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Abstract

In this work we propose a general nonmonotone line-search method for nonconvex multi-
objective optimization problems with convex constraints. At the kth iteration, the degree of
nonmonotonicity is controlled by a vector νk with nonnegative components. Different choices
for νk lead to different nonmonotone step-size rules. Assuming that the sequence {νk}k≥0 is
summable, and that the ith objective function has Hölder continuous gradient with smoothness

parameter θi ∈ (0, 1], we show that the proposed method takes no more than O
(
ϵ
−
(
1+ 1

θmin

))
iterations to find a ϵ-approximate Pareto critical point for a problem with m objectives and
θmin = mini=1,...,m{θi}. In particular, this complexity bound applies to the methods proposed
by Drummond and Iusem (Comput. Optim. Appl. 28: 5–29, 2004), by Fazzio and Schuverdt
(Optim. Lett. 13: 1365–1379, 2019), and by Mita, Fukuda and Yamashita (J. Glob. Optim.
75: 63–90, 2019). The generality of our approach also allows the development of new methods
for multiobjective optimization. As an example, we propose a new nonmonotone step-size rule
inspired by the Metropolis criterion. Preliminary numerical results illustrate the benefit of non-
monotone line searches and suggest that our new rule is particularly suitable for multiobjective
problems in which at least one of the objectives has many non-global local minimizers.

Keywords: Multiobjective optimization; Projected gradient methods; Nonmonotone line searches;
Worst-case complexity

1 Introduction

Motivation

In this work, we consider multiobjective optimization problems with convex constraints. This type of
problem appears in several important applications, such as seismic design of buildings [26], planetary
exploration [7, 35], maintenance of civil infrastructures [17], planning of cancer treatment [38, 8] and
drug design [34, 25]. In most cases, there is not a single point which minimizes all the objective
functions at once. This fact motivates the notion of Pareto efficiency. Roughly speaking, a point is
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said to be a Pareto efficient solution when from this point it is impossible to obtain an improvement
in any of the objective functions without worsening the value of some other objective.

There are many approaches to solve multiobjective optimization problems [28, 27]. In recent
years, several methods have been obtained by extending well-known optimization algorithms for
single-objective optimization. Notable examples include the steepest descent method proposed in
[15], projected gradient methods [11, 18, 19, 1], the Newton’s method proposed in [14], proximal-point
methods [3, 2], trust-region methods [36, 5], and also nonmonotone line search methods [13, 29].

In the present work, we extend the general nonmonotone method proposed in [33] for single-
objective optimization to multiobjective optimization. The method is said to be nonmonotone be-
cause it permits an increase in the objectives between consecutive iterations. At the kth iteration,
the extent of the increase allowed is governed by a vector νk with nonnegative components. Various
selections for νk result in different nonmonotone step-size rules. Specifically, considering suitable
choices for νk, our method encompasses instances of the methods proposed in [11, 13, 29]. Assuming
that the sequence {νk}k≥0 is summable, and that the ith objective function has Hölder continuous
gradient with constant Hi and smoothness parameter θi ∈ (0, 1], we show that the proposed method

takes no more than O
(
ϵ
−
(
1+ 1

θmin

))
iterations to find a ϵ-approximate Pareto critical point of a

problem with m objectives and θmin = mini=1,...,m{θi}. For the case m = 1, this bound agrees in
order with the bound proved in [37] for a gradient method that requires the knowledge of H1 and
θ1. Since our method is fully adaptive with respect to the Hölder constants, we say that it is a
universal method in the sense of Nesterov [31]. For the case in which θ1 = . . . = θm = θ, i.e.,
all the objective functions have Hölder continuous gradients with the same smoothness level θ, our
complexity bound agrees in order with the bound established by [4] for the first-order version of
their pth-order method. In addition, when all the objectives have Lipschitz continuous gradients
(case θ1 = . . . = θm = 1), our bound becomes of O

(
ϵ−2
)
which agrees in order with the bounds

established in [22] for a multiobjective trust-region method, and in [16] for the multiobjective steep-
est descent method. Under the weaker assumption that {νk}k≥0 converges to zero, we also prove a
liminf-type global convergence result for our method. The generality of our results regarding possible
choices of the sequence {νk}k≥0 enables the development of new nonmonotone methods with con-
vergence and worst-case complexity guarantees for multiobjective optimization. As an example, we
propose a new Metropolis-based nonmonotone step-size rule inspired by a method recently proposed
in [21] for single-objective optimization.

Contents

This paper is organized as follows. In Section 2, we define the problem and review some results about
multiobjective optimization. In Section 3 we present our general nonmonotone method and establish
its complexity and convergence properties. In Section 4, we analyse some particular instances of the
method. In Section 5 we propose a new nonmonotone method that fits into our general scheme.
Finally, in Section 6, we report some illustrative numerical results.

Notations

In what follows, ∥ . ∥ denotes the Euclidean norm, I = {1, 2, . . . ,m}, Rm
+ = {z ∈ Rm | zi ≥ 0, i ∈ I},

Rm
++ = {z ∈ Rm | zi > 0, i ∈ I} and, given x ∈ Ω, we consider the set Ω− x = {y ∈ Rn | y + x ∈ Ω}.

In addition, JF (x) will denote the Jacobian of F : Rn → Rm at x. The relations ≻ and ≻ω are given
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respectively by
y ≻ x ⇐⇒ y − x ∈ Rm

+ and y ≻ω x ⇐⇒ y − x ∈ Rm
++.

