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1 Problem Statement20

Our goal is to propose a variant of the Byrd-Omojokun algorithm [5] designed to handle21

problems where noise affects the function and constraint evaluations. The Byrd-Omojokun22

(BO) algorithm is a sequential quadratic programming (SQP) method for solving equality23

constrained optimization problems. It employs trust regions to safeguard the iteration and24

uses a non-smooth merit function to guide the iterates to stationary points of the problem.25

The algorithm is robust even when the Jacobian of the constraints is rank deficient, and can26

efficiently solve very large problems. The BO algorithm has been incorporated or adapted into27

various methods for nonlinearly constrained optimization [18], and is integral to the knitro28

software package [7] .29

The problem under consideration is:30

min
x

f(x) (1)

s.t. c(x) = 0,

where f : Rn → R and c : Rn → Rm are smooth functions with gradient and Jacobian denoted,31

respectively, as32

gk = ∇f(xk) ∈ Rn∗1, Ak = ∇c(xk) ∈ Rm∗n. (2)
This paper concerns the case where the above quantities cannot be evaluated exactly but we33

have access to noisy observations denoted as34

f̃(x) = f(x) + δf (x), c̃(x) = c(x) + δc(x); (3)
35

g̃k = ∇f(xk) + δg(x), Ãk = ∇c(xk) + δA(x); (4)
where δf (x), δc(x), δg(x), δA(x) denote noise or computational errors. We define the Lagrangian36

as37

L̃(x, λ) = f̃(x)− λT c̃(x). (5)
Much recent research has focused on developing optimization algorithms for noisy constrained38

problems of the form (1). While there has been significant interest in this area, trust region39

methods have received comparatively less attention. The fact that the trust region includes40

information from previous iterations makes the analysis in the noisy setting more challenging41

than for line search methods. Our results are of significant generality in that they also cover the42

case when the Jacobian of the constraints loses rank. This paper builds upon the framework43

developed in [26] for studying trust region methods for unconstrained optimization.44

Notation. Throughout the paper, ∥ · ∥ denotes the ℓ2-norm. As usual, we abbreviate f(xk) as fk,45

etc.46

1.1 Literature Review47

Nonlinear optimization problems with equality constraints arise in a wide range of disciplines,48

and a variety of line search and trust region methods have been designed to solve them. Among49

trust region methods, notable approaches include those proposed by Celis-Dennis-Tapia [9],50

Yuan-Powell [25], Vardi [28]. However, the Byrd-Omojokun algorithm [23] stands out, as it51

strikes the right balance between robustness and scalability [20]. This method plays an important52

role in modern software for general nonlinearly constrained optimization, as mentioned above.53

Recently, there has been increasing interest in adapting trust region methods to solve54

unconstrained problems with noise in the objective functions and derivatives [26,8,1,19,13,10].55
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Adaptations are necessary since classical trust region methods for deterministic optimization56

can struggle or even fail in this setting [26]. For example, [26] modifies the trust region ratio57

test by relaxing its numerator and denominator based on noise level (assumed to be bounded),58

and establishes convergence guarantees. Similar approaches are found in [4] and [17], with a59

heuristic in [11]. Additionally, [8] proposes modifying only the numerator in the trust region60

ratio test along with other imposed algorithmic conditions, and establishes convergence rates61

results in high probability. These methods typically do not require diminishing noise, but the62

technique proposed in [16] can take advantage of that possibility.63

There are few studies on methods for noisy constrained optimization [24,12,3,14]. In [24],64

a line search SQP algorithm relaxes the descent condition to accommodate noise, ensuring65

convergence. [3] presents a step-search SQP algorithm employing a technique different from line66

searches and trust regions, while [14] introduces an approach that has some similarities with the67

Byrd-Omojkun method, and establish convergence in the stochastic setting.68

Most research assumes full-rank Jacobians [14,24,3], except [2], which also considers non-69

biased gradient estimates. One of the hallmarks of trust region methods is their ability to deal70

with rank-deficient Jacobians, see e.g. [11,6], for a discussion of the deterministic setting. Our71

work distinguishes itself from previous studies by considering a standard trust region method72

for equality-constrained optimization, as opposed to modifications that eliminate history by73

either using a predetermined trust region schedule or defining the trust radius as a multiple of74

the current gradient norm.75

2 The Algorithm76

At a current iterate xk, the algorithm utilizes a trust region radius ∆k, Lagrange multipliers77

λk, and an approximation W̃ (xk, λk) to the Hessian of the Lagrangian L̃(xk, λk). With this78

information, the aim is to generate a step pk by solving the subproblem79

min
p

g̃T
k p + 1

2pT W̃ (xk, λk) p (6)

subject to Ãkp + c̃k = 0 (7)
∥p∥ ≤ ∆k. (8)

However, this problem may be infeasible: by restricting the size of the step, the trust region may80

preclude satisfaction of the linear constraints (7). To address this difficulty, the Byrd-Omojokun81

method performs the step computation in two stages. First, a normal step determines a desirable82

level of feasibility which is then imposed upon subproblem (6)-(8). We now discuss the adaptation83

of this method to the noisy setting.84

Normal Step: The goal of this step is to find an acceptable level of feasibility in the linear85

constraints (7). To this end, we choose a contraction parameter ζ ∈ (0, 1) and compute vk which86

solves:87

min
v

∥Ãkv + c̃k∥ (9)

subject to ∥v∥ < ζ∆k. (10)

Full Step. With vk at hand, we can now define the relaxed version of the subproblem (6) as88

follows89
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min
p

g̃T
k p + 1

2pT W̃ (xk, λk) p (11)

subject to Ãkp + c̃k = Ãkvk + c̃k

∥p∥ ≤ ∆k.

This problem is always feasible and we denote a solution by pk. In this paper we assume that90

these two subproblems are solved exactly, but to establish the convergence results presented91

below, it suffices to compute approximate solutions that yield a fraction of Cauchy decrease; see92

e.g. [22].93

The BO method is a primal method that uses least squares multiplier estimates. They are94

defined as a solution to the problem95

min
λ
∥g̃k − ÃT

k λ∥2. (12)

Step Acceptance and Trust Region Update. To determine if the step is acceptable, the BO96

algorithm uses the nonsmooth merit function97

ϕ̃(x, ν) = f̃(x) + ν∥c̃(x)∥, (13)

where ν is called the penalty parameter. We construct a model of ϕ̃(·, νk) at xk as98

mk(p) = f̃(xk) + pT g̃k + 1
2 pT W̃kp + νk

∥∥Ãkp + c̃k

∥∥ . (14)

We define the predicted reduction in the merit function ϕ̃(·, ν) to be the change in the model99

mk produced by a step pk:100

predk(pk) = mk(0)−mk(pk). (15)

Before testing step acceptance, we update the penalty parameter νk to ensure that predk(pk)101

is sufficienlty positive. Given a scalar π1 ∈ (0, 1), the new penalty parameter vk is chosen large102

enough so that (see [5, eq(2.35)])103

predk(pk) > π1νkvpredk(pk), (16)

where104

vpredk(pk) = ∥c̃k∥ − ∥Ãkpk + c̃k∥ (17)

is the reduction in the objective of the normal problem. It is easy to see from the definitions105

(15) and (17) that there always exist large enough νk that satisfy (16).106

Having chosen the penalty parameter νk, we test whether the step pk is acceptable. As in107

any trust region algorithm, this test is based on the ratio between the actual and predicted108

reduction in the merit function, where the former is defined as109

aredk(pk) = ϕ̃(xk, νk)− ϕ̃(xk + pk, νk). (18)

Due to the presence of noise, we introduce some slack in this test. We define a relaxed ratio as110

ρk = aredk + ξ(ϵf + νkϵc)
predk + ξ(ϵf + νkϵc) , (19)

where ξ is a constant specified below, and ϵf and ϵc denote the noise level in the function and111

constraints, as defined in (22). We use the value of ρk to determine whether a step is acceptable112

and whether the trust region radius should be adjusted.113
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2.1 Specification of the Algorithm114

We are now ready to state the variant of the Byrd-Omojukun algorithm designed to solve the115

noisy equality constrained optimization problem (1). The only requirement we impose on the116

Hessian approximation W̃k is that it be a bounded symmetric matrix.117

Algorithm 1: The Noise Tolerant Byrd-Omojukun Algorithm
1 Initialize x0, ν−1, ∆0. k = 0;
2 Input: ϵf , ϵc (noise level)
3 Choose constants π1, π0, ζ, all in (0,1), and τ > 1;
4 Set relaxation parameter: ξ = 2

1−π0
;

5 while a termination condition is not met do
6 Evaluate f̃k, c̃k, g̃k, Ãk;
7 Solve (12) for λk, compute W̃k;
8 Solve subproblem (9) for vk and (11) for pk;
9 Evaluate predk and vpredk by (15), (17);

10 Set: νk = νk−1;
11 while predk ≤ π1νkvpredk do
12 νk = τνk;
13 Re-evaluate predk;
14 end
15 Evaluate aredk by (18) ;
16 Compute

ρk = aredk + ξ(ϵf + νkϵc)
predk + ξ(ϵf + νkϵc) ; (20)

17 if ρk > π0 then
18 xk+1 = xk + pk, ∆k+1 = τ∆k;
19 else
20 xk+1 = xk, ∆k+1 = ∆k/τ ;
21 end
22 Set k ← k + 1;
23 end

118

We note that line 7 requires the solution of two trust region problems. In practice, this can be119

done inexactly, as mentioned above, allowing the BO method to scale into the tens of thousands120

of variables [7]. The analysis presented here is applicable to both the exact and inexact cases.121

In the next section, we establish global convergence properties of Algorithm 1 to a region of122

stationary points of the problem. In section 4, we present numerical experiments illustrating the123

behavior of the algorithm.124

3 Global Convergence125

We make the following assumptions about the problem, the noise (or errors), and the iterates.126

Assumption 1: f(x), c(x) are Lf and Lc–smoothly differentiable, respectively.127

128

Assumption 2: The sequences {Ãk}, {W̃k}, {c̃k} generated by the algorithm are bounded: i.e.129

∀k:130

∥Ãk∥ ≤MA; ∥W̃k∥ ≤MW ; ∥c̃k∥ ≤Mc, (21)
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for some constants MA, MW , Mc. Furthermore, the sequence {f̃k} is bounded below.131

