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Abstract

Supply chains and logistics can be well represented with hub networks. Opera-
tions of these hubs can be disrupted due to unanticipated occurrences or attacks.
This study includes Closest assignment Constraints related to hub disruption
problems, which can be used in single-level reformulation of the bilevel model. In
this study, We propose new sets of constraints for closer assignments of non-hub
nodes to hub nodes. We analysis those alternate sets of constraints and present
the dominance relations among them. Experiment results show that the effective-
ness of constraints can enhance tightness of models. Finally, We present a case
study based on bicycle network.

Keywords: Closest assignment constraints; Disruption;Hub Network; Bilevel
optimization

1 Introduction

Hub disruption problems study the problem of identifying critical hubs in a hub net-
work, which when failed results in worst case damage to the network operator. These
problems are typically modeled as bilevel static Stackelberg games between two deci-
sion makers namely, an attacker(natural occurrences like calamities) and a defender.
The attacker is the Stackelberg leader in this problem and it creates disruption in
set of hubs (deactivate) such that the defender’s(stackelberg follower) post-disruption
operational objective is worsened(Liberatore, Scaparra, & Daskin 2012). The objec-
tives studied in hub interdiction problems can be: maximizing the minimum demand
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weighted cost of transportation (Ghaffarinasab & Motallebzadeh 2018, Lei 2013,
Ramamoorthy, Jayaswal, Sinha, & Vidyarthi 2018, Ullmert, Ruzika, & Schöbel 2020),
or minimizing the maximum demand covered, or maximizing the objective of minimiz-
ing worst case transportation cost between a source node and destination node. These
problems are called as: r-hub median interdiction problem, r-hub maximal covering
interdiction problem or as r-hub center interdiction problem.

These problems are typically solved through reformulating the problem as a single
level problem using either i) a duality based approach (Ramamoorthy et al. 2018), or ii)
using closest assignment constraints (CAC) (Ghaffarinasab & Motallebzadeh 2018, Lei
2013), which captures the lower level objective. In this paper, we propose several alter-
nate closest assignment constraints for the r-hub Median disruption problem(r-HDP).
We also study their theoretical properties and perform computational experiments to
validate the theoretical results. In the following section, we studied the background
literature, related to our study. In section 3, we describe the r-hub median disruption
problem followed by its single level reformulation with various alternate set of closest
assignment constraints. In Section 4, we study the dominance relationships between
the various closest assignment constraints. In section 5, we present computational
results followed by case study at section 6 and conclusion at section 7.

2 Literature Review

Disruption problems can be categorized based on several attributes: according to the
components face failure, it is broadly classified into failure in Network, failure in facility
and hubs.

In most network related problems, the interdictor tries to maximize the cost to the
defender by attacking the arc capacity or disrupting the arcs. McMasters and Mustin
(1970) studied network interdiction problem to generate defense plan for military
combat force. They proposed a solution approach capable of generating an optimal
interdiction plan for the opposing force, which targets to minimize the network’s
capacity within a predefined budget. InWood (1993),Interdictor attacks network arcs
to reduce the maximum flow of drugs and chemicals. Cormican, Morton, and Wood
(1998) extended this problem by adding uncertainty in arc capacity. In this model, the
interdictor wants to minimize the expected maximum flow of the network. Another
variant of network interdiction problems is shortest path interdiction, which was stud-
ied in Israeli and Wood (2002). They modelled the problem as to maximize the shortest
path by destroying arcs.Morton, Pan, and Saeger (2007) appeared with an interdic-
tion strategy to install sensors in transportation paths in nuclear smuggling networks.
They included stochastic issues in the model. Altner, Ergun, and Uhan (2010), Lozano,
Smith, and Kurz (2017) are some literature dealing with different network interdiction
issues.Interested readers are recommended to study the survey literature of Smith and
Song (2020) for further knowledge.

