
ar
X

iv
:2

41
1.

04
30

7v
1

 [
m

at
h.

O
C

]
 6

 N
ov

 2
02

4

Correction to: A Lagrangian dual method for two-stage robust

optimization with binary uncertainties

Henri Lefebvre1 and Anirudh Subramanyam2

1Trier University, Trier, Germany
2The Pennsylvania State University, University Park, PA, USA

November 8, 2024

Abstract

We provide a correction to the sufficient conditions under which closed-form expressions for
the optimal Lagrange multiplier are provided in [4]. We first present a simple counterexample
where the original conditions are insufficient, highlight where the original proof fails, and then
provide modified conditions along with a correct proof of their validity. Finally, although the
original paper discusses modifications to their method for problems that may not satisfy any
sufficient conditions, we substantiate that discussion along two directions. We first show that
computing an optimal Lagrange multiplier can still be done in polynomial time. We then
provide complete and correct versions of the corresponding Benders and column-and-constraint
generation algorithms in which the original method is used. We also discuss the implications of
our findings on computational performance.

1 Background

In [4], the author considers two-stage robust optimization problems with binary-valued uncertain
data and proposes a new method to construct worst-case parameter realizations in such problems.
To keep our presentation succinct, we adopt all notation and assumptions from that paper, and
consider the problem formulation denoted as P, shown below.

inf
x∈X

sup
ξ∈Ξ
Q(x, ξ),

Q(x, ξ) =

minimize
y∈Y

c(ξ)⊤x+ d(ξ)⊤y

subject to Tx+Wy ≥ h(ξ)

 .
(P)

The central idea of the method in [4] is the development of the following Lagrangian dual with
scalar-valued multiplier λ ∈ R+.

L(x, ξ, λ) =

minimize
y∈Y ,z∈R

np
+

c(ξ)⊤x+ d(ξ)⊤y + λφ(z, ξ)

subject to Tx+Wy ≥ h(z), z ≤ e.

 (1)

φ(z, ξ) = e⊤z + e⊤ξ − 2z⊤ξ. (2)

1

http://arxiv.org/abs/2411.04307v1

It is shown in [4, Theorems 1 and 2] that the Lagrangian dual has the following attractive properties.

Q(x, ξ) = sup
λ∈R+

L(x, ξ, λ) for all x ∈ X , ξ ∈ Ξ. (3)

inf
x∈X

sup
ξ∈Ξ
Q(x, ξ) = sup

λ∈R+

inf
x∈X

sup
ξ∈Ξ
L(x, ξ, λ) (4)

An immediate consequence of these properties is the following equation to which we shall refer in
this paper. This equation is obtained by simply taking the supremum of both sides of (3) over
ξ ∈ Ξ.

sup
ξ∈Ξ
Q(x, ξ) = sup

λ∈R+

sup
ξ∈Ξ
L(x, ξ, λ) for all x ∈ X . (5)

In [4, Theorem 4], it is shown that one can compute a closed-form expression for the Lagrange
multiplier that maximizes the right-hand side of (5) if “for every x ∈ X , either there exists ξ ∈ Ξ
such that Q(x, ξ) = +∞ or Q(x, ξ) < +∞ for all ξ ∈ {0, 1}np”. Whenever this condition holds,
the paper claims that for any feasible first-stage decision x ∈ X ; that is, for which sup

{

Q(x, ξ) :
ξ ∈ Ξ

}

< +∞,

u(x)− ℓ(x) ∈ argmax
λ∈R+

{

max
ξ∈Ξ
L(x, ξ, λ)

}

, (6)

where u(x) is any finite upper bound on sup
{

Q(x, ξ) : ξ ∈ Ξ
}

and ℓ(x) is any finite lower bound
on inf

{

c(ξ)⊤x + d(ξ)⊤y : ξ ∈ Ξ,y ∈ Y
}

. In other words, u(x) − ℓ(x) is an optimal Lagrange
multiplier.

2 Counterexample

Consider the problem with X = {0}, Ξ = {0, 1}, Y = {0, 1}, and whose second-stage value function
is given by

Q(x, ξ) =

minimize
y∈Y

−y

subject to y ≤
3

2
− ξ

 .

For simplicity, this problem has a unique feasible first-stage decision, so that the second-stage value
function depends only on the uncertain parameter ξ. The counterexample can, however, be easily
extended to more complex first-stage decision spaces.

It can be readily verified by enumeration that Q(x, ξ) < +∞ for all x ∈ X and all ξ ∈ Ξ. Hence,
the conditions of [4, Theorem 4] are satisfied. We show, however, that the claimed result is wrong.
To that end, observe the following obtained by simply enumerating all points in Ξ and Y:

sup
ξ∈Ξ
Q(x, ξ) = max

{

min
y∈{0,1},y≤ 3

2

−y, min
y∈{0,1},y≤ 1

2

−y

}

= max {−1, 0} = 0,

inf
y∈{0,1}

−y = min{0,−1} = −1.

According to [4, Theorem 4], one can choose u(x) = 0 and ℓ(x) = −1 to ensure that u(x)− ℓ(x) = 1
is an optimal Lagrange multiplier, namely that 1 ∈ argmaxλ∈R+

{maxξ∈Ξ L(x, ξ, λ)}. We now
proceed to show that this is false by explicitly calculating L(x, ξ, λ) by brute force enumeration. In
deriving the following, we only use the fact that λ ≥ 0.

max
ξ∈Ξ
L(x, ξ, λ) = max

ξ∈{0,1}

min
(y,z)∈{0,1}×[0,1],

y+z≤ 3

2

−y + λ (z + ξ − 2zξ)

2

1 2 3 4

−1

−0.5

0
1 2 3 4

−1

−0.5

0
λ

maxξ∈Ξ L(x, ξ, λ)

Figure 1: Plot of maxξ∈Ξ L(x, ξ, λ) versus λ for the counterexample.

