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Spanning and Splitting: Integer Semidefinite Programming for

the Quadratic Minimum Spanning Tree Problem

Frank de Meijer∗† Melanie Siebenhofer‡§ Renata Sotirov¶

Angelika Wiegele‡§‖

Abstract

In the quadratic minimum spanning tree problem (QMSTP) one wants to find the minimizer

of a quadratic function over all possible spanning trees of a graph. We give two formulations

of the QMSTP as mixed-integer semidefinite programs exploiting the algebraic connectivity

of a graph. Based on these formulations, we derive a doubly nonnegative relaxation for the

QMSTP and investigate classes of valid inequalities to strengthen the relaxation using the

Chvátal-Gomory procedure for mixed-integer conic programming.

Solving the resulting relaxations is out of reach for off-the-shelf software. We therefore

develop and implement a version of the Peaceman-Rachford splitting method that allows to

compute the new bounds for graphs from the literature. The numerical results demonstrate

that our bounds significantly improve over existing bounds from the literature in both quality

and computation time, in particular for graphs with more than 30 vertices.

This work is further evidence that semidefinite programming is a valuable tool to obtain

high-quality bounds for problems in combinatorial optimization, in particular for those that can

be modelled as a quadratic problem.

Keywords: Combinatorial Optimization, Spanning Trees, Integer Semidefinite Programming,

Algebraic Connectivity, Projection Methods

1 Introduction

The quadratic minimum spanning tree problem (QMSTP) is the problem of finding a spanning tree

of a connected, undirected graph such that the sum of interaction costs over all pairs of edges in the

tree is minimized. The QMSTP was introduced by Assad and Xu [1] in 1992. The adjacent-only

quadratic minimum spanning tree problem (AQMSTP), that is, the QMSTP where the interaction

costs of all non-adjacent edge pairs are assumed to be zero, is also introduced in [1]. Assad and Xu
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proved that both the QMSTP and AQMSTP are strongly NP -hard problems. Interestingly, the

QMSTP remains NP -hard even when the cost matrix is of rank one [36].

There are many existing variants of the QMSTP problem, such as the minimum spanning tree

problem with conflict pairs, the quadratic bottleneck spanning tree problem, and the bottleneck

spanning tree problem with conflict pairs. For a description of those problems, see e.g., Ćustić et

al. [12]. The QMSTP has various applications in telecommunication, transportation, energy and

hydraulic networks, see e.g., [1, 7, 8].

There is a lot of research on lower-bounding approaches and exact algorithms for the QMSTP.

The majority of lower bounding approaches for the QMSTP may be classified into Gilmore-Lawler

(GL) type bounds [1, 11, 30, 37] and reformulation linearization technique (RLT) based bounds

[34, 37]. The GL procedure is a well-known approach to construct lower bounds for quadratic

binary optimization problems, see e.g., [18, 25]. The RLT is a method to derive a hierarchy of

convex approximations of mixed-integer programming problems [38] where integer variables are

binary. Lower bounding approaches based on an extended formulation of the minimum spanning

tree problem are derived in [39]. For an overview of the above-mentioned lower bounding approaches

and their comparison, see e.g., [39]. Semidefinite programming (SDP) lower bounds for the QMSTP

are considered in [20]. SDP bounds incorporated in a branch-and-bound algorithm provide the best

exact solution approach for the problem up to date [20]. Different exact approaches for solving

the QMSTP are considered in [1, 11, 34, 33]. For a comparison of various heuristic approaches for

solving the QMSTP, see Palubeckis et al. [31].

In this paper, we derive two mixed-integer semidefinite (MISDP) formulations for the QMSTP

by exploiting the algebraic connectivity of a tree. Algebraic connectivity was also exploited in [13]

and [14] to derive ISDP formulations for the traveling salesman problem (TSP) and the quadratic

TSP, respectively. We prove that the continuous relaxation of the cut-set QMSTP formulation

of the QMSTP is at least as strong as the continuous relaxations of MISDP formulations of the

QMSTP. Further, we derive several classes of valid inequalities for our MISDPs by exploiting the

Chvátal-Gomory (CG) procedure for mixed-integer conic programming [6, 14]. In particular, we

show that the classical cut-set constraints and the first level RLT constraints are CG cuts. The cut-

set constraints are derived from the linear matrix inequality (LMI) that is related to the algebraic

connectivity of a tree. The RLT-type constraints are derived using two LMIs from the MISDP

formulation of the QMSTP.

Our preliminary computational results show that the cut-set constraints have a small impact on

the quality of our doubly nonnegative (DNN) relaxation of the QMSTP, but the RLT-type constraints

improve the DNN bound. Therefore, we add RLT-type constraints to the DNN relaxation of the

QMSTP. The resulting relaxation has a large number of constraints, and it is difficult to solve using

state-of-the-art interior point methods. Therefore, we design a version of the Peaceman-Rachford

splitting method (PRSM) that is able to handle a large number of cutting-planes efficiently. In

particular, the PRSM algorithm is adding violated RLT-type inequalities iteratively while using

warm-starts. The numerical results show that our bounds for the QMSTP outperform bounds

from the literature in quality, as well as in computational time required to obtain them. Our

approach shows significant improvement over other methods from the literature, particularly for

larger instances, specifically, for graphs with more than 30 vertices.
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Notation

The set of n × n real symmetric matrices is denoted by Sn. The space of symmetric matrices is

considered with the trace inner product, which for any X,Y ∈ Sn is defined as 〈X,Y 〉 := tr(XY ).

The associated norm is the Frobenius norm ‖X‖F :=
√
tr(XX). The cone of symmetric positive

semidefinite matrices of order n is defined as Sn
+ := {X ∈ Sn : X � 0}. We order the eigenvalues

of X ∈ Sn as follows λ1(X) ≤ · · · ≤ λn(X). If it is clear from the context to which matrix the

eigenvalues relate, we denote eigenvalues by λi. The Hadamard product of two matrices X = (xij)

and Y = (yij) of the same size is denoted by ◦, and defined as follows (X ◦ Y )ij := xijyij . The

operator diag: R
n×n → R

n maps a square matrix to a vector consisting of its diagonal elements.

The adjoint operator of diag is denoted by Diag: R
n → R

n×n.

We denote by 1n the vector of all ones of length n, and define Jn := 1n1
⊤
n . The indicator vector

of S ⊆ V is denoted by 1S . The all-zero matrix of order n is denoted by 0n. We use In to denote

the identity matrix of order n, while its i-th column is given by ui. In case the dimension of 1n, 0n,

Jn and In is clear from the context, we omit the subscript.

We define the n-simplex as ∆n := {x ∈ R
p : x ≥ 0,

∑p
i=1 xi = n} and the capped n-simplex

as ∆̄n := {x ∈ R
p : 0 ≤ x ≤ 1,

∑p
i=1 xi = n}. By PM we denote the projection operator onto the

set M. We use [n] to denote the set of integers {1, . . . , n}.

Given a subset S ⊆ V of vertices in a graph G = (V,E), we denote the set of edges with both

endpoints in S by E(S) := {{i, j} ∈ E : i, j ∈ S} and the cut induced by S by ∂S :=
{
{i, j} ∈

E : i ∈ S, j /∈ S
}
. However, when S = {i} we define δ(i) := ∂S.

2 The Quadratic Minimum Spanning Tree Problem

In this section, we formally introduce the QMSTP. Let G = (V,E) be a connected, undirected graph

with n = |V | vertices and m = |E| edges. Let Q = (qef ) ∈ Sm be a matrix of interaction costs

between edges of G, where qee represents the cost of edge e.

The QMSTP can be formulated as the following binary quadratic programming problem:

min
x∈T

∑

e∈E

∑

f∈E

qefxexf ,

where T denotes the set of all spanning trees in G. Each spanning tree in T is represented by its

incidence vector of length m, and therefore

T :=

{
x ∈ {0, 1}m :

∑

e∈E

xe = n− 1,
∑

e∈∂S

xe ≥ 1, ∀S ( V, S 6= ∅

}
. (1)

The constraints of the type

∑

e∈∂S

xe ≥ 1 (2)

are known as the cut-set constraints, and they ensure connectivity of a subgraph from T . If Q is a

diagonal matrix then the QMSTP reduces to the minimum spanning tree problem that is solvable

in polynomial time [24, 35].
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Let us now fix an ordering for the edges E = {e1, . . . , em}. For x ∈ T define Y := (yef ) ∈ Sm

such that yef = 1 if xe = 1 and xf = 1, and yef = 0 otherwise. Then the QMSTP can be formulated

as the following mixed-integer programming problem, see e.g., [1]:

min 〈Q, Y 〉

s.t. diag(Y ) = x, Y 1m = (n− 1)x

0 ≤ Y ≤ Jm, Y ∈ Sm, x ∈ T .

(3)

One can verify that the constraints, in combination with the binarity of x, are sufficient to obtain

the coupling between Y and x. Note that each row in Y is an incidence vector of a tree. The above

model was introduced by Assad and Xu [1]. We refer to the above program the cut-set formulation

of the QMSTP.

3 MISDP formulations for the QMSTP

In 1973, Fiedler [17] defined the algebraic connectivity, a(G), of a graph G as the second smallest

eigenvalue of the Laplacian matrix of the graph. It is well-known that the algebraic connectivity is

greater than zero if and only if G is a connected graph. In this section, we will exploit the algebraic

connectivity of a tree to derive two MISDP formulations of the QMSTP. We also prove that the

continuous relaxations of our MISDP formulations are at least as strong as the continuous relaxation

of the cut-set QMSTP formulation (3).

It is known that the algebraic connectivity for the graph class of trees with n ≥ 3 vertices lies

in the interval between 2
(
1− cos

(
π
n

))
and 1, see e.g., [19]. Here, 2

(
1− cos

(
π
n

))
is the algebraic

connectivity of the path graph, and 1 is the algebraic connectivity of the star graph. It is also known

that a tree on n vertices has exactly n− 1 edges. Hence, a tree can be characterized as a connected

graph with exactly n − 1 edges, see also (1). We use those facts to characterize trees by means of

positive semidefiniteness.

Proposition 1. Let G be a simple graph on n ≥ 3 vertices with n− 1 edges. Let L be its Laplacian

matrix and let α, β ∈ R with α ≥ β
n and 0 < β ≤ 2

(
1− cos

(
π
n

))
. Then, G is a tree if and only if

Z = L+ αJn − βIn � 0.

Proof. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the Laplacian matrix L. We denote by

v1 = 1 and vi for i ∈ {2, . . . , n} the eigenvectors of L such that they form a basis of R
n. The matrix J

has eigenvalue n whose corresponding eigenvector is 1, and eigenvalue 0 of multiplicity n − 1 with

eigenvectors vi for i ∈ {2, . . . , n}. Therefore, Z1 = (L+αJ−βI)1 = (αn−β)1 and Zvi = (λi−β)vi,

from where it follows that the eigenvalues of Z are αn − β and λi − β for i ∈ {2, . . . , n}. Using

the fact that α ≥ β
n we have αn − β ≥ 0, and thus Z is positive semidefinite if and only if its

eigenvalue λ2 − β is nonnegative.