In interdiction, interdictor has complete information about the set of decision
maker’s facilities or hubs, out of which attacker interdicts a set of facilities or hubs
to create maximum disruption to the decision maker. Interdiction of facilities (set of
critical nodes) is studied in Church, Scaparra, and Middleton (2004) as r-interdiction
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median problems (r-IMP)and r- Interdiction covering problem. These binary integer
programming (BIP) problems are one of the initial works, considering the underly-
ing problem of p-hub median problem and maximal covering problem, respectively.
Church and Scaparra (2007) extended this model as a mixed integer programming
model and included fortification issues. The objective is to fortify some facilities out
of a set of facilities to minimize the interdiction effects. They also commented that
the fortification of those facilities mainly improves the system, which is considered
as critical during interdiction. InScaparra and Church (2008a), the fortification prob-
lem is studied as bilevel mixed integer programming problem. They used implicit
enumeration to solve the model. It is seen in Scaparra and Church (2008b) that,
r-Interdiction Median problem with Fortification (r-IMF) can be formulated as a max-
imal covering problem. Aksen, Piyade, and Aras (2010) proposed budget constrained
r-interdiction-fortification problem. They modeled this problem as Bilevel Binary Inte-
ger Programming problem. Closest Assignment Constraints (CACs) are used in the
model.Liberatore et al. (2012) includes ripple effects in the fortification problem. In this
literature, it is observed that the disruption effects of a facility are not consolidated at
a point; rather, these spread over the whole network.Scaparra and Church (2012) mod-
eled Capacitated r-Interdiction Median Problem (CRIMP) as tri-level model. Facility
interdiction issues in fixed charge location problem is considered in Aksen and Aras
(2012). Aksen, Aras, and Piyade (2013) appeared with a bilevel p-median protection
problem with capacity expansion option. Furthermore, Losada, Scaparra, Church, and
Daskin (2012) took stochastic approach for interdiction model with different disrup-
tion intensity levels. Facility protection problem considering the time horizon is seen
in Parvasi, Tavakkoli-Moghaddam, Bashirzadeh, Taleizadeh, and Baboli (2019). This
literature proposed hybrid metaheuristics for different levels to solve the problem. Lei
(2013) proposed the hub median interdiction problem (HIMP) and studied the differ-
ence with the Flow interdiction problem (FIM). In FIM problem, the O-D flows are
completely disrupted by interdiction of nodes in the network, which is not the same
in HMIP problem. Hub Median Interdiction Problem (HMIP) is seen in Parvaresh,
Husseini, Golpayegany, and Karimi (2014). They modelled this as a bilevel binary
integer programming problem and solved it using the tabu search heuristic method.
Ghaffarinasab and Motallebzadeh (2018) interdiction in p-hub median, p-hub maximal
covering and p-hub centre problems. Ghaffarinasab and Atayi (2018) also appeared
with hub interdiction median problem with fortification problem. In Ramamoorthy et
al. (2018), hub fortification problem followed by hub interdiction problem was solved
by decomposition methods. The implicit enumeration method is also used in this lit-
erature. Lei (2019), Quadros, Roboredo, and Pessoa (2018), Ullmert et al. (2020) are
some literature that deal with hub interdiction problems considering different issues
and solution methods.

Under the available literature, it is required to have a study on CACs related to
hub disruption problems and prepare new sets of these constraints to enhance the
model performance and tightness.
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3 Problem Description and Model Formulation

In a network G “ pN,Aq, set of nodes N represents the set of origins piq and
destinationspjq (called an O-D pair), whose flows are routed through one or two trans-
shipment nodes between them, known as hubs. Let H denote the set of p hubs present
in the system. Every O-D pair (i, j) is routed through some hub pair pk,mq such that
the transportation distance is Dijkm “ αdij ` ωdkm ` γdmj , where dab denotes the
distance between nodes a and b, and α, ω, γ are the discount factors of collection, trans-
shipment, and distribution respectively. k is index for one hub within a route, k P H
and m is index for another hub within the same route, m P H. Wij denotes demand
to be routed from source i to destination j. Here, the assumption is that distance is
linearly proportional to cost.Hence, cost between node pair pa, bq is dab. Disruption in
first level, occurs at a set of r out of the located p hubs such that the defender’s post
disruption objective of minimizing the cost of transportation is maximized. In deci-
sion variables, we considers yk= 1 if hub k is surviving after disruption, 0 otherwise;
Xijkm is fraction of flows between OD pair pi, jq through hubs pk,mq. In the following
subsection, we present the bilevel formulation of the r-HMDP.