= max

min
(y,z)∈{0,1}×[0,1],

y+z≤ 3

2

−y + λz, min
(y,z)∈{0,1}×[0,1],

y+z≤ 3

2

−y + λ− λz

= max

{

min

{

min
z∈[0,1],z≤ 3

2

λz, min
z∈[0,1],z≤ 1

2

−1 + λz

}

,

min

{

min
z∈[0,1],z≤ 3

2

λ− λz, min
z∈[0,1],z≤ 1

2

−1 + λ− λz

}}

= max

{

min {0,−1} ,min

{

0,
λ

2
− 1

}}

= max

{

−1,min

{

0,
λ

2
− 1

}}

.

A plot of the function is shown in Figure 1, which indicates that the function is not maximized at
λ = u(x)− ℓ(x) = 1. In other words, equation (6) is false.

3 Correct Sufficient Conditions

The proof presented in [4, Theorem 4] fails when it is claimed that “problem (1) always has an
optimal solution (ŷ, ẑ) such that ẑ ∈ {0, 1}np , for any ξ ∈ Ξ and λ ∈ R+”. It is worth noting,
however, that all other steps of the proof remain valid whenever this claim is true. Below, we
provide complete and correct conditions under which this claim is true and hence, the conclusion
of [4, Theorem 4] remains valid. Additionally, we highlight that although Theorem 5, Algorithm 3,
and Algorithm 8 in the original paper invoke [4, Theorem 4], they do not require any modifications
themselves. Indeed, their validity is unaffected as long as the correct sufficient conditions are
satisifed.

For simplicity of our ensuing exposition, we disaggregate the second-stage decisions in P into
their continuous and discrete components. Let y = (yc,yd), where yc and yd are the vector of
continuous and discrete second-stage variables, respectively. We extend this notation to matrices
and vectors which are multiplied by y (for example, Wy = Wcyc +Wdyd), so that Q(x, ξ) can

3

also be equivalently written as:

Q(x, ξ) =

minimize
y

c(ξ)⊤x+ dc(ξ)
⊤yc + dd(ξ)

⊤yd

subject to Tx+Wcyc +Wdyd ≥ h(ξ)

y = (yc,yd) ∈ Y := R
nc2
+ × Yd

,

where Yd ⊆ Z
nd2 , nc2, nd2 ∈ Z ∩ [0, n2] and nc2 + nd2 = n2. This representation is general enough

to allow the second-stage decisions to be purely continuous (nc2 = n2), purely integer (nd2 = n2)
or mixed-integer.

We also define Q(x, ξ;yd) and L(x, ξ, λ;yd) as restrictions of Q(x, ξ) and L(x, ξ, λ), respec-
tively, where the values of the discrete second-stage decisions are fixed to yd, as shown below.

Q(x, ξ;yd) =

minimize
yc∈R

nc2
+

c(ξ)⊤x+ dc(ξ)
⊤yc + dd(ξ)

⊤yd

subject to Tx+Wcyc +Wdyd ≥ h(ξ)

 , (8)

L(x, ξ, λ;yd) =

minimize
yc∈R

nc2
+

,z∈R
np
+

c(ξ)⊤x+ dc(ξ)
⊤yc + dd(ξ)

⊤yd + λφ(z, ξ)

subject to Tx+Wcyc +Wdyd ≥ h(z), z ≤ e.

 . (9)

The next theorem provides the correct sufficient conditions under which one can compute closed-
form expressions for the optimal Lagrange multiplier.

Theorem 1. Suppose that the following conditions are satisfied in problem P.

1. X ⊆ Z
n1.

2. T ∈ Z
m×n1, W ∈ Z

m×n2, h(ξ) = h0 +Hξ, where h0 ∈ Z
m, H ∈ Z

m×np.

3. [Wc −H] ∈ Z
m×(nc2+np) is a totally unimodular matrix.

Then, for any feasible first-stage decision x ∈ X ; that is, for which sup
{

Q(x, ξ) : ξ ∈ Ξ
}

< +∞,
we have that

u(x)− ℓ(x) ∈ argmax
λ∈R+

{

max
ξ∈Ξ
L(x, ξ, λ)

}

,

where u(x) is any finite upper bound on sup
{

Q(x, ξ) : ξ ∈ Ξ
}

and ℓ(x) is any finite lower bound
on inf

{

c(ξ)⊤x+ d(ξ)⊤y : ξ ∈ Ξ,y ∈ Y
}

.

Proof. Suppose that x ∈ X is any feasible first-stage decision in P . We shall show that under
the conditions stated in the Theorem, problem (1) always has an optimal solution (ŷ, ẑ) such that
ẑ ∈ {0, 1}np , for any ξ ∈ Ξ and λ ∈ R+. The rest of the argument follows from the proof of [4,
Theorem 4] and remains unchanged.

Using the definition of L(x, ξ, λ;yd) in equation (9), problem (1) can be equivalently written
as the following nested optimization problem:

L(x, ξ, λ) = minimize
yd∈Yd

L(x, ξ, λ;yd)

Under the stated conditions, it can be readily verified the constraint matrix defining the feasible
region of L(x, ξ, λ;yd) is totally unimodular. Moreover, the right-hand side coefficients, h0−Tx−
Wdyd, are integer-valued for any x ∈ X ⊆ Z

n1 and yd ∈ Yd ⊆ Z
nd2 . Therefore, the polyhedron

defining the feasible region of L(x, ξ, λ;yd) has integer vertices, as does its optimal solution. Hence,
any optimal solution (ŷ, ẑ) of L(x, ξ, λ) must satisfy ẑ ∈ {0, 1}np .

4

We now present a class of problems where the conditions are satisfied.

Example 1 (Interdiction Constraints). Suppose that the second-stage problem is combinatorial,
Y = {0, 1}n2 , and the second-stage decisions represent resources that are being interdicted depend-
ing on some random realization of the uncertain parameters, as shown below. Such structures are
common in network interdiction problems, including facility location with random facility disrup-
tions; e.g., see [2, 3].

Q(x, ξ) =

minimize
y∈Y

c(ξ)⊤x+ d(ξ)⊤y

subject to Tx+Wy ≥ h,

0 ≤ y ≤ e− ξ

.

Suppose also that X ⊆ Z
n1 and that all matrices are integer. Then, it can be verified that the

assumptions of Theorem 1 are satisfied (with nc2 = 0). One can then compute a closed-form
expression for the optimal multiplier using expressions for u(x) and ℓ(x) provided in [4, Theorem 5].