Now suppose that G is a tree. In this case, we know that a(G) = λ2 ≥ 2
(
1− cos

(
π
n

))
holds.

Therefore, we have that λ2 − β ≥ 2
(
1− cos

(
π
n

))
− β ≥ 0, and thus Z � 0.

On the other hand, if Z � 0 then λ2 − β ≥ 0. Since β > 0, it follows that a(G) = λ2 > 0 and,

thus G is connected. As G has n vertices and n− 1 edges, it is a tree.

The previous result can be generalized for any graph as follows.
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Proposition 2. Let G be a simple graph on n ≥ 3 vertices and L be the Laplacian matrix of G.

Then a(G) ≥ β if and only if L+ β
nJn − βIn � 0.

Proof. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L, the Laplacian matrix of G. The

eigenvalues of L+ β
nJ are β and a(G) = λ2 ≤ · · · ≤ λn. If a(G) ≥ β, then all eigenvalues of L+ β

nJ

are greater or equal than β and therefore L + β
nJ − βI � 0. Conversely, if L + β

nJ − βI � 0, then

all eigenvalues of L+ β
nJ greater or equal to β and therefore a(G) ≥ β.

In the sequel, we exploit Proposition 1 to derive MISDP formulations for the QMSTP. Let us

first define the set of adjacency matrices of induced subgraphs of G with n vertices and n− 1 edges:

F :=
{
X ∈ {0, 1}n×n ∩ Sn : 〈X,Jn〉 = 2(n− 1), xij = 0 if {i, j} /∈ E

}
. (4)

The set of all adjacency matrices of spanning trees on n vertices is:

TM = F ∩ {X ∈ Sn : Diag(X1)−X + αJ− βI � 0} , (5)

where α ≥ β
n and 0 < β ≤ 2

(
1− cos

(
π
n

))
. There is a bijection B : TM → T , see (1), where B(X)

maps X to a column vector containing the entries of X corresponding to E with respect to the fixed

ordering of the edge set. Hence, the QMSTP can be written as the following MISDP problem:

min 〈Q, Y 〉 (6a)

s.t. diag(Y ) = B(X), Y 1m = (n− 1)B(X) (6b)

Diag(X1)−X + αJn − βIn � 0 (6c)

0 ≤ Y ≤ Jm, Y ∈ Sm, X ∈ F . (6d)

One can verify that the integrality of the matrix variable Y in (6) follows from the integrality of the

matrix variable X . Let us compare the continuous relaxations of (6) and the continuous relaxation

of the cut-set QMSTP formulation (3). We first show the following result.

Proposition 3. Let X ∈ Sn be a matrix such that 0 ≤ X ≤ J, diag(X) = 0, 〈X,J〉 = 2(n − 1),

and min∅6=S(V

∑
i∈S

∑
j /∈S xij = 1. Then λ2(Diag(X1)−X) ≥ 2(1− cos π

n ).

Proof. The proof is similar to the proof of Statement 4.3. in [17].

It is not difficult to show that for a feasible (x, Y ) for the continuous relaxation of the cut-set

QMSTP formulation (3) one can construct a feasible pair (X,Y ) for the continuous relaxation of (6).

This leads us to the following result.

Corollary 1. The continuous relaxation of the cut-set QMSTP formulation is at least as strong as

the continuous relaxations of (6).

This result is not very surprising. Namely, Goemans and Rendl [40] show a similar result that

relates the subtour elimination relaxation and an algebraic connectivity based SDP relaxation for

the traveling salesman problem.

One can also formulate the QMSTP by exploiting theory on discrete PSD matrices from [15],

i.e., the following result.
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Theorem 1 ([15]). Let Z =
(

X x
x⊤ 1

)
� 0 with diag(X) = x. Then, rank(Z) = 1 if and only

if X ∈ {0, 1}n×n.

Now, by using the previous result, we formulate the QMSTP as the following MISDP:

min 〈Q, Y 〉 (7a)

s.t. diag(Y ) = B(X) (7b)
(

Y B(X)

B(X)⊤ 1

)
� 0 (7c)

Diag(X1)−X + αJn − βIn � 0 (7d)

Y ∈ Sm, X ∈ F , (7e)

where F is given in (4). In (7), we do not impose integrality on the off-diagonal elements of Y as

those follow by the integrality of B(X), see [15]. Due to the integrality of Y , the constraints (7b)

and (7c) ensure that Y = B(X)B(X)⊤. Now, by using the same arguments as earlier, one can show

the following result.

Corollary 2. The continuous relaxation of the cut-set QMSTP formulation is at least as strong as

the continuous relaxations of (7).

It is difficult to directly compare the continuous relaxations of (6) and (7). However, by adding

the constraint Y 1m = (n − 1)B(X) to (7) (which is redundant in the presence of integrality), we

have the following result.

Corollary 3. The continuous relaxation of (7) with additional constraint Y 1m = (n − 1)B(X)

dominates the continuous relaxation of (6).

3.1 Valid inequalities

In this section, we derive Chvátal-Gomory cuts from the MISDP formulations of the QMSTP from

the previous section. Some of those cuts coincide with well-known cuts from the literature. In

particular, we show that the cut-set constraints (2) and some of the first level RLT constraints are

CG cuts.

Let us first present a result that applies to any graph having several connected components.

Proposition 4. Let L be the Laplacian matrix of a graph on n ≥ 3 vertices, consisting of exactly

k ≥ 2 connected components. Let {S1, . . . , Sk} be the partition of the vertices implied by these

components. For each ℓ ∈ [k], let vℓ be the vector defined as

(vℓ)i :=

{
n− |Sℓ| if i ∈ Sℓ

−|Sℓ| if i /∈ Sℓ.

Then 〈vℓv⊤ℓ , L+ β
nJ− βI〉 < 0 for all ℓ ∈ [k] and β > 0.

Proof. Recall the LMI from Proposition 2. We can write vℓ = n1Sℓ
−|Sℓ|1, ℓ ∈ [k]. It is not difficult

to verify that 1 and 1Sℓ
for ℓ ∈ [k] are eigenvectors of L corresponding to the zero eigenvalue. It

further holds that J1Sℓ
= |Sℓ|1 for all ℓ ∈ [k], and therefore, Jvℓ = n|Sℓ|1−|Sℓ|n1 = 0. This implies
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that vℓ is an eigenvector of L+ β
nJ−βI corresponding to the eigenvalue −β, and therefore the above

inequality holds.

A similar result was obtained in [14] in the context of a directed node-disjoint cycle cover. Let

us restate Proposition 4 in terms of the adjacency matrix of a graph.

Corollary 4. Let G be a graph with n ≥ 3 vertices consisting of k ≥ 2 connected components.

Denote by Sℓ the set of vertices in component ℓ ∈ [k]. Let X be the adjacency matrix of G. Further,

let vℓ = n1Sℓ
− |Sℓ|1 for all ℓ ∈ [k] and let v

(2)
ℓ = vℓ ◦ vℓ. Then

〈vℓv
⊤
ℓ − v

(2)
ℓ 1⊤, X〉 >

〈
vℓv

⊤
ℓ ,

β

n
J− βI

〉

for all ℓ ∈ [k] and β > 0.

Proof. The claim follows from Proposition 4, the fact that L = Diag(X1)−X and using 〈v
(2)
ℓ 1⊤, X〉 =

〈vℓv⊤ℓ ,Diag(X1)〉.

We can now use the result of Corollary 4 to derive Chvátal-Gomory cuts for the QMSTP. Let

β = 2
(
1− cos

(
π
n

))
, then we have the following CG cut:

〈vℓv
⊤
ℓ − v

(2)
ℓ 1⊤, X〉 ≤

⌊〈
vℓv

⊤
ℓ ,

β

n
J− βI

〉⌋
ℓ ∈ [k],

where vℓ is defined as in Proposition 4. One can use the above cuts within a branch-and-cut

framework to solve (6) and/or (7). In particular, those cuts may be used to separate matrices that

are in F , see (4), but not in TM , see (5).

In the sequel, we derive the cut-set constraints (2) as CG cuts. Let S ( V , S 6= ∅ and X be

feasible for (6) or (7). Then, for the PSD matrix 1S1
⊤
S we have that

〈1S1
⊤
S ,Diag(X1)−X + αJ− βI〉 ≥ 0, (8)

is a valid inequality for (6) and (7). After rewriting (8) and exploiting 〈1S1
⊤
S ,Diag(X1)〉 =

〈1S1
⊤, X〉, we have 〈1S1

⊤
S − 1S1

⊤, X〉 ≤ 〈1S1
⊤
S , αJ − βI〉. Since the left-hand side of this in-

equality is integer, we may round the right-hand side, which results in the following CG cut

〈1S1
⊤
S − 1S1

⊤, X〉 ≤ ⌊〈1S1
⊤
S , αJ − βI〉⌋, which after rewriting the left-hand side results in the

following inequality

−
∑

i∈S

∑

j /∈S

xij ≤ ⌊|S|(|S|α− β)⌋ . (9)

For α = β
n and β = 2

(
1− cos

(
π
n

))
we have that ⌊|S|(|S|α−β)⌋ = −1, and the above CG cut implies

the cut-set constraint
∑

e∈∂S xe ≥ 1, see also (2). Let us summarize the previous discussion.

Proposition 5. Let S ( V , S 6= ∅. Then, the cut-set constraint (2) is a Chvátal-Gomory cut with

respect to the MISDPs (6) and (7).

Subsequently, we derive valid inequalities by exploiting the constraint (7c) that may be equiv-

alently reformulated as Y − B(X)B(X)⊤ � 0. Let X , Y be feasible for (7), i ∈ V , and 1δ(i)

7



be the indicator vector of δ(i). For f ∈ E, we define the following positive semidefinite matrix

Pf := uk1
⊤
δ(i) + 1δ(i)u

⊤
k + Im + (n− 1)uku

⊤
k , where the index k corresponds to the ordering number

of the edge f , i.e., B(X)k = xf . Since Pf � 0, it follows that 〈Y − B(X)B(X)⊤, Pf 〉 ≥ 0. By

rewriting the left-hand side, we have

〈Y − B(X)B(X)⊤, Pf 〉 = 2
∑

e∈δ(i)

yfe − 2xfB(X)1⊤
δ(i) ≥ 0,

from where it follows
∑

e∈δ(i) yfe ≥ xfB(X)1⊤
δ(i) ≥ xf , since B(X)1⊤

δ(i) ≥ 1 due to the fact that the

underlying graph is connected. Moreover, B(X)1⊤
δ(i) ≥ 1 is the cut-set constraint that is a CG cut.

