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Abstract

Multiobjective optimization is widely used in applications for modeling and solving complex decision-
making problems. To help resolve computational and cognitive difficulties associated with problems
which have more than 3 or 4 objectives, we propose a decomposition and coordination methodology
to support decision making for large multiobjective optimization problems (MOPs) with global, quasi-
global, and local variables. Since the MOPs are decomposable into subproblems, the methodology allows
the decision maker (DM) to quantify tradeoffs between the subproblems rather than only between specific
objectives associated with them. To coordinate the subproblems, we extend the theory of achievement
scalarizing functions which allows for the subproblems to be autonomously coordinated without the
DM’s participation. However, we do not totally exclude DMs, by proposing a hybrid coordination
method where autonomous coordination is used to aid them in an interactive procedure to explore the
subproblem tradeoffs. Finally, we demonstrate the effectiveness of our work on a humanitarian aid case
study.

Keywords: Multiobjective optimization; Multicriteria decision making; Autonomous decision making;
Achievement Scalarizing Functions; Complex Systems; Decomposition

1 Introduction

Multiobjective programs (MOPs) model decision problems governed by multiple and conflicting criteria or
objectives that arise in many areas of human activity such as management or engineering. In the presence
of conflict, a unique optimal decision is not available. Rather, the decision maker (DM) is presented with a
set of non-improvable decisions known as efficient solutions and with the outcomes of these decisions known
as Pareto (nondominated) criterion vectors. The final goal for the DM is to apply personal preferences, that
are not contained in the MOP model, and select a preferred efficient solution as the final decision to be
implemented. Solving MOPs therefore involves an optimization stage to compute the efficient and/or the
Pareto set or their representations, and a decision stage to conduct a search for a preferred efficient solution
and/or Pareto outcome ([5, 35, 20, 53]).

The difficulty to perform the optimization stage results from the size of the MOP and the type of variables
and objective and constraint functions in the mathematical model. Since this stage relies on the capabilities
of algorithms, certain types of variables and functions make MOPs harder to solve than the MOP’s size does.
For example, algorithms to compute the efficient set for convex MOPs with continuous variables have been
well established regardless of the number of objective and constraint functions or variables ([46]). This is
not the case for other types of MOPs such as convex or nonconvex problems with mixed-integer variables.
For example, state-of-the-art algorithms for MOPs with mixed-integer variables and linear functions are
available only for problems with two or three criteria ([22]).

The decision stage faces other difficulties. The search for a preferred efficient solution is likely to be man-
ageable for bi- or triobjective programs but becomes challenging for MOPs with more objectives regardless
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of their type. In lower-dimensional objective spaces, a DM is likely to have the knowledge of the decision
problem beyond the MOP model to identify a preferred efficient solution and the Pareto set can be easily
represented graphically to further assist the DM. However, in higher dimensions, the DM may experience a
cognitive burden resulting from too much information at once, or too many simultaneous tasks, resulting in
not being able to process the information.

MOPs with more than three criteria are named “many-objective problems” to recognize the difficulties
they cause ([52]). To resolve the challenges of “many-objective problems,” one of the main research directions
has been to decompose the original MOP into subproblems (sub-MOPs), each with a smaller number of
criteria. The sub-MOPs are then coordinated to guarantee that by only computing their efficient sets,
the efficient set of the MOP can be retrieved. A recent review of decomposition and coordination (D&C)
approaches to MOPs is given in [47]. Below we review the studies that have given motivation for the current
work.

The D&C methods for MOPs with global variables proposed in [15] and [14] rely on approximate efficiency
and are supported with tradeoffs between two objective functions. In [15], the Lagrange multipliers associated
with a single-objective problem related to two sub-MOPs provide the tradeoff value at a feasible solution
with respect to two objective functions, each belonging to another sub-MOP. In [14], a priori tradeoffs are
provided by the DM. Complex MOPs with local and global variables and constraints are defined by means
of graphs in [9]. The concepts of (approximate) superior solutions and dominance between subsystems are
introduced to complement the classical concepts of (approximate) efficient solutions and dominance between
criterion vectors. The subsystems are coordinated by computing a compromise solution that may not be
necessarily superior for every subsystem but which is as close as possible to the superior sets of all subsystems
with respect to a distance measure such as a norm.

Furthermore, recent applied studies give evidence of the significance and relevance of D&C methods
customized to specific real-life applications such as automotive design in [24, 54, 8] and food bank network
redesign in [34].

The overall goal of this paper is to develop a D&C methodology to support decision making for complex
MOPs composed of sub-MOPs, and allow the DM to quantify tradeoffs between the sub-MOPs rather than
only between specific objectives associated with them. To accomplish this, we first extend the theory of
achievement scalarizing functions (ASFs) that have successfully been used to support decision making under
multiple criteria ([48, 51, 50, 38]). This extension leads us to define and measure a new type of subproblem
tradeoffs.

Second, we propose a model of complex MOPs that are decomposable into interacting sub-MOPs, and
show how efficient solutions for the complex MOP may be obtained from efficient solutions for the sub-MOPs.

Third, we design a coordination methodology that offers three ways a complex system can be coordinated
during the decision stage to arrive at a preferred efficient solution. In particular, we propose a coordination
procedure which provides a feasible solution that is as close as possible to the efficient sets of all sub-MOPs,
as similarly proposed in [15] and [9]. The closeness, however, is measured by the introduction of subsystem
tradeoffs that are provided by a bilevel MOP solved over the efficient sets of the sub-MOPs. We recognize
that bilevel MOPs are hard to solve ([13, 12, 3, 29, 43]), but believe this difficulty is worthwhile since the
proposed bilevel MOP enriches the decision stage with valuable information that other D&C methods cannot
provide. However, we propose an auxiliary MOP which circumvents the difficulties while still conceptually
employing the bilevel MOP.

The paper is structured as follows. In Section 2, the new theory on achievement scalarizing functions
is developed. An MOP with many criteria and a decomposable structure is presented in Section 3. In
Section 4, the new theory on ASFs is applied to the decomposable MOP leading to further theoretical
developments on the newly defined subproblem tradeoffs. In Section 5, the new concepts are employed
in an interactive decision procedure, which combines the hierarchical coordination and a newly proposed
autonomous coordination, to assist DMs in exploring their alternatives. We apply our new concepts and
methods to a case study of disaster relief in Section 6, while Section 7 concludes the paper.

1.1 Preliminaries

We begin with a generic MOP and the optimality concept based on the efficiency of solutions and the
nondominance of their images. Let fi(x) : Rn → R for i = 1, . . . , p and let X ⊆ Rn be a nonempty set. A
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generic multiobjective optimization problem is of the form

min
x

f(x) = [f1(x), . . . , fp(x)] (MOP)

s. t. x ∈ X

We denote the outcome set by Y = f(X) = {f(x) ∈ Rp | x ∈ X} and use the following standard definition
for vector ordering. Let u = (u1, . . . , up), v = (v1, . . . , vp) ∈ Rp. We say that u < v if ui < vi for each
i = 1, . . . , p; u ≤ v if ui ≤ vi for each i = 1, . . . , p and u ̸= v; and u ≦ v if ui ≤ vi for each i = 1, . . . , p. We
also define the cones Rp

≧ = {y ∈ Rp | y ≧ 0} and Rp
> = {y ∈ Rp | y > 0}. We denote the boundary of a set

S ⊆ Rp by ∂(S). Finally, we use efficiency for determining the optimality of a feasible solution for (MOP).

Definition 1. Let x ∈ X ⊆ Rn be feasible for (MOP). We say that x is a (weakly) efficient solution for
(MOP) if there is no x′ ∈ X such that f(x′)(<) ≤ f(x). We say that x is a strictly efficient solution for
(MOP) if there is no x′ ∈ X, x′ ̸= x, such that f(x′) ≦ f(x). If x is a(n) (weakly/strictly) efficient solution,
we say that f(x) is a (weak/strict) Pareto point.

We denote the set of all (weakly/strictly) efficient solutions of (MOP) by E(w/s/·)(X) and denote the set
of all (weak/strict) Pareto points by P(w/s/·)(Y ) = f(E(w/s/·)(X)). It will also be useful to have a notion of
relaxed efficiency.

Definition 2. Let x ∈ X be feasible for (MOP) and ε ∈ Rp
≧. We say that x is a (weakly) ε-efficient

solution for MOP if there is no feasible x′ ∈ X such that f(x′)(<) ≤ f(x)− ε. If x is (weakly) ε-efficient,
we say that f(x) is a (weak) ε-Pareto point.

We denote the set of (weakly) ε-efficient solutions by E(w)(X, ε) ⊆ X and the set of (weak) ε-Pareto
solutions by P(w)/·(Y, ε).

Finally, the following are helpful definitions in multiobjective optimization.

Definition 3 ([26]). Let S1, S2 ⊆ Rp be nonempty sets. We say that S1 dominates S2 and write S1 ≦ S2

if and only if the upper-type set relation holds: for each s1 ∈ S1 there exists s2 ∈ S2 such that s1 ≦ s2.

Definition 4 ([41]). Let Y be a nonempty set in Rp. We say that P (Y ) is externally stable if for every
y ∈ Y \ P (Y ), there exists ŷ ∈ P (Y ) such that y ∈ ŷ + Rp

≧.

Theorem 1 ([41]). If Y a nonempty compact set in Rp then P (Y ) is externally stable.

Definition 5. The ideal point of (MOP) is a point yI ∈ Rp such that for each component i ∈ {1, . . . , p},
yIi = min{fi(x) | x ∈ X}.

The following well known result describes the relationship between P (Y ) and yI .

Lemma 1. Let yI be the ideal point of (MOP). P (Y ) = {yI} if and only if yI ∈ Y .

A classical method of computing efficient solutions of (MOP) is by minimizing a weighted-sum of the
objective functions.

Theorem 2 ([19, 11]). Let ω = (ω1, . . . , ωp) ∈ Rp
≥. If x̂ ∈ X is an optimal solution to the weighted-sum

scalarization of (MOP), min{
∑p

i=1 ωifi(x) | x ∈ X}, then x̂ is a weakly efficient solution for (MOP).
Furthermore, if ω ∈ Rp

>, then x̂ is an efficient solution for (MOP).

With these preliminaries, in the next section we extend the theory of achievement scalarizing functions
to allow variable reference points.

2 Bivariate Achievement Scalarizing Functions

Achievement scalarizing functions (ASFs), introduced in [48, 49], seek to find efficient solutions for (MOP)
by scalarizing the objective functions of (MOP). As such, they work in a similar way to other scalarizations
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including the weighted-sum, ϵ-constraint, Chebyshev, and many other methods ([46, 23]). However, ASFs
differ from these methods since they are not norms. Instead, they measure the “distance” between the
outcome set and a single, fixed reference point by using specific properties. In contrast to the scalarization
methods based on norms, they allow the reference point to be located anywhere in the objective space and
have the property of preserving vector ordering, while norms do not preserve this ordering.

