i ∈ [m1] : ri(x) ≤ r̃(mp̃)(x)}. From the definition of order statistics, we know that
|A1|≥ mp̃ – it might happen that ri(x) = rj(x) for some i, j ∈ [m] such that i ̸= j; hence, it is possible that |A1|> mp̃.
Furthermore, note that A2 = A1\([m]\[m1]). Thus, |A2|= |A1\([m]\[m1])|≥ |A1|−(m − m1) ≥ m(p̃ − pfail),
which indicates the first inequality. We can find that A4 ⊆ A3, which indicates that |A3|≥ |A4|≥ mp̃. Thus, the
second inequality holds. The third inequality holds because r̃(i)(x) ≥ r̃(mp̃)(x) when i ≥ mp̃ and we also have
m(1− pfail − p̃) = m1 −mp̃. The fourth one holds because

∑m1

i=1 ri(x) ≥
∑m1

i=mp̃+1 r̃(i)(x) and 1−pfail

(1−pfail−p̃)
1

m1
=

1
m(1−pfail−p̃) .

Lemma 4.4 implies that

r̃(m(p̃−pfail))(x) ≤ r(mp̃)(x) ≤
1− pfail

(1− pfail − p̃)

1

m1

m1∑
i=1

ri(x), (23)

where both bounds are quantities that are only related to the noiseless measurements. Next, we argue that
1

m1

∑m1

i=1 ri(x) ≤ O(∆̃(x)) for all x ∈ Rn with high probability.

Lemma 4.5. Suppose that Assumption 3.1 holds for p̃ ∈ (0, 1) such that mp̃ ∈ N and pfail < p̃ < 1 − pfail. Then
whenever m ≥ 8n/(u1(1− pfail)), we have

P

(
1

m1

m1∑
i=1

ri(x) ≤
3

2
∥Σ∥2∆̃(x), ∀ x ∈ Rn

)
≥ 1− exp

(
− mu1

2
(1− pfail)

)
(24)

where u1 = min{1, ∥Σ∥2/(22σ2)}∥Σ∥2/(22σ2).

Proof. For m2 = 0, i.e., m = m1, we have F (x⋆) = 0 and Lemma 2.2 implies 1
m1

∑m1

i=1 ri(x) = F (x)− F (x⋆) ≤
∥ 1
m1

∑m1

i=1 aia
⊤
i ∥2∆̃(x), ∀ x ∈ Rn. In this setting, letting m1 ≥ 8n/u1 and t = u1/2 in Lemma 4.1, we have that

∥ 1
m1

∑m1

i=1 aia
⊤
i − Σ∥2≤ 1

2∥Σ∥2 holds with probability at least 1− exp(−m1u1/2). Thus, under this event, we have
1

m1

∑m1

i=1 ri(x) ≤
3
2∥Σ∥2∆̃(x) for all x ∈ Rn. Next, for m2 > 0, using m1 = (1−pfail)m within the above inequality

completes the proof.

Next, we argue that r̃(m(p̃−pfail))(x) ≥ Ω(∆̃(x)) holds for all x ∈ Rn with high probability.

Lemma 4.6. Suppose that Assumption 3.1 holds for p̃ ∈ (0, 1) such that mp̃ ∈ N and pfail < p̃ <

1 − pfail. There exists c0 > 0 such that for all x ∈ Rn, r̃(m(p̃−pfail))(x) ≥ κ2∆̃(x) holds w.p. at least

1− 2 exp
(
−m(1−pfail)κ

2(p0−(1−p̃)/(1−pfail))
2

32

)
whenever m ≥ c20n

κ2(1−pfail)

(
p0−(1−p̃)/(1−pfail)

4

)−2

.

Proof. When ∆(x) = 0, the conclusion obviously holds; otherwise, let u = (x− x⋆)/∥x− x⋆∥2, v = (x+ x⋆)/∥x+
x⋆∥2, and for all i ∈ [m1] we define

hi(u, v) = 1[|⟨ai, u⟩ |≥ κ]1[|⟨ai, v⟩ |≥ κ].

Thus, for all i ∈ [m1], we have

ri(x) = |⟨ai, u⟩ | · |⟨ai, v⟩ |∆̃(x) ≥ κ2hi(u, v)∆̃(x). (25)

Next, we consider the event 1
m1

∑m1

i=1 hi(u, v) > 1−p̃
1−pfail

. Knowing that hi(u, v) takes value in {0, 1}, the event
indicates that number of 0 in {hi(u, v)}m1

i=1 is strictly less than m1 −m1(1− p̃)/(1− pfail) = m(p̃− pfail). Together
with (25), this event indicates that r̃(m(p̃−pfail))(x) ≥ κ2∆̃(x). To conclude,

r̃(m(p̃−pfail))(x) ≥ κ2∆̃(x) 1

[
1

m1

m1∑
i=1

hi(u, v) >
1− p̃

1− pfail

]
. (26)

Based on (c) in Assumption 3.1, we have Ehi(u, v) ≥ p0 > 1−p̃
1−pfail

for all u, v ∈ Sn−1 and i ∈ [m]. By the last display
mode equation in the proof of [11, Proposition 1], there exists a numerical constant c0 < ∞ such that for any t ≥ 0,

P

(
sup

u,v∈Sn−1

κ

∣∣∣∣∣ 1

m1

m1∑
i=1

hi(u, v)− E [hi(u, v)]

∣∣∣∣∣ ≥ c0

√
n

m1
+ t

)
≤ 2 exp

(
−m1t

2

2

)
.

9

A PREPRINT

Therefore, if m ≥ c20n
κ2(1−pfail)

(
p0−(1−p̃)/(1−pfail)

4

)−2

and t = κp0−(1−p̃)/(1−pfail)
4 , then w.p. at least 1 −

2 exp
(
−m(1−pfail)κ

2(p0−(1−p̃)/(1−pfail))
2

32

)
, for all u, v ∈ Sn−1 we have

1

m1

m1∑
i=1

hi(u, v) ≥ E [hi(u, v)]− c0

√
n

m1κ2
− t/κ ≥

p0 +
1−p̃

1−pfail

2
>

1− p̃

1− pfail
.

Together with (26), this indicates that r̃(m(p̃−pfail))(x) ≥ κ2∆̃(x) for all x ∈ Rn.

Combining the event in Lemma 4.5 and the event in Lemma 4.6, applying (23), we can claim that, when

m ≥ u2n where u2 ≜ 8
1−pfail

max
{

1
u1
,
2c20
κ2

(
p0 − 1−p̃

1−pfail

)−2 }
, w.p. at least 1 − 3 exp(−u3m) where u3 ≜

1−pfail

2 min
{

κ2

16

(
p0 − 1−p̃

1−pfail

)2
, u1

}
, the following event holds:

u4∆̃(x) ≤ r(mp̃)(x) ≤ u5∆̃(x), ∀ x ∈ Rn, (27)

where u4 ≜ κ2 and u5 ≜ 3
2∥Σ∥2

(
1− p̃

1−pfail

)−1

.

4.2 F (x)− F (x⋆) = Θ(∆̃(x)) with high probability

First, we provide an upper bound for F (x)− F (x⋆). Letting m ≥ 8n/u1 and t = u1/2 in Lemma 4.1, we have that
∥ 1
m

∑m
i=1 aia

⊤
i − Σ∥2≤ 1

2∥Σ∥2 holds with probability at least 1− exp(−mu1/2). Thus, under this event, together
with Lemma 2.2, and noticing that L = 2

∥∥ 1
m

∑m
i=1 aia

⊤
i

∥∥
2
, we have F (x)− F (x⋆) ≤ 3

2∥Σ∥2∆̃(x).

Next, we discuss a lower bound for F (x)− F (x⋆) provided by [11].
Lemma 4.7. (Proposition 4 in [11]) Under Assumption 3.1, ∃C, c3 > 0 such that

F (x)− F (x⋆) ≥
(
κst − 2pfail ∥Σ∥2−Cσ2 3

√
n

m
− Cσ2t

)
∆̃(x),

holds for all x ∈ Rn with probability at least 1− 2e−c3m − 2e−mt2 for any t > 0.

Thus, for m ≥
(

κst−2pfail∥Σ∥2

4Cσ2

)−3

n and t = κst−2pfail∥Σ∥2

4Cσ2 , it holds with probability at least 1 − 4 exp
(
−

mmin{c3, (κst−2pfail∥Σ∥2

4Cσ2)
2}
)

that F (x) − F (x⋆) ≥ κst−2pfail∥Σ∥2

2 ∆̃(x) for all x ∈ Rn. Thus, for m ≥ u6n

with u6 ≜ max
{

8
u1
,
(

4C1σ
2

κst−2pfail∥Σ∥2

)3 }
, one has

u8∆̃(x) ≤ F (x)− F (x⋆) ≤ u9∆̃(x), ∀x ∈ Rn, (28)

w.p. at least 1− 5 exp(−mu7), where u7 ≜ min
{
c3,
(

κst−2pfail∥Σ∥2

4C1σ2

)2
, u1

2

}
, u8 ≜ κst−2pfail∥Σ∥2

2 and u9 ≜ 3
2∥Σ∥2.

Finally, we finish the proof of Theorem 3.4 by combining (27) and (28); indeed, whenever m ≥ ρ1n for ρ1 =
max{u2, u6}, (22) holds for uL = u4/u9 and uH = u5/u8 with probability at least 1 − ρ2 exp(−mρ3) for ρ2 = 8
and ρ3 = min{u3, u7}.

5 Convergence Rate of AdaSubGrad

In this section, we establish the local linear convergence of AdaSubGrad (Algorithm 1).
Theorem 5.1 (Convergence Rate of AdaSubGrad). Suppose that Assumption 2.4 and the probability event in (22) hold,
and c1, c2 are constants in Corollary 3.5. If x0 satisfies ∆(x0) ≤ λs(1− c2

2)/L, then for c ≜ max{|1− c1|, |1− c2|},
AdaSubGrad sequence {xk}∞k=0 satisfies that

∆(xk) ≤

(√
1− 2λ2

s(1− c2)

9L2∥x⋆∥22

)k

∆(x0)≜ Rk, ∀k ∈ N. (29)

10

A PREPRINT

Proof. Define ek ≜ αk/(F (xk)−F (x⋆)) for k ≥ 0. From Corollary 3.5, ek ∈ [c1, c2] ⊆ (0, 2) and ek(2−ek) ≥ 1−c2

for k ∈ N. Note that 1 − 2λ2
s(1−c2)

9L2∥x⋆∥2
2
∈ (0, 1) from Lemma 2.6. Let x̂ ∈ {x⋆,−x⋆} such that ∆(x0) = ∥x0 − x̂∥2.