Thus, we have the following constraints

∑

e∈δ(i)

yfe ≥ xf ∀f ∈ E, ∀i ∈ V. (10)

Interestingly, these constraints follow also from the reformulation-linearization technique [38] applied

to the cut-set constraints (2) with |S| = 1. Namely, after multiplying both sides of (2) by xf and

replacing xfxe by yfe, one obtains the constraints (10). We refer later to the constraints (10) as

RLT-type constraints.

Proposition 6. Let i ∈ V and f ∈ E. Then, the constraint (10) is a Chvátal-Gomory cut with

respect to MISDP (7).

4 DNN relaxation

Here, we derive two doubly nonnegative relaxations for the QMSTP and derive their facially reduced

formulations.

To this end, instead of the matrix X , we introduce a vector y that results in relaxing B(X)

to y. We then use formulation (7) where we drop the linear matrix inequality (7d), and relax the

constraint X ∈ F , see (7e), to 1⊤y = n− 1. Furthermore, we add the constraint Y 1 = (n− 1)y that

can be derived from (7). Additionally, we impose nonnegativity constraints on the matrix variable,

and obtain the following DNN relaxation:

min 〈Q, Y 〉 (11a)

s.t. diag(Y ) = y (11b)

Y 1 = (n− 1)y, 1⊤y = n− 1 (11c)

Y ≥ 0,

(
Y y

y⊤ 1

)
� 0. (11d)

The above relaxation does not include the connectivity constraint (7d), because that constraint

has only a small impact on the bound. However, it makes the relaxation more difficult to solve.

In order to include a type of connectivity constraints in (11), we consider valid inequalities from

Section 3.1. Preliminary numerical results show that by adding the cut-set constraints (2), see also

Proposition 5, the resulting bound only marginally improves on the DNN bound (11). The RLT-

type cuts (10), however, turn out to have a more positive impact on the bound value. We therefore
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present the following strengthening of the relaxation (11):

min 〈Q, Y 〉

s.t. (11b)–(11d)
∑

e∈δ(i)

yfe ≥ yf ∀f ∈ E, ∀i ∈ V.

(12)

In the remaining part of this section, we perform facial reduction of the DNN relaxations. Let

Ỹ =
(

Y y

y⊤ 1

)
and Q̃ =

(
Q 0m

0
⊤
m 0

)
. It is not difficult to verify that

T =

(
1m

−(n− 1)

)
(13)

is an eigenvector corresponding to the zero eigenvalue of any matrix Ỹ feasible for (11). Since there

is no feasible matrix Ỹ which is positive definite, the DNN relaxation (11) has no Slater feasible

point.

To provide a facially reduced DNN relaxation of (11), let W ∈ R
(m+1)×m be a matrix whose

columns form a basis for W = null(T⊤), see (13). As we will show in Theorem 3 later on in this

section, the relaxation (11) may be equivalently written as the following facially reduced relaxation:

min 〈Q̃,WRW⊤〉

s.t. diag(WRW⊤) = (WRW⊤)um+1

(WRW⊤)m+1,m+1 = 1

WRW⊤ ≥ 0, R � 0.

(14)

We obtained this relaxation from (11) by replacing Ỹ with WRW⊤ and removing redundant

constraints. Note that the feasible set of (11) is contained in WSm
+ W⊤, which is a face of Sm+1

+ .

To show that (14) has an interior point, we use Theorem 3.15 from [22]. That theorem additionally

takes into account a zero pattern in the feasible matrix, which is not present in our problem.

Theorem 2 (Theorem 3.15 in [22]). Let Q =

{
y ∈ R

m : A

((
yy⊤ y

y⊤ 1

))
= 0, y ≥ 0

}
,

where A is a linear transformation, be the feasible set of a quadratically constrained program. Sup-

pose aff(conv(Q)) = L with dim(L) = p. Then, there exist a matrix C with full row rank and d such

that L =
{
y ∈ R

m : Cy = d
}
.

Let M = (C −d) and W be a matrix such that its columns form a basis of null(M). Let J ={
(i, j) : yiyj = 0 ∀y ∈ Q

}
and J c be its complement. Then, there exists a Slater point R̂ for the

facially reduced, DNN feasible set:

Q̂R =
{
R ∈ Sp+1 : R � 0,

(
WRW⊤)

J = 0,
(
WRW⊤)

J c ≥ 0, A
(
WRW⊤) = 0

}
.

We are now ready to state the following result on our facially reduced problem.

Theorem 3. For n ≥ 3, the DNN relaxation (14) is a strictly feasible equivalent reformulation

of (11).
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Proof. Let

Qn(m) =
{
y ∈ {0, 1}m : 1⊤

my = n− 1
}
=
{
y ∈ R

m : 1⊤
my = n− 1, yiyi = yi ∀i ∈ [m]

}

=

{
y ∈ R

m : A

((
yy⊤ y

y⊤ 1

))
= 0, y ≥ 0

}
,

where A(X) =
(
A1(X), · · · ,A2m+1(X)

)⊤
with

Ai(X) =

〈(
uiu

⊤
i − 1

2ui

− 1
2u

⊤
i 0

)
, X

〉
for all i ∈ [m], and

Am+i(X) =

〈
1

2

(
ui

(
1⊤
m −(n− 1)

)
+

(
1m

−(n− 1)

)
u⊤
i

)
, X

〉
for all i ∈ [m+ 1].

Note that in the definition of Qn(m), the equality Ai(X) = 0 models the constraint y2i = yi for all

i ∈ [m]. The constraint A2m+1(X) = 0 models the constraint 1⊤
my = n− 1. For the indices i ∈ [m],

the constraint Am+i(X) = 0 models the redundant constraint yi(1
⊤
my) = (n−1)yi for all 1 ≤ i ≤ m.

The convex hull equals conv(Qn(m)) =
{
y ∈ [0, 1]m : 1⊤

my = n − 1
}
. For each index i ∈ [m]

there exist vectors y1, y2 ∈ Qn(m) such that y1i > 0 and y2i < 1, hence, we get that the affine

hull is aff(conv(Qn(m))) = {y ∈ R
m : 1⊤

my = n − 1}, and has dimension m − rank(1⊤
m) = m − 1.

Hence, M = T⊤ where M is from Theorem 2 and T given in (13). Let W ∈ R
(m+1)×m be a matrix

whose columns form a basis of the nullspace of M . Then, a face of Sm+1
+ containing the feasible set

of (11) is of the form WSm
+ W⊤. Therefore, one can replace Ỹ with WRW⊤ in (11).

Moreover, it holds that for each pair of indices (i, j) ∈ [m]× [m], there exists a vector y ∈ Qn(m)

such that yi = yj = 1, and hence the index set J =
{
(i, j) : yiyj = 0 ∀y ∈ Q

}
is empty. Thus,

by Theorem 2, there exists a Slater feasible point for the facially reduced DNN relaxation (14).

On top of imposing strict feasibility, facial reduction reduces both the number of variables and

constraints. Therefore, the relaxation (14) is preferred over (11). In a similar fashion, relaxation (12)

can be rewritten by replacing Ỹ in (12) by WRW⊤.

5 Peaceman-Rachford splitting method for the QMSTP

Interior point solvers have difficulties computing our DNN relaxations for medium-sized problems

in a reasonable time due to the large number of (inequality) constraints. Therefore, we use the

Peaceman-Rachford splitting method (PRSM) for computing the bounds. The PRSM was first

proposed in [32, 27] and is a symmetric variant of the alternating direction method of multipliers

(ADMM). For more details and convergence results we refer to [21].

5.1 PRSM for solving the DNN relaxation

In this section, we outline the main steps of the Peaceman-Rachford splitting method for solving

the DNN relaxation for the QMSTP (14).

Recall that the matrix W should be such that its columns provide a basis for W = null(T⊤). For

reasons explained later, we additionally require the columns of W to be orthonormal. Therefore, we
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take W as the matrix obtained from applying a QR decomposition to ((n− 1)Im 1m)⊤.

Now, we define the following sets

R := {R ∈ Sm : R � 0, tr(R) = n} , (15)

Y :=

{
Ỹ ∈ Sm+1 : Ỹ =

(
Y y

y⊤ 1

)
, diag(Y ) = y, 0 ≤ Ỹ ≤ J, tr(Ỹ ) = n

}
, (16)

and rewrite (14) as

min
{〈

Q̃, Ỹ
〉
: Ỹ = WRW⊤, R ∈ R, Ỹ ∈ Y

}
. (17)

Note that we added redundant constraints to Y and R, where the constraint tr(R) = n holds, since

the columns in W are orthonormalized. Those redundant constraints help for the efficiency of the

algorithm, see e.g., [16, 29, 26].

For a fixed penalty parameter β > 0, the augmented Lagrangian function of (17) w.r.t. the

constraint Ỹ = WRW⊤ is

Lβ(R, Ỹ , S) =
〈
Q̃, Ỹ

〉
+
〈
S, Ỹ −WRW⊤〉+ β

2

∥∥Ỹ −WRW⊤∥∥2
F
.

The basic idea of the PRSM is to iteratively alternate between optimizing Lβ over R and Ỹ and

updating the dual variable S. The (k + 1)-th iteration of the PRSM to minimize the augmented

Lagrangian function is

Rk+1 = argmin
R∈R

Lβ(R, Ỹ k, Sk)

S
k+1
2 = Sk + γ1β(Ỹ

k −WRk+1W⊤)

Ỹ k+1 = argmin
Ỹ ∈Y

Lβ(R
k+1, Ỹ , S

k+1
2 )

Sk+1 = S
k+1
2 + γ2β(Ỹ

k+1 −WRk+1W⊤),

with step lengths γ1 ∈ (−1, 1) and γ2 ∈
(
0, 1+

√
5

2

)
satisfying γ1 + γ2 > 0 and |γ1| < 1 + γ2 − γ2

2 ,

see [21]. The optimization problems occurring in this PRSM scheme can be simplified to projection

problems. Namely, optimizing the augmented Lagrangian over R can be simplified to

Rk+1 = argmin
R∈R

〈Sk,−WRW⊤〉+
β

2

∥∥Ỹ k −WRW⊤∥∥
F
= PR

(
W⊤

(
Ỹ k +

1

β
Sk

)
W

)
,

where we exploited the fact that the columns of W are orthonormal. The projection PR(M) of a

matrix M ∈ Sm onto the set R can be computed by projecting the eigenvalues of M in the spectral

decomposition onto the n-simplex ∆n, see e.g., [26]. In more detail, let M = UDiag(λ)U⊤ be the

eigenvalue decomposition of M with λ denoting the vector of eigenvalues of M , then PR(M) =

UDiag(P∆n
(λ))U⊤. The projection onto the simplex can be performed efficiently. We refer to [9]

for an overview of algorithms for projecting onto the simplex and their complexities.