3.1 Mathematical Formulation:

With the above notation, the Bi-level formulation for Hub interdiction problem is
given below:

rHMDPBLs : max
y

Z (1)

s.t.
ÿ

kPH

yk “ p ´ r; @k P H (2)

yk P t0, 1u @k P H (3)

Z “ min
X

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijDijkmXijkm (4)

s.t.
ÿ

kPH

ÿ

mPH

Xijkm “ 1 @i P N j P N (5)

ÿ

mPH

Xijkm `
ÿ

mPHm‰k

Xijmk ď yk @i, j P N k P H (6)

Xijkm ě 0 @i, j P N k,m P H (7)

In the HMDP formulation, (1)-(3) represent the attacker’s problem while, (4)-(7)
is the defender’s problem. The attacker’s objective is to maximize the system cost
by creating disruption at r hubs. Upper level constraint (2) represents the remaining
pp ´ rq surviving hubs in post disruption situation. Objective function (4) shows the
operator, who is trying to minimize the overall cost by routing through remaining
hubs(yk “ 1).Lower level constraint (5) states that the complete traffic flow between
each OD pair pi, jq should be through combination of hubs pk,mq. Constraint (6)
shows that origin node i can only route traffic to the destination node j through k
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if the hub k is active during disruption.(3) and (7) states the binary and continuous
nature of variables respectively.

The allocation of node pair pi, jq to hub pk,mq is significantly influenced by the
presence of Closest Assignment Constraints (CACs).CACs play a important role as
a solution to hub location problem and maintains the traffic routing between two
non-hub nodes.Single level reformulation of the above problem with CACs is given
below:

rHMDPSLs : max
y,X

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijDijkmXijkm (8)

s.t.
ÿ

kPH

yk “ p ´ r; @k P H (9)

ÿ

kPH

ÿ

mPH

Xijkm “ 1 @i P N j P N (10)

ÿ

mPH

Xijkm `
ÿ

mPHm‰k

Xijmk ď yk @i, j P N k P H (11)

set of CACs (12)

Xijkm ě 0 @i, j P N k,m P H (13)

yk P t0, 1u @k P H (14)

3.2 Closest Assignment Constraints:

CACs replace the lower level objective of r-HMDP by enforcing the flows between any
O-D pair (i, j) go through the cheapest path. In literature, different types of CACs
are studied to model single level version of r-HMIP. Specifically, Ramamoorthy et al.
(2018) studied several version of CACs. For comparison with the CACs presented in
this paper, we take the proposed CACs presented as most effective in Ramamoorthy
et al. (2018).

ÿ

pq,sqPEijkm

Xijqs ď 2 ´ yk ´ ym @ i, j P N ; pk,mq P H 1
ij . (CAC1)

where Eijkm = {pq, sq| dijqs ą dijkm }, H 1
ij “ tH2

ijkm|pk,mq P H, k ď mu and

H2
ijkm “

#

pk,mq if dijkm ď dijmk

pm, kq if dijkm ą dijmk.

The constraint states that when the hubs k and m are located, the flow between any
O-D pair (i, j) should not happen through paths that are costlier than dijkm. For any
pair of hubs k and m, out of the four possible paths pi ´ k ´ k ´ jq, pi ´ m ´ m ´

jq, pi´ k ´m´ jq, andpi´m´ k ´ jq, note that this constraint is written for only the
paths pi´ k ´ k ´ jq, pi´m´m´ jq, and the cheaper one among pi´ k ´m´ jq and
pi´m´ k ´ jq. In the following section, we present alternate new CACs for r-HMDP.

5



3.3 New CACs

In this section, we propose several alternate versions of Closest Assignment Con-
straints. We first present a modified version of CAC1:

ÿ

pq,sqPEijkm

Xijqs ď 1 ´ yk @ i, j P N ; k P H. (15)

ÿ

pq,sqPEijkm

Xijqs ď 2 ´ yk ´ ym @ i, j P N ; pk,mq P H 1
ij . (CAC2)

where Eijkm = {pq, sq| dijqs ą dijkm }, H 1
ij “ tH2

ijkm|pk,mq P H, k ‰ mu and

H2
ijkm “

#

pk,mq if dijkm ď dijmk

pm, kq if dijkm ą dijmk.

CAC2 can be written by separating CAC1 for cases when both hubs are same and
hubs are different. For the case when hubs are same the RHS of the constraint can be
written as 1 ´ yk instead of 2 ´ 2yk since the LHS is bounded by 1 and dividing RHS
by 2.