Moreover, given a symmetric matrix B ∈ Rn×n, λmin(B) and λmax(B) will denote the smallest and
the largest eigenvalues of B. Finally, given a finite set A, |A| denotes the cardinality of A.

2 Problem Definition and Auxiliary Results

In this paper we consider methods for solving the following multiobjective optimization problem

min F (x) = (f1(x), . . . , fm(x))T , (1)

s.t. x ∈ Ω, (2)

where ∅ ̸= Ω ⊂ Rn is a closed and convex set and F : Rn → Rm is a continuously differentiable
function, possibly nonconvex. Let us start by recalling the definitions of efficient and (local) weakly
efficient solutions of (1)-(2).

Definition 2.1 ([24], page 619). Given a point x∗ ∈ Ω,

(a) x∗ is said to be a Pareto efficient solution of (1)-(2) when there is no y ∈ Ω such that F (x∗) ≻
F (y) and F (y) ̸= F (x∗);

(b) x∗ is said to be a weakly Pareto efficient solution of (1)-(2) when there is no y ∈ Ω such that
F (x∗) ≻w F (y); and

(c) x∗ is said to be a local (or local weakly) Pareto efficient solution of (1)-(2) when there exists
a neighborhood N(x∗) of x∗ for which there is no y ∈ N(x∗) ∩ Ω such that F (x∗) ≻ F (y) and
F (y) ̸= F (x∗) (or, respectively, F (x∗) ≻w F (y)).

The lemma below gives a necessary condition for a point x∗ ∈ Ω to be a local weakly efficient solution
of (1)-(2).

Lemma 2.2. Let F : Rn → Rm be a continuously differentiable function and Ω ⊂ Rn be a closed
and convex set. If x∗ ∈ Ω is a local weakly efficient solution of (1)-(2), then

−Rm
++ ∩ {JF (x∗)(x− x∗) |x ∈ Ω} = ∅. (3)

Proof. See Theorem 5.1 (item (ii)-(a)) in [24].

Lemma 2.2 motivates the following definition.

Definition 2.3. A point x∗ ∈ Ω is said to be a Pareto critical point for (1)-(2) if it satisfies condition
(3).

Remark 2.4. Note that when m = 1 and Ω = Rn, (1)-(2) reduces to the unconstrained scalar
optimization problem, and the Pareto criticality condition (3) is equivalent to the classical stationarity
condition ∇f(x) = 0.
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Let x ∈ Ω be a point which is not Pareto critical. Then, there exists a direction d ∈ Ω− x such
that

JF (x)d ∈ −Rm
++,

that is,
JF (x)d ≺w 0.

In this case, d is called a descent direction for F at x. According to the next lemma, a descent
direction of F at x can be obtained by solving the following problem:

min
d∈Ω−x

hx(d) ≡ max
i∈I

{
∇fi(x)

Td
}
+

∥d∥2

2
. (4)

Lemma 2.5. The following statements hold:

(a) The subproblem (4) has only one solution.

(b) If x is a Pareto critical point of F and s(x) = argmind∈Ω−x hx(d), then s(x) = 0 and conse-
quently hx(s(x)) = 0.

(c) If x ∈ Ω is not a Pareto critical point of F , then s(x) ̸= 0 and hx(s(x)) < 0. In particular,
s(x) is a descent direction for F at x.

(d) The mapping x 7−→ s(x) is continuous.

Proof. See Proposition 3 in [11] and Lemma 1 in [15].

By statements (b) and (d) in Lemma 2.5, ∥s(x)∥ is a suitable Pareto criticality measure for x.
This remark motivates the following definition.

Definition 2.6. Given ϵ, we say that x is an ϵ-approximate Pareto critical point for (1)-(2) when
∥s(x)∥ ≤ ϵ.

It is worth mentioning that this is not the only way to define ϵ-approximate Pareto criticality.
For example, in the case Ω = Rn, [6] consider x as an ϵ-approximate Pareto critical point when

min
d∈B[0;1]

max
i∈I

{
∇fi(x)

Td
}
≥ −ϵ

or, equivalently,
− min

d∈B[0;1]
max
i∈I

{
∇fi(x)

Td
}
≤ ϵ, (5)

where B[0, 1] = {x ∈ Rn : ∥x∥ ≤ 1}. Notice that

min
d∈B[0;1]

max
i∈I

{
∇fi(x)

Td
}

≤ max
i∈I

{
∇fi(x)

T

(
s(x)

∥s(x)∥

)}
=

1

∥s(x)∥
max
i∈I

{
∇fi(x)

T s(x)
}

≤ 1

∥s(x)∥

(
max
i∈I

{
∇fi(x)

T s(x)
}
+

1

2
∥s(x)∥2

)
. (6)
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Denote

ξ(x) = max
i∈I

{
∇fi(x)

T s(x)
}
+

1

2
∥s(x)∥2. (7)

By Proposition 2 in [29], we have
∥s(x)∥2 = 2(−ξ(x)). (8)

Combining (6), (7) and (8), it follows that

min
d∈B[0;1]

max
i∈I

{
∇fi(x)

Td
}
≤ −∥s(x)∥

2
.

Consequently,

∥s(x)∥ ≤ 2

(
− min

d∈B[0;1]
max
i∈I

{
∇fi(x)

Td
})

.

Therefore, if x is an ϵ-approximate Pareto critical point in the sense of (5), then ∥s(x)∥ ≤ 2ϵ.