Similarly, the optimization problem over the polyhedral set Y can be reformulated as

Ỹ k+1 = argmin
Ỹ ∈Y

〈
Q̃, Ỹ

〉
+
〈
S

k+1
2 , Ỹ

〉
+

β

2

∥∥Ỹ −WRk+1W⊤∥∥
F
= PY

(
WRk+1W⊤ −

1

β

(
Q̃+ S

k+1
2

))
.

11



The projection onto Y can then be done in the following way

PY

((
Z z

z⊤ ω

))
= P[0,1]

((
Z −Diag(diag(Z)) + v v

v⊤ 1

))
,

where v = P∆̄(n−1)

(
1
3diag(Z) + 2

3z
)
and P[0,1] denotes the elementwise projection onto the inter-

val [0, 1].

5.2 PRSM for solving the strengthened DNN relaxation

In this subsection, we modify the previously described PRSM algorithm that solves the relax-

ation (14), so that it can handle additional RLT-type constraints.

Let us extend the set Y, see (16), by adding the RLT-type constraints, yielding

YRLT =

{
Ỹ ∈ Sm+1 : Ỹ =

(
Y y

y⊤ 1

)
, diag(Y ) = y, tr(Ỹ ) = n, 0 ≤ Ỹ ≤ J,

∑

e∈δ(i)

yfe ≥ yf ∀f ∈ E, ∀i ∈ V

}
.

Thus, the strengthened DNN relaxation (17) is as follows

min
{〈

Q̃, Ỹ
〉
: Ỹ = WRW⊤, R ∈ R, Ỹ ∈ YRLT

}
. (18)

The RLT-type constraints make the projection onto YRLT significantly harder. To the best of our

knowledge, there is no closed-form expression for the projection onto YRLT . However, one may write

YRLT as an intersection of sets that are easier to project on and then use an algorithm to project

onto the intersection of convex sets. The cyclic Dykstra’s projection algorithm [5] is a suitable

algorithm. An overview and analysis of algorithms to project onto the intersection of convex sets

can be found in [2].

To apply Dykstra’s cyclic projection algorithm, let K denote a coloring of the graph G, i.e.,

K = {K1, . . . ,KN} is a partitioning of V into independent sets of G. We then define the polyhedral

sets Yk as

Yk :=



Ỹ ∈ R

(m+1)×(m+1) : Ỹ =

(
Y y

y⊤ 1

)
, diag(Y ) = y,

∑

e∈δ(i)

yfe ≥ yf ∀f ∈ E, ∀i ∈ Kk



 ,

for k = 1, . . . , N . With this we can now rewrite YRLT as YRLT = Y ∩
(⋂N

k=1 Y
k
)
.

The projection onto the sets Yk can be performed independently over each row f ∈ E of Y and

the corresponding entries of yf in Ỹ . This allows us to restrict ourselves to projections onto the

following type of sets

T k
f :=




z ∈ R
m+2 : zf = zm+1 = zm+2,

∑

e∈δ(i)

ze ≥ zf ∀i ∈ Kk




 , (19)

where the first m+ 1 entries correspond to the f -th row of Ỹ and the last entry zm+2 corresponds
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to Ỹm+1,f . The projection onto T k
f can then be computed as presented in the following proposition.

Proposition 7. Let a ∈ R
m+2, f ∈ E and let K = {K1, . . . ,KN} denote a coloring of G. For each

i ∈ Kk, we define gi :=
af+am+1+am+2

3 −
∑

e∈δ(i) ae and sort these values in non-increasing order,

i.e., gσ(1) ≥ gσ(2) ≥ · · · ≥ gσ(nk), where nk = |Kk| and σ : [nk] → Kk is an appropriate sorting

permutation. For each p ∈ [nk], let

ω(p) :=

∑p
j=1

gσ(j)

d(σ(j))

3 +
∑p

j=1
1

d(σ(j))

,

where d(σ(j)) denotes the degree of vertex σ(j) in G. If gi ≤ 0 for all i ∈ Kk, then PTk
f
(a) = z,

where ze = ae for all e ∈ E \ {f} and zf = zm+1 = zm+2 =
af+am+1+am+2

3 . Otherwise, let p∗ denote

the largest index p for which gσ(p) > ω(p). Then, PTk
f
(a) = z, where

ze =





af+am+1+am+2

3 − ω(p∗) if e ∈ {f,m+ 1,m+ 2},

ae +
1

d(i) (gi − ω(p∗)) if e ∈ δ(i) \ {f} for i ∈ Kk \ V (f) with σ(i) ≤ p∗,

ae −
1

d(i)−1

∑
e∈δ(i)\{f} ae if e ∈ δ(i) \ {f} for i ∈ Kk ∩ V (f) with

∑
e∈δ(i)\{f} ae < 0,

ae otherwise.

Proof. First, observe that if gσ(1) ≤ 0, then gi ≤ 0 for all i ∈ Kk. Consequently, the projection of a

onto T k
f is given by z, where z is such that ze = ae for all e ∈ E \ {f} and zf = zm+1 = zm+2 =

af+am+1+am+2

3 .

If gσ(1) > 0, then ω(1) =
gσ(1)

d(σ(1))

3+ 1
d(σ(1))

<
gσ(1)

d(σ(1)) ≤ gσ(1). Hence, the largest index p for which

gσ(p) > ω(p), i.e., the index p∗, exists. Next, we prove that the projection z = PTk
f
(a) is of the

described form.

Using the fact that zf = zm+1 = zm+2, the vector z can be obtained as the solution of the

following optimization problem, where we restrict to the support of the constraints in T k
f .

min
z

∑

i∈Kk

∑

e∈δ(i)\{f}
||ae − ze||

2
2 + ||af − zf ||

2
2 + ||am+1 − zf ||

2
2 + ||am+2 − zf ||

2
2

s.t.
∑

e∈δ(i)

ze ≥ zf ∀i ∈ Kk.
(20)

Let λi, i ∈ Kk, denote the dual variables corresponding to the constraints of (20). We further denote

by V (f) the two vertices in G adjacent to f ∈ E. Then, the KKT optimality conditions for (20) are

as follows

2(ze − ae)− λi = 0 ∀e ∈ δ(i) \ {f}, ∀i ∈ Kk (21)

6zf − 2(af + am+1 + am+2) +
∑

i∈Kk\V (f)

λi = 0 (22)

∑

e∈δ(i)

ze ≥ zf ∀i ∈ Kk (23)

λi(zf −
∑

e∈δ(i)

ze) = 0 ∀i ∈ Kk (24)
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λi ≥ 0 ∀i ∈ Kk. (25)

It follows from (21) and (22) that we have

zf =
af + am+1 + am+2

3
−

1

6

∑

i∈Kk\V (f)

λi, and

ze = ae +
1

2
λi ∀e ∈ δ(i) \ {f}, ∀i ∈ Kk.

(26)

Suppose K∗ ⊆ Kk is the set of vertices for which λi > 0 at an optimal solution of (20). The

complementary slackness constraints (24) then imply that zf =
∑

e∈δ(i) ze for all i ∈ K∗ \ V (f) and
∑

e∈δ(i)\{f} ze = 0 for i ∈ K∗ ∩ V (f). Note that |K∗ ∩ V (f)| ≤ 1 since Kk is an independent set

in G. By exploiting (26) and
∑

j∈Kk\V (f) λj =
∑

j∈K∗\V (f) λj , these equations can be rewritten to

af + am+1 + am+2

3
−

1

6

∑

j∈K∗\V (f)

λj =
∑

e∈δ(i)

(
ae +

1

2
λi

)

⇐⇒ λi =
2

d(i)



af + am+1 + am+2

3
−
∑

e∈δ(i)

ae −
1

6

∑

j∈K∗\V (f)

λj





⇐⇒ λi =
2

d(i)



gi −
1

6

∑

j∈K∗\V (f)

λj



 (27)

for all i ∈ K∗ \ V (f). Summing the latter equations over all i ∈ K∗ \ V (f) yields

∑

i∈K∗\V (f)

λi = 2
∑

i∈K∗\V (f)

gi
d(i)

−
1

3

∑

i∈K∗\V (f)

1

d(i)

∑

j∈K∗\V (f)

λj ,

or equivalently,
∑

i∈K∗\V (f) λi =
2
∑

i∈K∗\V (f)
gi

d(i)

1+ 1
3

∑
i∈K∗\V (f)

1
d(i)

. After substitution into (27), we obtain

λi =
2

d(i)

(
gi −

∑
i∈K∗\V (f)

gi
d(i)

3 +
∑

i∈K∗\V (f)
1

d(i)

)
> 0 (28)

for all i ∈ K∗ \V (f). For each i ∈ (Kk \K∗) \V (F ), we have λi = 0. The inequalities (23) for these

i then read
∑

e∈δ(i)

ae ≥
af + am+1 + am+2

3
−

∑
i∈K∗\V (f)

gi
d(i)

3 +
∑

i∈K∗\V (f)
1

d(i)

,

or equivalently,

gi −

∑
i∈K∗\V (f)

gi
d(i)

3 +
∑

i∈K∗\V (f)
1

d(i)

≤ 0. (29)

By combining (28) and (29) we obtain the following optimality conditions on the dual variables λ
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concerning the indices in Kk \ V (F )





2

d(i)

(
gi −

∑
i∈K∗\V (f)

gi
d(i)

3 +
∑

i∈K∗\V (f)
1

d(i)

)
> 0 for all i ∈ K∗ \ V (f),

gi −

∑
i∈K∗\V (f)

gi
d(i)

3 +
∑

i∈K∗\V (f)
1

d(i)

≤ 0 for all i ∈ (Kk \K
∗) \ V (F ).

(30)

We conclude from the conditions (30) that the support of λ restricted to Kk \ V (f) always consists

of the vertices for which gi lies above a certain threshold value. To find this threshold value, we sort

the gi’s in non-increasing order and check all possible candidate sets for K∗ \ V (f) corresponding

to the first r entries in this sorted list. Let σ : [nk] → Kk denote an according sorting permutation,

i.e., σ is bijective and fulfills gσ(1) ≥ gσ(2) ≥ · · · ≥ gσ(nk). For each candidate set {σ(1), . . . , σ(p)} ⊆

Kk \ V (f), it suffices to check whether gσ(p) is strictly larger than the candidate threshold value

ω(p) :=

∑p
j=1

gσ(j)

d(σ(j))

3 +
∑p

j=1
1

d(σ(j))

.

If p∗ is the largest index for which this holds, then this candidate set equals K∗\V (f). The existence

of such a p∗ is guaranteed by the existence of a solution to the projection problem (20).

Finally, we need to address the optimality conditions for all i ∈ Kk∩V (f). In case i ∈ K∗∩V (f),

we have λi > 0, and due to complementary slackness (24) it holds that

0 =
∑

e∈δ(i)\{f}
ze =

∑

e∈δ(i)\{f}

(
ae +

1

2
λi

)
, or equivalently, λi = −

2

d(i)− 1

∑

e∈δ(i)\{f}
ae > 0.