In the rest we establish (29) by showing ∥xk − x̂∥2≤ Rk for k ≥ 0 using induction. Note that the base case of the
induction for k = 0 trivially holds, i.e., ∥x0 − x̂∥2≤ R0 = ∆(x0). Next, we assume that ∥xk − x̂∥2≤ Rk holds for
some k ∈ Z+, and we show that it also holds for k + 1. From the update rule in (11), we have∥∥xk+1 − x̂

∥∥2
2
=
∥∥xk − x̂

∥∥2
2
+ 2

〈
xk − x̂, xk+1 − xk

〉
+
∥∥xk+1 − xk

∥∥2
2

=
∥∥xk − x̂

∥∥2
2
+

2ek
(
F (xk)− F (x̂)

)
∥ξk∥22

·
〈
ξk, x̂− xk

〉
+ e2k

(
F (xk)− F (x̂)

)2
∥ξk∥22

.
(30)

(20) with x = x̂, x̄ = xk, v = ξk implies
〈
ξk, x̂− xk

〉
≤ F (x̂)− F (xk) + L

2

∥∥xk − x̂
∥∥2 . Applying it to (30), we can

further find that

∥xk+1 − x̂∥22≤ ∥xk − x̂∥22+
ek
(
F (xk)− F (x̂)

)
∥ξk∥22

(
L
∥∥xk − x̂

∥∥2
2
− (2− ek)

(
F (xk)− F (x̂)

))
. (31)

Next, we discuss three quantities appearing in (31).

Term 1: ∥xk − x̂∥22 By the induction hypothesis, we have ∥xk − x̂∥2≤ Rk ≤ ∆(x0). Thus, ∥xk − x̂∥2 ≤
∆(x0) ≤ λs(2 − c2)/(2L) ≤ λs/L, where the second inequality follows from the hypothesis and the last one
from c2 > 0. Moreover, the last inequality and Lemma 2.6 imply that ∥xk − x̂∥2≤ ∥x⋆∥2/2. Thus, ∥xk + x̂∥2≥
2∥x̂∥2−∥xk − x̂∥2= 2∥x⋆∥2−∥xk − x̂∥2≥ 3∥x⋆∥2/2 ≥ ∥xk − x̂∥2, which means that xk is closer to x̂ compared to
−x̂ so that ∆(xk) = ∥xk − x̂∥2. To conclude,

∆(xk) = ∥xk − x̂∥2≤ ∆(x0) ≤ ∥x⋆∥2/2. (32)

Term 2: ∥ξk∥ For any ϵ > 0 and arbitrary ξk ∈ ∂F (xk) such that ξk ̸= 0, since xk is an interior point of
Sk
ϵ ≜ {x ∈ Rn : ∆(x) ≤ ∆(xk) + ϵ}, there exists t0 > 0 such that xk + tξk ∈ Sk

ϵ for t ∈ [0, t0]. In (20), setting
x = x̃k ≜ xk + tξk for some t ∈ (0, t0], x̄ = xk and v = ξk, we get F (x̃k)− F (xk) + Lt2∥ξk∥22/2 ≥ t∥ξk∥22. Thus,
noticing that ∥x̃k − xk∥2= t∥ξk∥2, we can obtain ∥ξk∥2≤ F (x̃k)−F (xk)

∥x̃k−xk∥2
+ Lt∥ξk∥2/2. Moreover, F (x̃k)−F (xk)

∥x̃k−xk∥2
≤

sup
{

|F (x)−F (y)|
∥x−y∥2

: x, y ∈ Sk
ϵ , x ̸= y

}
since x̃k, xk ∈ Sk

ϵ . Therefore, letting t → 0, we have that

∥ξk∥2≤ sup
x,y∈Sk

ϵ , x ̸=y

|F (x)− F (y)|
∥x− y∥2

≜ Bϵ.

By Lemma 2.1 and (32), we have that

∥ξk∥2≤ lim
ϵ→0

Bϵ = lim
r→∆(xk)

L(∥x⋆∥2+r) = L(∥x⋆∥2+∆(xk)) ≤ 3

2
L∥x⋆∥2. (33)

Since (33) trivially holds when ξk = 0, we have ∥ξk∥2≤ 3
2L∥x⋆∥2 for all ξk ∈ ∂F (xk).

Term 3: L
∥∥xk − x̂

∥∥2
2
− (2− ek)

(
F (xk)− F (x̂)

)
Due to (32) and (19) and ek ∈ (0, 2), we have (2− ek)(F (xk)−

F (x̂)) ≥ λs(2− ek)∥xk − x̂∥2. Thus,

L
∥∥xk − x̂

∥∥2
2
− (2− ek)

(
F (xk)− F (x̂)

)
≤ ∥xk − x̂∥2

(
L∥xk − x̂∥2−λs(2− ek)

)
.

Recall that by the hypothesis, x0 satisfies ∆(x0) ≤ λs(1− c2
2)/L; therefore, it follows from (32) and ek ∈ [c1, c2] ⊂

(0, 2) that L∥xk−x̂∥2≤ L∆(x0) ≤ λs(2−c2)/2 ≤ λs(2−ek)/2. Thus, we get ∥xk−x̂∥2(L∥xk−x̂∥2−λs(2−ek)) ≤
−λs(2− ek)∥xk − x̂∥2/2. To conclude, we have

L
∥∥xk − x̂

∥∥2
2
− (2− ek)

(
F (xk)− F (x̂)

)
≤ −λs(2− ek)∥xk − x̂∥2/2. (34)

Thus, using (33) and (34) within (31), we have

∥xk+1 − x̂∥22≤ ∥xk − x̂∥22−
2λse

k(2− ek)

9L2∥x⋆∥22
(F (xk)− F (x̂))∥xk − x̂∥2.

11

A PREPRINT

From (19), we have F (xk)− F (x̂) ≥ λs∥xk − x̂∥2, which combined with the above inequality implies

∥xk+1 − x̂∥2≤

√
1− 2λ2

se
k(2− ek)

9L2∥x⋆∥22
∥xk − x̂∥2, ∀k ∈ N. (35)

Using ek(2 − ek) ≥ 1 − c2 and the inductive hypothesis, i.e., ∥xk − x̂∥2≤ Rk, within this inequality implies that
∥xk+1 − x̂∥2≤ Rk+1 completing the induction, which also implies (29) since ∆(xk) ≤ ∥xk − x̂∥2 for all k ≥ 0.

Remark 5.2. The initialization requirement ∆(x0) ≤ λs(1−c2/2)/L in Theorem 5.1 can be satisfied by [11, Algorithm
3] with high probability when m/n is large enough and pfail is small enough. In fact, under some regularity assumptions,
[11, Theorem 3] claims that for any Cinit > 0, x0 returned by Algorithm 3 in [11] satisfies ∆(x0) ≤ Cinit when
pfail < 1/4 and m/n ≥ Ω((∥x⋆∥2/Cinit)

2).

Theorem 5.1 shows that Algorithm 1 takes O(
κ2
0

1−c2 log
1
ϵ) iterations to find an ϵ-optimal solution for any ϵ ∈ (0,∆(x0).

According to Corollary 3.5(a), this complexity result is guaranteed to hold with high probability when the parameter
G > 0 appearing in the step-size choice in (10) is sufficiently small such that G < 2/uH = 2

3 (κst/∥Σ∥2−2pfail)(1−
p̃

1−pfail
) ≈ 2

3κ0(1− p̃
1−pfail

) when m/n large and pfail sufficiently small –see (21). The factor 1− c2 represents how
well our adaptive step size αk in (10) approximates F (xk) − F (x⋆), i.e., 1 − c2 measures how close AdaSubGrad
update rule in (11) mimicks PSubGrad; indeed, in the ideal situation where c = 0, which might be impossible in
practice, PSubGrad and AdaSubGrad coincide. When G is overly small such that c2 = uHG ≤ 1, we have c = 1− c1

since 0 < c1 ≤ c2 < 1; hence, 1− c2 = c1(2− c1) ≥ c1 and the required iterations is O(
κ2
0

c1
log 1

ϵ). Since c1 = uLG,
the complexity bound in terms of G and ϵ becomes O(1

G log 1
ϵ).

6 Convergence Rate of AdaIPL

In this section, we analyze the convergence properties of AdaIPL stated in Algorithm 2.

6.1 Convergence Behaviours for Outer Iterations

In this subsection, we analyze a prototype of AdaIPL where we do not impose tk being selected based on (12); instead,
we establish convergence of AdaIPL for {tk} satisfying a more general condition. More precisely, in the result below,
we provide a one-step analysis of AdaIPL when tk ∈ (0, L−1] and ∆(xk) is small.

Lemma 6.1. Under Assumption 2.4, if xk satisfies ∆(xk) ≤ λs/(4L) and tk ∈ (0, L−1] for some k ≥ 0, then the
following conclusions hold for Algorithm 2.

(a) When (LAC) in (16) holds with ρl ≥ 0, we have that

F (xk+1)− F (x⋆) ≤
(
1− 5min{λstk/(2∆(xk)), 1}

8(1 + ρl)

)
(F (xk)− F (x⋆)).

(b) When (HAC) in (16) holds with ρh ∈ [0, 1/4), we have that

F (xk+1)− F (x⋆) ≤

(
1− 5min{λstk/(2∆(xk)), 1}

8(1 + 2ρh

1−4ρh
)

)
(F (xk)− F (x⋆)).

Lemma 6.1 indicates that in AdaIPL with Cond stated in Algorithm 2 set to either (LAC) or (HAC) in (16), if ∆(x0) is
small enough, the number of main iterations required for computing an ϵ−optimal point is O(log(1/ϵ)). Specifically,
consider the tk selection rule in (12), when G > 0 is chosen sufficiently small so that gH ≜ 3GL∥x⋆∥2uH/2 ≤ 2/λs,
according to part (b) of Corollary 3.5 we have tk = gk∆(xk) ≤ gH∆(xk) for all k ≥ 0 with high probability. Note
that λstk/(2∆(xk)) = λsgk/2 ≤ λsgH/2 ≤ 1; therefore, the contraction rate is smaller than 1 − 5λsgL

16 (1 + ρl)
−1

and 1 − 5λsgL
16 (1 + 2ρh

1−4ρh
)−1 for (LAC) and (HAC), respectively, where we used the fact that gk ≥ gL for all

k ≥ 0 with high probability (see part (b) of Corollary 3.5). Hence, the number of main iterations for both (LAC)
and (HAC) is O(1

λsgL
log 1

ϵ); and in terms of ϵ and G, we get O(1
G log(1ϵ)). On the other hand, when G > 0 is

chosen sufficiently large so that gL ≜ GλsuL > 2/λs, the number of main iterations for both (LAC) and (HAC) will
become O(log 1

ϵ) without G explicitly appearing in the denominator. Indeed, when gL > 2/λs, the discussion above

12

A PREPRINT

implies that λstk/(2∆(xk)) ≥ 1 for all k ≥ 0; therefore, the contraction rate is smaller than 1 − 5
8 (1 + ρl)

−1 and
1− 5

8 (1 +
2ρh

1−4ρh
)−1 for (LAC) and (HAC), respectively. This implies that the O(1) constant for the outer iteration

complexity does not explicitly depend on tk; hence, G does not appear in the bound. That said, the above complexity
bound for (HAC) case is not tight. Indeed, for (HAC) whenever G is selected large so that gL ≥ 2/λs, we next
establish in Lemma 6.2 that Algorithm 2 has a better complexity bound than O(log(1ϵ)) implied by Lemma 6.1(b). In
the result below, we provide one-step analysis of AdaIPL when tk ∈ (2∆(xk)/λs, L

−1] and ∆(xk) is small – for this
result, similar to the above discussion, we also do not assume tk being selected based on (12).