Due to their flexibility and proven high utility in decision making ([37, 36, 30]), ASFs have been developed
to gain new features. They are modified to become additive to have even more flexibility ([40]), or to carry
two weight vectors rather than one to be able to work better with achievable or not achievable reference
points ([33]). They are parametrized to allow changing the reference point or weighting coefficients ([38]).
They also belong to a class of biaffine functions used in decision making with stochastic preferences ([39]).
Interestingly, [32] shows how to construct a set of equivalent reference points, all of which select the same
Pareto point during scalarization.

Independently of ASFs, the use of multiple reference points is introduced in [44] to model DMs’ preferences
and the decision stage is reduced to a biobjective problem seeking a compromise between the distances to
the sets of desirable and avoidable reference points and using a utility function as a distance measure.

In this work, we continue the idea of a set of reference points to provide further extensions to the theory
of ASFs. We make these functions bivariate and allow the reference point to be itself a variable over a given
reference set in the objective space. To ensure efficiency is achieved, our bivariate ASFs (BASFs) maintain
the properties of order preservation and order representation similar to ASFs ([49]).

Definition 6. Let σ : Rp × Rp → R be a continuous function and y, y′, r ∈ Rp.

1. We say that σ is

i. order preserving if y ≦ y′ implies σ(y, r) ≤ σ(y′, r).

ii. strictly order preserving if y < y′ implies σ(y, r) < σ(y′, r);

iii. strongly order preserving if y ≤ y′ implies σ(y, r) < σ(y′, r).

2. We say that σ is order representing if for each r ∈ Rp,

S(r) = {y ∈ Rp | σ(y, r) < 0} = r − Rp
>

3. If σ : Rp × Rp → R is (strongly/strictly) order preserving and order representing then we call σ a
(strong/strict) bivariate achievement scalarizing function (BASF).

Proposition 1. If σ : Rp × Rp → R is an order representing function then for all r ∈ Rp and for all
y ∈ ∂(r − Rp

≧), σ(y, r) = 0.

Proof. Let r ∈ Rp and σ : Rp ×Rp → R be an order representing function. Let y ∈ ∂(r−Rp
≧). Without loss

of generality, let y = r − λe, where λ ≥ 0 and e = (1, 0, . . . , 0). Let {ym} ⊆ S(r) = r − Rp
> be a sequence

which converges to y. Observe that since σ is continuous and ym converges to y, it must be that for any
ε > 0 there exists M such that for all m > M, −ε + σ(y, r) < σ(ym, r) < ε + σ(y, r). Furthermore, since
ym ∈ S(r), σ(ym, r) < 0 for all m.

Since y ̸∈ r − Rp
>, it must that σ(y, r) ≥ 0. If σ(y, r) > 0 then letting ε = σ(y,r)

2 , there exists M ′ such

that for all m > M ′, σ(y,r)
2 < σ(ym, r) < 3σ(y,r)

2 , which contradicts the fact that σ(ym, r) < 0. Thus, it must
be that σ(y, r) = 0.

Proposition 2. Let σ : Rp × Rp → R be a strict BASF. Let y, r ∈ Rp.

1. σ(y, r) < 0 if and only if y ∈ r − Rp
>

2. σ(y, r) = 0 if and only if y ∈ ∂(r − Rp
≧)

3. σ(y, r) > 0 if and only if y ∈ (r − Rp
≧)

C

Proof. Let σ : Rp × Rp → R be a strict BASF and let y, r ∈ Rp.
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1. Observe that σ(y, r) < 0 if and only if y ∈ r − Rp
> since σ is a BASF.

2. First, we show that σ(y, r) = 0 implies y ∈ ∂(r − Rp
≧) by the contrapositive. To that end, suppose

y ̸∈ ∂(r−Rp
≧). Then y ∈ r−Rp

> or y ∈ (r−Rp
≧)

C . In the former, since σ is a BASF then σ(y, r) < 0.

In the latter, let y′ ∈ (y − Rp
>) ∩ ∂(r − Rp

≧). This means that y′ < y, and since σ is strictly order

preserving, then σ(y′, r) < σ(y, r). Furthermore, by Proposition 1, σ(y′, r) = 0. Thus, 0 < σ(y, r).
Conversely, by Proposition 1 the result holds.

3. This follows directly from parts 1 and 2 above.

Remark 1. The definition of order preserving is the same as the definition of monotone or increasing func-
tions. We use the term “order preserving” to follow the terminology used in [49] and to emphasize that
multiobjective optimization relies on a vector ordering. Since we make ASFs bivariate, we adopt the nota-
tion of writing σ as a function of both y and r.

In Example 1, we compare an ASF and a BASF by depicting their level sets.

Example 1. Consider the well-known strictly order preserving ASF given by σ(y, r) = max
1≤i≤p

{λi(yi − ri)}

([38, 33, 11]). The level curves of σ for p = 2, λ = (1, 1) and r = (1, 1) are depicted in Figure 1. The level
sets of a BASF defined as σ(y, r) = maxi=1,2{y1 − r1, y2 − r2} for −10 ≤ y1, y2 ≤ 10, −10 ≤ r1 ≤ 10, and
r2 = 0 are depicted in Figure 2.

To scalarize (MOP) using a BASF, let R ⊆ Rp be a nonempty set, let (MOP) have the nonempty feasible
set X, and let σ : Rp × Rp → R be a BASF. We scalarize (MOP) in the following way.

min
x,r

σ(f(x), r) (σ-MOP)

s. t. (x, r) ∈ X ×R

We examine the role the two properties of order representation and preservation play in (σ-MOP). In
the two subsequent propositions, we prove a necessary and a sufficient conditions for an optimal solution to
(σ-MOP) to provide an efficient solution to (MOP). Each condition only requires that one of these properties
hold.

Lemma 2. Let (MOP) and (σ-MOP) be given. If R ∩ Y is nonempty and R dominates P (Y ), then R ∩ Y
is a subset of P (Y ).

Proof. Let R ∩ Y ̸= ∅ and R ≦ P (Y ). Suppose r ∈ R ∩ Y . Since R ≦ P (Y ), there exists f(x) ∈ P (Y ) such
that r ≦ f(x). By definition of Pareto nondominance, it must be that r = f(x). Therefore, r ∈ P (Y ).

Proposition 3 (Necessary condition). Let σ : Rp×Rp → R be order representing and (MOP) and (σ-MOP)
be given and let the conditions of Lemma 2 hold. If x ∈ X is an efficient solution for (MOP) such that
f(x) ∈ R ∩ Y then (x, f(x)) is an optimal solution for (σ-MOP) with optimal value 0.

Proof. Let R ∩ Y ̸= ∅ and R ≦ P (Y ). Let x ∈ E(X) such that f(x) ∈ R ∩ Y and let (x̄, r̄) be an optimal
solution for (σ-MOP). Then σ(f(x̄), r̄) ≤ σ(f(x), f(x)) and by Proposition 1, σ(f(x), f(x)) = 0. Thus,
σ(f(x̄), r̄) ≤ 0.

We show that σ(f(x̄), r̄) ̸< 0. Towards a contradiction, suppose σ(f(x̄), r̄) < 0. Since σ is order
representing, f(x̄) ∈ r̄ − Rp

>. This implies f(x̄) < r̄. Since R ≦ P (Y ), there exists ȳ ∈ P (Y ) such that
f(x̄) < r̄ ≦ ȳ, implying f(x̄) < ȳ, contradicting ȳ ∈ P (Y ). Thus, it must be that σ(f(x̄), r̄) = 0 =
σ(f(x), f(x)). Since (x̄, r̄) is an optimal solution for (σ-MOP) with optimal value 0, it must be that (x, f(x))
is also an optimal solution with optimal value 0.

The following corollary shows a special case of (σ-MOP).
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Corollary 1. Let (MOP) be given and let σ : Rp × Rp → R be order representing. Define (σ-MOP) with
R = P (Y ). Then for all efficient solutions x for (MOP), (x, f(x)) is an optimal solution for (σ-MOP) with
optimal value 0.

Proof. By Proposition 3, for all x ∈ E(X) such that f(x) ∈ R ∩ Y = P (Y ) ∩ Y = P (Y ), (x, f(x)) is an
optimal solution for (σ-MOP) with optimal value 0.

Proposition 4 (Sufficient condition). Let σ : Rp × Rp → R be a function.

1. If (x̄, r̄) is a unique optimal solution for (σ-MOP) and σ is order preserving and then x̄ is a strictly
efficient solution for (MOP).

2. If (x̄, r̄) is an optimal solution for (σ-MOP) and σ is strictly order preserving then x̄ is a weakly
efficient solution for (MOP).

3. If (x̄, r̄) is an optimal solution for (σ-MOP) and σ is strongly order preserving then x̄ is an efficient
solutionf for (MOP).

Proof. Let σ : Rp × Rp → R be a function and let (x̄, r̄) be an optimal solution for (σ-MOP).
We prove case 1 and note that cases 2 and 3 follow analogously. Let σ be order preserving and (x̄, r̄)

the unique optimal solution of (σ-MOP). Towards a contradiction, suppose x̄ ̸∈ Es(X). Then there exists
x ∈ X with x ̸= x̄ such that f(x) ≦ f(x̄). Since σ is order preserving, σ(f(x), r̄) ≤ σ(f(x̄), r̄). Since (x̄, r̄)
is optimal for (σ-MOP), it must be that σ(f(x), r̄) = σ(f(x̄), r̄), which implies that (x, r̄) is also an optimal
solution for (σ-MOP), contradicting the fact that (x̄, r̄) is the unique optimal solution.

Remark 2. Observe that letting R = {r} for a fixed r ∈ Rp is precisely equivalent to fixing a reference point
and Propositions 3 and 4 reduce to the case discussed in [49].

Propositions 3 and 4 show that the order representing and preservation are complementary in the sense
that they separately “secure” the efficiency of the (MOP) solutions computed with a BASF and the non-
negativity of the BASF values. These two properties turn out to be fundamental for the developments that
follow.

The results of this section are used in the defining of subproblem tradeoffs in Section 4 and a coordination
method in Section 5. In the next section we turn to decomposable complex MOPs.

3 Complex System Modeling and Decomposition

In this work, we assume a specific structure for (MOP) that represents the complex system or all-in-one
problem, denoted by (AiO). The (AiO) consists of multiobjective subproblems with decision variables specific
to one, more, or all suproblems.