132

Assumption 3: There exist constants ϵf , ϵc, ϵg and ϵA such that, for all x ∈ Rn,133

|δf (x)| ≤ ϵf , ∥δc(x)∥ ≤ ϵc, ∥δg(x)∥ ≤ ϵg, ∥δA(x)∥ ≤ ϵA. (22)
In other words, we assume that noise (or errors) are bounded, which is the case in many practical134

applications; see e.g. the discussion in [21]. We refer to ϵf , ϵc as the noise level in the problem. .135

3.1 Reduction in the Feasibility Measure136

In this section, we show that Algorithm 1 is able to reduce a stationarity measure of feasibility137

to a level consistent with the noise level in the functions. The first result follows from classical138

trust region convergence theory; see e.g. [11,22].139

Lemma 1 The step pk computed by Algorithm 1 satisfies140

vpredk(pk) = ∥c̃k∥ − ∥Ãkpk + c̃k∥ ≥
∥ÃT

k c̃k∥
2∥c̃k∥

min
(

ζ∆k,
∥ÃT

k c̃k∥
∥ÃT

k Ãk∥

)
. (23)

The next lemma shows that mk is an accurate model of the merit function when ∆k is small.141

Lemma 2 (Accuracy of the Model of the Merit Function) Under Assumptions 1-3,142

|aredk(pk)− predk(pk)| ≤ML(νk)∆2
k + (ϵg + νkϵA)∆k + 2(ϵf + νkϵc), (24)

where143

ML(νk) = max(Lf + MW , νkLc). (25)
Proof. From eqs. (14), (15) and (17) we have:144

predk(pk) = −pT
k g̃k −

1
2pT

k W̃kpk + νkvpredk(pk). (26)

Using this fact, and recalling Assumptions 1-3, we have145

|aredk(pk)− predk(pk)|
=

∣∣[ϕ̃(xk)− ϕ̃(xk+1)]− [mk(0)−mk(pk)]
∣∣

=
∣∣∣∣f̃k − f̃k+1 + νk[∥c̃k∥ − ∥c̃k+1∥]−

[
−pT

k g̃k −
1
2pT

k W̃kpk + νkvpredk(pk)
]∣∣∣∣

≤
∣∣∣∣fk − fk+1 + νk[∥ck∥ − ∥ck+1∥]−

[
−pT

k gk −
1
2pT

k W̃kpk + νkvpredk(pk)
]∣∣∣∣ + ...

... +
∣∣δf (xk) + δf (xk+1) + pT

k δg(xk) + νk[∥δc(xk)∥+ ∥δc(xk+1)∥]
∣∣

≤
∣∣∣∣∫ 1

0
[g (xk + tpk)− gk]T pkdt + νk[∥AT

k pk + ck∥ − ∥ck+1∥] + 1
2pT

k W̃kpk

∣∣∣∣ + ...

... + 2(ϵf + νkϵc) + ϵg∥pk∥+ νk∥δA(xk)T pk∥

≤1
2(Lf + MW + νkLc)∥pk∥2 + ϵg∥pk∥+ νk∥δA(xk)T pk∥+ 2(ϵf + νkϵc)

≤1
2(Lf + MW + νkLc)∆2

k + (ϵg + νkϵA)∆k + 2(ϵf + νkϵc)

≤max(Lf + MW , νkLc)∆2
k + (ϵg + νkϵA)∆k + 2(ϵf + νkϵc)

=ML(νk)∆2
k + (ϵg + νkϵA)∆k + 2(ϵf + νkϵc).

146
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For economy of notations we define, for any given iterate k,147

Ev(k) := ξMc

π1ζ
(ϵg/νk + ϵA); ek := ϵf /νk + ϵc. (27)

For the following lemma recall that the constants ζ and ξ are defined in lines 2-3 of148

Algorithm 1.149

Lemma 3 (Increase of the Trust Region) Let Assumptions 1 through 3 be satisfied. Suppose150

that for an iterate k and a given positive constant γ,151

∥ÃT
k c̃k∥ > Ev(k) + γ. (28)

Define152

∆̄(γ) =
[

π1ζ

ξ max(1, Mc)M

]
γ, (29)

where153

M = max
[

Lf + MW

ν0
, Lc, M2

A

]
. (30)

Then,154

min
(

∆̄(γ), ∥Ã
T
k c̃k∥

∥ÃT
k Ãk∥

)
= ∆̄(γ). (31)

Furthermore, if ∆k ≤ ∆̄(γ), the step is accepted and155

∆k+1 = τ∆k. (32)

Proof. Part 1. By (25), and since νk is non-decreasing we obtain:156

ML(νk)
νk

≤ max
[

Lf + MW

ν0
, Lc

]
≤ max

[
Lf + MW

ν0
, Lc, M2

A

]
= M. (33)

By condition (28) and the bound of ∥c̃k∥ in eq. (21),157

∥ÃT
k c̃k∥
∥c̃k∥

>
ξ

π1ζ

(
ϵg

νk
+ ϵA

)
+ γ

Mc
. (34)

Now, by the definitions of ∆̄(γ) and ξ,158

∆̄(γ) ≤ π1ζ(1− π0)
2 max(1, Mc)M γ

<
1

max(1, Mc)M γ

≤ γ

M2
A

<
∥ÃT

k c̃k∥
∥ÃT

k Ãk∥
,

(35)

where the second inequality follows by noting that 1
2 π1ζ(1−π0) < 1; the third inequality follows159

from max(1, Mc) ≥ 1 and M ≥M2
A, by definition; and the last inequality follows from (28) and160

the definition of MA. Therefore we have161

min
(

∆̄(γ), ∥Ã
T
k c̃k∥

∥ÃT
k Ãk∥

)
= ∆̄(γ). (36)
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Part 2. Now, since ∆k ≤ ∆̄(γ) and by ζ < 1, we have162

min
(

ζ∆k,
∥ÃT

k c̃k∥
∥ÃT

k Ãk∥

)
= ζ∆k. (37)

We also have that163

M∆̄(γ) + (ϵg/νk + ϵA) = π1ζ

ξ max(1, Mc)γ + ϵg/νk + ϵA

≤ π1ζ

ξMc
γ + ϵg/νk + ϵA

= π1ζ

ξ

[
γ

Mc
+ ξ

1
π1ζ

(ϵg/νk + ϵA)
]

.

(38)

Using this bound, the definition of ρk along with eqs. (33) and (37), we obtain164

|ρk − 1| = |aredk(pk)− predk(pk)|
|predk(pk) + ξ(ϵf + νkϵc)|

≤
(16)

|aredk(pk)− predk(pk)|
π1νk|vpredk(pk)|+ ξ(ϵf + νkϵc)

≤
(23), (24)

ML(νk)∆2
k + (ϵg + νkϵA)∆k + 2(ϵf + νkϵc)

π1νk
∥ÃT

k
c̃k∥

2∥c̃k∥ min
(

ζ∆k,
∥ÃT

k
c̃k∥

∥ÃT
k

Ãk∥

)
+ ξ(ϵf + νkϵc)

= [(ML(νk)/νk)∆k + (ϵg + νkϵA)/νk]∆k + 2(ϵf + νkϵc)/νk

π1
∥ÃT

k
c̃k∥

2∥c̃k∥ min
(

ζ∆k,
∥ÃT

k
c̃k∥

∥ÃT
k

Ãk∥

)
+ ξ(ϵf + νkϵc)/νk

≤
(33), (34)

[M∆k + (ϵg/νk + ϵA)]∆k + 2(ϵf /νk + ϵc)
π1ζ{ ξ

π1ζ (ϵg/νk + ϵA) + γ
Mc
}∆k/2 + ξ(ϵf /νk + ϵc)

≤
∆k ≤ ∆̄

[M∆̄ + (ϵg/νk + ϵA)]∆k + 2(ϵf /νk + ϵc)
π1ζ{ ξ

π1ζ (ϵg/νk + ϵA) + γ
Mc
}∆k/2 + ξ(ϵf /νk + ϵc)

≤
(38)

π1ζ
ξ

[
γ

Mc
+ ξ

π1ζ (ϵg/νk + ϵA)
]

∆k + 2(ϵf /νk + ϵc)

π1ζ{ ξ
π1ζ (ϵg/νk + ϵA) + γ

Mc
}∆k/2 + ξ(ϵf /νk + ϵc)

=
1
ξ

[
π1ζγ
Mc

+ ξ(ϵg/νk + ϵA)
]

∆k + 2(ϵf /νk + ϵc)
1
2

[
ξ(ϵg/νk + ϵA) + π1ζγ

Mc

]
∆k + ξ(ϵf /νk + ϵc)

= 2
ξ

= 1− π0.

(39)

By line 17 of Algorithm 1 we conclude that (32) holds.165

Corollary 1 (Lower Bound of Trust Region Radius) Let Assumptions 1 through 3 be166

satisfied. Given γ > 0, if there exist K > 0 such that for all k ≥ K167

∥ÃT
k c̃k∥ > Ev(k) + γ, (40)

then there exist K̂ ≥ K such that for all k ≥ K̂,168

∆k > 1
τ ∆̄(γ). (41)
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Proof. We apply lemma 3 for each iterate after K to deduce that, whenever ∆k ≤ ∆̄(γ), the169

trust region radius will be increased. Thus, there is an index K̂ for which ∆k becomes greater170

than ∆̄(γ). On subsequent iterations, the trust region radius can never be reduced below ∆̄(γ)/ν171

(by Step 6 of Algorithm 1) establishing (41).172

Before presenting the next lemma, we define several constants that will be useful in the rest173

of this section. First, we define174

χ := π0π1
2ζ2

2τξMc max(1, Mc)M . (42)

Next, for any given iterate k′, recall as first defined in (27),175

Ev(k′) := ξMc

π1ζ
(ϵg/νk′ + ϵA); ek′ := ϵf /νk′ + ϵc (43)

Additionally, for any given µ > 0, define176

γk′ := 1
2

(
−Ev(k′) +

√
Ev(k′)2 + 8ek′/χ

)
+ µ; ∆̄k′ = π1ζ

ξ max(1, Mc)M γk′ . (44)

Thus, here and henceforth we write

∆̄k′ := ∆̄(γk′).