Lemma 6.2. Under Assumption 2.4, for any k ∈ N, if (HAC) in (16) holds with ρh ∈ [0, 1/4) and ∆(xk) ≤
min{∥x⋆∥2/

√
M0, λs/(4L)}, then

λs∆(xk+1) ≤ (4ρh/tk + 4L)∆2(xk), ∀ tk ∈ [2∆(xk)/λs, L
−1],

where M0 ≜
(
2 +

√
2ρ

3/4
h /(1− 2ρ

1/2
h)

)
/(1−

√
2ρ

1/4
h).

Lemma 6.2 shows that when ∆(x0) is small enough, AdaIPL with Cond set to (HAC) in (16) shows linear or super-
linear convergence in terms of main iterations. Specifically, consider the tk selection rule in (12), when G > 0 is chosen
sufficiently large such that gL > 2/λs, the number of main iterations is O

(
log(1ϵ)/log(gLλs)

)
; thus, in terms of ϵ and

G, we get O(log(1ϵ)/log(G)). In the extreme situation with G = ∞, we get tk = L−1 and choosing constant step size
1/L corresponds to the IPL algorithm in [14], of which convergence rate in terms of main iterations (k) is quadratic.

6.2 Subproblem Solvers and Computational Complexity

In this subsection, we introduce a class of algorithms for inexactly solving the AdaIPL subproblem in (6) and their
computational complexity. We consider two alternative solvers that can guarantee the suboptimality Hk(z

k
j)−Dk(λ

k
j) =

O(1/j2) for all k ≥ 0. The first one is [15, Algorithm 1] and throughout this paper, we refer to it as the Accelerated
Proximal Gradient (APG) method. The second one is the Accelerated Primal-Dual (APD) algorithm introduced in [25,
Algorithm 4] and [26, Algorithm 2.2]. In the following result, we state the complexity result for both methods when
applied to the k-th AdaIPL subproblem in (13).

Theorem 6.3 (Corollary 1(b) in [15] and Theorem 2.2 in [26]). For any k ≥ 0, consider either APG or APD applied
to (13). Let {(zkj , λk

j)}∞j=0 be the iterate sequence generated. Then, supj∈N∥λk
j ∥∞≤ 1 and there exists a constant1

C0 ≥ 2 such that

Hk(z
k
j)−Dk(λ

k
j) ≤

tkC0m∥Bk∥22
(j + 1)2

, ∀j ∈ N+. (36)

To the best of our knowledge, for solving (13) when Bk matrix is arbitrary, O(1/j2) is the best rate we can get on the
duality gap of the primal-dual iterate sequence.

Next result shows that ∥Bk∥2 on the r.h.s. of (36) can be uniformly bounded.

Lemma 6.4 (Lemma 8 in [14]). If supk∈N ∆(xk) ≤ r, then

sup
k∈N

∥Bk∥2≤ B(r) ≜
2

m
∥A∥2(∥x⋆∥2+r) max

i∈[m]
∥ai∥2.

In the rest, we discuss the complexity of the AdaIPL when (13) is solved inexactly by some algorithm that can guarantee
(36) and terminated according to (16). For any given ϵ > 0, let Kϵ denote the number of main (outer) iterations
required by AdaIPL to compute an ϵ-optimal solution, i.e., Kϵ ≜ inf{k ∈ N+ : ∆(xk) ≤ ϵ}. Given xk for any
k ≥ 0, let Nk ∈ N+ denote the number of iterations required by the solver, i.e., inner iterations of AdaIPL, to
inexactly solve the k-th subproblem –in order to compute xk+1 within the k-th outer iteration of AdaIPL. For (LAC)
in (16), Nk = inf{j ∈ N : Hk(z

k
j) − Dk(λ

k
j) ≤ ρl(Hk(0) − Hk(z

k
j))}. For (HAC) in (16), Nk = inf{j ∈ N :

Hk(z
k
j) − Dk(λ

k
j) ≤ ρh∥zkj ∥22/(2tk)}. Therefore, the overall complexity of AdaIPL for computing an ϵ-optimal

solution is thus given by N(ϵ)≜
∑Kϵ−1

k=0 Nk.

Next, we provide an upper bound for Nk; similar to Lemmas 6.1 and 6.2, we do not assume tk being selected based on
(12), instead we show the result for any tk ∈ (0, 1/L]. First, in Lemma 6.5, we give a bound under (LAC) in (16).

1C0 is dimension-free and does not depend on any problem or algorithm parameters.

13

A PREPRINT

Lemma 6.5 (Nk bound under (LAC)). Suppose Assumption 2.4 holds and a subproblem solver satisfying and (36) for
some constant C0 ≥ 2 is given. For any k ∈ N, if ∆(xk) ≤ λs/(4L) and 0 < tk ≤ L−1, then for any ρl > 0, (LAC)
in (16) holds within

Nk ≤ M1

√
tk

λs∆(xk)min{1, λstk/(2∆(xk))}
·
√

1 + ρl
ρl

≜ MLAC
k ,

inner iterations in which M1 ≜
√
1.6C0mB2(λs/(4L)) and B(·) is defined in Lemma 6.4.

Second, in Lemma 6.6, we give another bound considering (HAC) in (16).
Lemma 6.6 (Nk bound under (HAC)). Under the premise of Lemma 6.5, for any ρh ∈ (0, 1/4), (HAC) in (16) holds
within

Nk ≤ M2
tk

∆(xk)min{1, λstk/(2∆(xk))}

√
1 + ρh
ρh

≜ MHAC
k ,

inner iterations in which M2 ≜
√
16C0mB2(λs/(4L)).

These two results indicate that for AdaIPL with tk selected as in (12), if ∆(x0) is small enough, then the
number of inner iterations needed to satisfy (16) is O(1). More precisely, it follows from the discussion below
Lemma 6.1 that when G > 0 is chosen sufficiently small so that gH ≜ 3GL∥x⋆∥2uH/2 ≤ 2/λs, we would have
λstk/(2∆(xk)) ≤ λsgH/2 ≤ 1 holding for all k ≥ 0 with high probability. Thus, for both (LAC) and (HAC) in (16),
we get Nk=O(

√
mB(λs/(4L))/λs). According to Lemma 2.6, λs/(4L) ≤ ∥x⋆∥2/8; therefore, using the definition

of B(·) in Lemma 6.4,

B
(λs

4L

)
=

2

m
∥A∥2max

i∈[m]
∥ai∥2

(
∥x⋆∥2+

λs

4L

)
=O(CS∥x⋆∥2∥A∥22m−3/2), (37)

where CS ≜
√
mmaxi∈[m]∥ai∥2/∥A∥2. Here, CS is a factor related to the complexity of solving

the subproblem in (13), i.e., equivalently (6) –see Theorem 6.3 and Lemma 6.4. Note CS ≥ 1 as
maxi∈[m]∥ai∥22≥ 1

m

∑m
i=1∥ai∥22= ∥A∥2F /m ≥ ∥A∥22/m. Thus, using L ≜ 2∥A∥22/m, we get

Nk=O(CS∥x⋆∥2∥A∥22/(mλs)) = O(CSκ0),

in which κ0 ≜ L∥x⋆∥2/(2λs) ≥ 1 is the condition number for (4) introduced in Section 3 and Lemma 2.6. It is crucial
to note that this upper bound holds for all sufficiently small G and does not increase as G chosen smaller.

On the other hand, when G > 0 is chosen sufficiently large so that gL ≜ GλsuL > 2/λs, then according to part (b)
of Corollary 3.5, with high probability we have λstk/(2∆(xk)) = λsgk/2 ≥ 1 (since gk ≥ gL) for all k ≥ 0. Thus,
Lemma 6.5 and Lemma 6.6 together with (37) imply that

Nk ≤

M1

√
tk

λs∆(xk)
·
√

1+ρl

ρl
=O(CSκ0

√
gHλs) for (LAC),

M2
tk

∆(xk)

√
1+ρh

ρh
=O(CSκ0gHλs) for (HAC).

Since gH ≜ 3GL∥x⋆∥2uH/2, in terms of the dependency on G, we have Nk = O(
√
G) under (LAC) in (16), and

Nk = O(G) under (HAC) in (16).

6.3 Overall Complexity

Finally, we are ready to provide the overall iteration complexity for AdaIPL. Indeed, in Theorem 6.7 we establish a
bound on N(ϵ) for any given G > 0 when tk is chosen according to (12).
Theorem 6.7. Suppose Assumption 2.4 holds and a subproblem solver satisfying and (36) is given. Moreover, we assume
that the event in (22) holds. If ∆(x0) ≤ min{E(

λ2
s

4L), E(λs

gHL)}, where E(r) ≜ 1
2L

(√
L2∥x⋆∥22+4rL− L∥x⋆∥2

)
defined in Lemma 2.5 and gH ≥ gL > 0 are constants defined in Corollary 3.5, then the following conclusions hold
with C(ρ) ≜ 1− 5min{λsgL, 2}

16(1+ρ) .

(a) When Cond in AdaIPL, stated in Algorithm 2, is set to (LAC) in (16) for some ρl > 0, for any ϵ ∈ (0,∆(x0)), it
holds that

N(ϵ) ≤ M1 ·

√
gH

λs min{1,λsgH/2} ·
√

1+ρl

ρl
· log

(
2∆(x0)L∥x⋆∥2

λsC(ρl)
· 1
ϵ

)
log (1/C(ρl))

.

14

A PREPRINT

(b) When Cond in AdaIPL, stated in Algorithm 2, is set to (HAC) in (16) for some ρh ∈ (0, 1/4), for any ϵ ∈ (0,∆(x0)),
it holds for ρ̄ ≜ 2ρh/(1− 4ρh) that

N(ϵ) ≤ M2 ·
gH

min{1,λsgH/2}

√
1+ρh

ρh
· log

(
2∆(x0)L∥x⋆∥2

λsC(ρ̄) · 1
ϵ

)
log (1/C(ρ̄))

.

Next, we discuss that whenever ∆(x0) is sufficiently small and G in (12) is sufficiently large, using (HAC) in (16)
leads to a better complexity bound when compared to that of Theorem 6.7(b).

Theorem 6.8. Suppose Assumption 2.4 holds and a subproblem solver satisfying and (36) is given. More-
over, we assume that the probabilistic event in (22) holds. If constants defined in Corollary 3.5 satisfy gH ≥
gL ≥ 2/λs, Cond in AdaIPL, stated in Algorithm 2, is set to (HAC) in (16) for some ρh ∈ (0, 1/4), and

∆(x0) ≤ min
{

ρh

2LgL
, ∥x⋆∥2/

√
M0, (gHL)−1

}
, then for any ϵ ∈ (0,∆(x0)), it holds that

N(ϵ) ≤ M2 ·
gH ·

√
1+ρh

ρh
· log

(
λs∆(x0)gL

6ρh
· 1
ϵ

)
log (λsgL/(6ρh))

Remark 6.9. Initialization requirements on ∆(x0) in both Theorem 6.7 and Theorem 6.8 can be satisfied by Algorithm
3 in [11] with high probability when m/n is large enough and pfail is small enough. Please refer to Remark 5.2 for
more explanations.