3.1 Structure of the All-in-One Problem

The following notation describes this structure and is illustrated on an (AiO) example with four subproblems.

Definition 7. Let N ∈ N be the number of subproblems in (MOP). Define the set [N ] = {1, 2, . . . , N} and
let i, k ∈ [N ]. For k ∈ [N ], let

(
N
k

)
denote the binomial coefficient, which gives the number of subsets of [N ]

of cardinality k. Furthermore, for every S ⊆ [N ], let mS ∈ Z>0.

1. We define a vector variable xi
S ∈ RmS for each i ∈ [N ] such that S ⊆ [N ] and i ∈ S. Note that S is an

index for the decision variable.

2. For i ∈ [N ], define the vector of vectors xi

(Nk)
= (xi

S)S⊆[N ]
|S|=k
i∈S

. We have

xi

(Nk)
∈
∏

S⊆[N ]
|S|=k
i∈S

RmS .
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3. In general, for each i ∈ [N ], let

xi = (xi

(NN)
, xi

( N
N−1)

, . . . , xi

(N1 )
) = (xi

(Nk)
)k=N,...,1

4. To reference a specific variable we write xS , where S ⊆ [N ]. If more specificity is needed, i.e., if the
subproblem of the variable needs to be denoted, we write xi

(Nk),S
.

5. We call variables xi

(NN)
global variables and xi

(N1 )
local variables. For 2 ≤ k ≤ N − 1, we call xi

(Nk)
quasi-global variables.

6. We have:

(a) xi

(Nk)
∈
∏

S⊆[N ]
|S|=k
i∈S

RmS ;

(b) xi = (xi

(NN)
, xi

( N
N−1)

, . . . , xi

(N1 )
) = (xi

(Nk)
)k=N,...,1 ∈

1∏
k=N

∏
S⊆[N ]
|S|=k
i∈S

RmS ;

(c) x = (x1, . . . , xN ) = (xi)i=1,...,N ∈
N∏
i=1

∏
S⊆[N ]
i∈S

RmS ;

(d) x = (xS)S⊆[N ]

7. In any notation, repetitions are dropped. In other words, any variables sharing the same index S ⊆ [N ],
are written only once.

Example 2. Suppose (AiO) has four subproblems, so N = 4. For the third subproblem, i = 3,

x3

(41)
= x3 x3

(42)
= (x13, x23, x34)

x3

(43)
= (x123, x134, x234) x3

(44)
= x1234.

Note that x3 = (x1234, x123, x134, x234, x13, x23, x34, x3). On the other hand, consider the second subproblem,
i = 2,

x2

(41)
= x2 x2

(42)
= (x12, x23, x24)

x2

(43)
= (x123, x124, x234) x2

(44)
= x1234.

Similarly, x2 = (x1234, x123, x124, x234, x12, x23, x24, x2). Observe that x2 and x3 have overlapping variables.
For example, x3

(43),123
= x2

(43),123
= x123. Finally, observe that

x = (x1234, x123, x124, x134, x234, x12, x13, x14, x23, x24, x34, x1, x2, x3, x4).

This notation is compact yet informative because it captures all possible locations of the decision variables
in the subproblems and therefore describes the relationship between subproblems of a complex system MOP.
Given the constant N denoting the number of subproblems, the index S ⊆ [N ] denotes which subproblems
the variable xS appears in.

We are now in a position to define the structure of the MOP under consideration. For i ∈ [N ], let

f i :
∏

S⊆[N ]
i∈S

RmS → Rpi and let ∅ ≠ Xi ⊆
∏

S⊆[N ]
i∈S

RmS . Let ∅ ≠ X ⊆
N∏
i=1

Xi. Then the All-in-One complex

multiobjective problem is the following.
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min
x

f(x) = [f1(x1), . . . , f i(xi), . . . , fn(xN )] (AiO)

s. t. x = (x1, . . . , xi, . . . , xN ) ∈ X

We let Y i = f i(Xi) for each i ∈ [N ] and Y = f(X).

3.2 Decomposition

We decompose (AiO) by duplicating the global and quasi-global variables in each subproblem. For i ∈ [N ],
the ith subproblem is given by the following.

min
zi
N ,...,zi

2,x
i

(N1 )

f i(ziN , . . . , zi2, x
i

(N1 )
) (SPi)

s. t. (ziN , . . . , zi2, x
i

(N1 )
) ∈ Xi

where zik = xi

(Nk)
for k ∈ {2, . . . , N}. We essentially take all of the variables, constraints, and objective

functions which have i in its index and include them in (SPi). The following results relate (weakly) efficient
solutions for (SPi) to (weakly) efficient solutions for (AiO).

Proposition 5. Let i ∈ [N ] and let (ẑiN , . . . , ẑi2, x̂
i

(N1 )
) be a weakly efficient solution for (SPi). If there exists

x̂j ∈ Xj for every j ∈ [N ] \ {i} such that x̂ = (ẑiN , . . . , ẑi2, x̂
i

(N1 )
, x̂j)j∈[N ]\{i} is feasible for (AiO), then x̂ is

a weakly efficient solution for (AiO).

Proof. Let (ẑiN , . . . , ẑi2, x̂
i

(N1 )
) ∈ Ew(X

i) and suppose there exists x̂j ∈ Xj for all j ∈ [N ] \ {i} such that x̂ =

(ẑiN , . . . , ẑi2, x̂
i

(N1 )
, x̂j)j∈[N ]\{i} is feasible for (AiO). Towards a contradiction, suppose x̂ ̸∈ Ew(X). Then there

exists x ∈ X such that [f1(x1), . . . , f i(xi), . . . , fN (xN )] < [f1(x̂1), . . . , f i(ẑiN , . . . , ẑi2, x̂
i

(N1 )
), . . . , fN (x̂N )]

which implies that f i(xi) < f i(ẑiN , . . . , ẑi2, x̂
i

(N1 )
), contradicting the weak efficiency of (ẑiN , . . . , ẑi2, x̂

i

(N1 )
) for

(SPi).

Proposition 6. For each i ∈ [N ], let (ẑiN , . . . , ẑi2, x̂
i

(N1 )
) be an εi-efficient solution for (SPi) with εi ∈ Rpi

≧ . If

for every i, j ∈ [N ], 2 ≤ k ≤ N and S ⊆ [N ] such that |S| =
(
N
k

)
and i, j ∈ S, it holds that ẑik,S = ẑjk,S = x̂S,

then x̂ = (x̂S)S⊆[N ] = (x̂1, . . . , x̂N ) is an ε = (ε1, . . . , εN )-efficient solution for (AiO).

Proof. For each i ∈ [N ] let (ẑiN , . . . , ẑi2, x̂
i

(N1 )
) ∈ E(Xi, εi) be such that for every i, j ∈ [N ], 2 ≤ k ≤

N and for every S ⊆ [N ] with |S| =
(
N
k

)
, we have that ẑik,S = ẑjk,S = x̂S . Towards a contradiction,

suppose x̂ = (x̂1, . . . , x̂N ) ̸∈ E(X, ε), with ε = (ε1, . . . , εN ). Then there exists x = (x1, . . . , xN ) ∈ X such
that [f1(x1), . . . , f i(xi), . . . , fN (xN )] ≤ [f1(x̂1) − ε1, . . . , f i(x̂i) − εi, . . . , fN (x̂N ) − εN ]. This implies that
there exists i ∈ [N ] such that f i(xi) ≤ f i(x̂i) − εi = f i(ẑiN , . . . , ẑi2, x̂

i

(N1 )
) − εi, contradicting the fact that

(ẑiN , . . . , ẑi2, x̂
i

(N1 )
) ∈ E(Xi, εi).

Corollary 2. For each i ∈ [N ], let (ẑiN , . . . , ẑi2, x̂
i

(N1 )
) be an efficient solution for (SPi). Suppose that for

every i, j ∈ [N ], 2 ≤ k ≤ N , and S ⊆ [N ] with |S| =
(
N
k

)
and i, j ∈ S, we have that ẑik,S = ẑjk,S = x̂S. Then

x̂ = (x̂S)S⊆[N ] = (x̂1, . . . , x̂N ) is an efficient solution for (AiO).

Proof. Note that being efficient is equivalent to being ε-efficient for ε = 0. Thus, let εi = 0 for all i ∈ [N ]
and apply the previous proposition.
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Proposition 7. Let x̂ = (x̂1, . . . , x̂N ) ∈ X. If x̂i is an efficient solution for (SPi) for every i ∈ [N ], then x̂
is an efficient solution for (AiO).

Proof. Let x̂ be defined as above and suppose x̂i ∈ E(Xi) for every i ∈ [N ]. Towards a contradiction, suppose
x̂ ̸∈ E(X). Then there exists x ∈ X such that [f1(x1), . . . , f i(xi), . . . , fN (xN )] ≤ [f1(x̂1), . . . , f i(x̂i), . . . , fN (x̂N )].
Thus, there exists i ∈ [N ] such that f i(x) ≤ f i(x̂i), contradicting the fact that for all i ∈ [N ], x̂i ∈ E(Xi).

Remark 3. Notice that in Proposition 5, we assume that we have a weakly efficient solution for a single
subproblem (SPi) such that we can find values for the rest of variables which make the concatenation of this
weakly efficient solution with these values feasible for (AiO). If this is the case, then it must be that this
concatenated vector must also be weakly efficient for (AiO). On the other hand, in Corollary 2, we only
assume that we have efficient solutions for each respective subproblem. If it happens that the duplicated
variables are all equal, this forces feasibility for (AiO), and therefore the concatenated solution must be
efficient for (AiO). Finally, in Proposition 7, we assume the feasibility of a solution for (AiO) first. If
it happens that the projection of this solution into the decision space of each subproblem lands it in the
respective efficient sets, then it must be that the solution is also efficient for (AiO).

4 Subproblem Tradeoffs

We apply the theory of Section 2 to construct an auxiliary multiobjective problem which measures the
tradeoffs between subproblems, as opposed to tradeoffs between objectives, of (AiO). The measurement of
tradeoffs between subproblems is accomplished by measuring the “distance” between the projection, into
the objective space of each subproblem, of the image of a feasible point for (AiO) and the Pareto set of each
subproblem. The goal is to select a feasible solution for (AiO) whose image is closest to the Pareto set of
each respective subproblem. As such, it would be natural to use a norm to measure this distance. However,
since norms are not order preserving, we turn to BASFs for measuring the distance. For each i ∈ [N ], let
σi : Rpi × Rpi → R be a (strict) BASF. The subproblem tradeoff problem is formulated as

min
x,s1,...,sN

[σ1(f
1(x1), s1), . . . , σN (fN (xN ), sN )] (SPTP)

s. t. x = (x1, . . . , xN ) ∈ X

s = (s1, . . . , sN ) ∈
N∏
i=1

P (Y i).