Our proof argument allows us to also extend Theorem 1 to problem PI (reproduced below from
the original paper) without requiring significant changes.

inf
x∈X

sup
ξ∈Ξ
QI(x, ξ),

QI(x, ξ) =

minimize
y∈Y

c(ξ)⊤x+ d(ξ)⊤y

subject to g(x,y) ≥ 0

ξj = 0 =⇒ gi(x,y) = 0, i ∈ I0j , j ∈ [np]

ξj = 1 =⇒ gi(x,y) = 0, i ∈ I1j , j ∈ [np]

.
(PI)

Here, g(x,y) = Tx +Wy − h0 and I0j ,I
1
j ⊆ [m] are some index sets. Also, the corresponding

Lagrangian is given by:

LI(x, ξ, λ) =

minimize
y∈Y

c(ξ)⊤x+ d(ξ)⊤y + λφI(x,y, ξ)

subject to g(x,y) ≥ 0.

 (10)

φI(x,y, ξ) =
∑

j∈[np]

∑

i∈I1
j

ξjgi(x,y) +
∑

j∈[np]

∑

i∈I0
j

(1− ξj)gi(x,y). (11)

We now present the following analog of Theorem 1 for problem PI . Notably, we highlight that
a similar result was not postulated in the original paper. The proof is similar to that of Theorem 1
and we omit it for the sake of brevity.

Theorem 2. Suppose that the following conditions are satisfied in problem PI .

1. X ⊆ Z
n1.

2. T ∈ Z
m×n1, W ∈ Z

m×n2, h0 ∈ Z
m.

3. Wc ∈ Z
m×nc2 is a totally unimodular matrix.

Then, for any feasible first-stage decision x ∈ X ; that is, for which sup
{

QI(x, ξ) : ξ ∈ Ξ
}

< +∞,
we have that

u(x)− ℓ(x) ∈ argmax
λ∈R+

{

max
ξ∈Ξ
LI(x, ξ, λ)

}

,

where u(x) is any finite upper bound on sup
{

QI(x, ξ) : ξ ∈ Ξ
}

and ℓ(x) is any finite lower bound
on inf

{

c(ξ)⊤x+ d(ξ)⊤y : ξ ∈ Ξ,y ∈ Y
}

.

5

4 Absence of Sufficient Conditions

We now discuss key algorithmic implications in the absence of sufficient conditions that allow for
a closed-form expression. Although the original paper includes a short discussion to that end, we
present a more thorough and formal treatment in this section.

4.1 Computational Complexity

We show that computing an optimal Lagrange multiplier can still be done in time that is polynomial
in the size of the input data under fairly general conditions. To ease our presentation, we first
paraphrase a result from [1, Lemma 4] regarding solutions of linear programs.

Lemma 1 ([1]). Let ‖X‖ denote the maximum absolute value of any entry of a matrix or vector
X. Let P = {ω ∈ R

nω

+ : Aω = b} be a polyhedron with A ∈ Z
mω×nω and b ∈ Z

mω . Then, any
vertex ω̄ of P satisfies ‖ω̄‖ ≤ mω!‖b‖‖A‖

mω−1.

We highlight that the bound in Lemma 1 can be computed in time polynomial in the input
data (A, b). It allows us to prove our main complexity result, which we state next.

Theorem 3. Suppose that the following conditions are satisfied in problem P.

1. X ⊆ Z
n1 ∩ [xℓ,xu].

2. For all x ∈ X and ξ ∈ Ξ, we have {y ∈ Y : Tx+Wy ≥ h(ξ)} ⊆ [yℓ,yu].

3. c(ξ) = Cξ, d(ξ) =Dξ, and h(ξ) =Hξ for some matrices C, D, and H.

4. The matrices, C, D, T , W , H, are integer-valued.

5. There exists x ∈ X for which sup
{

Q(x, ξ) : ξ ∈ Ξ
}

< +∞.

Then, there exists a finite λ̄ ≥ 0 that is computable in polynomial time in the input data, C, D,
T , W , H, and the bounds xℓ, xu, yℓ, yu, such that

inf
x∈X

sup
ξ∈Ξ
Q(x, ξ) = inf

x∈X
sup
ξ∈Ξ
L(x, ξ, λ̄).

Proof. Let U denote any finite upper bound on the optimal value of problem P ,

inf
x∈X

sup
ξ∈Ξ
Q(x, ξ) ≤ U.

Note that U exists due to the last condition in the hypothesis of the theorem. Moreover, it can be
easily shown, similar to [4, Theorem 5], that under the stated hypotheses, U can be computed in
polynomial time.

Now, denote the feasible region of L(x, ξ, λ;yd), defined in (9), as

Π(x,yd) =
{

(yc,z) ∈ R
nc2
+ × [0, 1]np : Tx+Wcyc +Wdyd ≥ h(z)

}

.

The majority of the proof is concerned with showing that one can compute a finite λ̄ in polynomial
time, satisfying the following relationship for all x ∈ X , ξ ∈ Ξ and yd ∈ Yd:

L(x, ξ, λ̄;yd)

{

= Q(x, ξ;yd) if Q(x, ξ;yd) < +∞ or Π(x,yd) = ∅,

≥ U otherwise.
(12)

6

Supposing for the moment that this can be done, observe that we immediately obtain the desired
equation stated in the theorem, since (12) implies

inf
x∈X

sup
ξ∈Ξ
L(x, ξ, λ̄) = inf

x∈X
sup
ξ∈Ξ

inf
yd∈Yd

L(x, ξ, λ̄;yd)

= inf
x∈X

sup
ξ∈Ξ

inf
yd∈Yd

Q(x, ξ;yd)

= inf
x∈X

sup
ξ∈Ξ
Q(x, ξ),

where we used the fact that U is an upper bound on the optimal value of P .
We now proceed to establish the validity of (12). Fix x ∈ X , ξ ∈ Ξ, and yd ∈ Yd. The key idea

is that Q(x, ξ;yd) can be equivalently written as:

Q(x, ξ;yd) =

minimize
yc∈R

nc2
+

,z∈R
np
+

c(ξ)⊤x+ dc(ξ)
⊤yc + dd(ξ)

⊤yd

subject to Tx+Wcyc +Wdyd ≥Hz,

z ≤ e, φ(z, ξ) ≤ 0.