CAC3 is obtained through eliminating redundant CACs from CAC2. The con-
straint is presented below:

ÿ

pq,sqPEijkm

Xijqs ď 1 ´ yk @ i, j P N ; k P H. (16)

ÿ

pq,sqPEijkm

Xijqs ď 2 ´ yk ´ ym @ i, j P N ; pk,mq P H̄ 1
ij . (CAC2m)

where Eijkm = {pq, sq| dijqs ą dijkm }, H̄ 1
ij “ tH̄2

ijkm|pk,mq P H, k ‰ mu and

H̄2
ijkm “

#

pk,mq if dijkm “ minpdijkk, dijkm, dijmm, dijmkq

pm, kq if dijkm “ minpdijkk, dijkm, dijmm, dijmkq.

In CAC3, we remove the dominated CACs for a given hub pair (k,m).
The following CACs are written for more than one O-D pair. They are presented

below:

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqREijkm,PEjikm

Xjiqs ď 2 ´ yk ´ ym @i, j P N, k,m P H

(CAC4)

Proposition 1. CAC4 enforces closest assignment in HMDPSL

Proof. Consider the sets Eijkm and Ejikm and w.l.o.g. consider the case where Eijkm Ă

Ejikm. Let pa, bq be a hub pair such that pa, bq P Ejikm, R Eijkm. This implies that
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dijab ď dijkm and djiab ą djikm. If all the hubs a, b, k, and m are open, it is easy to
observe that Xijab “ 1 and Xjikm “ 1 and thus enforcing closest assignment.

The nearest work of CAC4 is the constraint, presented by Cánovas, Garćıa, Labbé,
and Maŕın (2007). In the following, we present CAC4 by writing it separately for cases
where k “ m and k ‰ m (CAC4(i)).

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqREijkm,PEjikm

Xjiqs ď 1 ´ yk @i, j P N, k “ m, k,m P H

(17)
ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqREijkm,PEjikm

Xjiqs ď 2 ´ yk ´ ym @i, j P N, k ‰ m, k,m P H

This set of constraints can be expanded as given below:

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqPÊijkm

Xjiqs ď 2 ´ yk ´ ym @i, j P N k,m P H, pk ‰ mq, pj ě iq

(18)
ÿ

pq,sqPEjikm

Xjiqs `
ÿ

pq,sqPÊjikm

Xijqs ď 2 ´ yk ´ ym @i, j P N k,m P H, pk ‰ mq, pj ě iq

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqPÊijkm

Xjiqs ď 1 ´ yk @i, j P N k,m P H, pk “ mq, pj ě iq

ÿ

pq,sqPEjikm

Xjiqs `
ÿ

pl,tqPÊjikm

Xijqs ď 1 ´ yk @i, j P N k,m P H, pk “ mq, pj ě iq

where, Êijkm “ tpq, sq|Dijqs ď Dijkm and Djiqs ą Djikmu. This set of constraints can
be further expanded as:

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqPÊijkm

Xjiqs ď 2 ´ yk ´ ym @i, j P N k,m P Ĥ1ij , pk ă mq, pj ě iq

(19)
ÿ

pq,sqPEjikm

Xjiqs `
ÿ

pq,sqPÊjikm

Xijqs ď 2 ´ yk ´ ym @i, j P N k,m P Ĥ1ij , pk ă mq, pj ě iq

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqPÊijkm

Xjiqs ď 1 ´ yk @i, j P N k,m P Ĥ1ij , pk “ mq, pj ě iq

ÿ

pq,sqPEjikm

Xjiqs `
ÿ

pq,sqPÊjikm

Xijqs ď 1 ´ yk @i, j P N k,m P Ĥ1ij , pk “ mq, pj ě iq

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqPÊijkm

Xjiqs ď 2 ´ yk ´ ym @i, j P N k,m P Ĥ2ij , pk ă mq, pj ě iq

ÿ

pq,sqPEjikm

Xjiqs `
ÿ

pq,sqPÊjikm

Xijqs ď 2 ´ yk ´ ym @i, j P N k,m P Ĥ2ij , pk ă mq, pj ě iq
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ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqPÊijkm

Xjiqs ď 2 ´ yk ´ ym @i, j P N k,m P Ĥ2ij , pk ă mq, pj ě iq

ÿ

pq,sqPEjikm

Xjiqs `
ÿ

pq,sqPÊjikm

Xijqs ď 2 ´ yk ´ ym @i, j P N k,m P Ĥ2ij , pk ă mq, pj ě iq

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqPÊijkm

Xjiqs ď 1 ´ yk @i, j P N k,m P Ĥ2ij , pk “ mq, pj ě iq

ÿ

pq,sqPEjikm

Xjiqs `
ÿ

pq,sqPÊjikm

Xijqs ď 1 ´ yk @i, j P N k,m P Ĥ2ij , pk “ mq, pj ě iq

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqPÊijkm

Xjiqs ď 1 ´ yk @i, j P N k,m P Ĥ2ij , pk “ mq, pj ě iq

ÿ

pq,sqPEjikm

Xjiqs `
ÿ

pq,sqPÊjikm

Xijqs ď 1 ´ yk @i, j P N k,m P Ĥ2ij , pk “ mq, pj ě iq

where Ĥ1ij “ tHijkm|k,m P H, k ď mu; Hijkm “ tpk,mq if ppDijkm ă“

Dijmkq and ppDjikm ă“ Djimkqq or pm, kq if ppDijmk ă Dijkm and pDjimk ă

Djikmqu; Ĥ2ij “ pHijkm R Ĥ1ijq

We present a reduced version of CAC4 (CAC4(i)) below similar to CAC2:

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqREijkm,PEjikm

Xjiqs ď 1 ´ yk @i, j P N, k “ m, k,m P H

(20)
ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqREijkm,PEjikm

Xjiqs ď 2 ´ yk ´ ym @i, j P N, pk,mq P H 1
ij , H

1
ji

(CAC4(i))

CAC4(i) can be further modified (CAC4(ii))by using similar approach of CAC2m:

ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqREijkm,PEjikm

Xjiqs ď 1 ´ yk @i, j P N, k “ m, k,m P H

(21)
ÿ

pq,sqPEijkm

Xijqs `
ÿ

pq,sqREijkm,PEjikm

Xjiqs ď 2 ´ yk ´ ym @i, j P N, pk,mq P H̄ 1
ij , H̄

1
ji

(CAC4(ii))

4 Dominance Relationship between Constraints:

In this section, we present dominance relationship between the proposed CACs. The
objective of the exercise is to identify effective CACs.
Proposition 2. CAC2 dominates CAC1
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Proof. For cases when k “ m, CAC2 can be written as:

ÿ

pq,sqPEijkm

Xijqs ď 1 ´ zk@i, j P N, k P H

Multiplying on both sides by 2 we get:

ÿ

pq,sqPEijkm

2Xijqs ď 2 ´ 2zk@i, j P N, k P H

Since the LHS is bounded by 1, we can rewrite the above constraint as:

ÿ

pq,sqPEijkm

Xijqs ď 2 ´ 2zk@i, j P N, k P H

Hence, CAC2 ùñ CAC1 but CAC1 ­ùñ CAC2.

Proposition 3. CAC4 dominates CAC1

Proof. The proof is straightforward. The LHS of CAC1 is a subset of LHS of CAC4,
while the RHS is the same. Therefore, CAC4 ùñ CAC1, but CAC1 ­ùñ CAC4.

Proposition 4. CAC2m dominates CAC2

Proof. For a given o-d pair pi, jq and hub candidates pk,mq CAC2 has 3 constraints,
respectively for pk, kq, pm,mq, and pk,mq if dijkm ď dijmk or pm, kq if dijkm ą dijmk.
For the cases where dijkk or dijmm being the cheapest among all the four possible
paths through the hubs k and m, CAC2m has 2 constraints namely for pk, kq and
pm,mq, else for other cases CAC2m has 3 constraints similar to CAC2. Without loss
of generality assume that dijkk is the shortest route from i to j through hub pairs k
and m and dijkm ď dijmk. Then, Eijkk Ă Eijkm which implies CAC2ijkk dominates
CAC2ijkm and hence CAC2ijkm is redundant. Hence CAC2m dominates CAC2.

Proposition 5. CAC4(ii) dominates CAC4

Proof. The proof for this proposition is similar to the proof for proposition 4.

5 Computational experiments

We conduct experiments on data sets of Civil Aeronautics Board (CAB). CAB dataset
was introduced in O’kelly (1987) .CAB dataset containing N=25 with hubs p = (5,
10, 15) is used to prepare instances. The set of located p hubs in our experiment is
prepared by solving the corresponding p-hub median problem. For the instance with 5
hubs, the number of interdicted hubs varies as (2, 3, 4) while for the instance with 10
hubs, it varies as (3, 4, 5, 6, 7, 8). In the case of 15 hubs, we consider a range of 5 to
12 interdicted hubs, r P (5, 6, 7, 8, 9, 10, 11, 12). Table 1 presents the instances used
in our experiments. Our analysis assumes a discount factor of 1 each for collection and
distribution, while the discount factor for transhipment (Ω) varies between 0.1, 0.5, and
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Table 1: Instances