We note here that we may w.l.o.g. assume that d(i) > 1. Namely, if d(i) = 1, then the set δ(i) \ {f}

is empty, hence λi will not appear anywhere in (26), making this dual variable redundant.

For the case i ∈ (Kk \ K∗) ∩ V (f), and hence λi = 0, condition (24) with (23) reads as
∑

e∈δ(i)\{f} ae ≥ 0. Combining both cases, we obtain the following optimality conditions for

i ∈ Kk ∩ V (F ): 




∑

e∈δ(i)\{f}
ae < 0 for i ∈ K∗ ∩ V (f),

∑

e∈δ(i)\{f}
ae ≥ 0 for i ∈ (Kk \K

∗) ∩ V (f).

Altogether, the equations (26) then imply

ze =






af+am+1+am+2

3 − ω(p∗) if f ∈ {e,m+ 1,m+ 2},

ae +
1

d(i) (gi − ω(p∗)) if e ∈ δ(i) \ {f} and i ∈ K∗ \ V (f),

ae −
1

d(i)−1

∑
e∈δ(i)\{f} ae if e ∈ δ(i) \ {f} and i ∈ Kk ∩ V (f) with

∑
e∈δ(i)\{f} ae < 0,

ae otherwise.

It follows from Lemma 7 that the projection onto T k
f involves both a sorting and an enumeration

of a list of nk elements. Hence, the worst-case time complexity is O(nk lognk).
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In fact, for computational purposes, we are not going to project on YRLT but iteratively add

violated cuts only. For that, we denote by C ⊆ V × E the set of violated cuts that we to add to Y,

where an element (i, f) represents the cut
∑

e∈δ(i) yef ≥ yf . We further define analogously to YRLT

the polyhedral set

YC :=



Ỹ ∈ R

(m+1)×(m+1) : Ỹ =

(
Y y

y⊤ 1

)
, diag(Y ) = y,

∑

e∈δ(i)

yfe ≥ yf ∀(i, f) ∈ C



 .

The projection follows the same idea as explained above for the projection onto YRLT , but in this

case, instead of partitioning the vertex set V into independent sets, we can partition the constraints

in C for each edge f separately. For a fixed f , we partition the vertices occurring together with f

in C into independent sets Kf
1 , . . . ,K

f
Nf

. Note that the number of independent sets Nf for an edge

will probably be way smaller than the number of colors needed to color the whole graph, which can,

in the worst case of a complete graph, be the number of vertices. Furthermore, as mentioned above,

it is possible to project independently over each row f ∈ E, which allows us to parallelize this step.

Hence, we cluster the cut constraints in Ck =
{
(i, f) ∈ C : f ∈ E, i ∈ Kf

k

}
for 1 ≤ k ≤ Nmax

with Nmax := max{Nf : f ∈ E} and obtain YC = Y ∩

(
⋂Nmax

k=1 YCk

)
, where we can easily project

onto YCk
using Proposition 7. A pseudocode for the Cyclic Dykstra projection algorithm to project

onto YC can be found in Algorithm 1. To compute the lower bound (18) with a PRSM algorithm, we

Algorithm 1 Dykstra’s cyclic projection algorithm to project onto YC
Input: matrix M , cuts C, εproj
Output: the projection PYC

(M) of M onto YC

1: cluster C into {C1, . . . , CNmax
}

2: initialize X = M , P = 0, Q1 = · · · = QNmax
= 0

3: repeat

4: Xold = X

5: Xtmp = X + P

6: X = PY (Xtmp)
7: P = Xtmp −X

8: for k = 1, . . . , Nmax do

9: Xtmp = X +Qk

10: X = PYCk
(Xtmp)

11: Qk = Xtmp −X

12: end for

13: until ‖Xold −X‖ < εproj
14: return X

first compute the DNN bound (17) with the PRSM, as explained in the previous subsection. Then,

we separate violated cuts from the current solution and add the ncutsmax most violated ones to C.

We then proceed to compute (17) with the additional new cuts in C with the PRSM and use the

solution from before for a warm-start. This process of separating and adding new cuts to C in an

outer loop is iterated until one of the stopping criteria is met. Algorithm 2 provides a pseudocode

for the described algorithm.

5.3 Stopping criteria and post-processing of the PRSM algorithm

In this subsection, we briefly discuss the stopping criteria and the post-processing phase of our

PRSM algorithm.
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Algorithm 2 PRSM algorithm to compute lower bounds on the QMST

Input: graph G = (V, E), cost matrix Q̃

Output: (valid) lower bound LB

1: initialize Ỹ 0, S0, β, γ1, γ2, set C = ∅ ⊲ cf. Section 6
2: compute W , e.g., apply QR decomposition to ((n− 1)Im 1m )⊤

3: k = 0
4: while no stopping criteria met do

5: while no stopping criteria met do

6: Rk+1 = PR(W⊤(Ỹ k + 1

β
Sk)W )

7: S
k+1
2 = Sk + γ1β(Ỹ k −WRk+1W⊤)

8: Ỹ k+1 = PYC

(
WRk+1W⊤ − 1

β

(
Q̃ + S

k+1
2

))

9: Sk+1 = S
k+1
2 + γ2β(Ỹ k+1 −WRk+1W⊤)

10: k = k + 1
11: end while

12: compute a valid lower bound LB from Sk ⊲ cf. Section 5.3
13: separate violated cuts and add the ncutsmax most violated ones to C
14: cluster the cuts in C
15: end while

16: return LB

Stopping criteria We use several criteria to decide when to stop the inner and outer iterations

of Algorithm 2. The main stopping criteria for the inner while loop is when the primal and dual

errors satisfy

max

{∥∥Ỹ k+1 −WRk+1W⊤∥∥
F

1 +
∥∥Ỹ k+1

∥∥
F

, β

∥∥W⊤(Ỹ k − Ỹ k+1
)
W
∥∥
F

1 +
∥∥Sk+1

∥∥
F

}
≤ εPRSM ,

cf. [4]. We further stop the inner iterations when the maximum number of total PRSM iterations or

a time limit is reached. In that case, we compute a valid dual bound as described below, and stop

the algorithm.

For the outer loop, we have the following possible stopping criteria. If an upper bound is known,

the algorithm stops as soon as the obtained valid lower bound closes the gap. We further stop the

algorithm if the number of new violated cuts found is below a certain threshold ncutsmin. If the

improvement of the valid lower bound compared to the valid lower bound of the previous outer

iteration is smaller than epslbimprov, we stop the algorithm as well. And finally, we stop after a

maximum of noutermax outer iterations.

Valid lower bound The value obtained as an output of Algorithm 2 does not necessarily provide

a lower bound for the problem, as the convergence of the PRSM is typically not monotonic, and

one stops the algorithm earlier. Therefore, it is necessary to perform a postprocessing procedure to

obtain a valid lower bound. We apply the approach presented in [26]. The safe lower bound derived

by this method is then given by

lb(Sout) = min
Ỹ ∈YC

〈Q̃+ Sout, Ỹ 〉 − nλmax(W
⊤SoutW ),

where Sout denotes the dual matrix variable resulting from (an early stop of) the PRSM. The

computation of this lower bound boils down to computing the largest eigenvalue and solving a linear

program. Similarly, one can obtain a valid lower bound from the PRSM algorithm that solves (17),

by replacing YC with Y, see (16), in the above expression.

17



6 Numerical results

We implemented1 our algorithm in Julia [3] version 1.10.0. For solving the linear program to compute

a valid lower bound, we are using the solver HiGHS [23] with the modeling language JuMP [28].

The projection onto Ck is multithreaded. All computations were carried out on an AMD EPYC

7343 with 16 cores with 4.00GHz and 1024GB RAM, operated under Debian GNU/Linux 11.

Parameter setting We initialize the matrices, penalty parameters, and step lengths as follows.

As starting values for the matrices, we choose S0 = 0 and

Ỹ 0 =

(
(n−1)

m
I+ (n−1)(n−2)

m(m−1)
(J−I) (n−1)

m
1

(n−1)
m

1
⊤ 1

)

Based on the results of numerical tests, we have determined the values for the penalty parameter β

and step lengths. We set the step length parameters to γ1 = 0.9, γ2 = 1. For the penalty parameter,

let qmax := max{tr(Q), ‖Q‖F} and qmin := min{tr(Q), ‖Q‖F}, we then set

β =






√
qmin

m+1‖Q‖F if qmax

qmin
< 1.2,

√
qmax

qmin
‖Q‖F else.

We run our algorithm for all instances with εPRSM = 10−4 and the parameter εproj is set to 10−5.

Violated cuts are considered if the violation is greater than 10−3 and after each outer iteration,

the ncutsmax = m most violated cuts are added. No further cuts are added if the improvement of

the lower bound is smaller than epslbimprov = 10−3 or the number of new violated cuts found is

less than ncutsmin = 10. The maximum wall-clock time for running our algorithm is set to 3 hours

per instance, and the maximum number of total iterations is set to 10 000. We set the number of

maximum outer iterations to noutermax = 10.

Benchmark instances We test our algorithm on the following three benchmark sets. The first

benchmark set OP was introduced in [30] by Öncan and Punnen. The benchmark set consists of

3 different classes, each consisting of 160 instances on complete graphs: the OPsym, OPvsym and

OPesym instances. The OPsym instances have diagonal entries chosen uniformly from [100], and the

off-diagonal values are uniformly distributed at random in [20]. For instances in the class OPvsym,

the diagonal values are uniformly distributed in [10 000], and the off-diagonal values Q{i,j},{k,l} are

computed as w(i)w(j)w(k)w(l), where w : V → [10] assigns to each vertex in the graph a uniformly

distributed weight at random in [10]. The cost matrix for instances of the type OPesym is constructed

in the following way. First, the vertex coordinates are randomly chosen in the box [0, 100]× [0, 100],

and the edges are represented as straight lines connecting vertices. The edge cost Qee is then set

as the length of the edge e, and the interaction cost between two edges e and f is computed as the

Euclidean distance between the midpoints of e and f . For each of those test sets, they randomly

generated 10 instances each for n ∈ {6, 7, . . . , 17, 18}∪{20, 30, 50}. We do not include the benchmark

1The code can be found on https://github.com/melaniesi/QMST.jl and as ancillary files on the arXiv page of
this paper.
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instances of type OPesym and n = 20 in our study, as we were unable to locate the correct instances2.

The second family of benchmark instances CP was introduced by Cordone and Passeri in [10].