Similarly, since φ(z, ξ) ≥ 0 from [4, Lemma 1], we note that L(x, ξ, λ;yd) can be equivalently
written as:

L(x, ξ, λ;yd) =

minimize
yc∈R

nc2
+

,z∈R
np
+

w∈R+

c(ξ)⊤x+ dc(ξ)
⊤yc + dd(ξ)

⊤yd + λw

subject to Tx+Wcyc +Wdyd ≥Hz,

z ≤ e, φ(z, ξ) ≤ w.

We now distinguish two cases.

1. Suppose Q(x, ξ;yd) < +∞.

Together with [4, Assumption A1], this means that Q(x, ξ;yd) is finite. Strong linear pro-
gramming duality then implies that it can be equivalently written as the (finite) optimal value
of the following problem, where we have also expanded φ(z, ξ) using its definition (2).

maximize
µ∈Rm

+
,β∈R

np
+

,α∈R+

c(ξ)⊤x+ dd(ξ)
⊤yd + (−Tx−Wdyd)

⊤µ+ e⊤(αξ − β)

subject to W⊤
c µ ≤ dc(ξ),

(2ξ − e)α −H⊤µ− β ≤ 0.

The dual of L(x, ξ, λ;yd) is identical to the above problem with the additional constraint,
α ≤ λ. Therefore, one can ensure (12) by choosing λ̄ to be any upper bound on an optimal
value of α. Without loss of generality (e.g., by converting the dual problem to standard form),
there exists an optimal solution to the dual problem that lies at a vertex of the polyhedron
defining its feasible region. Lemma 1 ensures that all entries, and in particular α, of such a
vertex can be upper bounded by

(nc2 + np)!‖dc(ξ)‖max{‖Wc‖, ‖H‖, ‖2ξ − e‖, 1}nc2+np−1.

Observe now that ‖dc(ξ)‖ = ‖Dcξ‖ = ‖Dcξ‖∞ ≤ ‖Dc‖∞‖ξ‖∞ ≤ ‖Dc‖∞, since ξ ∈ {0, 1}np

and where ‖Dc‖∞ denotes the vector-induced matrix norm of Dc. Also, ‖2ξ − e‖ ≤ 1. One
can therefore choose λ̄ as follows:

λ̂ ≥ (nc2 + np)!‖Dc‖∞max{‖Wc‖, ‖H‖, 1}
nc2+np−1.

7

Note that this bound does not depend on the chosen x, ξ or yd and is computable in poly-
nomial time in the input data.

2. Suppose now Q(x, ξ;yd) = +∞. We again consider two cases.

(a) Suppose Π(x,yd) = ∅. Then, L(x, ξ, λ;yd) = +∞ for any λ ≥ 0. Hence, one can safely
choose any λ̄ ≥ 0 to achieve (12).

(b) Suppose Π(x,yd) 6= ∅. Using strong Lagrangian duality (3), it follows that for any finite
V , there must exist a sufficiently large yet finite λ satisfying L(x, ξ, λ;yd) ≥ V . Since
L(x, ξ, λ;yd) is also finite (because Π(x,yd) 6= ∅), finding λ satisfying L(x, ξ, λ;yd) ≥ V
is equivalent to replacing L(x, ξ, λ;yd) by its (finite) dual and finding a feasible vector
(µ,β, α, λ) ∈ R

m
+ × R

np

+ ×R+ × R+ satisfying the linear constraints:

(−Tx−Wdyd)
⊤µ+ e⊤(αξ − β) ≥ V − c(ξ)⊤x− dd(ξ)

⊤yd,

W⊤
c µ ≤ dc(ξ),

(2ξ − e)α −H⊤µ− β ≤ 0,

α− λ ≤ 0.

We can then achieve (12) by choosing V = U and choosing λ̄ to be an upper bound on
the entry λ of a feasible solution of the above inequality system. To that end, it suffices
to bound the vertices of the (equivalent standard form) polyhedron defined by the above
inequalities in variables (µ,β, α, λ). Lemma 1 can be used to compute such a bound in
polynomial time. In particular, it can be shown that one can choose

λ̄ ≥ (nc2 + np + 2)! · θ
nc2+np+2
1 · θ2 · θ

nc2+np+1
3 ,

with θ1 = max{‖xℓ‖, ‖xu‖, ‖yℓd‖, ‖y
u
d‖, 1}, θ2 = max{U + ‖C‖∞ + ‖Dd‖∞, ‖Dc‖∞} and

θ3 = max{‖Wd‖∞ + ‖T ‖∞, ‖Wc‖, ‖H‖, 1}. As before, note that this bound does not
depend on the chosen x, ξ or yd.

The validity of (12) now simply follows by defining λ̄ to be the maximum of the three bounds
obtained in the three disjunctions.

4.2 Algorithmic Modifications

The positive complexity result from the previous section is mostly of theoretical value. Although
one can compute an optimal multiplier in polynomial time, it does not preclude the possibility that
verifying optimality of a given multiplier remains computationally intractable. To that end, we
propose practical yet simple modifications in cases where a candidate multiplier may be suboptimal,
in the context of the Benders decomposition and column-and-constraint generation algorithms
presented in [4].

Classical versions of these algorithms obtain upper bounds on the two-stage problem by solving
sup{Q(x, ξ) : ξ ∈ Ξ} for some fixed x ∈ X . Instead, [4] propose to solve sup{L(x, ξ, λ) : ξ ∈ Ξ},
where the second-stage value function is replaced by the Lagrangian function. In the absence
of sufficient conditions that ensure optimality of λ, it may be possible that the calculated upper
bounds are no longer rigorous.

This issue can be addressed by a simple modification. The key idea is to use [4, Theorem 3] which
provides necessary conditions for the optimality of a Lagrange multiplier. This theorem is exploited
in Algorithms 4 and 5 of the original paper, proposed for problems P and PI , respectively, which

8

output either an uncertain parameter realization that makes the second-stage problem infeasible or
a Lagrange multiplier which satisfies the necessary conditions. These algorithms are then embedded
within the corresponding Benders and column-and-constraint generation algorithms. To ensure that
the latter do not terminate incorrectly, the proposed modification indirectly verifies optimality of
the calculated Lagrange multipler ex post.