Note that the four quantities defined in (43)-(44) only depend on k′ through the value of the177

penalty parameter νk′ .178

Remark 1. The Anchor Iterate k′. We emphasize that k′ denotes an arbitrary positive integer.179

All subsequent results will be presented with respect to this fixed number (and thus on its180

corresponding merit parameter νk′). We call k′ the anchor iterate, and revisit its role later on181

after introducing the first two critical regions in propositions 1 and 2.182

For convenience, we also introduce a re-scaled version of the merit function,183

Φ̃(x, ν) := 1
ν f̃(x) + ∥c̃(x)∥, (45)

as well as its noiseless counterpart,184

Φ(x, ν) := 1
ν f(x) + ∥c(x)∥. (46)

With these definitions at hand, we are ready to state our next lemma.185

Lemma 4 (Merit Function Reduction) Let Assumptions 1 through 3 be satisfied. Let k′ be186

any non-negative integer and let µ > 0 in (44) be any fixed constant. Suppose for some iterate187

k > k′,188

∥ÃT
k c̃k∥ > Ev(k′) + γk′ and ∆k ≥

∆̄k′

τ
. (47)

Then189

vpredk(pk) ≥ χ

π0π1
(Ev(k′) + γk′) γk′ . (48)

Furthermore, if the step is accepted at iteration k by Algorithm 1, we have190

Φ̃(xk, νk)− Φ̃(xk+1, νk) > χµ2 + µ
√

χ2Ev(k′)2 + 8χek′ . (49)
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Proof. We first note that since νk can only be increased throughout the optimization process,191

Ev(k′) ≥ Ev(k); ek′ ≥ ek. (50)

Combining this fact with (47), we have:192

∥ÃT
k c̃k∥ >

ξMc

π1ζ
(ϵg/νk + ϵA) + γ. (51)

note that condition (28) in Lemma 3 holds, as we take γ = γk′ . Consequently, part 1 of the193

proof of Lemma 3 applies and we have that (31) is satisfied. It follows that194

min
(

ζ∆k,
∥ÃT

k c̃k∥
∥ÃT

k Ãk∥

)
≥

(47) min
(

ζ

τ
∆̄k′ ,

∥ÃT
k c̃k∥

∥ÃT
k Ãk∥

)
≥

(31)
ζ

τ
∆̄k′

= π1ζ2

τξ max(1, Mc)M γk′ .

(52)

By (23),195

vpredk(pk) ≥ ∥Ã
T
k c̃k∥

2∥c̃k∥
min

(
ζ∆k,

∥ÃT
k c̃k∥

∥ÃT
k Ãk∥

)
≥

(47)(52)
1

2∥c̃k∥

(
ξMc

π1ζ
(ϵg/νk′ + ϵA) + γk′

)
π1ζ2

τξ max(1, Mc)M γk′

≥
(21)

1
2

(
ξ

π1ζ
(ϵg/νk′ + ϵA) + γk′

Mc

)
π1ζ2

τξ max(1, Mc)M γk′

= π1ζ2

2τξMc max(1, Mc)M

(
ξMc

π1ζ
(ϵg/νk′ + ϵA) + γk′

)
γk′

= χ

π0π1
(Ev(k′) + γk′) γk′ .

(53)

This proves the first part of the lemma.196

Let the step pk be accepted. Then by line 16 of the Algorithm 1 and definition (19) of ρk197

and definition of ξ in line 3 of the Algorithm,198

aredk > π0predk + (π0 − 1)ξ(ϵf + νkϵc) = π0predk − 2(ϵf + νkϵc). (54)

Recalling the definition of aredk and condition (16)199

ϕ̃(xk, νk)− ϕ̃(xk + pk, νk) > π0π1νkvpredk − 2(ϵf + νkϵc). (55)

Dividing through by νk, and using the relationship ek′ ≥ ek we obtain200

Φ̃(xk, νk)− Φ̃(xk + pk, νk) > π0π1vpredk − 2ek

≥ π0π1vpredk − 2ek′ .
(56)
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We use (53) to obtain201

Φ̃(xk, νk)− Φ̃(xk + pk, νk)
> π0π1vpredk − 2ek′

= χ(Ev(k′) + γk′)γk′ − 2ek′

= χ

4

[
2Ev(k′) +

(
−Ev(k′) +

√
Ev(k′)2 + 8ek′/χ

)
+ 2µ

] (
−Ev(k′) +

√
Ev(k′)2 + 8ek′/χ + 2µ

)
− 2ek′

= χ

4

[
Ev(k′) +

(√
Ev(k′)2 + 8ek′/χ + 2µ

)] [
−Ev(k′) +

(√
Ev(k′)2 + 8ek′/χ + 2µ

)]
− 2ek′

= χ

4

[(√
Ev(k′)2 + 8ek′/χ + 2µ

)2
− Ev(k′)2

]
− 2ek′

= χ

4

[
8ek′/χ + 4µ2 + 4µ

√
Ev(k′)2 + 8ek′/χ

]
− 2ek′

= χµ2 + µ
√

χ2Ev(k′)2 + 8χek′ .

(57)

202

Observation 1 (Monotonicity of Rescaled Merit Function). By Assumption 2, {fk} is bounded203

below. We may thus redefine the objective function (by adding a constant) so that for all xk,204

f̃(xk) > 0, without affecting the problem or the algorithm. As a consequence, for any iterate xk205

and merit parameters νa ≥ νb, the rescaled merit function satisfies206

Φ̃(xk, νa)− Φ̃(xk, νb) ≤ 0, (58)

since Φ̃(k, νa)− Φ̃(xk, νb) =
(

1
νa
− 1

νb

)
f̃(xk) ≤ 0.207

We can now show that the measure of stationarity for feasibility can be reduced to a level208

consistent with the noise present in the problem.209

Proposition 1 (Finite Time Entry to Critical Region I of Feasibility) Suppose that210

Assumptions 1 through 3 are satisfied. Let k′ denote the anchor iterate mentioned above. Then,211

the sequence of iterates {xk} generated by Algorithm 1 visits infinitely often the critical region212

CI
Ac(k′) be defined as213

CI
Ac(k′) =

{
x : ∥A(x)T c(x)∥ ≤ Ev(k′) + ϵAMc + ϵcMA + ϵAϵc + γk′ := EI

Ac.
}

(59)

(We write EI
Acinstead of EI

Ac(k′) for ease of notation).214

Proof. We proceed by means of contradiction. Assume that there exist an integer K > k′, such215

that for all k > K, none of the iterates is contained in CI
Ac(k′), i.e.216

∥A(xk)T c(xk)∥ > Ev(k′) + ϵAMc + ϵcMA + ϵAϵc + γk′ . (60)

Therefore, for all k > K,217

∥Ã(xk)T c̃(xk)∥
= ∥[A(xk) + δA(xk)]T [c(xk) + δc(xk)]∥
≥ ∥A(xk)T c(xk)∥ − ∥A(xk)T δc(xk)∥ − ∥δA(xk)T c(xk)∥ − ∥δA(xk)T δc(xk)∥
>

(60) Ev(k′) + ϵAMc + ϵcMA + ϵAϵc + γk′ − (ϵAMc + ϵcMA + ϵAϵc)
= Ev(k′) + γk′

≥
(50) Ev(k) + γk′ .

(61)
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Therefore corollary 1 applies with γ = γk′ , implying that there is an index K̂ such that for218

k = K̂, K̂ + 1, ..., we have219

∆k >
1
τ

∆̄k′ . (62)

We then apply lemma 4 for k = K̂, K̂ + 1, ..., to conclude that all accepted steps satisfy220

Φ̃(xk, νk)− Φ̃(xk+1, νk) > χµ2 + µ
√

χ2Ev(k′)2 + 8χek′ . (63)

Furthermore, there are infinitely many accepted steps after K̂, since otherwise there exists221

an iterate K̂ ′ such that for all iterates k ≥ K ′ the steps are rejected, and by line 19 of the222

Algorithm 1 we would have that ∆k → 0 as k →∞, contradicting (62).223

Therefore, we focus on the iterates after K̂ for which the step is accepted. They form a224

subsequence {xkj
}, for j = 1, 2, .... We note that for any j,225

∥Ã(xkj
)T c̃(xkj

)∥ > Ev(k) + γk′ , ∆kj
>

∆̄k′

τ
. (64)

By (58) and (49),226

Φ̃(xkj
, νkj

)− Φ̃(xkj+1, νkj+1) = Φ̃(xkj
, νkj

)− Φ̃(xkj+1, νkj
) + Φ̃(xkj+1, νkj

)− Φ̃(xkj+1, νkj+1)
≥ Φ̃(xkj

, νkj
)− Φ̃(xkj+1, νkj

)

≥ χµ2 + µ
√

χ2Ev(k′)2 + 8χek′ .

(65)

Since there are infinitely many accepted steps, this implies that {Φ̃(xkj , νkj} is unbounded227

below, which is not possible since {f̃k} is bounded below by Assumption 2. This contradiction228

completes the proof.229

This result addresses the scenario in which the Jacobian Ãk undergoes a loss of rank.230

Specifically, we show that ∥ÃT c̃∥ falls below a noise-scaled threshold in every case. Similar to the231

classical setting, the smallness of ∥ÃT c̃∥ may indicate that Ã is nearing singularity. Furthermore,232

in corollary 2 we establish that if Ã stays sufficiently far from singularity, then ∥c̃∥ decreases233

below a noise-scaled threshold.234

The following lemma helps measure how far can the iterates stray away from the region235

CI
Ac(k′), after exiting this region and before returning to it.236

Lemma 5 (Displacement Bound Outside of Critical Region I) Let Assumptions 1237

through 3 be satisfied and let k′ be the anchor iterate used in the previous results. Let k1 > k′ be238

such that xk1 ∈ CI
Ac(k′) and xk1+1 /∈ CI

Ac(k′). Then, if ∆k1 < ∆̄k′ , there exist a finite iterate239

k2 ≥ k1 + 1, defined as240

k2 = min
{

k ≥ k1 + 1 : ∆k ≥ ∆̄k′ or xk ∈ CI
Ac(k′)

}
. (66)