The benchmark set consists of 108 instances divided into 4 classes, specifying the sets from which the

diagonal and off-diagonal values of the cost matrix are chosen uniformly at random. For each pair

of the number of vertices n ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}, density d ∈ {33%, 67%, 100%} and

class, one random graph was generated. The values of the cost matrix Q are uniformly distributed

on the sets as listed below.

class CP1 CP2 CP3 CP4

diagonal values [10] [10] [100] [100]

off-diagonal values [10] [100] [10] [100]

The last benchmark set SV was introduced by Sotirov and Verchére in their recent paper [39]. It

consists of 24 instances, with one random graph for each pair of n ∈ {10, 12, 14, 16, 18, 20, 25, 30} and

d ∈ {33%, 67%, 100%}. They constructed the cost matrices in such a way that for a given maximum

cost for the diagonal entries, and a maximum cost for the off-diagonal entries, 10% of the edges have

high interaction costs with each other (between 90 and 100% of the maximum off-diagonal cost) and

low interaction costs with the rest (between 20 and 40% of the maximum off-diagonal cost). The

other 90% of edges have an interaction cost of between 50 and 70% of the maximum off-diagonal

cost with each other. The diagonal entries are chosen to be between 0 and 20% of the maximum

diagonal cost.

Bounds from the literature We compare our numerical results to lower bounds from [20, 34, 39].

The upper bounds on the benchmark instances are taken from the literature.

The bounds from [20], called LAGN and LAGP, are used in the to-date best exact algorithm for

the QMSTP. Those bounds are obtained from two different ways of dualizing an SDP relaxation of

QMSTP. For LAGN, the semidefiniteness constraint is dualized, and a subgradient method is used

to compute the optimum. Whereas for computing LAGP, there is no semidefiniteness constraint

present, but a semi-infinite reformulation together with polyhedral cutting planes is solved using a

bundle method.

The lower bounds VS1 and VS2 were introduced by Sotirov and Verchére in [39]. These lower

bounds are based on an extended formulation of the minimum quadratic spanning tree problem and

are strengthened by facet defining inequalities of the Boolean Quadric polytope. The lower bound

VS2 is stronger than VS1.

Pereira et al. [34] solved several benchmark problems of sizes up to 50 vertices using a RLT based

relaxation RLT1. RLT1 is an incomplete first level RLT relaxation and is computed by dualizing

the symmetry constraint, applying the GL procedure, and using a subgradient algorithm. Another

RLT based bound among the strongest relaxations in the literature is RLT2, presented in [37]. The

authors of [37] use a dual-ascent procedure for computing their relaxation based on the second-level

of RLT.

Computational results We first present a comparison of our algorithm to the results from [20],

where the authors also compute SDP bounds. Their computations were carried out on a machine

2In the benchmark set https://data.mendeley.com/datasets/cmnh9xc6wb/1 , the instances indicated as type
OPesym for n = 20 are the OPvsym for n = 6.
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with 32 GB RAM and two E5645 Intel Xeon processors, with six 2.40GHz cores each.

The structure of Table 1 is analogous to Table 4 in [20] and reads as follows. The rows are grouped

into 3 blocks, each reporting the results averaged over all CP instances with the same property as

specified in the first column of the table. The first block of rows averages over instances of the same

size, the second averages the results over the densities of the graphs, and the last block averages over

the different classes of the CP instances. In the second column of Table 1, we report the average

gap obtained by the valid lower bound obtained with our PRSM algorithm when stopping after the

first outer iteration, cf. (17). We compute the relative gap between that lower bound (LBDNN ) and

the best known upper bound (UB) from the literature using 100(UB − LBDNN )/UB. We remark

here that the same gap was calculated in Guimarães et al. [20].3 In the third column, we report

the average wall clock time in seconds needed to compute this lower bound. In column 4, we report

the average gap obtained by the bound returned by Algorithm 2, cf. (18), and in column 5, the

average time needed to compute this bound. In the sixth and seventh column, we list the average

gaps and computation times for the bound LAGN of [20], which is used in the best up-to-date exact

algorithm for the QMSTP. The average gaps and computation times of LAGP, the second lower

bound introduced in [20], are given in the last two columns of Table 1.

The results in Table 1 show that for the CP instances, our lower bounds are, on average, signifi-

cantly stronger than the SDP bounds LAGN and LAGP. Except for the instances with n ∈ {10, 15},

the average computation times for solving our relaxations are smaller than those reported for com-

puting SDP bounds LAGN and LAGP. The average time to compute the DNN + CUTS bound,

that is (18), over all CP instances is 51 seconds, compared to 1 360 and 5 652 seconds for LAGN

and LAGP, respectively. More significant difference in the computation times and relative gaps can

be seen for larger instances. One can also observe that the less dense the instances are, the smaller

the average relative gap. Furthermore, the effect of adding cuts is more significant for sparse graphs

than for dense graphs. Guimarães et al. [20, Table 4] compare their bounds to RLT1 [34], which can

be computed approximately three times faster than LAGN but yields much weaker bounds. The

average gap of bound RLT2 [37] over all instances of size n ≤ 35 for each of the four CP classes is

at least three times larger than our reported average gaps for (17). Overall, Table 1 shows that,

especially for larger CP instances, our bounds are significantly stronger and faster to compute than

any other bounds.

In the Tables 2 to 6 we report the numerical results for all benchmark instances of the test sets

CP and SV. The first four columns give details about the instance as the number of vertices, the edge

density, the number of edges and an upper bound on the QMST. The next three columns report the

valid lower bound (17) obtained after the first outer loop of our PRSM algorithm, the relative gap

to the upper bound 100(UB−LBDNN )/UB, and the wall clock time in seconds needed to compute

that bound. The last six columns outline the numerical results of our algorithm to compute (18). In

columns 8 to 10, we provide the valid lower bound returned by our algorithm, the relative gap, and

the wall clock time needed to compute the lower bound. The next two columns list the total number

of iterations and the total number of cuts added. In the last column, we report the relative gap

closed by adding the RLT-type cuts to the DNN relaxation (17). This performance measurement

is computed as 100(LBDNN+CUTS − LBDNN )/(UB − LBDNN ), where LBDNN refers to the lower

bound (17) reported in column 5 and LBDNN+CUTS is the lower bound (18) reported in column 8 in

3There was a typo in that paper that claims differently, but our statement can be easily verified.
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each table. This metric gives information on how much the gap to the upper bound was improved.

Tables 2 to 5 show that especially for CP instances with n ≥ 30 vertices and edge density 100%

there were only a few violated cuts found. Hence, the relative improvement of the DNN relaxation

by adding those cuts was only marginal. One can further observe that the improvement of the

relative gap and the relative gap closed, is better for smaller instances. For larger instances, adding

cuts such as the RLT-type of the cut-set constraints for subsets S of size 2 and larger, might further

improve the DNN bounds.

Table 6 presents the results of our algorithm for the benchmark set SV introduced in [39]. To

the best of our knowledge, there are no results on LAGN, LAGP, and RLT2 for this benchmark

set. The by far best lower bound up to date for the SV instance set was VS2. Our DNN relaxation

bound without cuts outperforms VS2 for all instances, with the number of edges m ≥ 45, except for

the instance with n = 12 and d = 67%. Both our relaxations yield a relative gap of less than 1%.

The relative gap of VS2 ranges between 0 and 16.4%. The maximum runtime to compute the DNN

bound for these instances is less than 5 seconds, whereas computation time for bound VS2 of n = 30

and d = 100% was reported to be 45 minutes. Computing the DNN bound with cuts is faster than

the reported time to compute VS2 for all instances with more than 80 edges.

Tables 7 to 9 read similarly to the tables for the CP and SV benchmark sets but the results are

averaged over all instances of the same size. Again, to the best of our knowledge, we are not aware

of any detailed and complete results for LAGN and LAGP on the OP benchmark set.

Table 7 reports the results obtained for the benchmark set OPsym. The lower bound (18) with

cuts outperforms VS2 for n ≥ 10, and RLT2 for n ≥ 8 with the exception of n = 18, where the

average relative gap for RLT2 is reported to be 33% and is 33.41% for the DNN bound with cuts.

For n = 50, no bounds were reported. One can observe that the absolute improvement by adding

RLT cuts to (17) for n ≥ 9 is approximately 20.

Table 8 shows that for the benchmark set OPesym adding the RLT-type cuts to (17) yields a

substantial improvement of the relative gap. The DNN lower bound with cuts yields better bounds

compared to VS2 but is clearly dominated by RLT1, giving an average relative gap between 0.2%

and 1.7% for instances with n ≤ 30.

The authors of [39] report that the relative gap of the VS1 lower bound is less than or equal 0.2%

for all instances of the class OPvsym. Although, on average, not many violated cuts to be added were

found, the averaged relative bound closed is above 49% for all instances except that with n ∈ {6, 7},

where on average only 0.5 violated cuts were found. Considering the instances with n ≥ 11, the

average relative bound closed is even above 80%.

The time limit of 3 hours was reached by all instances from OPesym and OPvsym of size n = 50

and almost all of those instances of size n = 30. The higher computational costs for those two classes

of benchmark instances can be explained, among other things, by the high number of clusters Nmax,

cf. Section 5.2. The number of clusters has a direct effect on the computation time of Dykstra’s

algorithm, which accounts for a substantial part of the overall computation time. The average

number of clusters needed for the OPvsym and OPesym instances are 6.43 and 6.38, whereas the

average over all other benchmark instances is 3.26. Note that for those two classes of instances, added

RTL-type constraints significantly improve lower bounds. Additionally, as for the CP3 instances,

one can observe the higher number of iterations until convergence of the algorithm compared to

other classes in our benchmark sets.
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This study Guimarães et al. [20]

DNN DNN + CUTS LAGN LAGP

gap (%) time (s) gap (%) time (s) gap (%) time (s) gap (%) time (s)

n = 10 4.64 0.08 2.03 9.31 3.78 0.41 3.43 1.03

n = 15 5.54 0.41 4.24 18.77 5.25 4.81 8.54 6.59

n = 20 5.91 1.02 5.32 27.30 6.43 30.64 13.32 32.62

n = 25 7.52 2.32 6.83 35.80 8.72 122.87 17.56 239.23

n = 30 8.66 5.85 8.37 54.10 11.86 358.20 21.91 892.74

n = 35 9.87 7.62 9.68 58.70 15.96 897.69 24.03 3582.20

n = 40 11.46 14.34 11.32 68.10 23.53 1597.73 28.72 6050.58

n = 45 11.88 27.13 11.78 84.40 27.34 3195.97 29.51 16297.23

n = 50 13.08 45.58 13.03 103.22 31.45 6030.00 31.99 31953.35

d = 33% 4.98 1.97 4.02 23.31 4.84 145.89 9.80 191.42

d = 67% 8.99 7.02 8.17 44.53 14.28 1124.67 20.96 3968.84

d = 100% 12.22 25.79 12.01 85.39 25.65 2808.88 28.92 15524.93

class = 1 9.08 8.14 8.51 21.87 17.93 551.84 20.66 5270.20

class = 2 10.96 15.69 10.23 45.99 17.27 1629.16 23.73 8583.70

class = 3 4.35 13.49 3.63 106.83 7.63 1625.35 12.14 4462.49

class = 4 10.53 9.05 9.89 29.61 16.87 1632.91 23.04 7930.53

Table 1: Comparison to averaged results on lower bounds for CP instances.