To simplify exposition and maintain consistency with the original paper, we first illustrate this
modification in the context of the Benders decomposition and column-and-constraint generation
algorithms for solving formulation PI with continuous second-stage decisions (Y = R

n2

+). In partic-
ular, this problem structure arises in the first two numerical experiments of the original paper. We
then present the modifications for the more general formulation P with mixed-integer second-stage
decisions, which arises in the third experiment of the original paper as well as the counterexample
in Section 2. We omit presenting modifications for problem PI with mixed-integer second-stage
decisions since it is very similar to the latter. We finally close the paper with a discussion about
the computational efficiency of the proposed modifications.

4.2.1 Modifications for Problem PI

The updated versions of the Benders and column-and-constraint generation algorithms are shown
in Algorithm 1. The algorithm indirectly checks if the estimated upper bound is less than the
optimal value of the original problem, by solving

maximize
ξ∈Ξ,µ∈Rm

+

ρ∈R
np
+

,ν∈R
np
+

c(ξ)⊤x+ (h0 − Tx)
⊤ψ(µ,ρ,ν)

subject to W⊤ψ(µ,ρ,ν) ≤ d(ξ),

ξj = 0 =⇒ ρj = 0, j ∈ [np],

ξj = 1 =⇒ νj = 0, j ∈ [np],

(13)

where ψ is defined as follows:

ψ(µ,ρ,ν) = µ−
∑

j∈[np]

∑

i∈I1
j

ρjei −
∑

j∈[np]

∑

i∈I0
j

νjei.

Algorithm 1 Updated Benders decomposition and column-and-constraint generation algorithms
to solve PI when Y = R

n2

+

Benders: Run all lines of [4, Algorithm 6]
Column-and-constraint generation: Run all lines of [4, Algorithm 7]
if x̂ 6= ∅ then

Set Z and (ρ̂, ν̂) as the optimal value and (projected) solution of (13) (at x = x̂)
if UB < Z then

Update UB ← Z and λ← max {‖ρ̂‖∞, ‖ν̂‖∞}
Go to line 2 of the original algorithm

end if

end if

The following theorem rigorously justifies the proposed modification. It shows that an optimal
value of the Lagrange multiplier can be easily computed given an optimal solution of problem (13).

9

Theorem 4. Suppose Y = R
n2

+ and x ∈ X is any feasible first-stage decision in problem PI .

Let (ξ̂, µ̂, ρ̂, ν̂) denote an optimal solution of problem (13). Then, λ̄ = max {‖ρ̂‖∞, ‖ν̂‖∞} is an
optimal multiplier satisfying

sup
ξ∈Ξ
QI(x, ξ) = sup

ξ∈Ξ
LI(x, ξ, λ̄).

Proof. Let Z denote the optimal value of problem (13). Now, consider problem (13), where ξ, ρ
and ν are fixed to ξ̂, ρ̂ and ν̂, respectively. The resulting problem can be equivalently written as
a linear maximization problem over µ ∈ R

m
+ . Taking the linear programming dual of this problem

yields

Z = inf
y∈Y(x)

c(ξ̂)⊤x+ d(ξ̂)⊤y +
∑

j∈[np]

∑

i∈I1
j

ρ̂jgi(x,y) +
∑

j∈[np]

∑

i∈I0
j

ν̂jgi(x,y)

where we used the definition of g(x,y) = Tx+Wy−h0 and define Y(x) = {y ∈ Y : g(x,y) ≥ 0}.
The definition of λ̄ along with the indicator constraints in problem (13) imply that the inequalities,
ρ̂j ≤ λ̄ξ̂j and ν̂j ≤ λ̄(1− ξ̂j), hold for all j ∈ [np]. Substituting these inequalities above gives:

Z ≤ inf
y∈Y(x)

c(ξ̂)⊤x+ d(ξ̂)⊤y +
∑

j∈[np]

∑

i∈I1
j

λ̄ξ̂jgi(x,y) +
∑

j∈[np]

∑

i∈I0
j

λ̄(1− ξ̂j)gi(x,y)

= inf
y∈Y(x)

c(ξ̂)⊤x+ d(ξ̂)⊤y + λ̄φI(x,y, ξ̂)

≤ sup
ξ∈Ξ

inf
y∈Y(x)

c(ξ)⊤x+ d(ξ)⊤y + λ̄φI(x,y, ξ)

= sup
ξ∈Ξ
LI(x, ξ, λ̄)

≤ sup
ξ∈Ξ
QI(x, ξ),

where the first equality holds by definition of φI , the next inequality follows by taking the supremum
of the previous expression over ξ ∈ Ξ, the second equality follows by definition of LI(x, ξ, λ̄), and
the last inequality follows by weak duality [4, Lemma 2].

Now, strong duality [4, Theorem 1] implies that

sup
ξ∈Ξ
QI(x, ξ) = sup

λ≥0
sup
ξ∈Ξ
LI(x, ξ, λ)

= sup
ξ∈Ξ

inf
y∈Y(x)

c(ξ)⊤x+ d(ξ)⊤y + λφI(x,y, ξ)

=

maximize
λ≥0,ξ∈Ξ,µ∈Rm

+

c(ξ)⊤x+ (h0 − Tx)
⊤ψ (µ, λξ, λ(e− ξ))

subject to W⊤ψ (µ, λξ, λ(e− ξ)) ≤ d(ξ)

 ,

where the last equality follows by linear programming duality. Let (λ̃, ξ̃, µ̃) be an optimal solution
of the above (bilinear) optimization problem. Define ρ̃ = λ̃ξ̃ and ν̃ = λ̃(e − ξ̃). Then, it can be
readily verified that (ξ̃, µ̃, ρ̃, ν̃) is a feasible solution in problem (13) that achieves an objective
value equal to the optimal value of the above bilinear problem. This implies

sup
ξ∈Ξ
QI(x, ξ) ≤ Z,

which taken together with our previously established inequality,

Z ≤ sup
ξ∈Ξ
LI(x, ξ, λ̄) ≤ sup

ξ∈Ξ
QI(x, ξ),

proves the claimed result.