Furthermore, for any k with k1 ≤ k ≤ k2 we have that241

∥xk − xk1∥ ≤
τ

τ − 1∆̄k′ (67)
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Proof. We show the first part of the lemma by means of contradiction. Assume for contradiction242

that k2 is not finite. Therefore, for k = k1 + 1, k1 + 2, ...,243

∆k < ∆̄k′ (68)

and244

xk /∈ CI
Ac(k′), (69)

which as argued in (61), implies245

∥ÃT
k c̃k∥ ≥ Ev(k) + γk′ . (70)

Therefore we apply lemma 3 for each iterate k ≥ k1 + 1 and obtain that ∆k →∞ as k →∞,246

contradicting (68).247

For the rest of the lemma, we take any k with k1 < k < k2 and have that xk /∈ CI
Ac(k′), and248

thus again as argued in (61),249

∥Ã(xk)T c̃(xk)∥ > Ev(k) + γk′ . (71)

By assumption, each of the iterates k = k1, ..., k2 − 1 satisfy ∆k < ∆̄k′ . Therefore by lemma 3,250

∆k+1 = τ∆k, and thus for i = 0, 1, ..., k2 − k1 − 1251

∆k2−1−i = τ−i∆k2−1 < τ−i∆̄k′ . (72)

It follows that252

∥xk − xk1∥ ≤
k−k1∑
i=1
∥xk1+i − xk1+i−1∥ ≤

k2−k1∑
i=1
∥xk1+i − xk1+i−1∥

≤
k2−1∑
j=k1

∆j =
k2−k1−1∑

i=0
τ−i∆k2−1

< ∆̄k′

∞∑
i=0

τ−i = τ

τ − 1∆̄k′ ,

which concludes the proof.253

We now define the maximum value of the re-scaled, noiseless merit function Φ(x, ν) (defined254

in (46)) in CI
Ac(k′):255

Φ̄I
Ac(k′) = sup

x∈CI
Ac

(k′),ν≥νk′

Φ(x, ν). (73)

Similarly, we define256

ḠI
Ac(k′) = sup

x∈CI
Ac

(k′)
∥g(x)∥. (74)

Proposition 2 (Remaining in Critical Region II of Feasibility) Once an iterate enters257

CI
Ac(k′), the sequence {xk} never leaves the set CII

Ac(k′) defined as258

CII
Ac(k′) =

{
x : Φ(x, ν) ≤ Φ̄I

Ac(k′) + max(PII
Ac(k′), 2ek′) + 2ek′ := EII

Ac

}
, (75)

where Φ is defined in (46) and259

PII
Ac(k′) =

[
ḠI

Ac(k′)
νk′

+ EI
Ac(k′) + π1τζ(Lf /νk′ + Lc)

ξ(τ − 1) max(1, Mc)M γk′

]
π1τζ

ξ(τ − 1) max(1, Mc)M γk′ . (76)
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Proof. We let k1 and k2 be defined as in the last lemma:260

xk1 ∈ CI
Ac(k′), xk1+1 /∈ CI

Ac(k′), (77)
261

k2 = min
{

k ≥ k1 + 1 : ∆k ≥ ∆̄k′ or xk ∈ CI
Ac(k′)

}
, (78)

and recall that k2 is finite.262

Since we consider only iterates k with k ≥ k′, we have for k = k1, ....263

|Φ̃(xk, νk)− Φ(xk, νk)| ≤|δf (xk)/νk|+ ∥δc(xk)∥

≤ ϵf

νk
+ ϵc

≤ ϵf

νk′
+ ϵc

=ek′ ,

(79)

where the last inequality follows from (27). Since the step from k1 is accepted, we have that264

(54)-(56) hold for k = k1 and thus265

Φ̃(xk1 , νk1)− Φ̃(xk1+1, νk1) > −2ek′ , (80)

By the monotonicity result eq. (58) we have that Φ̃(xk1 , νk1)− Φ̃(xk1+1, νk1+1) ≥ Φ̃(xk1 , νk1)−266

Φ̃(xk1+1, νk1), and thus267

Φ̃(xk1 , νk1)− Φ̃(xk1+1, νk1+1) > −2ek′ . (81)
Recalling definition (73) and the fact that the k1 iterate is in CI

Ac(k′), we have268

Φ̃(xk1+1, νk1+1) < Φ̃(xk1 , νk1) + 2ek′
<

(79) Φ(xk1 , νk1) + 3ek′ ≤ Φ̄I
Ac(k′) + 3ek′ . (82)

We divide the rest of the proof into two cases based on whether ∆k1 ≥ ∆̄k′ or not.269

Assume ∆k1 ≥ ∆̄k′ . For each k = k1 + 1, . . . , k2− 1, it follows that xk /∈ CI
Ac(k′). According270

to eq. (61), this implies ∥ÃT
k c̃k∥ ≥ Ev(k) + γk′ , so that condition eq. (28) in lemma 3 is satisfied.271

Now, for k ∈ {k1 +1, . . . , k2−1} the trust region radius can decrease, but by lemma 3, if at some272

point ∆k < ∆̄k′ then ∆k+1 = τ∆k. We deduce that ∆k > ∆̄k′
τ for all k ∈ {k1 + 1, . . . , k2 − 1}.273

We then apply lemma 4 to conclude that each accepted step reduces the merit function from274

Φ̃(xk1+1, νk1+1), so that by eq. (58) we have that for each step k after the exiting iterate k1 + 1,275

Φ(xk, νk) ≤ Φ̃(xk, νk) + ek′ < Φ̃(xk1+1, νk1+1) + ek′
<

(82) Φ̄I
Ac(k′) + 4ek′ ≤ EII

Ac. (83)

This concludes the proof for when ∆k1 ≥ ∆̄k′ .276

Assume ∆k1 < ∆̄k′ . Using lemma 5, we can bound the displacement of iterates from k1 to277

any k = k1 + 1, . . . , k2. Specifically, by lemma 5, for k1 ≤ k ≤ k2278

∥xk − xk1∥ ≤
τ

τ − 1∆̄k′ . (84)

By Lf and Lc–Lipschitz differentiability of the objective and the constraints, respectively, we279

have for any k = k1, ..., k2:280

f(xk)− f(xk1) ≤ max
t∈[0,1]

∥g(txk1 + (1− t)xk)∥∥xk − xk1∥

≤ [∥g(xk1)∥+ Lf∥∥xk − xk1∥] ∥∥xk − xk1∥

≤
[
ḠI

Ac(k′) + τLf

τ − 1∆̄k′

]
τ

τ − 1∆̄k′ .

(85)
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Similarly, for any k1 ≤ k ≤ k2,281

∥c(xk)∥ − ∥c(xk1)∥ ≤ max
t∈[0,1]

∥∇c(txk1 + (1− t)xk)∥∥xk − xk1∥

≤
[
∥AT (xk1)c(xk1)∥+ Lc∥∥xk − xk1∥

]
∥∥xk − xk1∥

≤
[
EI

Ac(k′) + τLc

τ − 1∆̄k′

]
τ

τ − 1∆̄k′ .

(86)

Using these two last results and recalling the definition (44) of ∆̄k′ we find, for any k1 ≤ k ≤ k2,282

Φ(xk, νk)− Φ(xk1 , νk1) = 1
νk

f(xk)− 1
νk1

f(xk1) + ∥c(xk)∥ − ∥c(xk1)∥

≤ 1
νk1

[f(xk)− f(xk1)] + ∥c(xk)∥ − ∥c(xk1)∥

≤ 1
νk1

[
ḠI

Ac(k′) + τLf

τ − 1∆̄k′

]
τ

τ − 1∆̄k′ +
[
EI

Ac + τLc

τ − 1∆̄k′

]
τ

τ − 1∆̄k′

≤ 1
νk′

[
ḠI

Ac(k′) + τLf

τ − 1∆̄k′

]
τ

τ − 1∆̄k′ +
[
EI

Ac + τLc

τ − 1∆̄k′

]
τ

τ − 1∆̄k′

=
[

ḠI
Ac(k′)
νk′

+ EI
Ac +

(
Lf

νk′
+ Lc

)
τ∆̄k′

τ − 1

]
τ∆̄k′

τ − 1

=
[

ḠI
Ac(k′)
νk′

+ EI
Ac + π1τζ(Lf /νk′ + Lc)

ξ(τ − 1) max(1, Mc)M γk′

]
π1τζ

ξ(τ − 1) max(1, Mc)M γk′

= PII
Ac(k′).

(87)

Therefore we find for any k1 ≤ k ≤ k2,283

Φ(xk, νk) ≤ Φ(xk1 , νk1) + PII
Ac

≤
(79) Φ̃(xk1 , νk1) + PII

Ac + ek′

≤
(82) Φ̄I

Ac(k′) + PII
Ac + 4ek′ ,

≤ EII
Ac(k′).

(88)

If xk2 ∈ CI
Ac(k′), the proof is complete.284

On the other hand, if xk2 /∈ CI
Ac(k′), we only need to show that (88) is also satisfied by285

k = k2 + 1, ..., K̂, where286

K̂ = min{k ≥ k2 + 1 : xk ∈ CI
Ac(k′)}. (89)

The existence of K̂ is guaranteed by proposition 1.287

Setting k = k2 in (87) we get288

Φ(xk2 , νk2) ≤ Φ(xk1 , νk1) + PII
Ac, (90)

which together with (79) gives289

Φ̃(xk2 , νk2) ≤ Φ(xk1 , νk1) + PII
Ac + ek′ ≤ Φ̄I

Ac(k′) + PII
Ac + ek′ , (91)

where the last inequality is due to the fact that k1 ∈ CI
Ac(k′). Since that iterates have not yet290

returned into CI
Ac(k′) at iterate k2, we apply lemma 4 for each of the iterates after k2 until291

iterates return to CI
Ac(k′) again at iterate K̂ (such iterate exist due to eq. (59)) and obtain that292

Φ̃(xk2 , νk2) > Φ̃(xk2+1, νk2+1) > ... > Φ̃(xK̂ , νK̂). (92)
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Recalling again (79), we find that for k = k2 + 1, ..., K̂,293

Φ(xk, νk) ≤ Φ̃(xk, νk) + ek′

<
(92) Φ̃(xk2 , νk2) + ek′

≤
(91) Φ̄I

Ac(k′) + PII
Ac + 2ek′

(93)