Next, we explain the results in Theorems 6.7 and 6.8. Indeed, when ∆(x0) is sufficiently small, the total complexity
for reaching an ϵ−optimal point is O(log 1

ϵ) for any G > 0 and ϵ < ∆(x0). Specifically, when G > 0 is chosen
sufficiently small so that gH ≤ 2/λs, we have min{1, λsgH/2} = λsgH/2 and min{1, λsgL/2} = λsgL/2. Therefore,
Theorem 6.7 implies that N(ϵ)=O(CSκ0

gLλs
log 1

ϵ) for both (LAC) and (HAC) in (16). Moreover, since gL = GλsuL,

the complexity bound is O
(

1
G log(1ϵ)

)
in terms of G and ϵ. On the other hand, when G > 0 is chosen sufficiently

large so that gL > 2/λs, we have min{1, λsgH/2} = min{1, λsgL/2} = 1. Thus, Theorem 6.7(a) implies that
N(ϵ)=O(CSκ0

√
gHλs log

1
ϵ) for (LAC) in (16) and N(ϵ)=O(CSκ0gHλs

log(gLλs)
log 1

ϵ) for (HAC) in (16). Knowing that

gL ≜ GλsuL and gH ≜ 3GL∥x⋆∥2uH/2, the complexity depends on G and ϵ as O(
√
G log 1

ϵ) for (LAC) in (16) and
as O(G

logG log 1
ϵ) for (HAC) in (16). To conclude, if we were to set tk = 2∆(xk)/λs for any k ∈ N, AdaIPL would

achieve a total complexity of O(CSκ0 log
1
ϵ) under both (LAC) and (HAC). That said, since setting gk = 2/λs for

k ∈ N may be impractical, the corresponding bound can be interpreted as the ideal total complexity bound.

6.4 Comparison of AdaSubGrad and AdaIPL complexities

Here we compare the total complexity of AdaSubGrad and AdaIPL for reaching an ϵ−optimal solution of (4) with
the existing deterministic algorithms summarized in Section 1. The total complexity refers to total inner iteration
numbers for PL, IPL, and AdaIPL and refers to iteration numbers for PSubGrad, GSubGrad, and AdaSubGrad. The
comparison is fair as the computational complexity of either a subgradient-type iteration or an inner iteration for solving
the subproblem in (6) using either APG or APD is dominated by matrix-vector multiplications involving matrices of size
m× n.

In Table 1 provided in the introduction we summarized the total complexities for all the methods under the ideal
situations for each of them. The total complexity for PL is unknown because it requires solving (6) exactly, which is
not practical. IPL is only guaranteed to achieve sublinear rate leading to O(1/ϵ) complexity. In the ideal scenario, the
convergence of PSubGrad, GSubGrad, and AdaSubGrad are all linear leasing to O(κ2

0 log
1
ϵ) complexity. Here, the

ideal scenario means that F (x⋆) is known for PSubGrad, λ0 and q are set exactly as in [16, Theorem 5.1] for GSubGrad
(which is not practical), and c = 0 in Theorem 5.1 for AdaSubGrad. The total complexity of AdaIPL is O(CSκ0 log

1
ϵ)

under the ideal situation that gL = gH = 2/λs in Corollary 3.5(b). It is the best in terms of the condition number
but contains an additional factor CS that results from the iteration complexity associated with inexactly solving the
subproblems in (6). Thus, AdaIPL is expected to show greater efficiency than AdaSubGrad when κst/∥Σ∥2−2pfail is
small (this quantity is discussed in Section 3 and is approximately equal to 1/κ0), i.e., when the condition number for
(4) is large.

Next, aiming to compute an ϵ-optimal solution to (4) for a given sufficiently small ϵ > 0, in Table 2, we discuss the
robustness of AdaIPL and AdaSubGrad to the algorithm parameter G in terms of main (outer) iterations (Kϵ), the
largest number of inner iterations per subproblem solve (supk∈N Nk), and the total complexity (Nϵ) –we consider the

15

A PREPRINT

effects of overly large or overly small choices of the step size parameter G > 0 (see the stepsize rules in (10) and
(12)). Here, we treat each AdaSubGrad iteration as an outer iteration requiring only one inner iteration for each outer
iteration, i.e., N(ϵ) = Kϵ. Table 2 highlights the advantages of AdaSubGrad and AdaIPL in hyper-parameter tuning
over PSubGrad and GSubGrad: AdaSubGrad tolerates overly small G values and AdaIPL works with any G > 0 while
PSubGrad and GSubGrad rely on some particular choice of hyper-parameter values to guarantee convergence.

Algorithm G Kϵ supk∈N Nk N(ϵ)
AdaSubGrad Large (c1 ≥ 2) diverge diverge diverge
AdaSubGrad Small (c2 < 1) Õ

(
κ2
0/c1

)
1 Õ

(
κ2
0/c1

)
AdaIPL-LAC Large (gL ≥ 2

λs
) Õ(1) O(CSκ0

√
gHλs) Õ(CSκ0

√
gHλs)

AdaIPL-HAC Large (gL ≥ 2
λs

) Õ(1/log(gLλs)) O(CSκ0gHλs) Õ
(

CSκ0gHλs

log(gLλs)

)
AdaIPL-LAC Small (gH < 2

λs
) Õ(1/(gLλs)) O(CSκ0) Õ(CSκ0

gLλs
)

AdaIPL-HAC Small (gH < 2
λs

) Õ(1/(gLλs)) O(CSκ0) Õ(CSκ0

gLλs
)

Table 2: Robustness of AdaSubGrad and AdaIPL to parameter choice in terms of number of outer iterations (Kϵ), the
maximum number of inner iterations per subproblem solve (supk∈N Nk), and the total complexity (N(ϵ)). “-LAC ” and
“-HAC ” indicate whether (LAC) or (HAC) is used for AdaIPL. The Õ notation here hides log 1

ϵ .

7 Proofs for Section 6

We first introduce some notation. For all k ≥ 0, let
Stk(x

k) ≜ argmin
x∈Rn

Ftk(x;x
k), εtk(x;x

k) ≜ Ftk(x;x
k)− Ftk(Stk(x

k);xk),

where Ft(·; ·) is defined in (5). Here, the minimizer Stk(x
k) is unique since Ftk(·;xk) is strongly convex with modulus

1/tk for all k ≥ 0. According to Lemma 1.2, (LAC) and (HAC) in (16) provide sufficient conditions for (LAC-exact)
and (HAC-exact) in (15) to hold, respectively.

7.1 Proof of Lemma 6.1

Within this proof, without loss of generality, we assume that ∆(xk) = ∥xk − x⋆∥2. We split the proof into four parts.

7.1.1 (6) is exactly solved and the step size belongs to [2∆(xk)/λs, L
−1]

Let x∼k+1 ≜ St̃k
(xk) for some arbitrary t

∼
k ∈ [2∆(xk)/λs, L

−1] –the interval is not empty because we assume
∆(xk) ≤ λs/(4L) in Lemma 6.1; hence,

F (x̃k+1) ≤ Ft̃k
(x̃k+1;xk) ≤ F (x⋆;x

k) +
1

2t̃k
∥x⋆ − xk∥22≤ F (x⋆) +

(
1

2t̃k
+

L

2

)
∥x⋆ − xk∥22 (38)

in which the first and the third inequalities hold because of (18) and the second one holds because x̃k+1 is the minimizer
of Ft̃k

(·;xk). Due to the fact that ∆(xk) = ∥xk − x⋆∥2≤ λs/(4L) and t̃k ≥ 2∆(xk)/λs, we have(
1

2t̃k
+

L

2

)
∥x⋆ − xk∥22≤

λs

4
∆(xk) +

L

2

λs

4L
∆(xk) =

3

8
λs∆(xk);

hence, using (19), we get
(

1
2t̃k

+ L
2

)
∥x⋆ − xk∥22≤ 3(F (xk)− F (x⋆))/8. Applying it to (38), we have

F (xk)− F (x̃k+1) ≥ F (xk)− Ft̃k
(x̃k+1;xk) ≥ 5

8
(F (xk)− F (x⋆)). (39)

7.1.2 (6) is exactly solved and the step size is less than 2∆(xk)/λs

Denote x∼
∼k+1

≜ S
t
∼∼

k

(xk) for some t
∼∼

k ∈ (0, 2∆(xk)/λs). Consider the result in Section 7.1.1 for t
∼
k = 2∆(xk)/λs and

let x̄k+1 ≜ xk + t
∼∼

k

t
∼
k

(x̃k+1 − xk). Hence,

Ft̃k
(x̄k+1;xk) ≤ t

∼∼

k

t̃k
Ft̃k

(x̃k+1;xk) +

(
1− t

∼∼

k

t̃k

)
F (xk)−

(t
∼∼

k

t̃k
)(1− t

∼∼

k

t̃k
)

2t̃k
∥xk − x̃k+1∥22,

16

A PREPRINT

by strong convexity of F
t
∼
k
(·;xk). Thus, we have

F (xk)− F
t
∼∼

k

(x̄k+1;xk) = F (xk)− Ft̃k
(x̄k+1;xk) +

(1

2t̃k
− 1

2t
∼∼

k

)
∥x̄k+1 − xk∥22

≥ t
∼∼

k

t̃k
(F (xk)− Ft̃k

(x̃k+1;xk)) +
(t
∼∼

k

t̃k
)(1− t

∼∼

k

t̃k
)

2t̃k
∥xk − x̃k+1∥22+

(1

2t̃k
− 1

2t
∼∼

k

)
∥x̄k+1 − xk∥22

=
t
∼∼

k

t̃k
(F (xk)− Ft̃k

(x̃k+1;xk))≥ 5t
∼∼

k

8t̃k
(F (xk)− F (x⋆)),

where in the last inequality we used the last inequality in (39). In addition, since x∼
∼k+1 is the minimizer of F

t
∼∼

k

(·;xk),

we have F
t
∼∼

k

(x∼
∼k+1

;xk) ≤ F
t
∼∼

k

(x̄k+1;xk) which implies F (xk)− F
t
∼∼

k

(x∼
∼k+1

;xk) ≥ 5t
∼∼

k

8t̃k
(F (xk)− F (x⋆)); therefore,

F (xk)− F (x∼
∼k+1

) ≥ F (xk)− F
t
∼∼

k

(x∼
∼k+1

;xk) ≥ 5t
∼∼

k

8t̃k
(F (xk)− F (x⋆)). (40)

Here, the first inequality is from (18). This finishes part 2.