10

Algorithm 1 checks if the optimal value of problem (13) is larger than the final estimate UB,
and then uses the result of Theorem 4 to initialize another run of the original procedure with the
updated λ and corrected UB. In doing so, it retains all data structures without re-initializing them
to be empty sets. In particular, for the Benders algorithm, the feasibility and optimality sets, F
and O, are retained, and all previously generated Benders cuts are simply lifted with the updated
value of λ. Similarly, for the column-and-constraint generation algorithm, the set of enumerated
uncertain parameters R is retained. It is crucial to higlight that in both algorithms, all previously
generated constraints continue to remain valid, and therefore, they always provide rigorous lower
bounds on the optimal value of the original two-stage problem. In particular, this is also true for
Benders cuts generated using suboptimal λ values. Formally, this is because of weak duality [4,
Lemma 2], which implies:

inf
x∈X

sup
ξ∈Ξ
QI(x, ξ) ≥ inf

x∈X
sup
ξ∈Ξ
LI(x, ξ, λ) for all λ ≥ 0.

We note that if Algorithm 5 of the original paper (which is invoked within the original Algo-
rithms 6 and 7) outputs an optimal multiplier, then problem (13) is solved at most once. This is
important for reasons of computational efficiency, which we discuss at the end of the paper.

4.2.2 Modifications for Problem P

We now consider the general version of P with mixed-integer second-stage decisions. Keeping in line
with the original paper, we focus only on the column-and-constraint generation algorithm. We first
provide an updated version of the original method from [4] in Algorithm 2. Whereas the original
method assumes that sufficient conditions for optimality of λ are already satisfied, Algorithm 2
does not make any such assumption.

As described in the original paper, the key idea of the method is that for fixed x ∈ X , one can
obtain a relaxation of the worst-case Lagrangian function, sup{L(x, ξ, λ) : ξ ∈ Ξ}, by enumerating
the set of discrete second-stage decisions Yd. In particular, if D ⊆ Yd, then it follows that

sup
ξ∈Ξ
L(x, ξ, λ) = sup

ξ∈Ξ
inf

yd∈Yd

L(x, ξ, λ;yd) ≤ sup
ξ∈Ξ

inf
yd∈D

L(x, ξ, λ;yd).

Now, if y
(k)
d ∈ D denotes the kth element of D, then it can be shown [5, 4] that the the following

(with τ = 1) is a reformulation of the problem on the right-hand side of the above inequality.

maximize
η,ξ,µ,β

η

subject to η ∈ R, ξ ∈ Ξ,

µ(k) ∈ R
m
+ , β(k) ∈ R

np

+ ,

η ≤ τc(ξ)⊤x+ τdd(ξ)
⊤y

(k)
d + e⊤(λξ − β(k))

+ (h0 − Tx−Wdy
(k)
d)⊤µ(k),

W⊤
c µ

(k) ≤ τdc(ξ), (1− τ)µ(k) ≤ e,

2λξ −H⊤µ(k) − β(k) ≤ λe,

k ∈ [|D|].

(14)

The parameter τ ∈ {0, 1} serves purely to simplify notation. Indeed, when τ = 0, it can be shown
that problem (14) also provides an upper bound on the worst-case constraint violation function.
The latter is equal to 0 if and only if the first-stage decision x ∈ X is feasible in problem P , see [4]
for further details.

11

Algorithm 2 Updated version of [4, Algorithm 8]

Input: x ∈ X , λ0 > 0
Output: Either ξ̂ ∈ Ξ : Q(x, ξ̂) = +∞, λ̂ = λ0 or ξ̂, λ̂ satisfying conditions of [4, Theorem 3]
1: Initialize ξ̂ ∈ Ξ (arbitrary), LB = −∞, UB = +∞, D = ∅, λ̂ = λ0.
2: repeat

3: Set UB and ξ̂ as optimal value and (projected) solution of (14) with (τ, λ) = (0, 1)

4: Set (ŷ, ẑ, σ̂) ∈ argmin
(y,z,σ)∈Y×[0,1]np×R

m
+

{

e⊤σ + φ(z, ξ̂) : Tx+Wy + σ ≥ h(z)
}

5: Update D ← D ∪ {ŷd}
6: Update LB = e⊤σ̂ + φ(ẑ, ξ̂)
7: until LB > 0 or UB = 0
8: if UB = 0 then

9: Set LB = −∞
10: repeat

11: Update λ̂← λ̂/2
12: repeat

13: Update λ̂← 2λ̂
14: Set UB, ξ̃ as optimal value and (projected) solution of (14) with (τ, λ) = (1, λ̂)

15: Set (ŷ, ẑ) ∈ argmin
(y,z)∈Y×[0,1]np

{

c(ξ̃)⊤x+ d(ξ̃)⊤y + λ̂φ(z, ξ̃) : Tx+Wy ≥ h(z)
}

16: Update D ← D ∪ {ŷd}
17: until φ(ẑ, ξ̃) = 0
18: if LB < c(ξ̃)⊤x+ d(ξ̃)⊤ŷ then update LB ← c(ξ̃)⊤x+ d(ξ̃)⊤ŷ and ξ̂ ← ξ̃ end if

19: until UB − LB ≤ ǫ
20: end if

12

Algorithm 2 is almost identical to the original [4, Algorithm 8], except for the inner loop based
on the condition appearing in line 17. The latter enforces necessary conditions for optimality of λ
based on [4, Theorem 3]. Although these conditions are not sufficient, it is still possible that the
final λ is optimal, as illustrated in the following example.

Example 2 (Counterexample revisited). We illustrate Algorithm 2 on the counterexample from
Section 2, with inputs x = 0 and λ0 = u(x) − ℓ(x) = 1. Let y(k) ∈ {0, 1} for k ∈ {1, 2}. Then,
problem (14) reduces to:

maximize
ξ,η,µ,β

η

subject to ξ ∈ {0, 1}, η ∈ R,

µ(k) ∈ R+, β(k) ∈ R+,

η ≤ −τy(k) +

(

y(k) −
3

2

)

µ(k) − β(k) + λξ,

2λξ − µ(k) − β(k) ≤ λ,

k ∈ {1, 2}.