We now combine results from eqs. (83), (88) and (93) and conclude the proof.294

295

Remark 2. The results in propositions 1 and 2 depend on the anchor iterate k′ and the296

corresponding merit parameter νk′ . As mentioned in Remark 1 (preceding (45)), we fix the297

value of k′ throughout the analysis. As evident from eq. (59) and eq. (75), and the definitions298

(27)-(44), the sizes of the critical regions are inversely proportional to the value of νk′ . This299

seemingly surprising fact is quite revealing. While the analysis presented above would hold if we300

fix k′ at the outset, say k′ = 0, we maintain this generality to make the results more expressive.301

For example, we will study later on the effect of the term k′ in the case when νk →∞—which302

happens only if Ãk loses rank c.f. [6].303

3.2 Feasibility Under the Full Rank Assumption304

If, during the run of Algorithm 1 the Jacobian remains full rank, we can establish a stronger305

result showing that the feasibility measure ∥c(x)∥ is small.306

Assumption 4: The singular values of the Jacobian {Ãk} are bounded below by σmin > 0.307

The following result follows readily from proposition 1.308

Corollary 2 Let Assumption 1 through 4 be satisfied. Then, the subsequence of iterates contained309

in CI
Ac(k′) satisfies310

∥c(xk)∥ ≤ Ev(k′) + γk′

σmin
+ ϵc. (94)

Proof. As argued in (61), all iterates outside the set CI
Ac(k′) must satisfy311

∥ÃT
k c̃k∥ ≥ Ev(k′) + γk′ , (95)

and therefore for the infinite sequence of iterates in CI
Ac(k′) we have312

∥ÃT
k c̃k∥ < Ev(k′) + γk′ . (96)

By Assumption 4, ∥Ãk∥ ≥ σmin, and thus313

∥c̃k∥ <
Ev(k) + γk′

σmin
. (97)

We conclude the proof by recalling (22).314
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3.3 Reduction in the Optimality Measure315

We now study the contribution of the tangential step defined in subproblem (11). Having316

computed the normal step νk, we write the total step of the algorithm as pk = vk + hk, where317

hk is to be determined. As already mentioned vk is in the range space of Ãk, so we require that318

hk be in the null space of ÃT
k . Substituting pk = vk + h in (11) and ignoring constant terms319

involving vk, we define obtain the following subproblem:320

min
h

(g̃k + W̃kvk)T h + 1
2hT W̃kh (98)

subject to ∥h∥ ≤
√

∆2
k − ∥vk∥2, (99)

where the last inequality follows from the orthogonality of h and vk. Let Z̃k be an orthonormal321

basis for the null space of ÃT
k . Thus322

hk = Z̃kdk, (100)
for some vector dk, and we can rewrite (98) as the reduced tangential problem:323

min
d

(g̃k + W̃kvk)T Z̃kd + 1
2dT

[
Z̃T

k W̃kZ̃k

]
d (101)

subject to ∥Z̃kd∥ ≤
√

∆2
k − ∥vk∥2.

In summary, the full step of the algorithm is expressed as324

pk = vk + Z̃kdk = vk + hk.

To commence the analysis of hk, we define the tangential predicted reduction hpredk325

produced by the step hk = Z̃kdk as the change in the objective function in (101)326

hpredk(pk) = −(g̃k + W̃kvk)T Z̃kdk −
1
2dT

k

[
Z̃T

k W̃kZ̃k

]
dk (102)

327

= −(g̃k + W̃kvk)T hk −
1
2hT

k W̃khk. (103)

Having defined hpredk, predk and vpredk, we have from (14)-(17)328

predk = mk(0)−mk(pk)
= −pT

k g̃k − 1
2 pT

k W̃kpk + νk

(
∥c̃k∥ −

∥∥ÃT
k pk + c̃k

∥∥)
= −(vk + hk)T g̃k − 1

2 (vk + hk)T W̃k(vk + hk) + νkvpredk

= νkvpredk + hpredk − g̃T
k vk −

1
2vT

k W̃kvk.

(104)

It follows from (10) that329 √
∆2

k − ∥vk∥2 ≥ (1− ζ)∆k. (105)

Applying the Cauchy decrease condition [22,11] to problem (101), we obtain the following result.330

Lemma 6 (Tangential Problem Cauchy Decrease Condition) The step pk computed by331

Algorithm 1 satisfies332

hpredk(pk) ≥ 1
2∥(g̃k + W̃kvk)T Z̃k∥min

(
(1− ζ)∆k,

∥(g̃k + W̃kvk)T Z̃k∥
∥W̃k∥

)
. (106)
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Next, we prove a technical lemma relating the length of the normal step and the predicted333

feasibility reduction vpredk.334

Lemma 7 Suppose that Assumptions 2 and 4 hold. Then,335

∥vk∥ ≤ Γ1vpredk, (107)

where336

Γ1 := 2
σmin min(1, κ−2/2) and κ := σmax

σmin
. (108)

Proof. Recalling the Cauchy decrease condition (23) we have337

vpredk(pk) ≥ ∥Ã
T
k c̃k∥

2∥c̃k∥
min

(
ζ∆k,

∥ÃT
k c̃k∥

∥ÃT
k Ãk∥

)
≥ σmin

2 min
(

ζ∆k,
σmin∥c̃k∥

σ2
max

)
.

(109)

First consider the case where338

∥c̃k∥ ≥ ζ
2 σmin∆k.

By (10) we have339

vpredk(pk) ≥ σmin

2 min
(

ζ∆k,
ζσ2

min
2σ2

max
∆k

)
= σminζ∆k

2 min(1, κ−2/2)

≥ σmin

2 min(1, κ−2/2)∥vk∥.

(110)

On the other hand, if340

∥c̃k∥ < ζ
2 σmin∆k =⇒ ζ∆k >

2
σmin

∥c̃k∥.

Substituting in (109) we obtain341

vpredk(pk) ≥ σmin

2 min
(

ζ∆k,
σmin∥c̃k∥

σ2
max

)
≥ σmin

2 min
(

2
σmin

∥c̃k∥,
σmin∥c̃k∥

σ2
max

)
= ∥c̃k∥min

(
1, κ−2/2

)
.

(111)

Now, since vk solves the normal subproblem (9),342

∥c̃k∥2 ≥ ∥c̃k + ÃT
k vk∥2 = ∥c̃k∥2 + 2c̃T

k ÃT
k vk + ∥ÃT

k vk∥2,

so that343

−2c̃T
k ÃT

k vk ≥ ∥ÃT
k vk∥2,

and by the Cauchy-Schwarz inequality we obtain344

∥ÃT
k vk∥ ≤ 2∥c̃k∥. (112)
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Using this in (111) and obtain345

vpredk(pk) ≥ ∥c̃k∥min
(
1, κ−2/2

)
≥ 1

2∥Ã
T
k vk∥min

(
1, κ−2/2

)
≥ σmin

2 min
(
1, κ−2/2

)
∥vk∥.

(113)

We conclude the proof by (110) and (113).346

We can now show that the sequence {νk} is bounded.347

Lemma 8 Let Assumptions 1 through 4 be satisfied. Then, the sequence {νk} is bounded and348

thus there is an integer k′′ such that, for all k ≥ k′′, νk takes a constant value νk′′ . This constant349

satisfies350

νk′′ ≤ τΓ1

1− π1

(
Mg + MW McΓ1

2

)
:= ν̄, (114)

where Γ1 is defined in (108). Moreover,351

predk ≥ Γ2hpredk, (115)

where352

Γ2 =
[
1 +

(
Mg + MW McΓ1

2

)
Γ1

π1ν0

]−1
. (116)

Proof. Part 1. We apply lemma 7, and we have that by eqs. (104) and (107) and Assumption 2,353

predk = νkvpredk + hpredk − g̃T
k vk −

1
2vT

k W̃kvk

≥ νkvpredk + hpredk − ∥g̃k∥∥vk∥ −
1
2∥vk∥2∥W̃k∥

≥ νkvpredk + hpredk −Mg∥vk∥ −
1
2∥vk∥2MW

≥ νkvpredk + hpredk −
(

Mg + MW Γ1vpredk

2

)
Γ1vpredk

≥ νkvpredk + hpredk −
(

Mg + MW McΓ1

2

)
Γ1vpredk,

(117)

where the last inequality follows from the fact that vpredk ≤ ∥ck∥, by definition (17).354

Recall that νk is increased until355

predk ≥ π1νkvpredk. (118)

By (117) and the fact that hpredk is non-negative, we have that (118) is satisfied if356

νkvpredk −
(

Mg + MW McΓ1

2

)
Γ1vpredk ≥ π1νkvpredk (119)

i.e. if357

νk ≥
Γ1

1− π1

(
Mg + MW McΓ1

2

)
. (120)
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Recalling that τ is the factor by which νk is increased, we conclude that the penalty parameter358

is never larger than (as defined in eq. (114)):359

ν̄ =: τΓ1

1− π1

(
Mg + MW McΓ1

2

)
. (121)

The proof of the first part of the lemma is complete.360

Part 2. For the second part of the theorem, we substitute eq. (118) into eq. (117):361

predk ≥ νkvpredk + hpredk −
(

Mg + MW McΓ1

2

)
Γ1vpredk

≥ hpredk −
(

Mg + MW McΓ1

2

)
Γ1vpredk

≥ hpredk −
(

Mg + MW McΓ1

2

)
Γ1

π1νk
predk.

(122)

Re-arranging362

predk ≥
[
1 +

(
Mg + MW McΓ1

2

)
Γ1

π1νk

]−1
hpredk

≥
[
1 +

(
Mg + MW McΓ1

2

)
Γ1

π1ν0

]−1
hpredk

= Γ2hpredk.