7.1.3 Proof of part (a)

Combining (39) and (40), we can claim that, for any tk ∈ (0, L−1], whenever ∆(xk) ≤ λs/(4L) holds, one also has

F (xk)− Ftk(Stk(x
k);xk) ≥ 5min{λstk/(2∆(xk)), 1}

8
(F (xk)− F (x⋆)). (41)

Furthermore, we have F (xk)− F (xk+1) ≥ F (xk)− Ftk(x
k+1;xk) ≥ 1

1+ρl
(F (xk)− Ftk(Stk(x

k);xk)), where the
first inequality is due to (18), and the second one originates from (LAC-exact) in (7), which is implied by (LAC).
Finally, combining the last inequality with (41), we complete the proof.

7.1.4 Proof of part (b)

For part (b), we first establish some connections between (LAC-exact) and (HAC-exact) in (7). We know that

Ftk(x
k;xk)− Ftk(x

k+1;xk) + εtk(x
k+1;xk) = Ftk(x

k;xk)− Ftk(Stk(x
k);xk)

≥ 1

2tk
∥xk − Stk(x

k)∥22≥
1

4tk
∥xk − xk+1∥22−

1

2tk
∥xk+1 − Stk(x

k)∥22.

where the first inequality is due to the strong convexity of Ftk(·;xk), and the second one is from Cauchy-Schwarz
inequality. Using the fact that 1

2tk
∥xk+1 −Stk(x

k)∥22≤ εtk(x
k+1;xk) due to strong convexity of Ftk(·;xk), we further

obtain
Ftk(x

k;xk)− Ftk(x
k+1;xk) + 2εtk(x

k+1;xk) ≥ 1

4tk
∥xk − xk+1∥22. (42)

Note that the inexact subproblem termination condition (HAC) implies (HAC-exact) in (7), which further implies that
εtk(x

k+1;xk) ≤ ρh∥xk − xk+1∥22/(2tk); therefore, it follows from (42) that
2ρh

1− 4ρh

(
Ftk(x

k;xk)− Ftk(x
k+1;xk)

)
≥ ρh

2tk
∥xk − xk+1∥22≥ εtk(x

k+1;xk). (43)

This takes the same form as (LAC-exact) in (7) when ρl =
2ρh

1−4ρh
. Therefore, it directly follows from the arguments in

the proof of part (a) that one can simply replace ρl in (a) with 2ρh

1−4ρh
.

7.2 Proof of Lemma 6.2

We first show an auxiliary result for one-step behavior of AdaIPL.
Lemma 7.1. Given β ∈ (0, 1] and arbitrary tk > 0, for any AdaIPL iterate xk,

F (x)− F (x⋆) +
1− β

2tk
∥x− x⋆∥22≤

(
1

2tk
+

L

2

)
∥xk − x⋆∥22+β−1εtk(x, x

k) +

(
L

2
− 1

2tk

)
∥x− xk∥22, (44)

for all x ∈ Rn. The above inequality is also valid if we replace x⋆ with −x⋆ in (44).

17

A PREPRINT

Proof. Given arbitrary β ∈ (0, 1] and any tk > 0, then for any x ∈ Rn,

− 1

2tk
∥x⋆ − Stk(x

k)∥22 ≤ β − 1

2tk
∥x− x⋆∥22+

β−1 − 1

2tk
∥x− Stk(x

k)∥22 (45)

≤ β − 1

2tk
∥x− x⋆∥22+(β−1 − 1)εtk(x;x

k),

in which the first inequality holds because of Cauchy–Schwarz inequality, and the second inequality holds since
Ftk(·;xk) is 1/tk−strongly convex. We then have

F (x)− εtk(x;x
k) ≤ Ftk(Stk(x

k);xk) +

(
L

2
− 1

2tk

)
∥x− xk∥22

≤ F (x⋆;x
k) +

1

2tk
∥xk − x⋆∥22−

1

2tk
∥x⋆ − Stk(x

k)∥22+
Ltk − 1

2tk
∥x− xk∥22

≤ F (x⋆) +
Ltk + 1

2tk
∥xk − x⋆∥22−

1

2tk
∥x⋆ − Stk(x

k)∥22+
Ltk − 1

2tk
∥x− xk∥22,

where the first and the last inequalities use (18), and the second inequality is from the strong convexity of Ftk(·;xk).
Combining this inequality with (45) yields (44). It is easy to verify that the proof still holds when we replace x⋆ with
−x⋆.

Next, we provide another useful result to be used in the proof of Lemma 6.2.

Lemma 7.2. Suppose Assumption 2.4 holds. For any k ∈ N with tk ∈ (0, 1/L], if (HAC-exact) in (7) holds with
ρh ∈ [0, 1/4) and ∆(xk) ≤ ∥x⋆∥2/

√
M0, then

1
[
∆(xk) = ∥xk − x⋆∥2

]
= 1

[
∆(xk+1) = ∥xk+1 − x⋆∥2

]
, (46)

where M0 ≜
(
2 +

√
2ρ

3/4
h /(1− 2ρ

1/2
h)

)
/(1−

√
2ρ

1/4
h) and 1[·] is the indicator function.

Proof. Without loss of generality, we assume that ∆(xk) = ∥xk − x⋆∥2. We will split the proof into two cases.

CASE 1: ρh ∈ (0, 1/4). Consider (44) with β ∈ (0, 1] and x = xk+1. Since (HAC-exact) in (7) holds, we have
β−1εtk(x

k+1, xk) ≤ β−1ρh∥xk −xk+1∥22/(2tk). Moreover, noticing L/2+1/(2tk) ≤ 1/tk, L/2− 1/(2tk) ≤ 0 and
F (xk+1)−F (x⋆) ≥ 0, (44) implies that 1−β

2tk
∥xk+1−x⋆∥22≤ 1

tk
∥xk−x⋆∥22+

β−1ρh

2tk
∥xk−xk+1∥22. Then, for any u′ ∈

(0, 1), Cauchy-Schwarz inequality implies (1− β)∥xk+1 − x⋆∥22≤ 2∥xk − x⋆∥22 +β−1ρh

(
∥xk+1−x⋆∥2

2

u′ +
∥xk−x⋆∥2

2

1−u′

)
,

which further leads to (
1− β − ρh

βu′

)
∥xk+1 − x⋆∥22≤

(
2 +

ρh
β(1− u′)

)
∥xk − x⋆∥22. (47)

Hence, setting u′ =
√
4ρh ∈ (0, 1) and β =

√
ρh/u′ = (ρh/4)

1/4 ∈ (0, 1), we have that 1 − β − ρh/(βu
′) =

1−
√
2ρ

1/4
h ∈ (0, 1) as ρh ∈ (0, 1/4). Thus, (47) indicates that ∥xk+1 − x⋆∥22≤

2+β−1ρh/(1−u′)
1−β−ρh/(βu′) ∥xk − x⋆∥22=

M0∥xk − x⋆∥22≤ ∥x⋆∥22. Thus, ∥xk+1 + x⋆∥2≥ 2∥x⋆∥2−∥xk+1 − x⋆∥2≥ ∥xk+1 − x⋆∥2. This means that xk+1 is
closer to x⋆ than −x⋆.

CASE 2: ρh = 0. Note ρh = 0 implies that xk+1 = Stk(x
k) and εtk(x

k+1;xk) = 0. Thus, setting x = xk+1

in (44) and using the facts that L/2 + 1/(2tk) ≤ 1/tk, L/2 − 1/(2tk) ≤ 0, F (xk+1) − F (x⋆) ≥ 0, we have
1−β
2tk

∥xk+1−x⋆∥22≤ 1
tk
∥xk−x⋆∥22 for any β ∈ (0, 1]. Letting β → 0+, we have ∥xk+1−x⋆∥22≤ 2∥xk−x⋆∥22≤ ∥x⋆∥22

since M0 = 2. Thus, ∥xk+1 + x⋆∥2≥ 2∥x⋆∥2−∥xk+1 − x⋆∥2≥ ∥xk+1 − x⋆∥2. This means that xk+1 is closer to x⋆

than −x⋆.

Remark 7.3. Later, when we invoke Lemma 7.2 with ρh = 0, we use M0 = 2.

Now we are ready to prove Lemma 6.2.

Proof of Lemma 6.2. Without loss of generality, we assume ∆(xk) = ∥xk − x⋆∥2. By (46) in Lemma 7.2, we know
that ∆(xk+1) = ∥xk+1 − x⋆∥2. Consider (44) with x = xk+1 and β = 1

2 ∈ (0, 1]. Since (HAC-exact) in (7)

18

A PREPRINT

holds, we have β−1εtk(x
k+1;xk) ≤ β−1ρh∥xk − xk+1∥22/(2tk). Using this inequality within (44) together with

F (xk+1)− F (x⋆) ≥ λs∆(xk+1) due to (19), we get

λs∆(xk+1) +
1

4tk
∆2(xk+1) ≤

(
1

2tk
+

L

2

)
∆2(xk) +

≜Γk︷ ︸︸ ︷(
L

2
− 1− 2ρh

2tk

)
∥xk − xk+1∥22 .

Note that Γk = L
2 ∥(x

k − x⋆) − (xk+1 − x⋆)∥22−
1−2ρh

2tk
∥(xk − x⋆) − (xk+1 − x⋆)∥22. From (46), we also have that

L
2 ∥(x

k−x⋆)−(xk+1−x⋆)∥22≤ L
2 (∆(xk)+∆(xk+1))2 and − 1−2ρh

2tk
∥(xk−x⋆)−(xk+1−x⋆)∥22≤ − 1−2ρh

2tk
(∆(xk)−

∆(xk+1))2. Thus,(
λs −

(
L+

1− 2ρh
tk

)
∆(xk)

)
∆(xk+1) +

(
3− 4ρh
4tk

− L

2

)
∆2(xk+1) ≤

(
ρh
tk

+ L

)
∆2(xk). (48)

From the hypothesis we have ∆(xk) ≤ λs/(4L), tk ∈ [2∆(xk)/λs, 1/L] and ρh ∈ (0, 1/4); therefore, we get
λs − L∆(xk) − 1−2ρh

tk
∆(xk) ≥ λs − λs/4 − ∆(xk)/tk ≥ λs/4 and 3−4ρh

4tk
− L

2 =
(

1
2tk

− L
2

)
+
(

1−4ρh

4tk

)
≥ 0.

Using these relations within (48), we obtain λs∆(xk+1) ≤
(

4ρh

tk
+ 4L

)
∆2(xk); hence, the proof is complete.

7.3 Proofs of Lemma 6.5 and Lemma 6.6

We first give an auxiliary result to discuss the scenario where the subproblems in (6) are solved exactly.
Lemma 7.4. Suppose that Assumption 2.4 holds. Let k ∈ N.