The various optimization problems solved in the algorithm often exhibit multiple optimal solutions.
Straightforward computations (omitted for the sake of brevity) reveal that the algorithm will exit the
first ‘repeat’ loop with one of the following outcomes: D = {0, 1} after three iterations; D = {0, 1}
after two iterations; D = {0} after two iterations. In all outcomes, LB = UB = 0, indicating that
the original two-stage problem is feasible.

1. Suppose D = {0, 1}. Line 14 yields UB = −0.5 and ξ̃ = 1 as the unique solution. The next
line yields (ŷ, ẑ) = (1, 0.5) that is also unique. Since φ(ẑ, ξ̂) = 0.5, the algorithm updates
λ̂ = 2. Line 14 then yields UB = 0 and ξ̃ = 1 (unique). The next line can yield one of two
optimal solutions, (ŷ, ẑ) = (0, 1) or (ŷ, ẑ) = (1, 0.5).

• If (ŷ, ẑ) = (0, 1), then Line 18 updates LB = 0. The algorithm stops with λ̂ = 2 and
LB = UB = 0.

• If (ŷ, ẑ) = (1, 0.5), then since φ(ẑ, ξ̂) = 0.5, the algorithm updates λ̂ = 4. Line 14 yields
UB = 0 and ξ̃ = 1 (unique). The next line yields (ŷ, ẑ) = (0, 1) as the unique solution.
Line 18 updates LB = 0. The algorithm stops with λ̂ = 4 and LB = UB = 0.

2. Suppose D = {0}. Line 14 yields UB = 0. Also, the optimal ξ̃ ∈ {0, 1}.

• If ξ̃ = 0, then the next line yields (ŷ, ẑ) = (1, 0) (unique). The algorithm updates
D = {0, 1}. This is the same state as the beginning of case 1.

• If ξ̃ = 1, then the next line yields (ŷ, ẑ) = (1, 0.5) (unique). Since φ(ẑ, ξ̂) = 0.5, the
algorithm updates D = {0, 1} and λ̂ = 2. This state of the algorithm is also reached in
case 1.

In all outcomes, the final λ̂ ∈ argmaxλ∈R+
{maxξ∈Ξ L(x, ξ, λ)} (see Figure 1) and the algorithm

terminates correctly with 0 = LB = UB = maxξ∈ΞQ(x, ξ).

Despite the positive result in the above example, it is nevertheless possible that the final value
of λ is suboptimal. A suboptimal choice of λ may lead to an invalid upper bound and a premature
termination of the algorithm. As before, we can circumvent this ex post by indirectly checking
if a better choice of λ can lead to higher upper bound. In particular, after running the entire

13

column-and-constraint generation algorithm to obtain the (candidate) optimal first-stage decisions
x, one can solve problem (15), shown below.

maximize
η,ξ,µ,ρ

η

subject to η ∈ R, ξ ∈ Ξ,

µ(k) ∈ R
m
+ , ρ(k) ∈ R

np

+ ,

η ≤ c(ξ)⊤x+ dd(ξ)
⊤y

(k)
d + e⊤ρ(k),

+ (h0 − Tx−Wdy
(k)
d)⊤µ(k),

W⊤
c µ

(k) ≤ dc(ξ),

ξj = 1 =⇒ ρ
(k)
j ≤ e⊤j H

⊤µ(k), j ∈ [np],

ξj = 0 =⇒ ρ
(k)
j ≤ 0, j ∈ [np],

k ∈ [|D|].

(15)

Similar to Algorithm 1, if the optimal value of the above problem happens to be strictly larger
than the final estimate UB, then we can simply uses it optimal solution to update λ (see Theorem 5
below) and restart the column-and-constraint generation algorithm. In doing so, we can retain
the enumerated set D without re-initializing it to be empty. As in the case of problem PI , we
higlight that all previously generated constraints will continue to remain valid. Similarly, if the
loop terminating in line 17 outputs an optimal multiplier, then problem (15) will be solved only at
most once during the entire algorithm.

The following theorem is the counterpart of Theorem 4 for problem P .

Theorem 5. Suppose D ⊆ Yd and x ∈ X is any feasible first-stage decision in problem P. Let
(η̂, ξ̂, µ̂, ρ̂) denote an optimal solution of problem (13). Then, λ̄ = maxk∈[|D|]

{

‖ρ̂(k)‖∞, ‖H⊤µ̂(k)‖∞
}

is an optimal multiplier satisfying

sup
ξ∈Ξ

inf
yd∈D

Q(x, ξ;yd) = sup
ξ∈Ξ

inf
yd∈D

L(x, ξ, λ̄;yd).

Proof. Define β̂(k) = λ̄ξ̂− ρ̂(k) for k ∈ [|D|]. We claim that (λ̄, η̂, ξ̂, µ̂, β̂) is feasible in problem (14)

with (τ, λ) = (1, λ̄). To see why, first note that if ξ̂j = 1, then −ρ̂
(k)
j ≥ 0 by definition of ρ̂(k) and if

ξ̂j = 1, then λ̄− ρ̂
(k)
j ≥ 0 by definition of λ̄. The two cases together imply β̂(k) ≥ 0. Next, note that

the expression, 2λ̄ξ̂ −H⊤µ̂(k) − β̂(k) = ρ̂(k) −H⊤µ̂(k), satisfies ρ̂
(k)
j − e⊤j H

⊤µ̂(k) ≤ −e⊤j H
⊤µ̂(k)

whenever ξ̂j = 0, and it satisfies ρ̂
(k)
j − e⊤j H

⊤µ̂(k) ≤ 0 whenever ξ̂j = 1. These two cases together

with the definition of λ̄ imply 2λ̄ξ̂ −H⊤µ̂(k) − β̂(k) ≤ λ̄e. In summary, (λ̄, η̂, ξ̂, µ̂, β̂) is feasible
in problem problem (14) with (τ, λ) = (1, λ̄). The optimal value of the latter problem is precisely
equal (by construction) to the right-hand side problem of the equation stated in this theorem. If
Z denotes the optimal value of problem (15), then this implies

Z ≤ sup
ξ∈Ξ

inf
yd∈D

L(x, ξ, λ̄;yd).