363

Remark 3. The Settling Iterate. The integer k′′ after which the penalty parameter is fixed (at a364

value no greater than ν̄) will be referred to as the settling iterate. We emphasize the distinction365

between k′ and k′′. The anchor iterate k′ defined in Remark 1, can be chosen arbitrarily and366

determines the value of νk′ , which in turn defines the convergence regions. In contrast, k′′ is367

significant only in that it exists, so that the merit function is a fixed function for sufficiently368

large k.369

We next show that when the merit parameter has stabilized and when the reduced gradient370

is sufficiently large, the trust region radius cannot be decreased below a certain value. For ease371

of notation, we define a few quantities.372

Θ = π0Γ 2
2 (1− ζ)2

2τξML(ν̄) ; Eh = ξ

Γ2(1− ζ) (ϵg + ν̄ϵA); ε̄ = ϵf + ν̄ϵc. (123)

We also recall from (25) that ML(νk) = max(Lf + MW , νkLc).373

Lemma 9 (Increase of the Trust Region in Tangential Problem) Suppose that for an374

iterate k and a given positive constant γ̂,375

∥(g̃k + W̃kvk)T Z̃k∥ > Eh + γ̂, (124)

where Γ2 is given in (116). Define376

∆̂(γ̂) = Γ2(1− ζ)
ξML(ν̄) γ̂. (125)
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Then,377

min
(

∆̂(γ̂), ∥(g̃k + W̃kvk)T Z̃k∥
∥W̃k∥

)
= ∆̂(γ̂). (126)

Furthermore, if ∆k ≤ ∆̂(γ̂), the step pk is accepted and378

∆k+1 = τ∆k. (127)
Proof. Note from (116) that Γ2 < 1. By (125) and the definition of ξ in line 3 of Algorithm 1,379

∆̂(γ̂) = Γ2(1− ζ)
ξML(ν̄) γ̂ ≤ γ̂

MW
<
∥(g̃k + W̃kvk)T Z̃k∥

∥W̃k∥
, (128)

where the first inequality is obtained by dropping constants that are less than 1 and by definition380

of ML(νk). Hence (126) holds.381

Now, since ∆k ≤ ∆̂(γ̂) and 1− ζ < 1, it follows that382

min
(

(1− ζ)∆k,
∥(g̃k + W̃kvk)T Z̃k∥

∥W̃k∥

)
= (1− ζ)∆k. (129)

We also have383

ML(νk)∆k + (ϵg + ν̄ϵA) ≤ML(νk)∆̂(γ̂) + (ϵg + ν̄ϵA)
≤

νk ≤ ν̄ ML(ν̄)∆̂(γ̂) + (ϵg + ν̄ϵA)
=

(125)
Γ2(1− ζ)

ξ
γ̂ + (ϵg + ν̄ϵA)

= Γ2(1− ζ)
ξ

[
γ̂ + ξ

Γ2(1− ζ) (ϵg + ν̄ϵA)
]

= Γ2(1− ζ)
ξ

[γ̂ + Eh]

<
Γ2(1− ζ)

ξ
∥(g̃k + W̃kvk)T Z̃k∥.

(130)

Using this bound and the definition of ρ, we obtain384

|ρk − 1| = |predk(pk)− aredk(pk)|
|predk(pk) + ξ(ϵf + νkϵc)|

≤
(115)

|predk(pk)− aredk(pk)|
Γ2hpredk(pk) + ξ(ϵf + νkϵc)

≤
(106), (24)

ML(νk)∆2
k + (ϵg + νkϵA)∆k + 2(ϵf + νkϵc)

Γ2
2 ∥(g̃k + W̃kvk)T Z̃k∥min

(
(1− ζ)∆k, ∥(g̃k+W̃kvk)T Z̃k∥

∥W̃k∥

)
+ ξ(ϵf + νkϵc)

≤
νk ≤ ν̄

ML(νk)∆2
k + (ϵg + ν̄ϵA)∆k + 2(ϵf + νkϵc)

Γ2
2 ∥(g̃k + W̃kvk)T Z̃k∥min

(
(1− ζ)∆k, ∥(g̃k+W̃kvk)T Z̃k∥

∥W̃k∥

)
+ ξ(ϵf + νkϵc)

=
(129)

[ML(νk)∆k + (ϵg + ν̄ϵA)]∆k + 2(ϵf + νkϵc)
Γ2(1−ζ)

2 ∥(g̃k + W̃kvk)T Z̃k∥∆k + ξ(ϵf + νkϵc)

<
(130)

Γ2(1−ζ)
ξ ∥(g̃k + W̃kvk)T Z̃k∥∆k + 2(ϵf + νkϵc)

Γ2(1−ζ)
2 ∥(g̃k + W̃kvk)T Z̃k∥∆k + ξ(ϵf + νkϵc)

= 2
ξ

= 1− π0.

(131)
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By line 16 of Algorithm 1, the step is accepted.385

386

Corollary 3 (Lower Bound of Trust Region Radius) Given γ̂ > 0, if there exist K > 0387

such that for all k ≥ K388

∥(g̃k + W̃kvk)T Z̃k∥ > Eh + γ̂, (132)
then there exist K̂ ≥ K such that for all k ≥ K̂,389

∆k > 1
τ ∆̂(γ̂). (133)

Proof. We apply lemma 9 for each iterate after K to deduce that, whenever ∆k ≤ ∆̂(γ̂), the390

trust region radius will be increased. Thus, there is an index K̂ for which ∆k becomes greater391

than ∆̂(γ̂). On subsequent iterations, the trust region radius can never be reduced below ∆̂(γ̂)/τ392

(by Step 6 of Algorithm 1) establishing (133).393

Additionally, for any given µ > 0, define394

γ̄ = 1
2

(
−Eh +

√
E2

h + 8(ϵf + ν̄ϵc)/Θ

)
+ µ. (134)

Lemma 10 (Merit Function Reduction in Tangential Problem) Let Assumptions 1395

through 4 be satisfied. Let k′ denote the anchor iterate and k′′ the settling iterate, as defined396

above. Suppose for some k ≥ max(k′, k′′),397

∥(g̃k + W̃kvk)T Z̃k∥ > Eh + γ̄, and ∆k ≥
∆̂(γ̄)

τ
, (135)

where ∆̂(·) is defined in (125) and γ̄ is defined in (134) with µ > 0 an arbitrary constant. Then,398

hpredk(pk) ≥ Θ

π0Γ2
(Eh + γ̄) γ̄. (136)

Furthermore, if the step is accepted at iteration k, we have399

ϕ̃(xk, νk)− ϕ̃(xk + pk, νk) > Θµ2 + µ
√

Θ2E2
h + 8Θ(ϵf + νk′′ϵc). (137)

Proof. Since inequality (124) is satisfied, so is (126). Thus400

min
(

(1− ζ)∆k,
∥(g̃k + W̃kvk)T Z̃k∥

∥W̃k∥

)
≥

(135) min
(

1− ζ

τ
∆̂(γ̄), ∥(g̃k + W̃kvk)T Z̃k∥

∥W̃k∥

)
≥

(126)
1− ζ

τ
∆̂(γ̄)

=
(125)

Γ2(1− ζ)2

τξML(ν̄) γ̄.

(138)

By (106),401

hpredk(pk) ≥ 1
2∥(g̃k + W̃kvk)T Z̃k∥min

(
(1− ζ)∆k,

∥(g̃k + W̃kvk)T Z̃k∥
∥W̃k∥

)
≥

(135)(138)
1
2 (Eh + γ̄) Γ2(1− ζ)2

τξML(ν̄) γ̄

= Γ2(1− ζ)2

2τξML(ν̄) (Eh + γ̄) γ̄

= Θ

π0Γ2
(Eh + γ̄) γ̄,
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which proves the first part of the lemma.402

Now, by Assumption 4 the singular values of Ãk are bounded below by σmin and above by403

σmax. Therefore lemmas 7 and 8 apply, and by (115) we have that predk ≥ Γ2hpredk. Let a404

step be accepted. Then, as explained in (54),405

aredk > π0predk − 2(ϵf + νkϵc) = π0predk − 2(ϵf + νk′′ϵc), (139)

and thus406

ϕ̃(xk, νk)− ϕ̃(xk + pk, νk) > π0Γ2hpredk − 2(ϵf + νk′′ϵc). (140)
Using condition (136) we obtain407

ϕ̃(xk, νk)− ϕ̃(xk + pk, νk)
> π0Γ2hpredk − 2(ϵf + νk′′ϵc)
= Θ(Eh + γ̄)γ̄ − 2(ϵf + νk′′ϵc)

= Θµ2 + µ
√

Θ2E2
h + 8Θ(ϵf + νk′′ϵc),

(141)

where the last equality follows as in the derivation of (57).408

409

We now study the achievable reduction in the norm of the reduced gradient, Z(x)T g(x).410

Recall that Z(x) and Z̃(x) denote orthonormal bases for the null spaces of A(x) and Ã(x),411

respectively. We define412

Z̃(x)− Z(x) = δZ(x), (142)
and make the following assumption.413

Assumption 5. There exist constant ϵZ such that:414

∥δZ(x)∥ ≤ ϵZ . (143)

One can satisfy this assumption in practice if the same pivoting order is used in the QR415

factorization that computes Z. Or when Z is not required to be orthonormal, we can achieve416

this by using the same basic/nonbasic set, as discussed in the appendix.417

We add some additional comments about this assumption. This assumption is realistic and418

can be satisfied by specific choices of computing Z(x) from A(x) as long as the quantities being419

computed are well defined. Furthermore, the new quantity ϵZ in this assumption can be shown420

to depend on, for instance, ϵA and conditioning numbers of the matrices.421

To bound the differences between Z̃(x)T g̃(x) and Z(x)T g(x), we also define422

ḠII
Ac(k′) = sup

x∈CII
Ac

(k′)
∥g(x)∥. (144)

Lemma 11 Let Assumptions 1 through 5 be satisfied. If x ∈ CII
Ac(k′), then423

∥g(x)T Z(x)− g̃(x)T Z̃(x)∥ ≤ εgZ , where εgZ = ϵg + ϵZḠII
Ac(k′) + ϵgϵZ . (145)

Proof. We have that424

∥g(x)T Z(x)− g̃(x)T Z̃(x)∥ = ∥g(x)T Z(x)− [g(x) + δg(x)]T [Z(x) + δZ(x)]∥
= ∥ − δg(x)T Z(x) + g(x)T δZ(x) + δg(x)T δZ(x)∥
≤ ϵg + ϵZ∥g(x)∥+ ϵgϵZ

≤ ϵg + ϵZḠII
Ac(k′) + ϵgϵZ

= εgZ .