Dataset p Ω located Hubs
CAB25 5 0.1 3, 6, 11, 13, 16

0.5 3, 6, 11, 13, 16
0.9 0, 3, 6, 11, 16

10 0.1 0, 3, 5, 6, 7, 11, 13, 16, 21, 24
0.5 0, 3, 5, 6, 7, 11, 13, 16, 21, 24
0.9 0, 3, 6, 7, 11, 13, 16, 19, 20, 21

15 0.1 0, 2, 3, 5, 6, 7, 11, 13, 14, 15, 16, 20, 21, 22, 24
0.5 0, 2, 3, 5, 6, 7, 11, 13, 14, 15, 16, 20, 21, 22, 24
0.9 0, 2, 3, 5, 6, 7, 9, 11, 13, 14, 16, 20, 21, 22, 24

0.9. To solve each instance, we set a time limit of 36,000 seconds. These formulations
are coded in C++ using IBM ILOG CPLEX Callable Library 12.10 and run on a Dell
workstation with processor Intel(R) Xeon(R), 3.60GHz, 3600 Mhz,6 Core(s), and 64
gigabytes of RAM. Experiments related to case study are done in computer with 8
gigabytes of RAM and CPLEX callable library 22.1. All of experiments are done in
the parallel mode.

Analysis of results

Computational time(seconds) to solve reformulated single level problem utilizing
CAC1, CAC2, CAC4, CAC4(i) can be observed in Table2 for CAB dataset. Columns
HMDPSL1 , HMDPSL2, HMDPSL3, and HMDPSL4 are employed with time(s)
contain the CPU times to solve the problems. The column with the heading objective
represents the optimal value of the corresponding instance. For CAB dataset we mul-
tiplied the demand and cost parameter for each OD pair by 10´3. Surviving hubs in
post disruption situation among a set of located hubs are shown in column Existing
hubs. Experiments have been performed on 27 instances with this dataset.In compar-
ison of the computational times with different CACs, HMDPSL2 takes less time in
26{27 instances. HMDPSL4 takes lesser time than HMDPSL3.In these results, we
can observe that the change of discount factor Ω for a instance impacts the objective
value. Under this scenario, we can comment that the discounted cost are important
even for a network vulnerable to interdiction for maintaining a smooth flow in a cost-
effective way. Furthermore, the objective value increases along with the increment of
interdicted hubs, which happens in real life network also.

Experiments on LP relaxed form of reformulated single level problem are performed
considering different CACs. Results of CAB data set with 25 nodes and 15 hubs are
noted in Table 3. Columns with headings LPSL1, LPSL2, LPSL3, and LPSL4 present
the LP relaxed value of HMDPSL1, HMDPSL2, HMDPSL3, and HMDPSL4 respec-
tively. The results of 24 instances explain LPSL4 generates tighter LP bound to the
problem.The percentage LPgap is calculated by using %Lpgap “ |Objectivevalue ´

Lpvalue|˚100{objectivevalue.HMDPSL2 generates LPgap of a range 9%-160%.In this
case the average value is 110%. The average value is calculated by taking mean of all
values in that column. HMDPSL4 generates the LPgap of a range 5%-145%. On aver-
age it is reduced to 102%. Hence, this depicts that HMIPSL4 is tighter formulation.It
is very desired to solve a mixed interger programming problem, where reducing the
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Table 2: Results of CAB25 instances using different CACs

p Ω r objective Existing Hubs HMDPSL1 HMDPSL2 HMDPSL3 HMDPSL4
time(s) time(s) time(s) time(s)

5 0.1 2 12620 6,11,13 2 2 2 2
3 15292.3 6,13 2 2 2 2
4 30040.6 11 1 1 2 1

0.5 2 13940.4 6, 11,13 1 1 1 2
3 16458.9 11,13 1 1 1 1
4 30040.6 11 1 1 1 1

0.9 2 11808.5 0,6,11 1 1 1 1
3 16587.3 6,11 1 1 1 1
4 30040.6 11 1 1 1 1

10 0.1 3 6320.3 0,3,6,7,11,13,21 20 19 36 37
4 8266.52 0,6,7,11,13,21 23 25 54 49
5 11926.3 6,7,11,13,21 24 22 51 44
6 14416.6 6,7,11,21 19 19 43 37
7 18571.9 7,11,21 17 15 35 26
8 29670.4 11,21 12 11 13 13