(a) If ∆(xk) ≤ λs/(2L) and xk+1 = Stk(x
k), then

∆(xk+1) ≤ (2L/λs)∆
2(xk), ∀ tk ∈ [2∆(xk)/λs, L

−1]. (49)

(b) If ∆(xk) ≤ λs/(4L), then for all tk ∈ (0, L−1],

Ftk(x
k;xk)− Ftk(Stk(x

k);xk) ≥ 5

8
λs min

{
1,

λstk
2∆(xk)

}
∆(xk), (50a)

∥xk − Stk(x
k)∥2 ≥ 1

2
min

{
1,

λstk
2∆(xk)

}
∆(xk). (50b)

Proof. (Part a) Without loss of generality, we assume that ∆(xk) = ∥xk − x⋆∥2. Since ∆(xk) ≤ λs/(2L),
Lemma 2.6 implies that ∆(xk) ≤ ∥x⋆∥2/

√
2. Moreover, as xk+1 = Stk(x

k), invoking Lemma 7.2 with ρh = 0,
for which case M0 = 2 (hence, we have ∆(xk) ≤ ∥x⋆∥2/

√
M0), (46) implies that 1

[
∆(xk) = ∥xk − x⋆∥2

]
=

1
[
∆(xk+1) = ∥xk+1 − x⋆∥2

]
. Therefore, we have ∆(xk+1) = ∥xk+1 − x⋆∥2. Using ∆(xk) = ∥xk − x⋆∥2,

∆(xk+1) = ∥xk+1 − x⋆∥2, and L
2 − 1

2tk
≤ 0, we get(

L

2
− 1

2tk

)
∥xk − xk+1∥22≤

(
L

2
− 1

2tk

)(
∆(xk)−∆(xk+1)

)2
.

Next we use it within (44) for x = xk+1. Note that εtk(x
k+1;xk) = 0 since xk+1 = Stk(x

k), and we also have
F (xk+1) − F (x⋆) ≥ λs∆(xk+1) due to (19); thus, λs∆(xk+1) + 1−β

2tk
∆2(xk+1) ≤ (L2 + 1

2tk
)∆2(xk) + (L2 −

1
2tk

)(∆(xk)−∆(xk+1))2. Letting β → 0, we further get

(t−1
k − L/2)∆2(xk+1) +

(
λs − (t−1

k − L)∆(xk)
)
∆(xk+1)− L∆2(xk) ≤ 0.

Note that t−1
k − L/2 ≥ t−1

k /2 and (t−1
k − L)∆(xk) ≤ λs/2 since L−1 ≥ tk ≥ 2∆(xk)/λs; therefore, we have

t−1
k ∆2(xk+1) + λs∆(xk+1)− 2L∆2(xk) ≤ 0, which also implies that

∆(xk+1) ≤ 4L∆2(xk)/

(√
λ2
s + 8t−1

k L∆2(xk) + λs

)
≤ 2L∆2(xk)/λs.

(Part b) Recall that (19) implies F (xk)−F (x⋆) ≥ λs∆(xk). Moreover, (41) holds since we assume ∆(xk) ≤ λs/(4L).
These two relations directly lead to (50a) since Ftk(x

k;xk) = F (xk). Next, we focus on the proof of (50b). Without
loss of generality, we assume that ∥xk − x⋆∥2= ∆(xk).

19

A PREPRINT

First, we consider the scenario with tk ∈ [2∆(xk)/λs, L
−1]. From Lemma 2.6, we get ∆(xk) ≤ λs/(4L) ≤ ∥x⋆∥2/8.

Therefore, Lemma 7.2 with ρh = 0 and M0 = 2 implies that ∆(Stk(x
k)) = ∥Stk(x

k) − x⋆∥2 since ∆(xk) ≤
∥x⋆∥2/

√
M0. In addition, since ∆(xk) ≤ λs/(4L), (49) implies ∆(xk+1) ≤ 2L

λs
· λs

4L∆(xk) = ∆(xk)/2; hence,

∥xk − Stk(x
k)∥2≥ ∥xk − x⋆∥2−∥Stk(x

k)− x⋆∥2≥ ∆(xk)/2. (51)

Next, we consider tk ∈ (0, t′) where t′ ≜ 2∆(xk)/λs. By strong convexity of Ft′(·;xk) and Ftk(·;xk) defined in
(5), Ft′(Stk(x

k);xk) − Ft′(St′(x
k);xk) ≥ 1

2t′ ∥Stk(x
k) − St′(x

k)∥22 and Ftk(St′(x
k);xk) − Ftk(Stk(x

k);xk) ≥
1

2tk
∥Stk(x

k)− St′(x
k)∥22; hence, for u ≜ xk − St′(x

k) and v ≜ xk − Stk(x
k),

F (Stk(x
k);xk)− F (St′(x

k);xk) +
1

2t′
(∥v∥22−∥u∥22) ≥

1

2t′
∥u− v∥22,

F (St′(x
k);xk)− F (Stk(x

k);xk) +
1

2tk
(∥u∥22−∥v∥22) ≥

1

2tk
∥u− v∥22.

Adding these two inequalities, we have(
1

2tk
− 1

2t′

)
(∥u∥22−∥v∥22) ≥

(
1

2tk
+

1

2t′

)
∥u− v∥22, (52)

which further implies that ∥u∥2≥ ∥v∥2. Next, we consider two cases: ∥u∥2= ∥v∥2 (case 1), and ∥u∥2> ∥v∥2 (case
2). First, we consider (case 1), i.e., ∥xk − St′(x

k)∥2= ∥u∥2= ∥v∥2= ∥xk − Stk(x
k)∥2. Note that (51) implies that

∥xk − St′(x
k)∥2≥ ∆(xk)/2 since t′ = 2∆(xk)/λs; therefore,

∥xk − Stk(x
k)∥2= ∥xk − St′(x

k)∥2≥ ∆(xk)/2, (53)

implying that (50b) holds. Second, we consider (case 2). Since ∥u∥2> ∥v∥2, (52) implies (t′ − tk)(∥u∥22−∥v∥22) ≥
(t′ + tk)∥u − v∥22≥ (t′ + tk)(∥u∥2−∥v∥2)2. Thus, (t′ − tk)(∥u∥2+∥v∥2) ≥ (t′ + tk)(∥u∥2−∥v∥2), which gives
∥v∥2≥ tk

t′ ∥u∥2, i.e.,

∥xk − Stk(x
k)∥2≥

1

2
tkλs∥xk − St′(x

k)∥2/∆(xk), (54)

where we used t′ = 2∆(xk)/λs. Similar to (case 1), we have ∥xk − St′(x
k)∥2≥ ∆(xk)/2 due to (51). Therefore,

using this relation within (54), we get ∥xk − Stk(x
k)∥2≥ 1

4 tkλs. Combining this bound with (51) and (53) completes
the proof of (50b).

Next, we provide the proofs for Lemmas 6.5 and 6.6.

Proof of Lemma 6.5. Given k ≥ 0 such that ∆(xk) ≤ λs/(4L), Lemma 6.4 shows that ∥Bk∥2≤ B(λs

4L). Let j ∈ N
such that j ≥ max

{
0,
⌈
MLAC

k

⌉
− 2
}

. From (36),

Hk(z
k
j+1)−Dk(λ

k
j+1) ≤

C0tkm∥Bk∥22
(j + 2)2

≤ ρl
1 + ρl

5

8
λs min{1, λstk/(2∆(xk))}∆(xk).

By (50a), we have Hk(z
k
j+1)−Dk(λ

k
j+1) ≤

ρl

1+ρl
(Hk(0)−minz∈Rn Hk(z)). Thus,

Hk(z
k
j+1)−Dk(λ

k
j+1) ≤ ρl

(
−Hk(z

k
j+1) +Dk(λ

k
j+1) +Hk(0)− min

z∈Rn
Hk(z)

)
,

which further implies that Hk(z
k
j+1) − Dk(λ

k
j+1) ≤ ρl

(
Hk(0) − Hk(z

k
j+1)

)
, where we used weak duality,

i.e., Dk(λ
j+1
k) − minz∈Rn Hk(z) ≤ 0. Therefore, (LAC) in (16) holds within Nk inner iterations and Nk ≤

max{1,MLAC
k }. Moreover, it can be shown that MLAC

k ≥ 1 (we omit the details due to limited space); therefore, we
can conclude that N+ ∋ Nk ≤ MLAC

k , which completes the proof.

Proof of Lemma 6.6. Given k ≥ 0 such that ∆(xk) ≤ λs/(4L), Lemma 6.4 shows that ∥Bk∥2≤ B(λs

4L). Let j ∈ N
such that j ≥ max

{
0,
⌈
MHAC

k

⌉
− 2
}

. From (36),

Hk(z
k
j+1)−Dk(λ

k
j+1) ≤

C0tkm∥Bk∥22
(j + 2)2

≤ ρh
1 + ρh

1

4tk

(
1

2
min{1, λstk/(2∆(xk))} ∆(xk)

)2

.

20

A PREPRINT

By (50b), we have

Hk(z
k
j+1)−Dk(λ

k
j+1) ≤

ρh
1 + ρh

1

4tk
∥xk − Stk(x

k)∥22. (55)

For zk⋆ ≜ argminz∈Rn Hk(z), we have ∥zk⋆∥2= ∥xk − Stk(x
k)∥2; moreover, using 1

tk
-strong convexity of Hk(·) and

weak duality together, we obtain 1
2tk

∥zkj+1−zk⋆∥22≤ Hk(z
k
j+1)−minz∈Rn Hk(z) ≤ Hk(z

k
j+1)−Dk(λ

j+1
k). Therefore,

(55) implies that
∥zkj+1 − zk⋆∥22≤ ρh/(2(1 + ρh)) ∥zk⋆∥22.

By Cauchy-Schwarz inequality, we further have
ρh
2tk

∥zkj+1∥22≥
ρh
4tk

∥zk⋆∥22−
ρh
2tk

∥zkj+1 − zk⋆∥22≥
ρh
4tk

∥zk⋆∥22−
ρ2h

4tk(1 + ρh)
∥zk⋆∥22=

ρh
4tk(1 + ρh)

∥zk⋆∥22.

Therefore, (HAC) in (16) holds within Nk ≤ max{1,MHAC
k } inner iterations. Moreover, it can be shown that

MHAC
k ≥ 1 (we omit the details due to limited space); therefore, we can conclude N+ ∋ Nk ≤ MHAC

k , which
completes the proof.

Finally, we are ready to provide the proofs for Theorems 6.7 and 6.8.

7.4 Proof of Theorem 6.7

(Part a) By Lemma 1.2, (LAC) implies that (LAC-exact) in (7) also holds for all k ∈ N. As ∆(x0) > ϵ, we have
N+ ∋ Kϵ ≥ 1. Next, we use induction to show the following relations hold simultaneously for k ∈ N:

F (xk)− F (x⋆) ≤ (C(ρl))
k
(F (x0)− F (x⋆)), (56a)

∆(xk) ≤ min{λs/(4L), (gHL)−1}, (56b)

∃ gk ∈ [gL, gH] : tk = gk∆(xk), (56c)

where C(ρ) = 1 − 5min{λsgL/2,1}
8(1+ρ) for ρ > 0. For k = 0, (56a) holds. Moreover, by Lemma 2.5, we have

F (x0) − F (x⋆) ≤ min{λ2
s/(4L), λs(gHL)−1} and ∆(x0) ≤ min{λs/(4L), (gHL)−1}. Therefore, (56b) holds for

k = 0, which also implies that g0∆(x0) ≤ gH∆(x0) ≤ L−1 since g0 ≤ gH . Recall that according to Corollary 3.5(b),
we have t0 = min{g0∆(x0), L−1} since ∆(x0) ≤ ∥x⋆∥2 due to Lemma 2.6. Thus, (56c) holds for k = 0 as well.
Next, we assume that (56) holds for some k ≥ 0. Together with (56b), (56c) and gk ≥ gL, Lemma 6.1(a) implies
F (xk+1)− F (x⋆) ≤

(
1− 5min{λsgL/2,1}

8(1+ρl)

)
(F (xk)− F (x⋆)); hence, using it with (56a) establishes (56a) for k + 1.