(SPTP) is a bilevel multiobjective optimization problem in which optimization with respect toN objective
functions is performed over the Pareto sets of the N subproblems of (AiO). We denote the feasible set of
(SPTP) by Ξ and the efficient set by E(Ξ). Similarly, the outcome set of (SPTP) is denoted by Σ and the
Pareto set by P (Σ). Furthermore, we call the ith component of the image of a feasible point (x, s) ∈ Ξ the

σi-value of (x, s) for i ∈ [N ]. Note that the new variables (s1, . . . , sN ) ∈
∏N

i=1 P (Y i) are reference points
for each BASF. In particular, for i ∈ [N ], si is a Pareto point for subproblem i. Furthermore, observe that
there are N different sets of reference points.

The following propositions present important properties of (SPTP), which we use to define a notion of
subproblem tradeoffs.

Proposition 8. The ideal point of (SPTP) is nonnegative.

Proof. Observe that for each i ∈ [N ] the reference points for σi is a Pareto outcome for subproblem i.
Furthermore, ProjXi(X) ⊆ Xi. Thus, for each i ∈ [N ], min{σi(f

i(xi), si)|(x1, . . . , xi, . . . xN ) ∈ X, si ∈
P (Y i)} = min{σi(f

i(xi), si)|xi ∈ ProjXi(X), si ∈ P (Y i)} ≥ min{σi(f
i(xi), si)|xi ∈ Xi, si ∈ P (Y i)},

which by Corollary 1, min{σi(f
i(xi), si)|xi ∈ Xi, si ∈ P (Y i)} = 0. Therefore, the ideal point of (SPTP) is

nonnegative.

Remark 4. Observe that Proposition 8 ensures that Σ is entirely nonnegative. Put another way, the set {0}
dominates Σ, {0} ≦ Σ.

9



Lemma 3. For all i ∈ [N ], let σi be a strict BASF and let (x̂, ŝ) be feasible for (SPTP). For any i ∈ [N ],
σi(f

i(x̂i), ŝi) = 0 if and only if f i(x̂i) = ŝi.

Proof. Since ŝi ∈ P (Y i), it must be that f i(x̂i) = ŝi. By Proposition 2, σi(f
i(x̂i), ŝi) = 0 if and only if

f i(x̂i) ∈ ∂(ŝi − Rpi

≧ ).

Proposition 9. The following statements are equivalent.

1. P (Σ) = {0}.

2. If (x̂, ŝ) is efficient for (SPTP), then x̂i is efficient for (SPi) for all i ∈ [N ].

3. For any ω ∈ RN
> , the optimal value of the weighted-sum scalarization of (SPTP) is 0.

Proof. Proof. (1) ⇐⇒ (2) : First, suppose P (Σ) = {0}. Thus for all (x̂, ŝ) ∈ E(Ξ) and for every i ∈ [N ],
σi(f

i(x̂i), ŝi) = 0. Since σi is a BASF, it must be that f i(x̂i) = ŝi and since ŝi ∈ P (Y i) then x̂i ∈ E(Xi).
Conversely, let z ∈ P (Σ). Then there exists (x̂, ŝ) ∈ E(Ξ) such that z = [σ1(f

1(x̂1), ŝ1), . . . , σN (fN (x̂N ), ŝN )].
By assumption, x̂i ∈ E(Xi) for each i ∈ [N ]. Thus, the point (x̂, f(x̂)) is feasible for (SPTP). Note that by
Proposition 2, 0 = [σ1(f

1(x̂1), f1(x̂1)), . . . , σN (fN (x̂N ), fN (x̂N ))] ≦ [σ1(f
1(x̂1), ŝ1), . . . , σN (fN (x̂N ), ŝN )] =

z. Since (x̂, ŝ) ∈ E(Ξ), equality must hold. So z = 0.
(1) ⇐⇒ (3) : Suppose P (Σ) = {0}. Let (x̂, ŝ) be an optimal solution for the weighted-sum scalar-

ization of (SPTP) with weight vector ω ∈ RN
> . By [19], (x̂, ŝ) is an efficient solution of (SPTP). Thus

[σ1(f
1(x̂1, ŝ1), . . . , fN (fN (x̂N ), ŝN )] = 0 since P (Σ) = {0}. This implies that the optimal value of the

weighted-sum scalarization is ω1σ1(f
1(x̂1), ŝ1) + · · · + ωNσN (fN (x̂N ), ŝN ) = 0. Conversely, suppose that

the optimal value of the weighted-sum scalarization of (SPTP) with weight vector ω ∈ RN
> is 0. Let (x̂, ŝ)

be an optimal solution for the weighted-sum scalarization. Then we have that ω1σ1(f
1(x̂1), ŝ1) + · · · +

ωnσN (fN (x̂N ), ŝN ) = 0. Since for all (x, s) ∈ Ξ, (σ1(f
1(x1), s1), . . . , σN (fN (xN ), sN )) ≧ 0, it must be that

σi(f
i(x̂i), ŝi) = 0 for every i ∈ [N ]. Furthermore, since this is holds for every ω ∈ RN

> , it must be that
P (Σ) = {0}.

Recalling that the purpose of decomposition is to aid decision makers in finding suitable efficient solutions
for their original problem modeled by (AiO), the next proposition guarantees that efficient solutions for
(SPTP) are in fact efficient for (AiO).

Proposition 10. For each i ∈ [N ], let σi : Rpi × Rpi → R and (x̂, ŝ) be feasible for (SPTP). If for every
i ∈ [N ]:

1. σi is order preserving and (x̂, ŝ) is a strictly efficient solution for (SPTP) then x̂ is a strictly efficient
solution for (AiO).

2. σi is strictly order preserving and (x̂, ŝ1, . . . , ŝN ) is a weakly efficient solution for (SPTP), then x̂ is a
weakly efficient solution for (AiO).

3. σi is strongly order preserving and (x̂, ŝ) is a weakly efficient solution for (SPTP) then x̂ is an efficient
solution for (AiO).

Proof. We prove part 1 and note that parts 2 and 3 follow analogously. Let σi : Rpi × Rpi → R be order
preserving for every i ∈ [N ] and let (x̂, ŝ) ∈ Es(Ξ). Towards a contradiction, suppose x̂ ̸∈ Es(X). Then
there exists x = (x1, . . . , xN ) ∈ X with x ̸= x̂ such that for every i ∈ N, f i(xi) ≦ f i(x̂i). Since σi is order
preserving for every i ∈ [N ], it must be that σi(f

i(xi), ŝi) ≦ σi(f
i(x̂i), ŝi). Note that (x, ŝ) ̸= (x̂, ŝ). But

this contradicts the fact that (x̂, ŝ) is a strictly efficient solution for (SPTP).

Remark 5. Proposition 10 implies that coordination can, in principle, be performed without a (strict) BASF,
since only (strictly/strongly) order preserving is needed to ensure efficiency for (AiO). However, in this case
Proposition 3 and Proposition 8 do not hold and (SPTP) loses the unique property that for each i ∈ [N ],
σi(f

i(x), si) ≥ 0 for all x ∈ X and for all si ∈ P (Y i). It is the nonnegativity of Σ guaranteed by the use of
BASFs which allows for subproblem tradeoff analysis, which we develop in what follows.
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The primary utility of (SPTP) is seen in the objective functions. For every subproblem i ∈ N , the value
of σi(f

i(xi), si) serves as a measurement of the performance of an (AiO) feasible solution, xi, for subproblem
i with respect to the Pareto set, P (Y i), of this subproblem. An efficient solution (x̂, ŝ) for (SPTP) provides
a feasible solution x̂ to (AiO) and a Pareto point ŝi for (SPi) that is closest to f i(x̂i) with respect to the
BASF σi. The best performance is achieved when x̂i is efficient for subproblem i, that is, f i(x̂i) = ŝi. As
indicated in Proposition 9, the case when all subproblems perform at their best can be discovered by solving
the weighted-sum scalarization of (SPTP) for any positive weight vector. Additionally, (SPTP) allows the
use of different BASFs for the subproblems, which facilitates the application of different preferences to every
subproblem or the participation of multiple DMs in the decision process.

Given the properties of (SPTP), we are ready to define subproblem tradeoffs.

Definition 8. Let i, j ∈ [N ] with i ̸= j and (x̂, ŝ) ∈ Ξ be a(n) (weakly) efficient solution for (SPTP). Then
if σj(f

j(x̂j), f j(ŝj)) ̸= 0,

ST ij(x̂, ŝ) =
σi(f

i(x̂i), ŝi)

σj(f j(x̂j), ŝj)

is the subproblem tradeoff at (x̂, ŝ) with respect to subproblems i and j.

Remark 6. There are four cases for the value of ST ij(x̂, ŝ).

Case 1: ST ij(x̂, ŝ) = 0: x̂ is efficient for subproblem i but not subproblem j;

Case 2: 0 < ST ij(x̂, ŝ) < 1: x̂ performs “better” in subproblem i than in subproblem j;

Case 3: ST ij(x̂, ŝ) = 1: there is no tradeoff between subproblem i and subproblem j, i.e., x̂ performs “equally
well” in subproblem i as in subproblem j;

Case 4: ST ij(x̂, ŝ) > 1: x̂ performs “worse” in subproblem i than in subproblem j.

The subproblem tradeoffs compare the performance of an (AiO)-feasible solution between two subprob-
lems in their entirety because the BASF associated with each subproblem measures the performance of that
solution with respect to each subproblem’s Pareto set. Furthermore, the subproblem tradeoffs may serve as
additional information supporting the decision stage of multiobjective optimization. Utilizing these tradeoffs,
DMs may approach the decision problem more holistically than when considering only standard tradeoffs and
individual objective functions. Thus, even if decomposition is not needed for computational reasons, it can
still be beneficial for a DM because decomposition gives her access to measuring the subproblem tradeoffs
which are otherwise unavailable.

4.1 A Mixed-Binary Formulation of (SPTP)

As recognized in Section 1, bilevel multiobjective optimization problems are challenging to solve. However,
given the benefits of (SPTP), we suggest a pragmatic reformulation of (SPTP) which finds an ε-efficient
solution of (SPTP). This reformulation is motivated by the availability of a variety methods for efficiently
finding a finite representations of the Pareto sets P (Y i) ([16, 25, 27]) and the ubiquity of powerful computa-
tional tools that are available to DMs. The reformulation introduces auxiliary binary variables which select
a reference point from a representation of the Pareto set of each subproblem.