0.5 3 8142.33 0,3,6,7,11,13,21 15 13 21 20
4 10003.4 0, 6, 7, 11, 13, 21 15 15 25 21
5 13367.8 6, 7, 11, 13, 21 16 14 23 22
6 15399.8 6, 7, 11,21 15 13 25 20
7 19218.7 7, 11,21 13 13 19 16
8 29782.8 11, 21 11 10 12 11

0.9 3 10333.5 0,6, 7, 11, 13, 16,20 11 10 11 11
4 11122.7 0,6, 7, 11, 13,21 12 11 12 11
5 14092.1 6, 7, 11, 13,21 13 11 14 14
6 16079 6, 7, 11,21 12 11 13 12
7 19765.4 7, 11, 21 12 11 11 11
8 29828.7 11,21 11 10 10 10

feasible region is main concern at the starting. Figure 1 explains the comparison of dif-
ferent LP relaxed formulations with alternate CACs w.r.t the corresponding objective
value.

On computation results

As per Prop. 1, CAC4 maintains the closer assignment of non-hub nodes to hub
and routing via surviving hubs (yk “ 1). Hence, the constraint11 can be removed in
HMDPSL.

6 Case study

Bicycle is important mode of transportation in last mile delivery problems. Bicycle
network is very sensitive to disruptions. Here, bicycle network is studied as hub net-
work, where order pickup, order sorting points are considered as hubs, whereas parking
points, delivery points are assumed as non-hub nodes. In this case study, we want:

• To ensure allocation of other nodes to the hub nodes with tighter constraints,
introduced in above section.

• To find the critical hubs in the bicycle network, which is vulnerable to disruptions.
• To get the percentage increase in the objective value in post disruption situation.
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Table 3: Results of CAB25 instances using different CACs

p Ω r Existing Hubs objective LPSL1 LPSL2 LPSL3 LPSL4
time(s) time(s) time(s) time(s)

15 0.1 5 0, 6, 7, 11, 13, 14,15,20,21,22 6600.04 27178.5 16467.8 25249.1 15532.3
6 6, 7, 11, 13, 14, 15, 20, 21, 22 7502.57 31991.4 19480.5 29694 18358.3
7 6, 7, 11, 13, 14, 15, 21, 22 9108.95 36803.2 22493.2 34132.4 21183.8
8 6, 7, 11, 13, 15, 21, 22 11338 39208.7 24953.7 36430.8 23543.3
9 6, 7, 11, 15, 21, 22 12275 39208.7 26862 36564.9 25424.7
10 6, 7, 11, 21, 22 14201.2 39208.7 28765.5 36656.2 27256.6
11 7, 11, 21, 22 18354.5 39208.7 30415.1 36730.6 28988.9
12 11, 21, 22 29253.3 39208.7 32006.3 36756.2 30651.4

0.5 5 0, 6, 7, 11, 13, 14, 15, 20, 21, 22 8603.32 31876.4 19336.5 29120.6 18424.5
6 6, 7, 11, 13, 14, 15, 20, 21, 22 9247 36895.3 22313.8 33590.6 21193.7
7 6, 7, 11, 13, 14, 15, 21, 22 10718.2 41903.5 25291.2 38022 23960.5
8 6, 7, 11, 13, 15, 21, 22 12776.4 44403.5 27872.6 40270.4 26339.3
9 6, 7, 11, 15, 21, 22 13562.8 44403.5 30058.2 40369.8 28331.8
10 6, 7, 11, 21, 22 15252.7 44403.5 32228.6 40459.3 30305.9
11 7, 11, 21, 22 19071.6 44403.5 33679.1 40507 31899.9
12 11, 21, 22 29407.7 44384.7 34937.1 40511.5 33317.3

0.9 5 0, 6, 7, 9, 11, 13, 14, 20, 21, 22 10134.7 38109.6 22926.4 34964.1 22710.9
6 6, 7, 9, 11, 13, 14, 20, 21, 22 10719.5 43844.4 26058.5 39961.8 25800
7 6, 7, 9, 11, 13, 14, 21, 22 12049.2 49576.6 29190.7 44946.4 28889.1
8 6, 7, 9, 11, 13, 21, 22 13983.8 52441.9 32117.2 47554.8 31706.6
9 6, 7, 9, 11, 21, 22 15885.4 52441.9 34837.9 47795.1 34252.4
10 7, 9, 11, 21, 22 16605.6 52441.9 37555 47988.6 36792.6
11 7, 11, 21, 22 19718.3 52441.9 39486.3 48095.4 38081.6
12 11, 21, 22 29491.1 52441.9 40307.5 48127.4 38998.1