Since F (xk+1) − F (x⋆) ≤ F (x0) − F (x⋆) ≤ min{λ2
s/(4L), λs/(gHL)} holds, using (19) we get (56b) for k + 1.

Finally, Corollary 3.5(b) implies that (56c) holds for k + 1 as well because gk+1∆(xk+1) ≤ gH∆(xk+1) ≤ L−1 and
∆(xk+1) ≤ ∥x⋆∥2 due to Lemma 2.6. This completes the induction.

By Lemma 6.5 together with (56b) and (56c), we have

sup
k∈N

Nk ≤ sup
k∈N

M1

√
gk(1 + ρl)

λsρl min{1, λsgk/2}
≤ M1

√
gH(1 + ρl)

λsρl min{1, λsgH/2}
. (57)

Without loss of generality, suppose ∆(x0) = ∥x0 − x⋆∥2. Due to Lemma 2.6, ∆(x0) ≤ λs/(4L) ≤ ∥x⋆∥2; hence,
invoking Lemma 2.1 with r = ∥x⋆∥2, we get F (x0)−F (x⋆) ≤ 2∆(x0)L∥x⋆∥2 since max{∆(x0), ∆(x∗)} ≤ ∥x∗∥2.
Recall that Kϵ = inf{k ∈ N+ : ∆(xk) ≤ ϵ}; therefore, from (19), F (xKϵ−1)− F (x⋆) ≥ λs∆(xKϵ−1) ≥ λsϵ. Thus,
by (56a), (C(ρl))

Kϵ−1 ≥ λsϵ/
(
2∆(x0)L∥x⋆∥2

)
, implying

Kϵ ≤ log
(2∆(x0)L∥x⋆∥2

λsϵC(ρl)

)
/log

(1

C(ρl)

)
. (58)

Since N(ϵ) ≤ Kϵ supk∈N Nk, using (57), we get the desired result for part (a).

(Part b) By Lemma 1.2, (HAC) implies that (HAC-exact) in (7) also holds for all k ∈ N. Note that (43) implies that
(LAC-exact) in (7) holds for any k ∈ N for ρl = ρ̄ ≜ 2ρh/(1 − 4ρh). Thus, similar to the proof of (Part a), (56a),
(56b) and (56c) with ρl = ρ̄ hold for any k ∈ N, which implies that (58) holds for ρl = ρ̄. Moreover, from Lemma 6.6
together with (56b) and (56c), we get

sup
k∈N

Nk ≤ sup
k∈N

M2gk
min{1, λsgk/2}

√
1 + ρh
ρh

≤ M2gH
min{1, λsgH/2}

√
1 + ρh
ρh

.

Since N(ϵ) ≤ Kϵ supk∈N Nk, we get the desired result for part (b).

21

A PREPRINT

7.5 Proof of Theorem 6.8

By Lemma 1.2, (HAC) implies that (HAC-exact) in (7) also holds for all k ∈ N. We use induction to show the
following relations hold simultaneously for k ∈ N:

∆(xk) ≤ (6ρh/(λsgL))
k∆(x0), (59a)

∆(xk) ≤ min{ρh/(2LgL), ∥x⋆∥2/
√

M0, 1/(gHL)}, (59b)

∃gk ∈ [gL, gH] : tk = gk∆(xk). (59c)

For k = 0, (59a) trivially holds and (59b) is true due to hypothesis. Moreover, since ρh ∈ (0, 1/4) and gL ≥ 2/λs, we
have ∆(x0) ≤ ρh/(2LgL) ≤ λs/(16L); hence, Lemma 2.6 implies that ∆(x0) ≤ ∥x⋆∥2. Thus, by Corollary 3.5(b),
we have t0 = {g0∆(x0), L−1} for some g0 ∈ [gL, gH]. In addition, (59b) implies that g0∆(x0) ≤ gH∆(x0) ≤ L−1,
which leads to (59c) for k = 0. Thus, the base case (k = 0) for induction holds. Next, we assume that (59) holds for
some k ∈ N, and we prove that it also holds for k + 1. The induction hypothesis on (59a) implies that ∆(xk) ≤ ∆(x0).
Thus, ∆(xk) ≤ min{λs/(4L), ∥x⋆∥2/

√
M0, 1/(gHL)}, and tk ∈ [2∆(xk)/λ2, L−1] since gL ≥ 2/λs and

∆(x0) ≤ 1
gHL . Therefore, Lemma 6.2 together with (59c) implies that λs∆(xk+1) ≤ (4ρh/gk + 4L∆(xk))∆(xk).

By gk ≥ gL and ∆(xk) ≤ ρh/(2LgL), we further have

λs∆(xk+1) ≤ (4ρh/gL + 4Lρh/(2LgL))∆(xk) = 6ρh∆(xk)/gL.

Together with (59a) for k, this proves (59a) for k + 1. Moreover, observing that the rate coefficient in (59a) satisfies
6ρh

λsgL
≤ 3

4 as gL ≥ 2/λs and ρh ∈ (0, 1/4), we also get ∆(xk+1) ≤ 3∆(xk)/4. Thus, (59b) for k immediately
implies that (59b) also holds for k + 1. Finally, since ∆(xk+1) ≤ ∆(x0) ≤ λs/(4L) ≤ ∥x⋆∥2, according to
Corollary 3.5(b), we have tk+1 = min{gk+1∆(xk+1), L−1} for some gk+1 ∈ [gL, gH], and ∆(xk+1) ≤ (gHL)−1

due to (59b) shows that (59c) holds for k + 1, establishing the induction. Since (59c) holds for all k ∈ N, we have
2∆(xk)/λs ≤ gL∆(xk) ≤ tk ≤ gH∆(xk) for k ≥ 0 since gL ≥ 2/λs. Using these inequalities within the bound

for Nk in Lemma 6.6, we get supk∈N Nk ≤ M2gH

√
1+ρh

ρh
. As ∆(xKϵ−1) > ϵ, (59a) implies

(
6ρh

λsgL

)Kϵ−1

≥ ϵ
∆(x0) ;

thus, Kϵ ≤ log
(

λs∆(x0)gL
6ρh

· 1
ϵ

)
/log

(
λsgL
6ρh

)
. Since N(ϵ) ≤ Kϵ supk∈N Nk, we get the desired result.

8 Numerical Experiments

In this section, we conduct numerical experiments on the RPR problem in (4). We tested the following algorithms:

(i) PL: The original proximal linear algorithm proposed in [11] where each subproblem (6) is solved using
POGS [13]. In our comparison, we use all the default parameters set by the authors in their code2.

(ii) GSubGrad: The subgradient method with geometrically decaying step sizes was proposed in [16] for solving
(4) –GSubGrad supdates are stated in (8). We picked the best performing contraction coefficient q ∈ (0, 1)
among all the values tested in [16], i.e., q ∈ {0.983, 0.989, 0.993, 0.996, 0.997}; on the other hand, [16] does
not specify how to choose λ0, and we set λ0 = 0.1∥x0∥2.

(iii) IPL-LAC, IPL-HAC: IPL algorithm with fixed step sizes tk = 1/L and the subproblems in (6) are solved using
APG. “-LAC ” and “-HAC ” indicate whether (LAC) or (HAC) is used.

(iv) AdaIPL-LAC, AdaIPL-HAC: These methods, stated in Algorithm 2, use adaptive step sizes given in (12). The
subproblems in (6) are solved using APG, which performed better compared to APD on the problems we tested.
“-LAC ” and “-HAC ” indicate whether (LAC) or (HAC) is used.

(v) AdaSubGrad: It is the subgradient method, stated in Algorithm 1, with adaptive step sizes given in (10) and
(11).

We didn’t include PSubGrad because according to [17], it only works for the noiseless situation. All the methods are
initialized from the same point x0 which is generated by [11, Algorithm 3].

8.1 Synthetic Data

We generate synthetic data as in [11] and [14]. Specifically, ai’s are drawn randomly from the normal distribution
N (0, diag([s1, s2 . . . sn])) where si = 1− 0.75 i−1

n−1 for i ∈ [n]. Throughout the experiments in this subsection, we set

2The code of [11] can be downloaded from https://web.stanford.edu/~jduchi/projects/phase-retrieval-code.
tgz

22

https://web.stanford.edu/~jduchi/projects/phase-retrieval-code.tgz
https://web.stanford.edu/~jduchi/projects/phase-retrieval-code.tgz

A PREPRINT

Figure 1: Comparisons on Synthetic Datasets.

n = 1500 and we choose m such that m/n ∈ {4, 5, 6, 7, 8}. The entries of x⋆ ∈ Rn are drawn uniformly at random
from {−1, 1}. For each value of m tested, the index set I2 for corrupted measurements is generated with random
sampling ⌈m pfail⌉ elements from {1, 2, . . . ,m} without replacement, where pfail = 0.1. Corrupted measurements
bi = ξi for i ∈ I2 are independently drawn from Cauchy distribution, i.e., bi = ξi = M̃ tan

(
π
2Ui

)
and Ui ∼ U(0, 1)

for all i ∈ I2, where M̃ is the sample median of {(a⊤i x⋆)
2}mi=1. For a given threshold ϵ > 0, we call an algorithm

successful if it returns some xϵ ∈ Rn such that the relative error ∆(xϵ)/∥x⋆∥2≤ ϵ.

All the algorithms are terminated after such xϵ is computed. For each m/n ∈ {4, 5, 6, 7, 8}, we randomly generate
10 instances according to the above procedure. For both IPL and AdaIPL, the parameters are set to ρl = ρh = 0.24
as in [14]; and we choose G ∈ {0.1, 0.5} for AdaSubGrad and G ∈ {1000/n, 100/n, 10/n, 1/n} for AdaIPL, and
for both methods we set p̃ = 0.5. In this set of experiments, the success rate is 1 for all the algorithms and we find
that q = 0.983 for GSubGrad, G = 100/n for AdaIPL, and G = 0.5 for AdaSubGrad consistently yield the best
performance, respectively; thus, we make comparisons based on these parameter choices.

In Figure 1 we provide the experimental results where we set ϵ = 10−3 for PL and ϵ = 10−7 for all other algorithms.
The left panel shows the median CPU time in seconds3 for all replications. The right one shows the median of total
iteration numbers, i.e., total inner iteration numbers for PL, IPL, and AdaIPL and total iteration numbers for GSubGrad
and AdaSubGrad. This image shows that both AdaSubGrad and AdaIPL perform better than the other algorithms.