Let i ∈ [N ] and Pi = {pi,1, . . . , pi,j , . . . , pi,|Pi|} ⊆ P (Y i) be a finite subset of P (Y i). Let γi ∈ {0, 1}|Pi|

be such that γi
j = 1 if the jth element of Pi is selected as a reference point, and γi

j = 0 otherwise, for

1 ≤ j ≤ |P|i. Then the reformulation of (SPTP) is the following.
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min
x1,...,xN

s1,...,sN

γ1,...,γN

[σ1(f
1(x1), s1), . . . , σN (fN (xN ), sN )] (MB-SPTP(

∏N
i=1 Pi))

s. t. x = (x1, . . . , xN ) ∈ X (1)

si =

|Pi|∑
j=1

γi
jp

i,j (2)

|Pi|∑
j=1

γi
j = 1 (3)

γi ∈ {0, 1}|P
i| (4)

i ∈ [N ] (5)

We denote the feasible set and outcome set of (MB-SPTP(
∏N

i=1 Pi)) by ΞP and ΣP , respectively. In (1),
we ensure that x is feasible for (AiO), while constraints (2) and (3) select the reference point. In particular,
(2) forces the reference point si to be equal to a Pareto point from the finite set of Pareto points in Pi, while
(3) ensures that only one Pareto point is selected. The following propositions show that an efficient solution

to (MB-SPTP(
∏N

i=1 Pi)) is ε-efficient for (SPTP) for a specified value of ε ∈ RN
≧ .

Proposition 11. If (x̂, ŝ, γ̂) is an efficient solution for (MB-SPTP(
∏N

i=1 Pi)) then (x̂, ŝ) is an ε-efficient
solution for (SPTP), where ε ∈ RN

≧ with εi = max{σ1(f
1(x̂1), f1(ŝ1)), . . . , σN (fN (x̂N ), fN (ŝN ))} for all

i ∈ [N ].

Proof. Let (x̂, ŝ, γ̂) be an efficient solution for (MB-SPTP(
∏N

i=1 Pi)) and let ε be defined as above. Towards a
contradiction, suppose (x̂, ŝ) is not an ε-efficient solution for (SPTP). Then there exists (x, s) ∈ Ξ such that
[σ1(f

1(x1), f1(s1)), . . . , σN (fN (xN ), fN (sN ))] ≤ [σ1(f
1(x̂1), f1(ŝ1)) − ε1, . . . , σN (fN (x̂N ), fN (ŝN )) − εN ].

Note that for each i ∈ N , σi(f
i(x̂i), f i(ŝi)) ≤ εi. Thus, [σ1(f

1(x1), f1(s1)), . . . , σN (fN (xN ), fN (sN ))] ≤
[σ1(f

1(x̂1), f1(ŝ1)) − ε1, . . . , σN (fN (x̂N ), fN (ŝN )) − εN ] ≦ 0. But since (x, s) is feasible for (SPTP), this
contradicts the fact that 0 ≦ P (Σ). Thus, (x̂, ŝ) must be ε-efficient.

Proposition 12. Every efficient solution of (MB-SPTP(
∏N

i=1 Pi)) is an ε-efficient solution of (SPTP),
where ε ∈ RN

≧ with εi = max{σi(f
i(xi), si) | (x, s) ∈ E(ΞP)}, for i ∈ [N ].

Proof. Let (x̂, ŝ, γ̂) be an efficient solution for (MB-SPTP(
∏N

i=1 Pi)) and define ε ∈ RN by

εi = max{σi(f
i(xi), si) | (x, s) ∈ E(ΞP)}

for each i ∈ [N ]. Towards a contradiction, suppose (x̂, ŝ) is not ε-efficient for (SPTP). Then there exists
(x, s) ∈ Ξ such that [σ1(f

1(x1), s1), . . . , σN (fN (xN ), sN )] ≤ [σ1(f
1(x̂1), ŝ1)− ε1, . . . , σN (fN (x̂N ), ŝN )− εN ].

By definition of ε, for each i ∈ [N ], σi(f
i(x̂i), ŝi) ≤ εi. Thus, [σ1(f

1(x1), s1), . . . , σN (fN (xN ), sN )] ≤
[σ1(f

1(x̂1), ŝ1) − ε1, . . . , σN (fN (x̂N ), ŝN ) − εN ] ≦ 0, which contradicts that 0 ≦ Σ. Therefore, (x̂, ŝ) is
ε-efficient.

We proceed to show that as Pi grows, thus providing better representations of P (Y i), the ε-efficient so-

lutions found by (MB-SPTP(
∏N

i=1 Pi)) has that ε goes to zero. In the remaining portions of this section, we
use the following notation. For every i ∈ [N ], let Pi,Qi ⊆ P (Y i) be nonempty finite sets such that Pi ⊂ Qi.

Without loss of generality, assume that Pi = {pi,1, . . . , pi,|Pi|} andQi = {pi,1, . . . , pi,|Pi|, qi,|P
i|+1, . . . , qi,|Q

i|}.
Let ΞP be the feasible set and ΣP be the outcome set for (MB-SPTP(

∏N
i=1 Pi)). Similarly, let ΞQ be the

feasible set and let ΣQ be the outcome set for (MB-SPTP(
∏N

i=1 Qi).

Lemma 4. For all (x, s, γ) feasible for (MB-SPTP(
∏N

i=1 Pi)), there exists γ̃ ∈ {0, 1}|Qi| such that (x, s, γ̃)

is feasible for (MB-SPTP(
∏N

i=1 Qi)).
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Proof. Let (x, s, γ) ∈ ΞP . Define γ̃ by the following: for each i ∈ [N ],

γ̃i =

{
γi
j , if 1 ≤ j ≤ |Pi|

0, |Pi|+ 1 ≤ j ≤ |Qi|.

Indeed, for each i ∈ [N ],

si =

|Pi|∑
j=1

γi
j · pi,j +

|Qi|∑
j=|Pi|+1

0 · qi,j .

Therefore, (x, s, γ̃) ∈ ΞQ.

Remark 7. Observe that ΣP is a finite set, therefore it is compact. This means that ΣP is externally stable.
Thus, for any y ∈ ΣP , there exists y′ ∈ P (ΣP) such that y′ ≦ y .

Lemma 5. The following two statements hold.

1. ΣP ⊆ ΣQ

2. P (ΣP) + RN
≧ ⊆ P (ΣQ) + RN

≧

Proof. 1. Let y ∈ ΣP . Then there exists (x, s, γ) ∈ ΞP such that y = [σ1(f
1(x1), s1), . . . , σN (fN (xN ), sN )].

By Lemma 4, there exists γ′ such that (x, s, γ′) ∈ ΞQ. Therefore, y = [σ1(f
1(x1), s1), . . . , σN (fN (xN ), sN )] ∈

ΣQ.

2. Let y ∈ P (ΣP) + RN
≧ . Then there exists yP ∈ P (ΣP) and dP ∈ RN

≧ such that y = yP + dP . Since

P (ΣP) ⊆ ΣP ⊆ ΣQ, then yP ∈ ΣQ. Therefore, either yP ∈ P (ΣQ) or yP ∈ ΣQ\P (ΣQ). If yP ∈ P (ΣQ)
then y = yP + dP ∈ P (ΣQ) + RN

≧ . On the other hand, let yP ∈ ΣQ \ P (ΣQ). Since ΣQ is finite and

therefore compact, P (ΣQ) is externally stable. Thus, there exists yQ ∈ P (ΣQ) and dQ ∈ RN
≧ such that

yP = yQ + dQ. Therefore, y = yP + dP = yQ + (dQ + dP), which means y ∈ P (ΣQ) + RN
≧ .

Proposition 13. For every efficient solution (x, s, γ) for (MB-SPTP(
∏N

i=1 Pi)), there exists an efficient

solution (x̂, ŝ, γ̂) for (MB-SPTP(
∏N

i=1 Qi)) such that

[σ1(f
1(x̂1), ŝ1), . . . , σN (fN (x̂N ), ŝN ] ≦ [σ1(f

1(x1), s1), . . . , σN (fN (xN ), sN )].

Proof. Let (x, s, γ) ∈ E(ΞP) and let p = [σ1(f
1(x1), s1), . . . , σN (fN (xN ), sN )]. By Lemma 5, P (ΣP)+RN

≧ ⊆
P (ΣQ) + RN

≧ , and so it must be that p ∈ P (ΣQ) + RN
≧ . So there exists q ∈ P (ΣQ) such that q ≦ p. Since

q ∈ P (ΣQ), there exists (x̂, ŝ, γ̂) ∈ E(ΞQ) such that q = [σ1(f
1(x̂1), ŝ1), . . . , σN (fN (x̂N ), ŝN )]. Therefore, it

must be that [σ1(f
1(x̂1), ŝ1), . . . , σN (fN (x̂N ), ŝN )] ≦ σ1(f

1(x1), s1), . . . , σN (fN (xN ), sN )]

Remark 8. For i ∈ [N ], Proposition 13 shows that as |Pi| grows, ε decreases. In particular, the better

the attained representation of P (Y i), the better (MB-SPTP(
∏N

i=1 Pi)) will approximate the efficient set
of (SPTP). To find a representation of P (Y i), there are a variety of methods available in the literature,

including exact methods and genetic algorithms ([7, 2]). Although (MB-SPTP(
∏N

i=1 Pi)) is a multiobjective
mixed-binary optimization problem, there are several methods in the literature for solving such problems
and we refer the reader to a survey of such methods (specifically for the mixed-binary linear case) in [22].