3 Universal Nonmonotone Line Search Methods

Let us consider the following general algorithm to solve (1)-(2):

Algorithm 1: Universal Nonmonotone Line Search Method

Step 0. Choose x0 ∈ Ω, m0 ∈ {0, 1, . . . ,m}, c1, c2 > 0, and β, ρ ∈ (0, 1). Set k := 0.

Step 1. Compute d(xk) ∈ Ω− xk such that

max
i∈I

{
∇fi(xk)

Td(xk)
}
≤ −c1∥s(xk)∥2 (9)

and
∥d(xk)∥ ≤ c2∥s(xk)∥. (10)

Step 2.1. Set ℓ := 0.

Step 2.2. Choose νk,ℓ ∈ Rm
+ . If∣∣∣{i ∈ I : fi(xk + βℓd(xk)) ≤ fi(xk) + ρβℓ∇fi(xk)

Td(xk)
}∣∣∣ ≥ mk, (11)

and
fi(xk + βℓd(xk)) ≤ fi(xk) + ρβℓ∇fi(xk)

Td(xk) + [νk,ℓ]i ∀i ∈ I, (12)

set ℓk = ℓ, and go to Step 3. Otherwise, set ℓ := ℓ+ 1 and go back to Step 2.2.

Step 3. Define αk = βℓk , xk+1 = xk +αkd(xk), and νk = νk,ℓk . Choose mk+1 ∈ {0, 1, . . . ,m},
set k := k + 1 and go back to Step 1.

Remark 3.1. A natural choice for the search direction is d(xk) = s(xk), which satisfies conditions
(9)-(10) with c1 = c2 = 1. In the case Ω = Rn, given symmetric positive definite matrices Bi(xk) ∈

5



Rn×n (i = 1, . . . ,m), we can also use the search direction

d(xk) = arg min
d∈Rn

max
i∈I

{
∇fi(xk)

Td+
1

2
dTBi(xk)d

}
. (13)

Indeed, if λmax (Bi(xk)) ≤ 1/2c1, and λmin (Bi(xk)) ≥ 1/c2, then the vector d(xk) given in (13) also
satisfies (9)-(10)1. In particular, when all objectives are strongly convex with Lipschitz continuous
gradients, the Newtonian direction will satisfy (9)-(10) for constants c1 and c2 that depend on the
extreme eigenvalues of the Hessian matrices of the objectives.

Remark 3.2. When [νk,ℓ]i > 0, condition (12) permits the acceptance of a stepsize βℓ even if
fi(xk + βℓd(xk)) > fi(xk). In contrast, when mk ≥ 1, condition (11) requires a monotonic decrease
for at least mk of the objectives.

The analysis of Algorithm 1 will be done under the following assumptions.

A1 For each i = 1, . . . ,m, the objective function fi belongs to the class of functions C1,θi
Hi

(Ω),
θi ∈ (0, 1], which have Hölder continuous gradients:

∥∇fi(x)−∇fi(y)∥ ≤ Hi∥y − x∥θi , for all x, y ∈ Ω.

A2 For each i ∈ I, there exists f∗
i ∈ R such that fi(x) ≥ f∗

i for all x ∈ Ω.

A3 For each i ∈ I, limT→+∞
1
T

∑T−1
k=0 [νk]i = 0.

The next lemma establishes that Algorithm 1 is well-defined.

Lemma 3.3. Suppose that A1 holds. If s(xk) ̸= 0, then there exists ℓ ∈ N such that

fi(xk + βℓd(xk)) ≤ fi(xk) + ρβℓ∇fi(xk)
Td(xk) (14)

for all i ∈ I.

Proof. Since s(xk) ̸= 0, it follows from (9) that

max
i∈I

{
∇fi(xk)

Td(xk)
}
< −c1∥s(xk)∥2 < 0.

Thus, for any i ∈ I, we have
∇fi(xk)

Td(xk) < 0. (15)

In view of A1, fi is differentiable, and so

lim
α→0+

fi(xk + αd(xk))− fi(xk)

α
= ∇fi(xk)

Td(xk) < ρ∇fi(xk)
Td(xk), (16)

where the last inequality is due to (15) and ρ ∈ (0, 1). As a consequence of (16), there exists δi > 0
such that

fi(xk + αd(xk)) ≤ fi(xk) + ρα∇fi(xk)
Td(xk) (17)

for all α ∈ (0, δi]. Thus, defining δ = mini∈I {δi}, it follows that (17) holds for all i ∈ I as long as
α ∈ (0, δ]. Since β ∈ (0, 1), there exists ℓ ∈ N such that βℓk ≤ δ. Therefore, for such ℓ, (14) holds for
all i ∈ I.

1The proof for this fact follows exactly as in the proof of Proposition 2 in [29], replacing there x with xk, ∇2fi(x)
with Bi(xk), ζ with 1/2c1, ξ with 1/c2; then using the equality |ξ(xk)| = ∥s(xk)∥/2, where ξ(xk) is defined in (7).
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The following lemma gives a lower bound for the sequence {αk}.