(146)

425
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Proposition 3 (Finite Time Entry to Critical Region 1 of Optimality) Suppose that426

Assumptions 1 through 5 hold. Let k′ denote the anchor iterate and k′′ the settling iterate.427

Then, once the sequence {xk} generated by Algorithm 1 visits CI
Ac(k′) for the first time, it visits428

infinitely often the region CI
gZ defined as429

CI
gZ := {x|∥g(x)T Z(x)∥ ≤ EI

gZ}, (147)

where430

EI
gZ(k′, k′′) = Eh + Γ1LWEII

Ac

σmin
+ εgZ + γ̄, (148)

and, as before,431

EII
Ac = sup

x∈CII
Ac

∥Ã(x)T c̃(x)∥. (149)

Proof. Recall that once the iterates enter CI
Ac, by proposition 2, they remain in CII

Ac. Thus,432

since the singular values of Ãk are assumed to bounded below by σmin > 0, we have from the433

definition (149)434

∥ck∥ ≤
EII

Ac

σmin
. (150)

Applying condition (107) from lemma 7 we obtain435

∥vk∥ ≤ Γ1vpredk ≤ Γ1∥ck∥ ≤
Γ1EII

Ac

σmin
. (151)

Therefore,436

∥(W̃kvk)T Z̃k∥ ≤ LW ∥vk∥∥Z̃k∥ ≤
Γ1LWEII

Ac

σmin
. (152)

We now proceed by means of contradiction and assume that there exist an integer K, such437

that for all k > K, none of the iterates is in CI
gZ , i.e.,438

∥gT
k Zk∥ > EI

gZ , (153)

and by lemma 11,439

∥g̃T
k Z̃k∥ > EI

gZ − εgZ . (154)
Thus, for all k > K:440

∥(g̃k + W̃kvk)T Z̃k∥ ≥ ∥g̃T
k Z̃k∥ − ∥(W̃kvk)T Z̃k∥

≥
(154), (152) EI

gZ − εgZ −
Γ1LWEII

Ac

σmin
=

(148) Eh + γ̄.

(155)

Therefore, corollary 3 applies showing the existence of a lower bound for the trust region radii441

for a sufficiently large k. This implies that there will be infinitely many accepted steps (for442

otherwise ∆k → 0). For k large enough and for each of the accepted steps we have by lemma 10443

that444

ϕ̃(xk, νk)− ϕ̃(xk + pk, νk) > Θµ2 + µ
√

Θ2E2
h + 8Θ(ϵf + νk′′ϵc). (156)

Since this inequality holds infinitely often, {ϕ̃(xk, νk)} is unbounded below, which is a con-445

tradiction. Therefore our assumption is incorrect, proving the iterates visits CI
gZ infinitely446

often.447

448
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Lemma 12 (Bound on Displacement Outside of Critical Region I of Optimality) Let449

Assumptions 1 through 5 be satisfied and let k′, k′′ be the anchor and settling iterates, respectively.450

Let k1 ≥ max (k′, k′′) be such that xk1 ∈ CI
gZ and xk1+1 /∈ CI

gZ . Then, if ∆k1 < ∆̂γ̄ , there exist451

a finite iterate k2 ≥ k1 + 1, defined as452

k2 = min
{

k ≥ k1 + 1 : ∆k ≥ ∆̂k′′ or xk ∈ CI
gZ

}
. (157)

Furthermore, for any k with k1 ≤ k ≤ k2 we have that453

∥xk − xk1∥ ≤
τ

τ − 1∆̂k′′ (158)

Proof. We show the first part of the lemma by means of contradiction. Assume for contradiction454

that k2 is not finite. Therefore, for k = k1 + 1, k1 + 2, ...,455

∆k < ∆̂k′′ (159)

and456

xk /∈ CI
gZ(k′′), (160)

which as argued in (155), implies457

∥(g̃k + W̃kvk)T Z̃k∥ ≥ Eh + γ̄. (161)

Therefore we apply lemma 9 for each iterate k ≥ k1 + 1 and obtain that ∆k →∞ as k →∞,458

contradicting (159).459

For the rest of the lemma, we take any k with k1 < k < k2 and have that xk /∈ CI
gZ , thus460

(161) holds. Also, by assumption for each of these iterates k, ∆k < ∆̂k′′ . Therefore by lemma 9,461

∆k+1 = τ∆k. Also note ∆k2−1 < ∆̂k′′ , thus for i = 0, 1, ..., k2 − k1 − 1462

∆k2−1−i = τ−i∆k2−1 < τ−i∆̂k′′ . (162)

Therefore463

∥xk − xk1∥ ≤
k−k1∑
i=1
∥xk1+i − xk1+i−1∥

≤
k2−k1∑

i=1
∥xk1+i − xk1+i−1∥

≤
k2−1∑
j=k1

∆j

=
k2−1−k1∑

i=0
τ−i∆k2−1

< ∆̂k′′

∞∑
i=0

τ−i

= τ

τ − 1∆̂k′′ .

(163)

464
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We now define a maximum value of the re-scaled merit function ϕ̃(x, νk′′) in CI
gZ(k′). In465

particular,466

ϕ̄I
gZ = sup

x∈CI
gZ

ϕ(x, νk′′) (164)

Furthermore, we define a maximum value of the gradient of the objective function in CI
gZ(k′) as467

ḠI
gZ = sup

x∈CI
gZ

∥g(x)∥. (165)

The next proposition we present will demonstrate that the iterates cannot stray too far from468

stationary points in the sense that the merit function is bounded. For this bound, we shall state469

the result for the merit function problem without noise:470

ϕ(x) = f(x) + νc(x). (166)

Proposition 4 (Remaining in Critical Region II of Feasibility) Once an iterate enters471

CI
gZ , it never leaves the set CII

gZ defined as472

CII
gZ =

{
x : ϕ(x, ν) ≤ ϕ̄I

gZ + max(PII
gZ , 2ε̄) + 2ε̄ := EII

gZ

}
, (167)

where ϕ is defined in eq. (166) and473

PII
gZ =

[
ḠI

gZ + νk′′EII
Ac + τΓ2(1− ζ)

(1− τ)ξML(ν̄) γ̄

]
τΓ2(1− ζ)

(1− τ)ξML(ν̄) γ̄. (168)

Proof. We let k1 and k2 be defined as in the last lemma:474

xk1 ∈ CI
gZ(k′), xk1+1 /∈ CI

gZ(k′), (169)
475

k2 = min
{

k ≥ k1 + 1 : ∆k ≥ ∆̂k′′ or xk ∈ CI
gZ

}
, (170)

and recall that k2 is finite.476

Since we consider only iterates k with k ≥ k′′, at which point the merit parameter has477

attained its final value νk = νk′′ ≤ ν̄, we have for k = k1, ....478

|ϕ̃(xk, νk)− ϕ(xk, νk)| ≤|δf (xk)|+ νk∥δc(xk)∥
≤ϵf + νkϵc

≤ϵf + ν̄ϵc

=ε̄.

(171)

Since the step from k1 is accepted, we have that eq. (54)-eq. (56) hold for k = k1 and thus479

ϕ̃(xk1 , νk1)− ϕ̃(xk1+1, νk1+1) > −2(ϵf + νkϵc) ≥ −2(ϵf + ν̄ϵc) = −2ε̄. (172)

Recalling definition eq. (164) and the fact that the k1 iterate is in CI
gZ(k′), we have480

ϕ̃(xk1+1, νk1+1) < ϕ̃(xk1 , νk1) + 2ε̄
<

(79) ϕ(xk1 , νk1) + 3ε̄ ≤ ϕ̄I
gZ(k′) + 3ε̄. (173)

We divide the rest of the proof into two cases based on whether ∆k1 ≥ ∆̂k′′ or not.481

Assume ∆k1 ≥ ∆̂k′′ . For each k = k1 +1, . . . , k2−1, it follows that xk /∈ CI
gZ(k′). According482

to eq. (155), this implies ∥(g̃k + W̃kvk)T Z̃k∥ ≥ Eh + γ̄, so that condition eq. (124) in lemma 3 is483

satisfied with γ̂ = γ̄. Now, for k ∈ {k1 + 1, . . . , k2 − 1} the trust region radius can decrease, but484
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by lemma 9, if at some point ∆k < ∆̂k′′ then ∆k+1 = τ∆k. We deduce that ∆k > ∆̂k′′
τ for all485

k ∈ {k1 + 1, . . . , k2 − 1}. We then apply lemma 10 to conclude that each accepted step reduces486

the merit function from ϕ̃(xk1+1, νk1+1). We have that for each step k after the exiting iterate487

k1 + 1,488

ϕ(xk, νk) ≤ ϕ̃(xk, νk) + ε̄ < ϕ̃(xk1+1, νk1+1) + ε̄
<

(173) ϕ̄I
Ac(k′) + 4ε̄ ≤ EII

gZ . (174)

This concludes the proof for when ∆k1 ≥ ∆̂k′′ .489

Assume ∆k1 < ∆̂k′′ . Using lemma 12, we can bound the displacement of iterates from k1490

to any k = k1 + 1, . . . , k2. Specifically, by lemma 12, for k1 ≤ k ≤ k2491

∥xk − xk1∥ ≤
τ

τ − 1∆̂k′′ . (175)

By Lf and Lc–Lipschitz differentiability of the objective and the constraints, respectively, we492

have for any k = k1, ..., k2:493

f(xk)− f(xk1) ≤ max
t∈[0,1]

∥g(txk1 + (1− t)xk)∥∥xk − xk1∥

≤ [∥g(xk1)∥+ Lf∥∥xk − xk1∥] ∥∥xk − xk1∥

≤
[
ḠI

gZ + τLf

τ − 1∆̂k′′

]
τ

τ − 1∆̂k′′ .

(176)

Similarly, for any k1 ≤ k ≤ k2,494

∥c(xk)∥ − ∥c(xk1)∥ ≤ max
t∈[0,1]

∥∇c(txk1 + (1− t)xk)∥∥xk − xk1∥

≤
[
∥AT (xk1)c(xk1)∥+ Lc∥∥xk − xk1∥

]
∥∥xk − xk1∥

≤
[
EII

Ac + τLc

τ − 1∆̂k′′

]
τ

τ − 1∆̂k′′ .