4.2 (SPTP) in the Linear Case

When (AiO) is a linear problem, we may express (SPTP) as a single-level optimization problem. This is
possible since the Pareto set of a linear multiobjective problem is the union of maximal nondominated faces
of the outcome set. This observation makes it possible for each reference point si, i ∈ [N ], to be written
as a convex combination of the extreme points of a maximal nondominated face, where the specific face is
selected by a binary variable.
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We formulate the linear (SPTP) as follows. Since we assume that the (AiO) is linear, for each i ∈ [N ]
we may write f i(xi) = Cixi, for some matrix Ci of appropriate dimension. Without loss of generality, let
the feasible set be X = {x = (x1, . . . , xN ) | Ax = b, x ≧ 0}, for real-valued matrix A and vector b, both
also of appropriate dimensions. For each i ∈ [N ], let Ni be the number of maximal faces defining the Pareto
set of subproblem i and let ti,j be the number of extreme points defining the jth face of subproblem i, for
j ∈ [Ni]. Define Ei,j = {ei,j,1, . . . , ei,j,ti,j} to be the set of extreme points of the jth maximal nondominated

face of subproblem i. Note that

Ni⋃
j=1

conv
(
Ei,j

)
= P (Y i). Define binary variables

γi,j =

{
1, if face j is selected,

0, otherwise
.

for 1 ≤ j ≤ Ni. In particular, let γi = (γi,1, . . . , γi,Ni). Finally, define variables 0 ≤ λi,j,k ≤ 1 to be the
weight for the kth extreme point in the convex combination defining the jth maximal face of the Pareto set
of subproblem i. Let λi be the vector of all weights of all extreme points of all maximal nondominated faces
in subproblem i. Then (SPTP) in the linear case is

min
x1,...,xN

s1,...,sN

λ1,...,λN

γ1,...,γN

[
σ1(C

1x1, s1), . . . , σN (CNxN , sN )
]

(L-SPTP)

s. t. Ax = b (6)

si =

Ni∑
j=1

γi,j

(
ti,j∑
k=1

λi,j,kei,j,k

)
, (7)

ti,j∑
k=1

λi,j,k = 1 (8)

0 ≤ λi,j,k ≤ 1 (9)

Ni∑
j=1

γi,j = 1 (10)

γi,j ∈ {0, 1} (11)

i ∈ [N ], j ∈ [Ni], k ∈ [ti,j ] (12)

where ei,j,k ∈ Ei,j for all i ∈ [N ], j ∈ Ni, k ∈ [ti,j ]. In (L-SPTP), we define the objective functions,
which are the BASFs scalarizing each subproblem. Constraint (6) ensures that x is feasible for (AiO).
The constraint in (7) selects the reference point in subproblem i, while constraints (8)-(9) ensure that the
reference point si is in fact a convex combination of extreme points and constraints (10)-(11) ensure that only
one Pareto point is selected for the reference point. Observe that in the case of biobjective subproblems,
maximal faces may be found using the parametric simplex method ([11]). Thus, in the linear case, it is
beneficial to decompose (AiO) into biobjective subproblems.

We acknowledge that (L-SPTP), although not bilevel, includes N bilinear constraints. However, with a
suitable choice of σ1, . . . , σN and scalarization of (L-SPTP), no additional nonlinear terms will be introduced
to the resulting single-objective problem. Furthermore, modern computational solvers, such as Gurobi, are
powerful enough to handle such constraints. There are also extensive studies on bilinear optimization in the
single-objective case ([1, 21, 18, 6]).

Having completed the presentation of the theory, in the subsequent sections we employ this theory in a
methodology to support decision making.
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5 Coordination

Coordination ensures that the efficient solutions found in decomposition and (SPTP), respectively, satisfy
the preferences of the DM. In this section, we consider three methods of coordination. First, we use (SPTP)
to autonomously coordinate all subproblems. This autonomous coordination is independent of DM par-
ticipation. We then present hierarchical coordination, an extension of the method in [15] and [47], which
uses a preferred outcome as an “anchor” point and uses relaxations, which are proposed by the DM, on
its performance to find improved solutions in the other subproblems, all the while remaining ε-efficient for
the anchor subproblem. Observe that hierarchical coordination does require the active participation of the
DM. Finally, we propose a hybrid decision-making procedure which uses autonomous coordination to suggest
anchor points and relaxations to the DM to begin the interactive hierarchical coordination process.

5.1 Autonomous Coordination

In addition to measuring the tradeoffs between subsystems, we may use (SPTP) to coordinate the subprob-
lems of (AiO) to obtain its efficient solutions without directly solving (AiO). In Algorithm 1, we present
autonomous coordination. First, (AiO) is given and suitable (strict) BASFs σ1, . . . , σN are provided. In
step 2, (AiO) is decomposed into N subproblems. (SPTP) is formulated and solved in Step 3. In Step 4,
a DM may use any MCDM tool to explore the Pareto set P (Σ) to select an outcome which is coordinated
between all of the subproblems. Finally, Step 5 outputs the efficient solution (x̂, ŝ), where x̂ is guaranteed
to be (weakly/strictly) efficient for (AiO) by Proposition 10, and the components of ŝ are Pareto points for
each respective subproblem.

Algorithm 1 Autonomous Coordination.

1: input: All-in-One multiobjective optimization problem and BASFs σ1, . . . , σN .
2: Decompose (AiO) into subproblems (SP1), . . . , (SPN ).
3: Solve (SPTP) and let P (Σ) be the Pareto set of (SPTP) (or a representation of the Pareto set).

min
x,s1,...,sN

[σ1(f
1(x1), s1), . . . , σN (fN (xN ), sN )] (SPTP)

s. t. x = (x1, . . . , xN ) ∈ X

s = (s1, . . . , sN ) ∈
N∏
i=1

P (Y i).

4: Select a point of interest in P (Σ), with preimage (x̂, ŝ).
5: output: (x̂, ŝ). By Proposition 10, x̂ is a(n) (weakly/strictly) efficient solution for (AiO). Furthermore,

for ŝ = (ŝ1, . . . , ŝN ), ŝi is an efficient solution for (SPi), i ∈ [N ].

5.2 Hierarchical Coordination

We extend the hierarchical coordination as proposed in [15] and [47] for the new case presented here of global,
quasi-global, and local variables with subproblem feasible sets Xi, i ∈ [N ]. Without loss of generality, we
assume that Subproblem 1 is preferred to Subproblem 2, Subproblem 2 is preferred to Subproblem 3, and so
on. The hierarchical procedure is as follows. The procedure coordinates subproblems (SP1), . . . , (SPk), 1 ≤
k ≤ N , using DM selected anchor points and relaxations in each of the k subproblems. In general, the kth

coordination problem, for k ∈ {2, . . . , N}, is given by the following.
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min
x1,...,xk

fk(xk) (HCOP1···k)

s. t. (x1, . . . , xk) ∈ X1 × · · · ×Xk

f j(xj) ≦ f j(xj∗) + εj∗

j ∈ {1, . . . , k − 1}

Note that xj∗ is a component of an efficient solution for (HCOP1···j) for each j ∈ {2, . . . , k − 1}, while
x1∗ is an efficient solution for (SP1). Furthermore, εj∗ ∈ Rpj

≧ for each j ∈ {1, . . . , k − 1}. The following

proposition shows how weakly efficient solutions for (HCOP1···k) can be used to construct weakly efficient
solutions for (AiO).

Proposition 14. Let i ∈ {2, . . . , N} and let (x̂1, . . . , x̂i) be a weakly efficient solution for (HCOP1···k) such
that there exists x̂i+1, . . . , x̂N ∈ Rni+1 × · · · × RnN such that x̂ = (x̂1, . . . , x̂i, x̂i+1, . . . , x̂N ) is feasible for
(AiO). Then x̂ is a weakly efficient solution for (AiO).

Proof. Towards a contradiction, suppose (x̂1, . . . , x̂i, x̂i+1, . . . , x̂N ) ̸∈ Ew(X). Then there exists x = (x1, . . . , xN ) ∈
X such that [f1(x1), . . . , f i(xi), . . . , fN (xN )] < [f1(x̂1), . . . , f i(x̂i), . . . , fN (x̂N )] Observe that (x1, . . . , xk−1, xk)
is feasible for (HCOP1···k) since for each j ∈ {1, . . . , k − 1}, f j(xj) < f j(x̂j) ≦ f j(xj∗) + εj∗, and
(x1, . . . , xk) ∈ X1 × · · · × Xk. But this contradicts the weak efficiency of (x̂1, . . . , x̂k) for (HCOP1···k).
Thus, it must be that (x̂1, . . . , x̂i, . . . , x̂N ) is a weakly efficient solution for (AiO).

Table 1 presents a comparison of autonomous and hierarchical coordination contrasting computational
and a priori requirements for both procedures.

5.3 Hybrid Coordination

Autonomous and hierarchcical coordination can be combined into an interactive decision-making procedure
by using autonomous coordination to suggest anchor points and relaxations to the DM for hierarchical
coordination. A proposed decision making procedure is listed in Algorithm 2.

In step 1, the DM inputs (AiO) and a collection of BASFs. Step 2 decomposes the problem, while Step
3 finds at least a representation of P (Σ), which will be used to formulate the subproblem rankings and
selection of the first anchor point and relaxation in Steps 4 and Step 6. Notably, Steps 6-7 select anchor
points, relaxations, and find the (weak) Pareto set of the first hierarchical coordination problem until the
DM is satisfied with the performance in subproblems 1 and 2. Next is the main loop, Steps 9-16. During
this loop, the DM progressively solves the autonomous coordination problem with respect to the remaining
objective functions (Step 11), and selects anchor points, relaxations, and solves (HCOP1···i+1) until the DM
is satisfied (Steps 13-14). At the end, the output is a preferred (weakly) efficient solution for (HCOP1···N ),
which is guaranteed to be (weakly) efficient for (AiO) by Proposition 14.

6 Application

The generic nature of the D&C methodology presented here provides a DM with flexibility in application.
For instance, notice that the theory for BASFs, decomposition, and coordination is agnostic concerning the
convexity of the underlying multiobjective problem. Thus, in principle, given a multiobjective problem which
is decomposable as described in Section 3, the DM may readily apply the D&C methodology presented here
so long as she has access to sufficiently powerful solvers and computational tools.

To see this D&C methodology at work, we apply our theory of decomposition and coordination to a
case of humanitarian aid by extending the Continuous Multiobjective Multidimensional Knapsack Problem
([28, 17, 4]). First, we describe the mathematical structure of this extension of the knapsack problem and
then apply it to a manufactured case study of humanitarian aid management.
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Algorithm 2 Hybrid Coordination.

1: input: All-in-One multiobjective optimization problem and BASFs σ1, . . . , σN .
2: Decompose (AiO) into subproblems (SP1), . . . , (SPN ).
3: Solve (SPTP). (Or find representation of P (Σ).)
4: Select a point of interest σ̂ = (σ1(f

1(x̂), ŝ1), . . . , σN (fN (x̂), ŝN )) ∈ P (Σ). Rank subproblems according
to increasing value of the components of σ̂. Without loss of generality, assume (SP1) ≻ · · · ≻ (SPN ).

5: repeat
6: Select an efficient solution (x̂, ŝ) for (SPTP). Define ŝ1 as the anchor point and ε = (|f11(x̂) −

ŝ11|, . . . , |f1p1(x̂)− ŝ1p1 |) as the relaxation for (HCOP12).
7: Solve (HCOP12).
8: until Decision maker is satisfied with (HCOP12)
9: for i = 2, . . . , N − 1 do

10: Let P (Y (HCOP1···i)) be the Pareto set of (HCOP1···k).
11: Solve

min
x,si,...,sN

 σi(f
i(x), si)
...