Lemma 3.4. Suppose that A1 hold and let {xk}Tk=0 be generated by Algorithm 1 with

∥s(xk)∥ > ϵ, for k = 0, . . . , T − 1, (18)

for some ϵ ∈ (0, 1). Then

αk ≥ κ1ϵ
1−θmin
θmin (19)

for k = 0, . . . , T − 1, where

κ1 = min

1,min
i∈I

β

[
(1 + θi)c1(1− ρ)

c1+θi
2 Hi

] 1
θi


 (20)

and
θmin = min

i∈I
{θi} . (21)

Proof. Consider k ∈ {0, . . . , T − 1} and consider the index

ℓ̂k ≡ min {ℓ ∈ N : (14) holds for all i ∈ I} ,

which is well defined due to (18) and Lemma 3.3. We will show first that

β ℓ̂k ≥ κ1ϵ
1−θmin
θmin . (22)

If ℓ̂k = 0, then

β ℓ̂k = 1 > ϵ
1−θmin
θmin ≥ κ1ϵ

1−θmin
θmin ,

that is, (22) holds. Now, suppose that ℓ̂k > 0. Then, by the definition of ℓ̂k, there exists i ∈ I such
that

fi

(
xk + β ℓ̂k−1d(xk))− fi(xk

)
> ρβ ℓ̂k−1∇fi(xk)

Td(xk) + [νk,ℓ]i . (23)

On the other hand, by A1 and Lemma 1 in [37] we have

fi

(
xk + β ℓ̂k−1d(xk)

)
≤ fi(xk) + β ℓ̂k−1∇fi(xk)

Td(xk) +
Hi

(
β ℓ̂k − 1

)1+θi

1 + θi
∥d(xk)∥1+θi . (24)

Combining (23) and (24), it follows that

ρβ ℓ̂k−1∇fi(xk)
Td(xk) < β ℓ̂k−1∇fi(xk)

Td(xk) +
Hi

(
β ℓ̂k−1

)1+θi

1 + θi
∥d(xk)∥1+θi ,

which implies that (
β ℓ̂k−1

)θi
>

(1 + θi)(1− ρ)

Hi

(
−∇fi(xk)

Td(xk)

∥d(xk)∥1+θi

)
. (25)
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By (9) and (10) we have

−∇fi(xk)
Td(xk)

∥d(xk)∥1+θi
≥ c1∥s(xk)∥2

c1+θi
2 ∥s(xk)∥1+θi

=
c1

c1+θi
2

∥s(xk)∥1−θi . (26)

Combining (25) and (26), we obtain

β ℓ̂k = β
(
β ℓ̂k−1

)
> β

[
(1 + θi)c1(1− ρ)

c1+θi
2 Hi

] 1
θi

∥s(xk)∥
1−θi
θi .

Then, by (18) we have

β ℓ̂k > β

[
(1 + θi)c1(1− ρ)

c1+θi
2 Hi

] 1
θi

ϵ
1−θi
θi ≥ min

i∈I

β

[
(1 + θi)c1(1− ρ)

c1+θi
2 Hi

] 1
θi

 ϵ
1−θmin
θmin ≥ κ1ϵ

1−θmin
θmin ,

that is, (22) also holds when ℓ̂k > 0. Finally, since ℓk ≤ ℓ̂k, it follows from (22) that

αk = βℓk ≥ β ℓ̂k ≥ κ1ϵ
1−θmin
θmin .

Remark 3.5. By Lemma 3.4 and the fact that αk = βℓk , it follows that

ℓk ≤
log

(
κ−1
1 ϵ

−
(

1−θmin
θmin

))
| log(β)|

.

This means that, each iteration of Algorithm 1 with ∥s(xk)∥ > ϵ requires the computation of one

Jacobian matrix of F ( · ) and at most O
(
log

(
ϵ
−
(

1−θmin
θmin

)))
evaluations of F ( · ).

Given i ∈ I, it follows from Assumption A3 that for any δ > 0 there exists Ci(δ) > 0 such that

1

T

T−1∑
k=0

[νk]i ≤ δ, ∀T ≥ Ci(δ). (27)

The theorem below establishes an upper bound for the number of iterations that Algorithm 1 need to
find an ϵ-approximate Pareto critical point. The proof is a direct adaptation of the proof of Theorem
2 in [21].

Theorem 3.6. Suppose that A1-A3 hold and let {xk}Tk=0 be generated by Algorithm 1 with

∥s(xk)∥ > ϵ, for k = 0, . . . , T − 1, (28)

for some ϵ ∈ (0, 1). Then

T ≤ min
i∈I

max

{
Ci

(
κ2
2
ϵ

(
1+ 1

θmin

))
,
2(fi(x0)− f∗

i )

κ2
ϵ
−
(
1+ 1

θmin

)}
(29)

where Ci( · ) is defined in (27) and
κ2 = c1ρκ1, (30)

with κ1 given in (20).
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Proof. Let i ∈ I. By (12), (26), (28), Lemma 3.4, and (30), we have

[νk]i + fi(xk)− fi(xk+1) ≥ ραk

(
−∇fi(xk)

Td(xk)
)
≥ c1ραk∥s(xk)∥2

≥ c1ρκ1ϵ

(
1−θmin
θmin

)
ϵ2

= κ2ϵ

(
1+ 1

θmin

)
,

for k = 0, . . . , T − 1. Now, summing up these inqualities and using A2, we get

T−1∑
k=0

[νk]i + fi(x0)− f∗
i ≥ Tκ2ϵ

(
1+ 1

θmin

)
,

which gives

1

κ2T

T−1∑
k=0

[νk]i +
fi(x0)− f∗

i

κ2T
≥ ϵ

(
1+ 1

θmin

)
. (31)

Suppose that

T ≥ Ci

(
κ2
2
ϵ

(
1+ 1

θmin

))
.