Fig. 1: LP relaxed values of CAB instances using different alternate CACs
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Table 4: Instances of Bicycle network

p Ω Cost Located Hubs (No disruption)
15 0.1 18.7362 2,11,13,15,17,19,22,26,30,31,32,36,43,46,49

0.5 28.8236 2,11,13,15,19,20,22,24,29,31,32,38,39,46,49
0.9 35.6989 2,4,11,13,15,19,20,22,25,29,34,38,39,47,49

Table 5: Results of Bicycle network instances faced disruption

Ω r obj val. Existing Hubs %increase
15 0.1 5 86.4389 15,17,19,22,26,30,31,32,46,49 361.35

6 102.848 15,17,22,26,30,31,32,46,49 448.93
7 118.957 15,17,22,26,30,31,46,49 534.90
8 128.515 15,22,26,30,31, 46,49 585.92
9 170.205 15, 22,26,30, 31, 46 808.43
10 181.353 15,26,30,31, 46 867.93
11 195.578 15, 22,26, 46 943.85
12 217.401 22, 26, 46 1060.33

0.5 5 94.4678 15,19,20,22,24,29,31,32, 46,49 227.69
6 113.17 15, 20,22,24,29,31,32, 46,49 292.56
7 130.127 15, 20,22,24,29,31, 46,49 351.38
8 171.2 15, 20, 22, 24, 29, 31, 46 493.85
9 179.624 15, 20,22,24,29, 46 523.08
10 196.253 15, 20,22,24, 46 580.76
11 217.463 20,22,24, 46 654.33
12 235.996 20, 24, 46 718.62

0.9 5 98.4148 4, 15,19,20,22,25,29,34,38,39,47,49 175.68
6 125.812 4,15,19,20,22,25,29,34, 47,49 252.43
7 140.151 4, 15, 20,22,25, 34, 47,49 292.59
8 164.305 15, 20,22,25,29,34, 47 360.25
9 180.598 15,20,22,25,29, 47 405.89
10 200.609 20,22,25, 34, 47 461.95
11 219.439 20, 25, 34, 47 514.69
12 261.798 20,25,47 633.35

The problem is modeled as aforementioned bilevel optimization problem, where the
disruption in the hubs may increase the routing cost, whereas the operator tries to
minimize the routing cost with the surviving hubs in post disruption situation. Table
4 explains the cost of the routing and locations of hubs by the column ‘Cost’ and
‘Located Hubs’ before disruption occurs. ‘No disruption’ implies the value of r as
0.Furthermore, we solve the bi-level model HMDPBL by enumerating upper level
variable (yk) and consider all possible combinations of p ´ r out of p. The column
‘% improvement’ in table 6 shows the improvement in solution time by using single
level model with CAC4(i) than upper level enumeration process for each instances. If
the disruption occurs at some hubs, the operator tries to route the bicycles through
surviving hubs.In the table 5, column ‘obj val.’ is used for the post-disruption cost of
the corresponding instances, whereas ‘% increase’ is used for increase of the system
cost of routing in post-disruption situation. The increment of system cost happens
upto 523% on average. The cost of routing before disruption and after disruption is
presented in figure 2.
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Table 6: Results of Bicycle network
instances

p Ω r iteration %improvement
10 0.1 7 120 70

0.5 7 120 128
0.9 7 120 139

Fig. 2: Cost of instances faced disruption

7 Conclusion

This study has focused on bilevel hub disruption problems. Hub median problem has
several uses in real-life networks. Hence, identifying critical hubs of an existing hub
network is necessary to reduce the vulnerability of disruption. In this work, we have
introduced new sets of CACs for hub problems.We established dominance relationships
among them. We use those alternate constraints to reformulate the bilevel model
into single level. Several experiments have been performed on instances of CAB and
bicycle network dataset considering reformulated single-level interdiction model. We
have also presented the solution time of the disruption problem based on different
alternate CACs. Results shows that the routing cost will increase tremendously in
post disruption situation. Future research can be done to use these CACs in different
solution approaches.
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