Next, Table 3 provides results for the setting in Figure 1 with m/n = 8 to show the performance under difference
choices of G. In this table, median values for CPU time, total subproblem iterations, and main iterations are reported.
XL, L, M, S correspond to G = 1000/n, 100/n, 10/n, 1/n for AdaIPL, and 0.5, 0.1 correspond to the values of G for
AdaSubGrad. We can find that using large G for AdaSubGrad reduces iteration numbers. For AdaIPL, using a larger G
leads to a larger ratio of total iterations to main iterations and a smaller main iteration number, which is lower bounded
by the IPL counterparts. In addition, when G is very small, the ratio of total iterations to main iterations is less than 3,
which means that very few iterations are needed to solve a subproblem.

8.2 Image Recovery

In this subsection, we conducted experiments on images as in [11]. In particular, consider an RGB image array
X⋆ ∈ Rn1×n2×3, we construct the signal as x⋆ = [vec(X⋆)

⊤0⊤]⊤ ∈ Rn where n = min{2s | s ∈ N, 2s ≥ 3n1n2}
and 0 ∈ Rn−3n1n2 –here, vec(·) vectorize its argument. Let Hn ∈ 1√

n
{−1, 1}n×n be the Hadamard matrix. We

generate diagonal Sj ∈ Rn×n for j = 1, 2, . . . , k such that all the diagonal entries are chosen uniformly at random
from {−1, 1}. Next, for m = 6n, we set A ≜

√
n[(HnS1)

⊤(HnS2)
⊤ . . . (HnS6)

⊤]⊤ ∈ Rm×n –for this setting, it can
be shown that L = 2. The advantage of such a mapping is that it mimics the fast Fourier transform and calculating
Ax requires O(m log n) work for any x ∈ Rn. We conduct the test on an RNA image4 of size n = 222. In the
experiment we considered pfail = 0.1, and we generate corrupted measurements as in the synthetic datasets. The

3The CPU time for initialization and approximately calculating L is negligible in this example.
4https://visualsonline.cancer.gov/details.cfm?imageid=11167

23

A PREPRINT

CPU Time (sec) Total Iterations Main Iterations
IPL-LAC 23.78 528.5 11

AdaIPL-LAC-XL 6.86 144 11
AdaIPL-LAC-L 6.37 120.5 11.5
AdaIPL-LAC-M 8.93 162.5 16.5
AdaIPL-LAC-S 55.83 491 220.5

CPU Time (sec) Total Iterations Main Iterations
IPL-HAC 54.34 1194 6

AdaIPL-HAC-XL 16.65 425 7
AdaIPL-HAC-L 8.53 211.5 7
AdaIPL-HAC-M 9.47 182 17
AdaIPL-HAC-S 55.41 475.5 220.5

CPU Time (sec) Total Iterations Main Iterations
AdaSubGrad: 0.5 3.09 132 132
AdaSubGrad: 0.1 10.62 473 473

Table 3: Comparison of different G for simulated datasets: median values for 10 replicates are reported.

Method CPU Time
PL > 1440

GSubGrad 44.21 (26.79)
IPL-LAC 177.21 (136.30)
IPL-HAC 235.75 (136.23)

AdaIPL-LAC 16.44 (9.56)
AdaIPL-HAC 25.35 (15.06)
AdaSubGrad 4.12 (0.35)

Table 4: Comparison of CPU time (in minutes) for image recovery problem. Median (interquartile range) values are
reported over 10 replications.

algorithm parameters are set to G = 0.5 for AdaSubGrad, G = 1000/n for AdaIPL, and q = 0.983 for GSubGrad
while keeping the other hyper-parameters the same as in Section 8.1.

All the algorithms are terminated whenever xϵ with a relative error at most ϵ = 10−7 is computed. The results are
reported in Table 4, where we report the median and interquartile range of CPU times in minutes based on 10 replications.
The results show that both AdaSubGrad and AdaIPL perform better than the other algorithms. The result for PL is not
reported as it cannot reach the desired accuracy within the time limit of 1440 min.

9 Conclusion

In this paper, we propose two adaptive algorithms for solving the robust phase retrieval problem. Our contribution
lies in designing new adaptive step size rules that are based on the quantiles of absolute residuals and are robust to
sparse corruptions. Employing adaptive step sizes, both methods show local linear convergence and are robust to
hyper-parameter selection. Numerical results demonstrate that both AdaSubGrad and AdaIPL perform significantly
better than the existing state-of-the-art methods tested on both syntetic- and real-data RPR problems.

References

[1] J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow
imaging of micrometre-sized non-crystalline specimens,” Nature, vol. 400, no. 6742, pp. 342–344, 1999.

[2] R. P. Millane, “Phase retrieval in crystallography and optics,” Journal of the Optical Society of America A, vol. 7,
no. 3, pp. 394–411, 1990.

[3] A. Chai, M. Moscoso, and G. Papanicolaou, “Array imaging using intensity-only measurements,” Inverse Problems,
vol. 27, no. 1, p. 015005, 2010.

24

A PREPRINT

[4] C. Fienup and J. Dainty, “Phase retrieval and image reconstruction for astronomy,” in Image Recovery: Theory
and Application. Academic Press, 1987, pp. 231–275.

[5] J. Miao, T. Ishikawa, Q. Shen, and T. Earnest, “Extending x-ray crystallography to allow the imaging of
noncrystalline materials, cells, and single protein complexes,” Annual Review of Physical Chemistry, vol. 59, pp.
387–410, 2008.

[6] M. Fickus, D. G. Mixon, A. A. Nelson, and Y. Wang, “Phase retrieval from very few measurements,” Linear
Algebra and its Applications, vol. 449, pp. 475–499, 2014.

[7] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via wirtinger flow: Theory and algorithms,” IEEE
Transactions on Information Theory, vol. 61, no. 4, pp. 1985–2007, 2015.

[8] Y. Chen and E. J. Candès, “Solving random quadratic systems of equations is nearly as easy as solving linear
systems,” Communications on Pure and Applied Mathematics, vol. 70, no. 5, pp. 822–883, 2017.

[9] G. Wang, G. B. Giannakis, and Y. C. Eldar, “Solving systems of random quadratic equations via truncated
amplitude flow,” IEEE Transactions on Information Theory, vol. 64, no. 2, pp. 773–794, 2017.

[10] H. Zhang, Y. Zhou, Y. Liang, and Y. Chi, “A nonconvex approach for phase retrieval: Reshaped wirtinger flow and
incremental algorithms,” Journal of Machine Learning Research, vol. 18, pp. 1–35, 2017.

[11] J. C. Duchi and F. Ruan, “Solving (most) of a set of quadratic equalities: Composite optimization for robust phase
retrieval,” Information and Inference: A Journal of the IMA, vol. 8, no. 3, pp. 471–529, 2019.

[12] H. Zhang, Y. Chi, and Y. Liang, “Provable non-convex phase retrieval with outliers: Median truncated wirtinger
flow,” in International Conference on Machine Learning. PMLR, 2016, pp. 1022–1031.

[13] N. Parikh and S. Boyd, “Block splitting for distributed optimization,” Mathematical Programming Computation,
vol. 6, no. 1, pp. 77–102, 2014.

[14] Z. Zheng, S. Ma, and L. Xue, “A new inexact proximal linear algorithm with adaptive stopping criteria for robust
phase retrieval,” IEEE Transactions on Signal Processing, vol. 72, pp. 1081–1093, 2024.

[15] P. Tseng, “On accelerated proximal gradient methods for convex-concave optimization,” submitted to SIAM
Journal on Optimization, 2008.

[16] D. Davis, D. Drusvyatskiy, K. J. MacPhee, and C. Paquette, “Subgradient methods for sharp weakly convex
functions,” Journal of Optimization Theory and Applications, vol. 179, no. 3, pp. 962–982, 2018.

[17] D. Davis, D. Drusvyatskiy, and C. Paquette, “The nonsmooth landscape of phase retrieval,” IMA Journal of
Numerical Analysis, vol. 40, no. 4, pp. 2652–2695, 2020.

[18] J. C. Duchi and F. Ruan, “Stochastic methods for composite and weakly convex optimization problems,” SIAM
Journal on Optimization, vol. 28, no. 4, pp. 3229–3259, 2018.

[19] D. Davis and D. Drusvyatskiy, “Stochastic subgradient method converges at the rate o(k−1/4) on weakly convex
functions,” arXiv preprint arXiv:1802.02988, 2018.

[20] ——, “Stochastic model-based minimization of weakly convex functions,” SIAM Journal on Optimization, vol. 29,
no. 1, pp. 207–239, 2019.

[21] D. Davis and B. Grimmer, “Proximally guided stochastic subgradient method for nonsmooth, nonconvex problems,”
SIAM Journal on Optimization, vol. 29, no. 3, pp. 1908–1930, 2019.

[22] D. Davis, D. Drusvyatskiy, and V. Charisopoulos, “Stochastic algorithms with geometric step decay converge
linearly on sharp functions,” Mathematical Programming, pp. 1–46, 2023.

[23] Z. Zheng and L. Xue, “Smoothed robust phase retrieval,” arXiv preprint arXiv:2409.01570, 2024.
[24] R. Rockafellar and R. J.-B. Wets, Variational Analysis. Heidelberg, Berlin, New York: Springer, 1998.
[25] A. Chambolle and T. Pock, “On the ergodic convergence rates of a first-order primal–dual algorithm,” Mathematical

Programming, vol. 159, no. 1, pp. 253–287, 2016.
[26] E. Y. Hamedani and N. S. Aybat, “A primal-dual algorithm with line search for general convex-concave saddle

point problems,” SIAM Journal on Optimization, vol. 31, no. 2, pp. 1299–1329, 2021.

25

	Introduction
	Existing Algorithms and Challenges
	Proposed Algorithms: AdaSubGrad and AdaIPL
	AdaSubGrad
	AdaIPL
	Summary of Contributions

	Basic Properties of F()
	Data Generation Process and Key Conditions
	Proof of Theorem 3.4
	r^(x) = ((x)) with high probability
	F(x) - F(x_) = ((x)) with high probability

	Convergence Rate of AdaSubGrad
	Convergence Rate of AdaIPL
	Convergence Behaviours for Outer Iterations
	Subproblem Solvers and Computational Complexity
	Overall Complexity
	Comparison of AdaSubGrad and AdaIPL complexities

	Proofs for Section 6
	Proof of lemma_traj_gen_tk
	(6) is exactly solved and the step size belongs to [2(x^k)/_s,L^-1]
	(6) is exactly solved and the step size is less than 2(x^k)/_s
	Proof of part (a)
	Proof of part (b)

	Proof of lemma_path_traj_high
	Proofs of iteration_low_sub and iteration_high_sub
	Proof of overall_complexity_diminish_stepsize_gen
	Proof of overall_complexity_diminish_stepsize

	Numerical Experiments
	Synthetic Data
	Image Recovery

	Conclusion