In view of the definition of Ci( · ) in (27), this means that

1

T

T−1∑
k=0

[νk]i ≤
κ2
2
ϵ

(
1+ 1

θmin

)
. (32)

In this case, combining (31) and (32), it follows that

fi(x0)− f∗
i

κ2T
≥ 1

2
ϵ

(
1+ 1

θmin

)

and so

T ≤ 2(fi(x0)− f∗
i )

κ2
ϵ
−
(
1+ 1

θmin

)

Therefore, in any case we have

T ≤ max

{
Ci

(
κ2
2
ϵ

(
1+ 1

θmin

))
,
2(fi(x0)− f∗

i )

κ2
ϵ
−
(
1+ 1

θmin

)}
. (33)

Since i ∈ I was arbitrarily chose, it follows that (33) holds for all i ∈ I. Consequently, (29) is
true.

As a consequence of Theorem 3.6 we have the following global convergence result for Algorithm 1.

Corollary 3.7. Suppose that A1-A3 hold and let {xk}k≥0 be a sequence generated by Algorithm 1.

Then, either exists k̄ such that s(xk̄) = 0 or

lim inf
k→+∞

∥s(xk)∥ = 0. (34)
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Proof. Let ϵ ∈ (0, 1). From Theorem 3.6, if

T > min
i∈I

max

{
Ci

(
κ2
2
ϵ

(
1+ 1

θmin

))
,
2(fi(x0)− f∗

i )

κ2
ϵ
−
(
1+ 1

θmin

)}
then

min
k=0,...,T−1

∥s(xk)∥ ≤ ϵ.

Since ϵ ∈ (0, 1) was chosen arbitrarily, this shows that

lim
k→+∞

(
min

k=0,...,T−1
∥s(xk)∥

)
= 0.

Thus, either there exists k̄ such that s(xk̄) = 0 or (34) holds.

4 Particular Cases

In Algorithm 1, different choices for νk,ℓ ∈ Rm
+ in Step 2.2 produce different methods. For example,

if
νk,ℓ = νk ≡ 0 for all k and ℓ, (35)

then Algorithm 1 reduces to an instance of the monotone projected gradient method proposed in
[11]. Clearly, this choice gives a sequence {νk}k≥0 that satisfies A3 and for which (27) gives

Ci(δ) = 1 for each i ∈ I.

Therefore, it follows from Theorem 3.6 that the monotone version of Algorithm 1 takes at most

O
(
ϵ
−
(
1+ 1

θmin

))
iterations to generate a ϵ-approximate Pareto critical point of (1)-(2).

Let us consider now the choice

νk,ℓ = νk ≡
{

0, if k = 0,
(1− δk) (F (xk−1) + νk−1 − F (xk)) , if k ≥ 1,

for all ℓ (36)

with
δk ∈ [δmin, 1] for all k, and δmin ∈ (0, 1). (37)

For the choice specified by (36) and (37), the next lemma establishes that {[νk]i}k≥0 is summable
for all i ∈ I. The proof is an adaptation of the proof of Lemma Theorem 4 in [20].

Lemma 4.1. Suppose that A1-A3 hold and let {xk}k≥0 be generated by Algorithm 1. If {νk}k≥0 is
defined by (36) and (37), then νk ∈ Rm

+ for all k and

+∞∑
k=0

[νk]i < +∞ for all i ∈ I. (38)

Proof. By (36), ν0 = 0 ∈ Rm
+ . In view of (12), for all i ∈ I we have

fi(xk) + [νk]i − fi(xk+1) ≥ ραk

(
−∇fi(xk)

Td(xk)
)
.

10



Consequently, it follows from (37) that

(1− δk+1) (fi(xk) + [νk]i − fi(xk+1)) ≥ (1− δk+1)ραk

(
−∇fi(xk)

Td(xk)
)
.

Then, by (36) and (26) we get

[νk+1]i = (1− δk+1) (fi(xk) + [νk]i − fi(xk+1)) (39)

≥ (1− δk+1)ραk

(
−∇fi(xk)

Td(xk)
)

≥ c1(1− δk+1)ραk∥s(xk)∥2.

Therefore, νk+1 ∈ Rm
+ . Now, let N ≥ 1. Combining (37) and (39) we get

N∑
k=0

[νk]i =
N−1∑
k=0

[νk+1]i =
N−1∑
k=0

(1− δk+1) (fi(xk) + [νk]i − fi(xk+1))

≤
N−1∑
k=0

(1− δmin) (fi(xk)− fi(xk+1) + [νk]i)

= (1− δmin) (fi(x0)− fi(xN )) +
N−1∑
k=0

[νk]i − δmin

N−1∑
k=0

[νk]i

≤ (1− δmin) (fi(x0)− f∗
i ) +

N∑
k=0

[νk]i − δmin

N−1∑
k=0

[νk]i,

where the last inequality is due to A2 and thet fact that [νN ]i ≥ 0. Thus

δmin

N−1∑
k=0

[νk]i ≤ (1− δmin)(fi(x0)− f∗
i )

and so
N−1∑
k=0

[νk]i ≤
(
1− δmin

δmin

)
(fi(x0)− f∗

i ).

Since i ∈ I and N ≥ 1 were taken arbitrarily, this means that (38) is true.

In view of Lemma 4.1, the sequence {νk} defined by (36) and (37) satisfies A3. Moreover, for
this sequence, (27) holds with

Ci(δ) =

(
1− δmin

δmin

)
(fi(x0)− f∗

i )δ
−1.