σN (fN (xN ), sN )

 (SPTPi···N )

s. t. x = (x1, . . . , xN ) ∈ X

fk(xk) ≦ ŝk + εk k ∈ {1, . . . , i− 1}
si ∈ P (Y (HCOP1···i))

sℓ ∈ P (Y ℓ) ℓ ∈ {i+ 1, . . . , N}

12: repeat
13: Select a(n) (weakly) efficient solution (x̂, ŝi, . . . , ŝN ) for (SPTPi···N ). Define ŝi as the anchor point

and ε = (|f i1(x̂)− ŝi1|, . . . , |f ipi(x̂)− ŝipi |) as the relaxation.
14: Solve (HCOP1···i+1).
15: until Decision maker is satisfied with (HCOP1···i+1)
16: end for
17: output: x̂, a preferred weakly efficient solution of (HCOP1...N ), and ŝ, a vector of anchor point in the

Pareto set of each subproblem. Any weakly efficient solution for (HCOP1···N ) is weakly efficient for
(AiO) by Proposition 14.
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6.1 Structure of Continuous Multiobjective Multidimensional Knapsack Prob-
lem with Complicating Constraints

The Continuous Multiobjective Multidimensional Knapsack Problem (CMOMDKP) modifies the classical
knapsack problem in three key ways. First, it makes all variables continuous rather than discrete. Next, the
scalar knapsack capacity constraint is extended to a vector constraint, which models the capacities of each
dimension of the knapsack. It also adds more objective functions which model, for example, maximizing
the value of items packed and minimizing costs to pack the chosen items. In this work, we consider another
extension to CMOMDKP: the addition of complicating, but useful, constraints, which can, for example,
model requirements on the minimum number of items that are packed in a dimension of the knapsack. The
generic form of CMOMDKP with complicating constraints may be written in the following form.

min Fx (13a)

s. t. Wx ≦ bcap (13b)

Ax ≧ breq (13c)

0 ≦ x ≦ u (13d)

In Equation (13a), the matrix F describes the objective functions while in Equation (13b), the matrix W
and vector bcap yield the standard CMOMDKP weight and capacity constraints for each dimension of the
knapsack. However, Equation (13c) introduces the matrix A and the vector breq to describe the complicating
constraints. Finally, Equation (13d) describes inventory bounds on the items at hand.

Depending on the locations of the variables in CMOMDKP, the DM may be able to re-write the problem
in the decomposable formulation presented in Section 3. If such a transformation is possible, then all of
the theory of BASFs, decomposition, and coordination shown here may be applied to CMOMDKP. In the
next section, we consider an application of CMOMDKP to a humanitarian aid management problem. This
application has the underlying mathematical structure for the proposed decomposition, and we use the
theory of BASFs and the coordination procedure developed here to work through a possible decision-making
scenario.

6.2 Application to Humanitarian Aid

In an emergency crisis, delivering humanitarian aid to an affected area is of critical importance. We show
that our decision making procedure is a helpful tool for making such consequential decisions.

We consider a scenario where a humanitarian aid agency must provide a rapid response to a natural
disaster by sending an immediate delivery of goods to the affected area. Once the area is secured, more aid
will follow. The agency has three modes of transportation: sea (i = 1), land (i = 2), and air (i = 3). They
also have various goods that can be delivered in different combinations on each mode of transportation.
Figure 4 shows how the goods may be shipped on each transportation type. Each mode of transportation
has its own value of, and incurs its own cost on, the goods delivered.

Our D&C methodology is germane to this problem since the DM is uninterested in how the goods are to
be packed; rather, she is only interested that the goods be delivered, albeit in such a way that the value of
the goods for the victims is maximized and the cost of delivery is minimized. Thus, the DM does not want
to compare tradeoffs between individual cost and value functions, but rather wants to compare tradeoffs
between pairs of cost and value functions. Since each mode of transportation has its own pair of cost and
value functions, this amounts to the DM performing an analysis between transportation systems. This
implies the need for a higher-level view for the DM to analyze, which is precisely what subproblem tradeoffs
provide. Each subproblem corresponds to a different mode of transportation, and the DM will select the
mode of transportation, or subproblem, that she finds to be the most beneficial for the situation at hand.

6.2.1 Mathematical Structure of Humanitarian Aid Problem

Many humanitarian problems have been modeled by classic operations research models, including variations
of the knapsack problem ([10, 42, 45]). Here, we model this problem with an instance of CMOMDKP. Each
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dimension of the knapsack models a specific mode of transportation, while each objective measures either
the cost or value of the goods delivered with respect to the mode of transportation. The constraints of the
knapsack problem ensure that no one mode of transportation is over-packed, but we note that two modes
of transportation have some complicating constraints, which require that at least some number of goods be
packed.

Observe that this problem has the structure necessary for decomposition and coordination to be applied.
We define the AiO as the knapsack problem presented in Section 6.1. The values for F,W,A, bcap, breq, and u
and the strict BASFs used for autonomous and hybrid coordination are in Table 2. We adopt the notation
in Section 3 to make the decomposable structure apparent and the assignment of goods to variables is shown
in Table 3. Table 4 shows the decomposition of AiO into subproblems. Note that in the decomposition, the
functions denoted by ci, for i = 1, 2, 3, are cost functions, which model the cost to pack items in knapsack i,
while each vi models the value of items packed in knapsack i.

In what follows, we implement CMOMDKP and perform all numerical optimization using JuMP v1.22.2

in Julia ([31]) and Gurobi 11.0.2 as our optimization solver.

6.2.2 Analysis with Autonomous Coordination

To perform autonomous coordination, the DM solves (L-SPTP) as described in Section 4.2. In Figure 5, the
blue circles are the Pareto extreme points and the blue lines connecting them are the maximal nondominated
faces in the outcome space of each subproblem. Of the Pareto points of (L-SPTP), the DM has selected 3
points of interest. These three points are denoted in the legend of Figure 5. Table 5 lists the preimages and
outcome values, while Table 6 lists the subproblem tradeoff values and σi-values for each of these points.

Figure 5 provides helpful information for the DM since it shows the image of Point 1, (x̂, ŝ), Point 2,
(x̃, s̃), and Point 3, (x̆, s̆) in each subproblem. For example, consider Point 1. For each Subproblem i, i ∈ [3],
Point 1 is represented graphically by two points: ŝi and f i(x̂i). The former is plotted on the Pareto set
of the subproblem, while the latter is connected by a black line (for visual purposes only). However, in
Subproblem 2, f2(x̂2) is on the Pareto set of Subproblem 2 since f2(x̂2) = ŝ2. Similar observations may be
made of the other points in each subproblem. The values of Points 1, 2, and 3 are listed in Table 5. For
i ∈ [3], by observing the location of (f i(x̂i), ŝi), (f i(x̃i), s̃i), (f i(x̆i), s̆i), the DM has the ability to visualize
the “distance” between f i(x̂i), f i(x̃i), f i(x̆i) and the Pareto set of Subproblem i.

Observe that for Point 1, σ2(f
2(x̂2), ŝ2) = σ3(f

3(x̂3, ŝ3) = 0, which means that x̂2 and x̂3 are efficient
solutions for Subproblems 2 and 3, respectively. On the other hand, σ1(f

1(x̂1), ŝ1) = 1.75. These subsystem
tradeoffs imply that sending 2 units of food and 2 units of fuel over land is a better choice than sending the
same aid package over sea. Similarly, the aid package of 2 units of food sent over air is also a better choice
than sending aid over sea.

In the case of Point 2, observe that σ2(f
2(x̃2), s̃2) = 0. This means that sending 1.11 units of food and 2

units of fuel over land is an efficient solution with respect to Subproblem 2. However, since σ1(f
1(x̃1), s̃1) =

0.975 < 1.84 = σ3(f
3(x̃3), s̃3), sending 1.11 units of food and 2 units of fuel over sea is a better option

than sending 1.11 units of food and 0.88571 units of plasma over air. In fact, using the subproblem tradeoff
value ST 13 ≈ 0.53, this aid package sent over sea is 53% better than sending it over air. Although the same
package (1.11 units of food and 2 units of fuel) may be sent either by sea or air, since σ2(f

2(x̃2), s̃2) = 0,
the DM ought to choose the land option for delivery.

Finally, for Point 3, note that σ2(f
2(x̆2), s̆2) = 0.53115 < 0.875 = σ1(f

1(x̆1, s̆1), which shows that sending
1 unit of food, 3.13 units of fuel, 2.4 units of medicine, and 0.425 units of building materials over land is
a better decision than sending 1 unit of food and 3.13 units of fuel by sea. A similar observation may be
made when comparing land to air, since σ2(f

2(x̆2), s̆2) = 0.53115 < 1.4 = σ3(f
3(x̆3), s̆3). However, observe

that σ1(f
1(x̆1), s̆1) = 0.875 < 1.4 = σ3(f

3(x̆3), s̆3), which shows that delivery by sea is better than air. It is
better to send the aid package of 1 unit of food, 3.13 units of fuel by sea than the corresponding aid package
by air. Since air is not a good option in any case, the DM needs to decide whether to deliver aid by land
or sea. The subproblem tradeoff value ST 12 ≈ 1.65 shows that delivering aid by land is 61% better than
delivering aid by sea.

6.2.3 Analysis with Hybrid Coordination

The DM now coordinates the subproblems using hybrid cooridination, which is listed in Algorithm 2.
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Step 1: Ranking subproblems. First, the DM determines a preference ranking of the subproblems. This may
be done using the points of interest, Points 1, 2, and 3, and the subproblem tradeoff values. Notice
that Point 1 is efficient for Subproblems 2 and 3 since σ2(f

2(x̂2), ŝ2) = σ3(f
3(x̂3), ŝ3) = 0. Thus,

Point 1 does not provide much direction in ranking the subproblems since there is no determination
between whether to prefer Subproblem 2 or Subproblem 3. On the other hand, consider Point 3.
Observe that σ2(f

2(x̆2), s̆2) = 0.53115 < σ1(f
1(x̆1), s̆1) = 0.875 < σ3(f

3(x̆3), s̆3) = 1.4. With a slight
relaxation on Point 3 in Subproblem 2, there is an opportunity to improve performance in Subproblem
1 and then Subproblem 3. This suggests the ranking SP2 ≻ SP1 ≻ SP3. Similarly, Point 2 has that
σ2(f

2(x̃2), s̃2) = 0 < σ1(f
1(x̃1), s̃1) = 0.975 < σ3(f

3(x̃3), s̃3) = 1.84, also implying the ranking of
SP2 ≻ SP1 ≻ SP3. However, since σ2(f

2(x̃2), s̃2) = 0, Point 2 is efficient for Subproblem 2, making
Point 2 a suitable anchor.