7 Conclusion

This paper provides two mixed-integer semidefinite programming formulations for the quadratic min-

imum spanning tree problem. Each of these formulations includes only one connectivity constraint,

which is a linear matrix inequality based on the algebraic connectivity of trees. By exploiting the

MISDP formulations, we derive a DNN relaxation for the QMSTP. We also derive the cut-set and

RLT-type constraints as Chvátal-Gomory cuts of the MISDP by applying a CG procedure for mixed

integer conic programming. The RLT-type constraints are added to the DNN relaxation, resulting

in a strengthened DNN relaxation. An iterative cutting plane Peaceman-Rachford splitting method

is designed to compute the DNN relaxation with the RLT-type constraints of the QMSTP efficiently.

The computational experiments on the benchmark instances from the literature demonstrate that

our bounds significantly outperform existing bounds both in quality and computation time. While

other approaches struggled to compute bounds for larger instances, we compute strong bounds in

short time.

Given these results, incorporating our new bounds in a branch-and-bound algorithm would be

the obvious next step for further research. Another topic for future research would be to incorporate

additional RLT-type cut-set constraints to further strengthen the DNN relaxation.

Instance DNN DNN + CUTS

n d (%) m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

10 33 14 350 341.08 2.55 0.02 349.97 0.01 0.74 502 28 99.63

10 67 30 255 242.83 4.77 0.14 251.43 1.40 10.08 816 48 70.69

10 100 45 239 226.33 5.30 0.19 228.96 4.20 13.87 820 60 20.75

15 33 34 745 706.16 5.21 0.13 719.04 3.48 8.73 810 91 33.17

15 67 70 659 619.40 6.01 0.36 628.71 4.60 7.16 796 140 23.53
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n d (%) m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

15 100 105 620 585.24 5.61 0.67 587.03 5.32 4.70 286 105 5.12

20 33 62 1379 1318.35 4.40 0.18 1328.45 3.67 4.99 530 143 16.66

20 67 127 1252 1171.25 6.45 0.99 1179.66 5.78 10.62 511 221 10.41

20 100 190 1174 1072.25 8.67 0.92 1074.01 8.52 7.81 166 168 1.73

25 33 99 2185 2101.49 3.82 0.75 2134.53 2.31 12.94 787 289 39.56

25 67 201 2023 1863.59 7.88 0.81 1866.65 7.73 8.23 163 228 1.92

25 100 300 1943 1705.87 12.20 2.44 1706.67 12.16 10.60 155 138 0.34

30 33 143 3205 3073.14 4.11 1.58 3089.28 3.61 11.21 584 334 12.24

30 67 291 2998 2709.48 9.62 1.94 2712.29 9.53 10.25 151 284 0.97

30 100 435 2874 2475.81 13.86 4.31 2476.25 13.84 16.19 165 102 0.11

35 33 196 4474 4235.79 5.32 1.49 4251.43 4.97 12.83 381 410 6.56

35 67 398 4147 3715.44 10.41 2.66 3717.16 10.37 12.92 133 253 0.40

35 100 595 4000 3399.70 15.01 11.80 3399.99 15.00 30.73 177 90 0.05

40 33 257 5945 5573.59 6.25 1.24 5587.07 6.02 12.56 188 456 3.63

40 67 522 5567 4878.53 12.37 6.82 4879.76 12.34 24.27 142 227 0.18

40 100 780 5368 4457.25 16.97 21.13 4457.41 16.96 51.71 189 78 0.02

45 33 326 7521 7065.52 6.06 2.97 7080.87 5.85 15.74 255 584 3.37

45 67 663 7161 6210.43 13.27 11.60 6210.88 13.27 30.85 142 170 0.05

45 100 990 6944 5668.59 18.37 43.86 5668.64 18.37 77.93 193 33 0.00

50 33 404 9393 8737.94 6.97 2.32 8749.60 6.85 14.86 149 564 1.78

50 67 820 8958 7668.14 14.40 19.19 7668.62 14.39 48.21 156 152 0.04

50 100 1225 8713 7029.42 19.32 79.40 7029.45 19.32 119.82 206 32 0.00

Table 2: Results for CP1.

Instance DNN DNN + CUTS

n d (%) m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

10 33 14 3122 2958.98 5.22 0.01 3115.06 0.22 2.88 579 28 95.75

10 67 30 2042 1929.22 5.52 0.08 2027.39 0.72 25.75 923 55 87.05

10 100 45 1815 1681.60 7.35 0.14 1697.01 6.50 24.15 949 50 11.55

15 33 34 6539 6108.39 6.59 0.05 6236.79 4.62 9.54 666 83 29.82

15 67 70 5573 5182.26 7.01 0.25 5273.86 5.37 10.19 651 120 23.44

15 100 105 5184 4802.29 7.36 0.51 4819.98 7.02 19.41 461 126 4.63

20 33 62 12425 11770.26 5.27 0.12 11860.87 4.54 9.11 549 140 13.84

20 67 127 10893 10251.15 5.89 0.66 10316.10 5.30 13.62 389 182 10.12

20 100 190 10215 9138.20 10.54 1.53 9156.76 10.36 14.36 346 153 1.72

25 33 99 19976 19156.48 4.10 0.56 19499.99 2.38 35.03 1054 282 41.92

25 67 201 18251 16563.59 9.25 1.36 16595.43 9.07 19.68 323 221 1.89

25 100 300 17411 14772.45 15.15 3.40 14782.12 15.10 28.02 346 140 0.37

30 33 143 29731 28301.88 4.81 0.78 28469.60 4.24 22.82 496 326 11.74

30 67 291 27581 24303.73 11.88 2.86 24330.85 11.78 22.24 318 259 0.83

30 100 435 26146 21699.39 17.01 9.23 21703.81 16.99 35.44 361 90 0.10

35 33 196 42305 39405.07 6.85 0.98 39551.95 6.51 19.02 337 400 5.06

35 67 398 38490 33520.06 12.91 5.37 33537.58 12.87 35.03 318 258 0.35

35 100 595 36723 30027.26 18.23 20.46 30030.25 18.22 63.99 388 83 0.04

40 33 257 56237 51995.88 7.54 1.83 52136.64 7.29 19.07 284 437 3.32
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n d (%) m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

40 67 522 51851 44247.99 14.66 11.95 44260.68 14.64 53.48 313 238 0.17

40 100 780 49817 39565.62 20.58 40.64 39567.19 20.57 113.05 413 63 0.02

45 33 326 70603 65914.02 6.64 2.38 66041.56 6.46 32.93 310 589 2.72

45 67 663 66889 56511.11 15.52 22.95 56515.55 15.51 63.23 313 151 0.04

45 100 990 64840 50526.76 22.07 88.58 50527.18 22.07 152.35 419 42 0.00

50 33 404 88942 81835.33 7.99 3.48 81933.27 7.88 27.64 262 557 1.38

50 67 820 84020 69935.17 16.76 37.26 69939.94 16.76 101.24 342 145 0.03

50 100 1225 81858 62875.12 23.19 166.17 62875.44 23.19 268.61 453 30 0.00

Table 3: Results for CP2.

Instance DNN DNN + CUTS

n d (%) m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

10 33 14 646 625.91 3.11 0.01 625.91 3.11 0.01 130 0 0.00

10 67 30 488 460.23 5.69 0.04 487.03 0.20 3.68 538 26 96.52

10 100 45 426 422.02 0.93 0.09 424.27 0.41 6.67 556 18 56.51

15 33 34 1236 1203.32 2.64 0.15 1225.21 0.87 11.52 1311 79 66.99

15 67 70 966 931.32 3.59 0.25 946.11 2.06 39.28 902 89 42.66

15 100 105 975 953.87 2.17 1.59 961.97 1.34 89.76 1860 145 38.32

20 33 62 1972 1906.69 3.31 0.29 1924.45 2.41 21.52 1088 178 27.19

20 67 127 1792 1742.91 2.74 1.52 1762.12 1.67 101.72 1303 311 39.13

20 100 190 1544 1514.39 1.92 4.25 1520.24 1.54 122.27 1212 248 19.78

25 33 99 2976 2861.20 3.86 1.01 2904.43 2.40 25.98 1353 281 37.66

25 67 201 2546 2468.53 3.04 5.70 2487.99 2.28 100.34 1415 487 25.13

25 100 300 2471 2371.04 4.05 7.83 2382.68 3.57 152.13 811 438 11.65

30 33 143 4070 4001.92 1.67 2.55 4027.98 1.03 39.17 1278 460 38.28

30 67 291 3649 3522.91 3.46 6.93 3544.28 2.87 131.82 921 635 16.95

30 100 435 3483 3293.54 5.44 12.41 3305.31 5.10 189.36 684 665 6.21

35 33 196 5423 5261.95 2.97 3.76 5302.59 2.22 59.07 1361 622 25.24

35 67 398 4981 4757.51 4.49 7.89 4767.61 4.28 113.69 593 627 4.52

35 100 595 4770 4451.46 6.68 21.04 4454.47 6.61 298.89 503 593 0.94

40 33 257 6925 6708.96 3.12 5.77 6753.53 2.48 73.30 1099 849 20.63

40 67 522 6456 6110.47 5.35 12.16 6122.99 5.16 136.20 482 776 3.62

40 100 780 6208 5716.76 7.91 37.61 5718.10 7.89 183.36 446 422 0.27

45 33 326 8720 8484.37 2.70 9.77 8517.33 2.32 81.91 1051 1035 13.99

45 67 663 8225 7692.48 6.47 18.71 7700.56 6.38 147.23 373 884 1.52

45 100 990 7827 7160.41 8.52 67.09 7161.31 8.50 288.73 384 382 0.14

50 33 404 10717 10341.87 3.50 12.76 10367.75 3.26 89.62 851 1101 6.90

50 67 820 10100 9366.40 7.26 28.69 9368.84 7.24 157.12 286 660 0.33

50 100 1225 9836 8767.89 10.86 94.33 8768.14 10.86 220.08 292 166 0.02

Table 4: Results for CP3.
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Instance DNN DNN + CUTS