Therefore, it follows from Theorem 3.6 that the corresponding instance of Algorithm 1 takes at most

O
(
ϵ
−
(
1+ 1

θmin

))
iterations to generate a ϵ-approximate Pareto critical point of (1)-(2).

Notice that the sequence {νk}k≥0 given by (36) and (37) is implicitly defined by the choice of the
sequence {δk} ⊂ [δmin, 1]. One possibility is to use

δk =
1

Qk
, for all k ≥ 1, (40)

11



where
Q0 = 1 and Qk+1 = ηkQk + 1 (41)

for a given sequence ηk ∈ [ηmin, ηmax] with 0 ≤ ηmin ≤ ηmax < 1. In this case we have

Qk+1 = 1 +
k∑

j=0

Πj
i=0ηk−j ≤

+∞∑
j=0

ηjmax =
1

1− ηmax

and so
δk+1 ≥ 1− ηmax ≡ δmin.

By (36), we also have

F (xk+1) + νk+1 = (1− δk+1)(F (xk) + νk) + δk+1F (xk+1). (42)

Thus, denoting
Ck = F (xk) + νk,

it follows from (42), (40) and (41) that

Ck+1 =
ηkQkCk + F (xk+1)

Qk+1
.

Moreover, using this notation, condition (12) can be rewritten as

fi(xk + βℓd(xk)) ≤ [Ck]i + ρβℓ∇fi(xk)
Td(xk) for all i ∈ I.

This means that Algorithm 1 with {νk} given by (36), (40) and (41) reduces to:

• an instance of the nonmonotone projected gradient method proposed in [13], when mk = 0 for
all k ≥ 0; and

• the variant of Algorithm 6 proposed in [29] for the case Ω = Rn, with nonmonotone term
inspired by [39].

In particular, it follows from our analysis that these methods also possess an upper complexity bound

of O
(
ϵ
−
(
1+ 1

θmin

))
iterations.

Note that multiobjective variants of the nonmonotone line search of [23] can also be seen as
particular instances of Algorithm 1 with

[νk,ℓ]i = [νk]i = max
0≤j≤M(k)

fi(xk−j)− fi(xk), for i = 1, . . . ,m,

where M(k) = min {k,M}. However, it is not clear whether the corresponding sequence {νk}k≥0 is
summable. Thus, the worst-case complexity of this variant remains unknown to us.

12



5 A New Nonmonotone Method for Multiobjective Optimization

As we saw in the last section, with different choices of νk,ℓ at Step 2.2 of Algorithm 1, we obtain
different methods. From our analysis, to have a globally convergent method it is enough to select
νk,ℓ such that the corresponding sequence {νk} satisfies assumption A3. The next lemma establishes
that A3 is very mild, in the sense that it holds for any sequence {νk} with limk→+∞ νk = 0.

Lemma 5.1. Let {νk}k≥0 ⊂ Rm
+ with νk → 0. Then {νk}k≥0 satisfies assumption A3.

Proof. Let i ∈ I. By assumption, limk→+∞[νk]i = 0. Thus, given δ > 0, there exists ξi(δ/2) ∈ N\{0}
such that

[νk]i ≤
δ

2
for all k ≥ ξi(δ/2). (43)

Moreover, there exists Mi > 0 such that

[νk]i ≤ Mi for all k ≥ 0. (44)

Consider

Ci(δ) = max

{
2ξi(δ/2)Mi

δ
, 1 + ξi(δ/2)

}
. (45)

If T ≥ Ci(δ) we have

1

T

T−1∑
k=0

[νk]i =
1

T

ξi(δ/2)−1∑
k=0

[νk]i

+
1

T

 T−1∑
k=ξi(δ/2)

[νk]i


≤ 1

T

ξi(δ/2)−1∑
k=0

Mi

+
1

T

 T−1∑
k=ξi(δ/2)

δ

2


≤ 1

T
ξi(δ/2)Mi +

1

T

(
T−1∑
k=0

δ

2

)

=
δ

2
+

δ

2
= δ.

This shows that

lim
T→+∞

1

T

T−1∑
k=0

[νk]i = 0.

Since i ∈ I was taken arbitrarily, we conclude that {νk}k≥0 satisfies A3.

It follows from Lemma 5.1 and Corollary 3.7 that any instance of Algorithm 1 with νk → 0 is
globally convergent for the problem class specified by assumptions A1 and A2. This gives a great
deal of freedom for the development of new nonmonotone methods for multiobjective optimization
problems. As an example, let us consider the following new instance of Algorithm 1.
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Algorithm 2: Metropolis-Based Nonmonotone Line Search Method

Step 0. Choose x0 ∈ Ω, β, ρ ∈ (0, 1), c1, c2 > 0, σ ∈ Rm
+ , γ > 0, and {τk}k≥0 ⊂ R++ with

τk → 0. Set k := 0.

Step 1. Compute d(xk) ∈ Ω− xk such that

max
i∈I

{
∇fi(xk)

Td(xk)
}
≤ −c1∥s(xk)∥2

and
∥d(xk)∥ ≤ c2∥s(xk)∥.

Step 2.1. Set ℓ := 0.