Step 2: Select anchor point and relaxation for (HCOP21). As mentioned in the previous step, Point 2
is selected as the anchor point for the first coordination problem. The DM must now select a suitable
relaxation. We may observe that across the 3 points, the largest σ2-value is found with Point 3, where
σ2(f

2(x̆2), s̆2) = 0.53115. This largest σ2-value suggests the relaxation we may place on the anchor
point. We use s̆2 and f2(x̆2) to define the relaxation. Let ε21 = f2(x̆2) − s̆2 = (0.53, 0.53). Observe
that since Point 2 is efficient for Subproblem 2, it is also ε21-efficient.

Step 3: Find representation of (HCOP21). The DM formulates (HCOP21) and solves it for its Pareto set.
Figure 6 depicts the Pareto set of (HCOP21) projected into the outcome space of Subproblems 1 and
2.

Step 4: Select anchor point and relaxation for (HCOP231). To find a new anchor point and relaxation
in the outcome space of Subproblem 1, the DM formulates and solves (SPTP13). Figure 7 shows the
representation of the efficient set of (SPTP13) in the outcome space of each subproblem. The DM
selects the point ṡ1 = (5.57143,−9.28572) as the anchor point in the outcome space of Subproblem 1
and the corresponding relaxation of f1(ẋ1)− ṡ1 = (2, 2).

Step 5: Find representation of (HCOP231). The DM formulates and solves the problem (HCOP213).
Figure 8 shows the Pareto set of (HCOP213) projected in the outcome spaces of Subproblems 1, 2, and
3, respectively. Observe that the DM has the opportunity to select an (AiO) feasible design which is
within her allowed relaxations for Subproblems 2 and 1, and is also efficient for Subproblem 3, since
part of the Pareto set of (HCOP213) intersects with the Pareto set of Subproblem 3. For example, the
middle point of the set of (HCOP213) corresponds to an aid package of 2.29 units of food, 1 unit of fuel,
0.05 units of medicine, 0 units of dock materials, 1 unit of building materials, and 0 units of plasma.
The DM may choose to deliver this aid package by land, since Subproblem 2 was used to begin the
hybrid coordination. What is unique about hybrid coordination, however, is that whatever aid package
is finally selected by the DM, its performance is well within her preferences across all three modes of
transportation. Such information may be invaluable since, for example, if the land delivery fails, the
DM may attempt a re-delivery by sea or air using the same aid package with no need to go through
the decision making process again.

Step 6: Repeat until satisfaction. The DM may go back and forth between any of these steps until she is
satisfied with the performances of her selected (AiO) decision within each subproblem. Once she is
satisfied, she may select an output and the corresponding aid package is returned. The DM now has
actionable information and may begin the process of delivering aid.

Hybrid coordination may be readily put into a “black-box”, so that the DM need never personally formu-
late (HCOP) or (SPTP) at any point. All that is required to provide to the DM are a good representation
of the Pareto sets of each subproblem, outputs on potential anchor points and relaxations, and the ability
to move back and forth between every step of the hybrid decision making procedure.
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7 Conclusion

Although multiobjective optimization is difficult mathematically and computationally, MOPs continue to be
relevant due to their ability to address complex, real-life decision problems.

First, we consider a multiobjective optimization problem, called the All-in-One (AiO) problem, with
global, quasi-global, and local variables. We show how to effectively decompose (AiO) into a set of subprob-
lems with fewer objective functions in each subproblem. This decomposition makes optimization significantly
easier. Furthermore, we show how efficient solutions for these subproblems may be used to construct efficient
solutions for (AiO). This decomposition and coordination (D&C) methodology only assumes structure on
the locations of the variables, not properties of the variables, constraints, or objective functions themselves.
Thus, a DM may apply whatever optimization algorithms which are best suited given the properties of the
variables, constraints, or objective functions.

Decomposition also assists a DM in selecting an efficient solution. Since each subproblem has fewer
objective functions, visualization of performances within each subproblem is easier, as well as removing
much of the cognitive load of needing to consider many objectives at the same time.

Next, we continue to make contributions to the decision-making stage by theoretical extensions to a
powerful scalarization technique called achievement scalarizing functions (ASFs). We extend ASFs to become
bivariate achievement scalarizing functions (BASFs). In so doing, we allow the reference point to itself be a
variable for optimization, which gives a DM the ability to measure subproblem tradeoffs, rather than only
considering each subproblem individually or measuring tradeoffs between individual objective functions. This
higher level of analysis allows a DM to think of the (AiO) more holistically.

We use subproblem tradeoffs to construct an auxiliary multiobjective problem which autonomously coor-
dinates all the subproblems in order to suggest decisions which are efficient for (AiO) but which also perform
well in each individual subproblem. The autonomous nature of this coordination removes all of the cognitive
burden on a DM; whatever decision she selects, she may be confident that it is mathematically “the best”
choice she could have made. However, if she desires to engage directly with the selection of a decision, we
propose an interactive decision making procedure which uses subproblem tradeoffs to select anchor points
and suggest relaxations to improve performances in other subproblems. This interactive procedure is all
performed in the outcome space, so that a DM is always concerned with performance. She may go back and
forth between any step of this interactive procedure, all the while given helpful guidance by our subproblem
tradeoffs and BASFs in selecting anchor points and relaxations.

In order to demonstrate the effectiveness of our D&C framework, we consider the application of delivering
aid in the event of a disaster. We decompose the problem, apply autonomous coordination, and work through
the hybrid coordination procedure. We believe that our decomposition methodology makes this critical
decision problem tractable, mathematically and cognitively, in a way which was previously not possible.

For our future work, we desire to pursue two directions that this research has pointed out. First, investi-
gations on the application of BASFs are needed to understand how the choice of BASF affects autonomous
and hybrid coordination, and the final solution selected by a DM. Second, since autonomous coordination
requires multiobjective bilevel optimization in general, and multiobjective bilinear optimization in the linear
case, continued work is needed to improve methods for these types of optimization problems. We believe
that our contribution here, along with these future investigations, will continue to assist DMs in making
informed decisions.
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Appendix

A Tables

Autonomous Hierarchical
Representation of Pareto sets necessary No Yes

Anchor point necessary No Yes
Ranking of subproblems necessary No Yes

Interactive procedure No Yes
Minimum # of optimization problems solved 1 2(N − 1)

Table 1: A comparison of hierarchical and autonomous coordination.

F =


2 3 0 15 0 0
−1 −5 0 −7 0 0
1 4 8 0 3 0
−1 −3 −5 0 −2 0
1 0 6 0 0 12
−1 0 −4 0 0 −6

 W =

1/2 2 0 3 0 0
1/2 2 1 0 2 0
1/2 0 1 0 0 2

 A =

[
0 1 0 0 1 0
1 0 0 0 0 1

]

bcap =

 7
10
5

 breq =

[
2
2

]
u =


5
5
5
5
1
1


σi(y, r) = max

j=1,...,pi

{yi − ri}, i ∈ [3]

Table 2: Data for the humanitarian aid example.
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Transportation Subproblem
Sea 1
Land 2
Air 3

Goods Variable Name
Food x123

Fuel x12

Medicine x23

Floating docks x1

Building materials x2

Plasma x3

Table 3: Subproblems and variables in humanitarian aid example.

Objective functions Constraints

Subproblem 1 min f1(x1) =

[
c1(x1) = 2x123 + 3x12 + 15x1

−v1(x1) = −1x123 − 5x12 − 7x1

]
1/2x123 + 2x12 + 3x1 ≤ 7

0 ≤ x123, x12, x1 ≤ 5

Subproblem 2 min f2(x2) =

[
c2(x2) = x123 + 4x12 + 8x23 + 3x2

−v2(x2) = −x123 − 3x12 − 5x23 − 2x2

] 1/2x123 + 2x12 + x23 + 2x2 ≤ 10
x12 + x2 ≥ 2

0 ≤ x123, x12, x23 ≤ 5
0 ≤ x2 ≤ 1

Subproblem 3 min f3(x3) =

[
c3(x3) = x123 + 6x23 + 12x3

−v3(x3) = −x123 − 4x23 − 6x3

] 1/2x123 + x23 + 2x3 ≤ 5
x123 + x3 ≥ 2

0 ≤ x123, x23 ≤ 5
0 ≤ x3 ≤ 1

Table 4: Decomposition for humanitarian aid example.

Point 1:(x̂, ŝ) Point 2:(x̃, s̃) Point 3:(x̆, s̆)
Food: x123 2 1.11 1
Fuel: x12 2 2 3.13

Medicine: x23 0 0 2.4
Dock Materials: x1 0 0 0

Building Materials: x2 0 0 0.425
Plasma: x3 0 0.88571 1

s1 (8.25, -13.75) (7.25, -12.09) (10.5, -17.5)
s2 (10, -8) (9.11, -7.11) (33.44, -23.76)
s3 (2, -2) (9.90, -8.27) (26, -18)

(f11(x1), f12(x1) (10, -12) (8.23, -11.11) (11.38, -16.63)
(f21(x2), f22(x2)) (10, -8) (9.11, -7.11) (33.98, -23.23)
(f31(x3), f32(x3)) (2, -2) (11.74, -6.43) (27.4, -16.6)

Table 5: Values of Points 1, 2, and 3.

Point 1 Point 2 Point 3
ST 12 - - 1.6474
ST 13 - 0.5299 0.6250
ST 23 - 0 0.3794

σ1(f
1(x1), s1) 1.75 0.975 0.875

σ2(f
2(x2), s2) 0 0 0.53115

σ3(f
3(x3), s3) 0 1.84 1.4

Table 6: Subproblem Tradeoffs and σi-values for Points 1, 2, and 3.
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B Figures
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Figure 1: Level curves of σ(y, r) = max
i=1,2

{y1 − r1, y2 − r2} for fixed r = (1, 1).
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Figure 2: Level surfaces of σ(y, r) = max
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{y1−r1, y2−r2} for −10 ≤ y1, y2 ≤ 10, −10 ≤ r1 ≤ 10, and r2 = 0.
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Figure 4: Modes of transportation (squares) and goods to be delievered (circles) in the humanitarian aid
example.
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Figure 6: Hybrid Coordination: Results of (HCOP21).
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Figure 7: Hybrid Coordination: Results of (HCOP21) and (SPTP31).

27



0 10 20

f11

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

f12

P(Y 1 )

0 20 40 60

f21

-35

-30

-25

-20

-15

-10

-5

f22

P(Y 2 )

0 10 20 30

f31

-18

-16

-14

-12

-10

-8

-6

-4

-2

f32

P(Y 3 )

SP Pareto Set
Point 1
Point 2
Point 3
HCOP

21
HCOP

213

Figure 8: Hybrid Coordination: Results of (HCOP21), (SPTP31), and (HCOP213).
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