n d (%) m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

10 33 14 3486 3391.98 2.70 0.02 3485.78 0.01 2.19 562 28 99.77

10 67 30 2404 2261.59 5.92 0.09 2348.16 2.32 10.89 676 50 60.79

10 100 45 2197 2051.05 6.64 0.16 2082.04 5.23 10.77 713 56 21.23

15 33 34 7245 6790.59 6.27 0.16 6958.02 3.96 10.37 816 81 36.84

15 67 70 6188 5769.57 6.76 0.29 5862.17 5.27 9.26 595 153 22.13

15 100 105 5879 5449.98 7.30 0.47 5470.56 6.95 5.27 310 118 4.80

20 33 62 13288 12666.64 4.68 0.18 12766.55 3.92 4.47 523 138 16.08

20 67 127 11893 11096.91 6.69 0.76 11178.80 6.01 7.61 387 187 10.29

20 100 190 11101 9951.75 10.35 0.88 9971.71 10.17 9.54 204 171 1.74

25 33 99 21176 20227.51 4.48 0.77 20589.60 2.77 14.67 994 288 38.18

25 67 201 19207 17574.38 8.50 0.89 17610.67 8.31 9.87 180 228 2.22

25 100 300 18370 15807.56 13.95 2.29 15817.10 13.90 12.11 170 139 0.37

30 33 143 31077 29621.42 4.68 1.31 29783.85 4.16 14.20 539 325 11.16

30 67 291 28777 25518.14 11.32 1.87 25546.39 11.23 11.24 160 271 0.87

30 100 435 27314 22912.94 16.11 24.38 22917.52 16.10 145.29 1151 93 0.10

35 33 196 43629 40846.14 6.38 1.11 41011.82 6.00 12.59 306 392 5.95

35 67 398 39660 34968.45 11.83 3.48 34986.17 11.78 14.38 147 255 0.38

35 100 595 38049 31466.73 17.30 11.39 31469.65 17.29 31.31 192 90 0.04

40 33 257 58874 53626.37 8.91 4.24 53763.25 8.68 72.15 882 441 2.61

40 67 522 53592 45901.66 14.35 6.33 45914.47 14.33 24.59 157 235 0.17

40 100 780 51229 41229.31 19.52 22.34 41231.11 19.52 53.43 206 73 0.02

45 33 326 72676 67799.91 6.71 3.21 67966.40 6.48 17.31 265 582 3.41

45 67 663 68737 58407.29 15.03 10.40 58412.38 15.02 29.33 154 165 0.05

45 100 990 66508 52425.30 21.17 44.09 52425.78 21.17 75.26 207 40 0.00

50 33 404 91009 83901.38 7.81 2.98 84027.09 7.67 16.53 162 564 1.77

50 67 820 86231 72050.92 16.44 19.43 72055.97 16.44 47.69 168 153 0.04

50 100 1225 83838 65003.10 22.47 80.94 65003.46 22.47 127.26 222 33 0.00

Table 5: Results for CP4.

Instance DNN DNN + CUTS

n d (%) m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

10 33 11 4217 4207.86 0.22 0.01 4207.86 0.21 0.01 105 0 0.00

10 67 25 3981 3960.66 0.51 0.45 3974.47 0.15 6.20 1155 47 67.88

10 100 45 3930 3906.64 0.59 0.24 3914.25 0.38 14.53 945 78 32.56

12 33 28 6141 6115.80 0.41 0.08 6124.29 0.26 2.15 619 42 33.70

12 67 51 6050 6018.40 0.52 0.19 6030.75 0.31 17.54 803 71 39.09

12 100 66 6051 6003.50 0.79 0.32 6012.51 0.63 22.41 1003 144 18.98

14 33 29 8736 8691.84 0.51 0.12 8733.38 0.02 4.85 1111 81 94.07

14 67 53 8606 8580.96 0.29 0.25 8593.99 0.14 11.48 956 133 52.03

14 100 91 8513 8458.85 0.64 1.28 8482.15 0.35 32.85 1206 221 43.03

16 33 36 11735 11685.13 0.43 0.14 11706.79 0.24 3.51 929 102 43.43

16 67 87 11610 11536.13 0.64 1.07 11551.71 0.50 12.39 949 217 21.09

16 100 120 11516 11468.40 0.41 2.51 11480.52 0.30 39.79 1675 280 25.46
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n d (%) m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

18 33 51 15125 15059.14 0.44 0.26 15093.78 0.20 11.70 1253 167 52.59

18 67 108 15019 14947.73 0.47 1.59 14958.75 0.40 14.80 1101 229 15.46

18 100 153 14943 14883.24 0.40 3.25 14889.90 0.35 17.47 850 247 11.14

20 33 60 19057 18975.25 0.43 0.28 19001.60 0.29 9.09 1191 177 32.23

20 67 127 18830 18757.29 0.39 2.40 18766.64 0.33 9.66 1008 245 12.85

20 100 190 18812 18699.67 0.60 2.31 18704.25 0.57 14.02 398 261 4.08

25 33 104 30747 30660.41 0.28 1.01 30685.44 0.20 14.76 1127 333 28.91

25 67 195 30554 30416.45 0.45 3.09 30435.81 0.39 19.97 672 553 14.07

25 100 300 30405 30202.33 0.67 4.64 30207.32 0.65 13.46 271 263 2.46

30 33 152 45184 45048.50 0.30 2.87 45077.39 0.23 17.08 1056 499 21.32

30 67 273 44989 44756.82 0.52 3.52 44765.07 0.50 12.29 324 362 3.55

30 100 435 44847 44428.13 0.93 4.66 44432.08 0.92 13.72 138 227 0.94

Table 6: Results for SV instances.

Instance DNN DNN + CUTS

n m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

6 15 258.40 249.24 3.55 0.01 251.42 2.70 0.10 112.3 1.0 23.84

7 21 326.80 307.63 5.87 0.06 315.81 3.36 11.19 454.4 12.8 42.68

8 28 438.50 420.37 4.14 0.04 428.77 2.22 7.46 388.7 19.1 46.35

9 36 534.90 505.99 5.40 0.06 525.22 1.81 18.09 523.0 33.6 66.50

10 45 653.90 627.00 4.11 0.09 645.03 1.36 35.16 756.7 60.5 67.03

11 55 785.90 747.23 4.92 0.13 764.22 2.76 45.54 784.2 71.8 43.92

12 66 918.50 875.83 4.65 0.20 892.54 2.83 49.01 809.7 93.9 39.15

13 78 1067.10 1018.91 4.52 0.28 1036.33 2.88 68.12 913.6 121.5 36.16

14 91 1249.80 1200.89 3.91 0.58 1220.08 2.38 84.08 984.5 157.0 39.24

15 105 1390.20 1327.62 4.50 0.77 1348.64 2.99 79.95 998.6 186.3 33.59

16 120 1629.30 1542.28 5.34 0.92 1567.60 3.79 65.70 986.8 227.7 29.09

17 136 1823.80 1723.14 5.52 1.41 1746.23 4.25 103.45 1046.7 253.9 22.93

18 153 2981.00 1963.13 34.15 1.80 1985.06 33.41 104.87 950.1 279.8 2.15

20 190 2572.70 2415.88 6.10 2.61 2428.77 5.59 99.94 846.0 299.3 8.22

30 435 6015.90 5324.15 11.50 10.38 5326.24 11.46 102.24 426.9 228.9 0.30

50 1225 17616.90 14104.59 19.94 168.73 14104.71 19.94 440.47 387.5 44.0 0.00

Table 7: Results for OPsym instances.
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Instance DNN DNN + CUTS

n m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

6 15 541.20 421.57 22.10 0.01 499.51 7.70 3.80 279.8 9.5 65.15

7 21 783.70 568.79 27.42 0.03 743.62 5.11 27.81 526.2 24.3 81.35

8 28 1020.10 706.73 30.72 0.04 956.62 6.22 55.29 548.3 45.6 79.74

9 36 1356.00 1113.97 17.85 0.05 1313.50 3.13 74.30 695.3 57.9 82.44

10 45 1427.10 1044.20 26.83 0.07 1362.01 4.56 118.12 643.2 84.2 83.00

11 55 1545.10 1122.77 27.33 0.12 1431.81 7.33 223.74 873.6 100.0 73.18

12 66 1901.60 1420.73 25.29 0.13 1815.21 4.54 432.63 993.1 160.9 82.03

13 78 2175.30 1684.29 22.57 0.18 2051.16 5.71 430.93 943.8 174.7 74.72

14 91 2527.90 1911.59 24.38 0.46 2367.42 6.35 720.47 1107.6 256.4 73.96

15 105 2588.80 2173.45 16.04 0.52 2426.66 6.26 468.08 810.8 200.6 60.96

16 120 2980.10 2360.16 20.80 1.07 2765.42 7.20 834.69 1214.3 291.8 65.37

17 136 3372.20 2327.66 30.98 1.00 3165.01 6.14 1933.56 1678.0 445.3 80.16

18 153 3569.00 2645.32 25.88 1.06 3281.36 8.06 1947.79 1403.7 421.7 68.86

30 435 8056.70 6114.86 24.10 17.30 7174.26 10.95 10045.11 1244.4 1056.8 54.56

50 1225 15788.80 13030.28 17.47 406.93 13333.52 15.55 10923.68 800.5 1225.0 10.99

Table 8: Results for OPesym instances.

Instance DNN DNN + CUTS

n m UB LB gap (%) time (s) LB gap (%) time (s) iterations cuts closed (%)

6 15 16273.90 14868.34 8.64 0.01 14961.49 8.06 0.14 56.8 1.0 6.63

7 21 19625.70 18483.49 5.82 0.02 18483.49 5.82 0.02 49.2 0.0 0.00

8 28 27039.40 23571.44 12.83 0.02 25283.58 6.49 22.61 757.0 9.1 49.37

9 36 22769.90 19600.00 13.92 0.04 21514.48 5.51 5.74 267.2 7.5 60.40

10 45 25743.80 22937.70 10.90 0.06 24522.61 4.74 19.27 494.3 17.4 56.48

11 55 29325.60 24918.41 15.03 0.07 28930.89 1.35 30.67 350.4 38.2 91.04

12 66 32577.80 29185.79 10.41 0.13 32481.73 0.29 115.64 674.7 43.4 97.17

13 78 40488.50 34246.69 15.42 0.13 39782.08 1.74 73.07 385.7 64.8 88.68

14 91 44240.40 38383.15 13.24 0.52 44071.71 0.38 156.78 797.9 64.4 97.12

15 105 50821.60 42399.17 16.57 0.46 50113.95 1.39 155.86 534.6 100.7 91.60

16 120 41940.20 35936.50 14.31 1.26 41356.18 1.39 290.43 1023.2 85.7 90.27

17 136 41819.00 32332.91 22.68 0.79 41374.89 1.06 592.39 1183.9 143.8 95.32

18 153 46130.20 36741.44 20.35 1.27 45077.44 2.28 645.68 1142.1 143.0 88.79

20 190 55326.20 41076.20 25.76 2.08 55048.51 0.50 1530.01 1362.4 184.8 98.05

30 435 78999.90 55898.20 29.24 21.51 76507.06 3.16 10781.08 1944.7 426.6 89.21

50 1225 165419.60 107324.67 35.12 633.63 154950.21 6.33 10835.89 1787.8 1064.8 81.98

Table 9: Results for OPvsym instances.
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editors, Integer programming and Combinatorial Optimization (IPCO 1999), volume 1610 of

Lecture Notes in Comput. Sci. Springer, Berlin, Heidelberg, 1999.

[14] Frank de Meijer and Renata Sotirov. The Chvátal-Gomory procedure for integer SDPs with
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