Step 2.2. Compute x+k,ℓ = xk + βℓd(xk) and define

[νk,ℓ]i = σiexp

−
max

{
γ, fi(x

+
k,ℓ)− fi(xk)

}
τk

 , ∀i ∈ I. (46)

If
fi(x

+
k,ℓ) ≤ fi(xk) + ρβℓ∇fi(xk)

Td(xk) + [νk,ℓ]i ∀i ∈ I,

set ℓk = ℓ and go to Step 3. Otherwise, set ℓ := ℓ+ 1 and repeat Step 2.2.

Step 3. Set νk = νk,ℓk , αk = βℓk , xk+1 = x+k,ℓk , k := k + 1 and go back to Step 1.

Algorithm 2 is a generalization of the Metropolis-based nonmonotone method proposed in [21]
for single-objective optimization. As a consequence of Corollary 3.7 we have the following global
convergence result for Algorithm 2.

Theorem 5.2. Suppose that A1-A2 hold, and let {xk}k≥0 be a sequence generated by Algorithm 2.

Then, either there exists k̄ such that d(xk̄) = 0 or

lim inf
k→+∞

∥s(xk)∥ = 0.

Proof. In view of Corollary 3.7 and Lemma 5.1 it is enough to show that {νk}k≥0 generated by
Algorithm 2 converges to 0 ∈ Rm. By Steps 2.2 and 3 in Algorithm 2, for all i ∈ I and k ≥ 0, we
have

0 ≤ [νk]i = σiexp

(
−max {γ, fi(xk+1)− fi(xk)}

τk

)
≤ σiexp

(
− γ

τk

)
.

Since γ, τk > 0 and τk → 0, it follows that

lim
k→+∞

[νk]i = 0, ∀i ∈ I,

and so νk → 0.

From the proof Lemma 5.1 we see that if νk → 0 then (27) holds for

Ci(δ) = max

{
2ξi(δ/2)Mi

δ
, 1 + ξi(δ/2)

}
,
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where Mi is a uniform upper bound to {[νk]i}k≥0, and ξi(δ/2) is any positive integer such that

[νk]i ≤
δ

2
, ∀k ≥ ξi(δ/2).

Thus, when νk → 0, it follows from Theorem 3.6 that Algorithm 1 takes no more thanmin
i∈I

max


4ξi

(
κ2
4 ϵ

(
1+ 1

θmin

))
Mi

κ2ϵ

(
1+ 1

θmin

) , 1 + ξi

(
κ2
4
ϵ

(
1+ 1

θmin

))
,
2(fi(x0)− f∗

i )

κ2ϵ

(
1+ 1

θmin

)

 (47)

iterations to find a ϵ-approximate Pareto critical point of (1)-(2). Therefore, to obtain an explicit
iteration complexity bound, all that we need to do is to estimate the rate of decay of {[νk]i}k≥0,
which will allow the identification of Mi and ξi(δ/2). From the proof of Theorem 5.2, we know that
the sequence {[νk]i}k≥0 in Algorithm 2 satisfies

0 ≤ [νk]i ≤ σiexp

(
− γ

τk

)
, ∀k ≥ 0.

Let us consider the choice τk = 1/ ln(k + 1). In this case, we get

[νk]i ≤ σiexp(−γ ln(k + 1)) = σiexp
(
ln
(
(k + 1)−γ

))
=

σi
(k + 1)γ

. (48)

This implies that
[νk]i ≤ σi ≡ Mi, ∀k ≥ 0, (49)

and

[νk]i ≤
δ

2
, ∀k ≥

(
2σi
δ

) 1
γ

≡ ξi(δ/2). (50)

Therefore, it follows from (47), (49) and (50) that Algorithm 2 with τk = 1/ ln(k+ 1) takes no more

than O
(
ϵ
−
(
1+ 1

θmin

)(
1+ 1

γ

))
iterations to find a ϵ-approximate Pareto critical point of (1)-(2).

For the case γ > 1, an improved complexity bound can be obtained for Algorithm 2. Indeed, if
γ > 1, then it follows from (48) that

+∞∑
k=0

[νk]i ≤ σi

+∞∑
k=0

1

(k + 1)γ
≤ σiγ

γ − 1
.

In this case, (27) is satisfied with Ci(δ) =
(

σiγ
γ−1

)
δ−1. Consequently, by Theorem 3.6, Algorithm 2

with γ > 1 and τk = 1/ ln(k + 1) takes at most O
(
ϵ
−
(
1+ 1

θmin

))
iterations to find a ϵ-approximate

Pareto critical point.
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6 Illustrative Numerical Results

In [21], a variant of Algorithm 2 for single-objective optimization (case m = 1) showed a remarkable
ability to escape non-global local minimizers. Here, we investigate the performance of Algorithm 2
applied to bi-objective optimization problems where one of the objectives has numerous non-global
local minimizers. Specifically, we considered 15 bi-objective problems of the form

minx∈Rn F (x) = (f1(x), f2(x))
s.t. x ∈ [−a, a]n,

with a = 5.12,

f1(x) = 10n+
n∑

i=1

[
x21 − 10 cos(2πxi)

]
, ∀x ∈ Rn, ∀x ∈ Rn,

and f2( · ) being one of the 15 functions from the MGH collection [30] whose dimension n can be
chosen2. Function f1( · ) is known as the Rastrigin function. This function has a large number of
spurious minimizers in the hypercube [−5.12, 5.12]n (see, e.g., [32]). The following Julia codes were
compared:

• M: the monotone version of Algorithm 1, obtained with νk,ℓ = 0 for all k and ℓ, and mk = 0
for all k.