(177)

Using these two last results and recalling the definition eq. (134) of ∆̂k′′ , and that k1 ≥ k′′ so495

that the merit parameter settles at νk′′ , we find, for any k1 ≤ k ≤ k2,496

ϕ(xk, νk)− ϕ(xk1 , νk1)
= [f(xk)− f(xk1)] + νk′′ [∥c(xk)∥ − ∥c(xk1)∥]

≤
[
ḠI

gZ + τLf

τ − 1∆̂k′′

]
τ

τ − 1∆̂k′′ + νk′′

[
EII

Ac + τLc

τ − 1∆̂k′′

]
τ

τ − 1∆̂k′′

=
[

ḠI
gZ + νk′′EII

Ac + (Lf + νk′′Lc) τ∆̂k′′

τ − 1

]
τ∆̂k′′

τ − 1

=
[
ḠI

gZ + νk′′EII
Ac + τΓ2(1− ζ)

(1− τ)ξML(ν̄) γ̄

]
τΓ2(1− ζ)

(1− τ)ξML(ν̄) γ̄

= PII
gZ

(178)

Therefore we find for any k1 ≤ k ≤ k2,497

ϕ(xk, νk) ≤ ϕ(xk1 , νk1) + PII
gZ

≤
(79) ϕ̃(xk1 , νk1) + PII

gZ + ε̄

≤
(82) ϕ̄I

gZ(k′) + PII
gZ + 4ε̄,

≤ EII
gZ(k′).

(179)
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If xk2 ∈ CI
gZ , the proof is complete.498

On the other hand, if xk2 /∈ CI
gZ , we only need to show that condition eq. (93) is also satisfied499

by k = k2 + 1, ..., K̂, where500

K̂ = min{k ≥ k2 + 1 : xk ∈ CI
gZ}. (180)

The existence of K̂ is guaranteed by proposition 3.501

For this, we first note in particular, let k = k2 in eq. (178):502

ϕ(xk2 , νk2) ≤ ϕ(xk1 , νk1) + PII
gZ ; (181)

with eq. (171) this gives503

ϕ̃(xk2 , νk2) ≤ ϕ(xk1 , νk1) + PII
gZ + ε̄ ≤ ϕ̄I

gZ(k′) + PII
gZ + ε̄, (182)

where the last inequality is due to the fact that k1 ∈ CI
gZ . Since that iterates have not yet504

returned into CI
gZ at iterate k2, we apply lemma 4 for each of the iterates after k2 until iterates505

return to CI
gZ again at iterate K̂ (such iterate exist due to (3)) and obtain that506

ϕ̃(xk2 , νk2) > ϕ̃(xk2+1, νk2+1) > ... > ϕ̃(xK̂ , νK̂). (183)

Recalling again (171), we find that for k = k2 + 1, ..., K̂,507

ϕ(xk, νk) ≤ ϕ̃(xk, νk) + ek′

<
(92) ϕ̃(xk2 , νk2) + ε̄
≤

(91) Φ̄I
Ac(k′) + PII

Ac + 2ε̄

(184)

We now combine results from eqs. (174), (179) and (184) and conclude the proof.508

3.4 Summary of the Convergence Results509

We now recapitulate the results established in this paper.510

Theorem 2 (Final Result) Let {xk} be the sequence generated by Algorithm 1. If Assump-511

tions 1 through 3 are satisfied, the following two results hold:512

(i) [Proposition 1] The sequence {xk} visits infinitely often a critical region CI
Ac where the513

stationary measure of feasibility is small up to noise level:514

∥A(x)T c(x)∥ ≤ EI
Ac. (185)

(ii) [Proposition 2] Once an iterate enters CI
Ac, the rest of the iterates remains in a larger515

(up to scaling of noise level) critical region CII
Ac, where516

Φ(x, ν) ≤ EII
Ac. (186)

If, in addition, Assumptions 4 and 5 hold, then the sequence of merit parameters {νk} remains517

bounded, and we have:518

(iii) [Proposition 3] Once the sequence {xk} enters CII
Ac, it visits infinitely often a critical519

region CI
gZ , where the projected gradient is small up to noise level:520

∥g(x)T Z(x)∥ ≤ EI
gZ + εgZ ; (187)

(iv) [Proposition 4] After the iterates enter CI
gZ for the first time, they remain in a larger521

(up to scaling of noise level) critical region CII
gZ , where522

ϕ(x, ν) ≤ EII
gZ ; (188)
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We summarize these results in table 1.523

Critical Region I
(stationary measure bounded)

Critical Region II
(merit function bounded)

Feasibility (AT c)
(under any conditions) CI

Ac = {x|∥A(x)T c(x)∥ ≤ EI
Ac} CII

Ac = {x|Φ(x, ν) ≤ EII
Ac}

Optimality (gT Z)
(when Ã is full rank) CI

gZ = {x|∥g(x)T Z(x)∥ ≤ EI
gZ} CII

gZ = {x|Φ(x, ν) ≤ EII
gZ}

Table 1: Convergence Regions

Remark 3: Role of the Merit Parameter. In the absence of the constraints, ν ≡ 0, and in524

this case, CI
gZ and CII

gZ reduce to the regions C1 and C2 in [27]. In the absence of an objective,525

by sending the merit parameter to arbitrary large value, the rescaled merit function as used526

in CII
Ac becomes arbitrarily close to ∥c(x)∥, again recovering a result that is expected of the527

nonlinear equations only investigation.528

4 Numerical Results529

We tested the robustness of the proposed algorithm in the noisy setting. To this end, we employed530

knitro [7], which contains a careful implementation of the BO algorithm that is accessible531

by setting options.algorithm = 2 (knitro-cg). The original BO algorithm in knitro was532

modified by Figen Oztoprak from Artelys Corp. to include, as an option, the modified ratio533

(19) and the ability to input the noise level. The default stopping criteria of knitro were used,534

ensuring consistency across all tests.535

We tested problems from the standard CUTEst library [15], accessed via the Python interface.536

To simulate the noisy settings, we inject randomly generated noise in the objective function, the537

gradient, Hessian and Jacobian. For each iterate xk, we sample δf , δc, δg, δJ from the uniform538

distribution D(ϵ, m, n) with a fixed value ϵ for the noise in f, c, g, A, respectively. Here D(ϵ, m, n)539

represents an m × n matrix-valued distribution, where each element is independently drawn540

from a one-dimensional distribution D with support in [−ϵ, ϵ]. We also tested noise generated by541

a Gaussian distribution, with the standard deviation in place of the error bounds, with similar542

results.543

While we conducted experiments on over 50 equality constraint problems from the CUTEst544

library, we report results for three sets of experiments that exemplify the typical behavior545

observed in our more comprehensive set of experiments. The computations were performed on a546

high-performance workstation with the following specifications: 16 Intel(R) Xeon(R) Silver 4112547

CPUs @ 2.60GHz, running on a Linux operating system, and equipped with 200 GB of RAM.548

4.1 Ability to Recover from Small Trust Region549

One potential weakness of trust region methods in a noisy environment occurs when the radius550

becomes too small with respect to the noise level in the problem. The iteration may then reject551

steps, decreasing the trust radius further and ultimately terminating due to lack of progress.552

To demonstrate this behavior, we used problem HS7 and set the initial trust region radius553

∆0 = 10−7. The noise level was set to ϵg = ϵA = ϵf = ϵc = 0.1, roughly a 0.033 relative error554

compared to the optimality and feasibility gaps at the starting point.555
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We report the results in fig. 1, where the horizontal axis always indicates the number of556

iterations. We conducted three different experiments, superimposing the results to better contrast557

their differences. (i) We first report the performance of BO when noise is not injected into the558

functions (solid blue line). This was done by running the unmodified knitro code. (ii) Next, we559

introduce noise into the problem but still used the unmodified knitro code (i.e. the standard560

BO method). The results are depicted by the solid orange line. (iii) Finally, we present the561

results of knitro with our proposed modification as described in Algorithm 1 (solid green line).562

We plot a horizontal red dashed line that marks the optimal objective value plus the noise level.563

Fig. 1: Testing the Byrd-Omojokun algorithm with and without noise, and the modified method.

Figure 1 includes 4 plots reporting the objective function value, feasibility error ∥c(xk)∥,564

optimality error ∥Akλk − g(xk)∥, and step length ∥xk+1 − xk∥. As can be observed, when the565

initial trust region radius is small, the unmodified algorithm (orange line) fails to converge566
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because the trust region radius is driven to zero prematurely, while Algorithm 1 proceeds without567

difficulties.568

4.2 Premature Shrinkage of the Trust Region at Run Time569

We have observed that the standard BO method may falter when ∆0 is very small. We now570

demonstrate that, starting with a sufficiently large trust radius, the algorithm can unnecessarily571

reduce the trust region during a run, leading to failure. We demonstrate with problem ‘ROBOT’572

from the CUTEst, with ∆0 = 1, and repeat the set of three experiments as before. The results573

are presented in fig. 2.574

Fig. 2: Performance of the algorithms with a sufficiently initial trust region

As observed in figure 2, the proposed Algorithm 1 was able to reduce both feasibility and575

optimality below the noise level, whereas the unmodified algorithm starts shrinking the trust576

region radius (at around iteration 39) after rejecting many steps due to noise.Even employing577
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heuristics that restart the trust region, the algorithm makes wrong decisions that result in sharp578

increases in optimality error. Similar results have been observed for many other test problem579

during our experimentation.580

4.3 The Cases where the Unmodified Algorithm Performs Well581

There are test cases where the unmodified BO algorithm performs well, as illustrated in fig. 3.582

We observe that with noise, both the modified and unmodified algorithms were able to reduce583

the objective function, feasibility error, and optimality error below the noise level– although the584

unmodified algorithm required more iterations and exhibited more oscillations. The unmodified585

algorithm terminated when the trust region became very small, a behavior that is in fact586

desirable when the iterates have already reached below the noise level. However, this behavior is587

brittle, because if shrinkage of the trust region occurs earlier, it can result in a failure to converge588

as seen above. We conclude from our experiments that the modified algorithm is preferred.589

Fig. 3: Cutest Problem BYRDSPHR, Initialized with TR = 10−7
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5 Final Remarks590

When adapting the Byrd-Omojokun method to problems where the noise level can be estimated,591

it is not necessary to change the penalty parameter update rule or other components of the592

algorithm. Only the ration test (20) must be safeguarded. This paper presents a comprehensive593

convergence theory of the noise-tolerant BO method. The analysis is complex due to the memory594

nature of trust region methods. The proposed method has been implemented in the knitro595

software package, and the numerical results reinforce our theoretical findings.596
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