Define now T to be the (bilinear) optimization problem, which is identical to problem (14) with
τ = 1 and the addition of λ ≥ 0 as a decision variable. By construction, its optimal value ZT

satisfies the relation,

Z ≤ sup
ξ∈Ξ

inf
yd∈D

L(x, ξ, λ̄;yd) ≤ ZT = sup
λ≥0

sup
ξ∈Ξ

inf
yd∈D

L(x, ξ, λ;yd)

= sup
ξ∈Ξ

inf
yd∈D

Q(x, ξ;yd),

14

where the first inequality was established in the previous paragraph and the second equality follows
by strong duality [4, Theorem 1]. Observe now that if we have Z ≥ ZT , then the equation in
the theorem follows. To see why Z ≥ ZT , let (λ̃, η̃, ξ̃, µ̃, β̃) be a feasible solution in problem T
with objective value η̃. Then, an identical line of argument as before establishes that (η̃, ξ̃, µ̃, ρ̃)
is feasible in problem (15) with the same objective value, where we define ρ̃(k) = λ̄ξ̃ − β̃(k) for all
k ∈ [|D|].

4.2.3 Impact on Computational Performance and Practical Considerations

Although the proposed modifications ensure correctness of the overall method and its finite termi-
nation to an optimal solution of the two-stage problem, they are computationally inefficient. This
is because of the presence of the indicator constraints in problems (13) and (15). Indeed, the main
motivation of the original paper [4] in developing their Lagrangian method was to circumvent the
use of indicator constraints (and arbitrary upper bounds on dual variables), which were common in
previous solution methods. Indicator constraints are supported by very few solvers and their pres-
ence often significantly slows down the overall search process. The lack of indicator constraints and
arbitrary upper bounds directly contribute to the large computational speedups of the Lagrangian
method over other solution methods. Problems (13) and (15) should therefore be solved as few
times as possible.

With a goal toward offering practical guidelines, we perform experiments across the entire set of
378 benchmark problems from [4]. This includes Benders decomposition for solving instances of PI
and column-and-constraint generation for solving instances of P and PI , with both continuous and
mixed-integer decisions, across three problem classes. The first two problem classes (network design
and facility location) are instances of PI with continuous second-stage decisions, whereas the third
(staff rostering) is an instance of P with mixed-integer second-stage decisions.

None of the three problem classes satisfy sufficient conditions that allow closed-form expressions
of the optimal Lagrange multiplier. The original paper explicitly acknowledges this for the first two
problem classes but incorrectly assumes that the third class satisfies the sufficient conditions. We
therefore re-run the latter class of instances using the updated Algorithm 2. In doing so, we specify
an initial multiplier value of λ0 = u(x)−ℓ(x). Interestingly, we find that this initial multiplier value
already satisfies the necessary conditions in line 17 of Algorithm 2 across all runs of all instances.
Without the ex post verification of the optimality of λ, the number of iterations and computational
times across the entire set of benchmark instances therefore remains unchanged compared to what
was originally reported in [4].

We now examine the potential suboptimality of the final Lagrange multiplier across all problem
instances. The ex post solution of problems (13) and (15) reveals that their optimal values are
equal to the final upper bounds computed using the original methods in 377 out of 378 benchmark
problems. In other words, the final Lagrange multipliers computed in [4] are provably optimal
across all of these instances. Moreover, the objective values of the corresponding final solutions
rigorously upper bound (or equal, if terminated within the time limit) the optimal value of the
original two-stage problem. Moreover, in the only case where this was not true1, the estimated
upper bound was less than its true optimal value by less than 0.3%.

The solution times of the indicator constrained optimization problems (13) and (15) are slower
than their counterparts with fixed λ. Compared to the latter, their solution times are slower by a
(geometric average) factor of 11.9 (network design), 1.3 (facility location), and 2.8 (staff rostering).
However, because the indicator constrained problems end up being solved only once during the

1Network design instance ‘di-yuan’ with budget parameter k = 3.

15

entire algorithm, this slower solution time has a negligible effect on the overall computational
times, which remain similar to those originally reported in [4].

We offer the following conclusions based on our observations. First, the necessary conditions
that are enforced within the algorithms of the original paper appear to be almost sufficient in
experiments, hinting at opportunities to generalize the conditions in Theorems 1 and 2. Moreover,
the computational speedups offered by the original algorithms over traditional methods are only
possible because of their use of Lagrangian functions (with fixed λ) as proxies for the second-
stage value function. We showed how to check if these proxies are rigorous by solving alternate
but computationally difficult optimization problems. We therefore suggest to solve these only at
the end to assess the potential suboptimality of the final first-stage decisions. If the optimality
gap is not satisfactorily small, then one can obtain better solutions by warm-starting the original
algorithms in the manner we showed in this paper.

Acknowledgements

The first author acknowledges support by the German Bundesministerium für Bildung und Forschung
within the project “RODES” (Förderkennzeichen 05M22UTB).

References

[1] Christoph Buchheim. Bilevel linear optimization belongs to NP and admits polynomial-size
KKT-based reformulations. Operations Research Letters, 51(6):618–622, 2023.

[2] Henri Lefebvre, Enrico Malaguti, and Michele Monaci. Adjustable Robust Optimization with
Discrete Uncertainty. INFORMS Journal on Computing, 36(1):78–96, 2024.

[3] Henri Lefebvre, Martin Schmidt, and Johannes Thürauf. Using Column Generation
in Column-and-Constraint Generation for Adjustable Robust Optimization. Available at
https://optimization-online.org/?p=24462, 2024.

[4] Anirudh Subramanyam. A Lagrangian dual method for two-stage robust optimization with
binary uncertainties. Optimization and Engineering, 23(4):1831–1871, 2022.

[5] Bo Zeng and Long Zhao. Solving two-stage robust optimization problems using a column-and-
constraint generation method. Operations Research Letters, 41(5):457–461, 2013.

16

https://optimization-online.org/?p=24462

	Background
	Counterexample
	Correct Sufficient Conditions
	Absence of Sufficient Conditions
	Computational Complexity
	Algorithmic Modifications
	Modifications for Problem PI
	Modifications for Problem P
	Impact on Computational Performance and Practical Considerations