• N1: Algorithm 1 with νk,ℓ given by (36), (40) and (41), ηk = 0.85/(k + 1), and mk = 0 for all
k.

• N2: Algorithm 2 with τk = 1/ ln(k + 1), γ = 8, and σi = |fi(x0)| for all i ∈ I.

• Nh: The hybrid-type nonmonotone line search as proposed in [29], which uses mk = ⌈m/2⌉
for all k.

In all implementations, we considered d(xk) = s(xk) (for which c1 = c2 = 1), and the parameters
ρ = 10−4 and β = 0.5. Focusing on the case n = 4, for each problem we tested 81 choices for the
starting point x0 ∈ R4, namely,

x0 = [−2a+ ia,−2a+ ja,−2a+ ka,−2a+ ℓa]T , i, j, k, ℓ ∈ {1, 2, 3} .

This resulted in a total of 1215 pairs (problem, starting point). We applied the three solvers in all
these pairs with stopping criterion

∥s(xk)∥ ≤ ϵ ≡ 10−4, (51)

allowing a maximum of 1000 iterations for each solver. All the experiments were performed with
Julia 1.7.2 on a PC with Intel(R) Core(TM) i7-10510U with microprocessor 1.8 GHz and 32 GB
RAM. We use Gurobi and JuMP [12] to compute s(xk).

Codes are compared using performance profile [10]. Given a set of solvers S, and a set of test
problems P, denote by tp,s > 0 the performance of the solver s ∈ S applied to problem p ∈ P. Then
the performance profile of solver s is the graph of the function γs : [1,∞) → [0, 1] given by

γs(τ) =
1

|P |

∣∣∣{p ∈ P :
tp,s

min{tp,s : s ∈ S}
≤ τ

}∣∣∣.
Note that, γs(1) is the percentage of problems for which solver s wins over the rest of the solvers.

2Namely, Extended Rosenbrock, Extended Powell Singular, Penalty I, Penalty II, Variably Dimensioned,
Trigonometric, Discrete Boundary Value, Discrete Integral Equation, Broyden Tridiagonal, Broyden Banded,
Brown Almost Linear, Linear, Linear-1, Linear-0, Chebyquad.
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6.1 Number of Iterations to achieve ϵ-Pareto Criticality

Figure 1 shows the performance profiles of solvers M, N1, N2 and Nh, considering P = {(problem, starting point)}
and tp,s as the number of iterations that solver s applied to the pair p ∈ P requires to generate xk
such that (51) holds. As we can see, N2 was the only nonmonotone method more efficient than the
monotone method. In addition, N1 and N2 were more robust than M and Nh.

Figure 1: Performance profile with respect to the number of iterations

6.2 Purity Metric

In the context of multiobjective optimization, other performance measures are also relevant. For
example, it is particularly interesting to quantify the ability of the solvers to find Pareto efficient
solutions, also known as Pareto front. For that, we need first to identify an approximation for this
set. By applying solver s to problem p starting from N different initial points, we obtain a set of N
approximate Pareto critical points in Ω. Removing from this set all the dominated points3, we get
the set PFp,s. Let PFp be the set obtained by removing all the dominated points from ∪s∈SPFp,s.
Then, PFp can be seen as an approximation to the Pareto front of problem p. The Purity metric of
solver s applied to problem p is defined as

tp,s =

{
1/t̄p,s, if t̄p,s ̸= 0,
+∞, otherwise,

where

t̄p,s =
|PFp,s ∩ PFp|

|PFp|
.

When using the Purity metric, as suggested in [9], we compare the algorithms in pairs. As we can
see in Figure 2, our new method N2 outperformed both M, N1 and Nh with respect to the Purity
metric.

3We say that a point x1 is dominated by a point x2 when fi(x2) ≤ fi(x1), ∀i ∈ I and fj(x2) < fj(x1) for some
j ∈ I.
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Figure 2: Performance profile with respect to the purity metric

7 Conclusion

In this work, we proposed a universal nonmonotone line search method for nonconvex multiobjective
problems with convex constraints. The method is universal because it does not require any knowledge
about the constants that define the smoothness level of the objectives. Specifically, the step-sizes are
selected using a relaxed Armijo condition, allowing the increase of the objectives between consecutive
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iterations. The degree of nonmonotonicity allowed for the objective fi( · ) is controlled by a nonnega-
tive parameter [νk]i. Assuming that ∇fi( · ) is θi-Hölder continuous, and that {[νk]i}k≥0 is summable

for every i ∈ {1, . . . ,m}, we proved that our method takes no more than O
(
ϵ
−
(
1+ 1

θmin

))
iterations

to find a ϵ-approximate critical point of a problem with m objectives and θmin = mini=1,...,m {θi}.
Under the weaker assumption that limk→+∞ [νk]i = 0 for every i ∈ {1, . . . ,m}, we also proved a
liminf-type global convergence result. In particular, we showed that our complexity bound applies to
some existing monotone and nonmonotone line search methods. In addition, exploring the generality
of our assumptions about {νk}k≥0 ⊂ Rm

+ , we proposed a new Metropolis-based nonmonotone method
that fits into our general scheme. Our preliminary numerical results indicate that this new method
performs favorably in comparison to the monotone projected gradient method by Drummond and
Iusem [11], the nonmonotone projected gradient method by Fazzio and Schuverdt [13], and a pro-
jected variant of the nonmonotone method by Mita, Fukuda, and Yamashita [29], on problems where
at least one objective has numerous non-global local minimizers.
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