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Abstract

Dealing with uncertainty in optimization parameters is an important and long-
standing challenge. Typically, uncertain parameters are predicted accurately,
and then a deterministic optimization problem is solved. However, the decisions
produced by this so-called predict-then-optimize procedure can be highly sen-
sitive to uncertain parameters. In this work, we contribute to recent efforts in
producing decision-focused predictions, i.e., to build predictive models that are
constructed with the goal of minimizing a regret measure on the decisions taken
with them. We begin by formulating the exact expected regret minimization as
a pessimistic bilevel optimization model. Then, we show computational com-
plexity results of this problem, including its membership in NP. In combination
with a known NP-hardness result, this establishes NP-completeness and rules out
hardness in higher complexity classes. Using duality arguments, we reformulate
the pessimistic formulation, exactly, as a non-convex quadratically constrained
quadratic optimization problem. Finally, leveraging the quadratic reformulation,
we show various computational techniques to achieve empirical tractability. We
report extensive computational results on shortest-path and bipartite matching
instances with uncertain cost vectors. Our results indicate that our approach can
work well in combination with many state-of-the-art decision-focused learning
methods, improving their training and test performance.
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1 Introduction

Decision-making processes often involve uncertainty in input parameters, which is an

important and longstanding challenge. Commonly, a two-stage approach is employed:

firstly, training a machine learning (ML) model to estimate the uncertain input accu-

rately, and secondly, using this estimate to tackle the decision task. This decision task

is typically an optimization problem. Classical machine learning methods focus mainly

on minimizing prediction errors on the parameters, but they overlook that inaccurate

predictions can negatively influence the optimization solution, potentially leading to

decisions of poor quality.

In recent years, decision-focused learning (DFL) (also known as smart predict-then-

optimize (SPO)) approaches, in which prediction and optimization tasks are integrated

into the learning process, have received significant attention. In this approach, a

machine learning model is specifically trained to enhance the effectiveness of the

whole decision-making process. This involves combining, during the training phase,

the prediction and the optimization in a single model.

In this work, we focus on linear optimization problems where the coefficients of

the cost vector c ∈ Rn are unknown, but we have at hand a vector of correlated

features x. Our goal is to train a parametric machine learning model m(ω, x), where

ω is the vector of parameters of the machine learning model, so that the impact of

the prediction error on the whole decision process is minimal. The typical measure of

how a prediction performs in the decision process is the regret: the excess of cost in

the optimization task caused by prediction errors.
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As we will see in the following sections, finding the model m(ω, x) that minimizes

the regret can be formulated as a pessimistic bilevel optimization problem. In fact,

Elmachtoub and Grigas (2022) define the unambiguous-SPO loss function as a pes-

simistic regret: among all the solutions that minimize the predicted objective function,

it penalizes the one that hurts the most when it is evaluated with the true cost vector.

Unfortunately, the complexity of finding these models and scalability are two major

roadblocks to this DFL approach. Consequently, the literature has mainly focused on

stochastic gradient-based approaches via approximations of the loss function through

a surrogate convex loss function and/or solving a relaxed optimization problem (see

Mandi et al. (2024)). Here, we follow a different path, take a step back, and focus

on carefully studying the mathematical object behind the exact expected regret mini-

mization. Our main hypothesis is that by understanding the mathematical object and

designing new methods for solving the pessimistic bilevel optimization problem, better

predictions and better algorithms can be developed.

The contributions of this work are the following: (i) we formulate the expected

regret minimization problem as a pessimistic bilevel optimization problem; (ii) we

prove that the problem belongs to the NP complexity class, which settles NP-

completeness and makes it unlikely for it to be higher in the polynomial hierarchy

(i.e., the problem is not ΣP
2 -hard, unless the hierarchy collapses); (iii) we show that,

under mild assumptions, determining if the regret is 0 is polynomial-time solvable;

(iv) we reformulate the bilevel pessimistic formulation as a non-convex quadratically-

constrained quadratic program (QCQP), which can be tackled by current optimization

technology for moderate sizes; (v) we propose heuristics to improve the solution

procedure based on the quadratic reformulation; (vi) we conduct a comprehensive

computational study on shortest path and bipartite matching instances. An early ver-

sion of this work was published as a short paper in the conference proceedings of
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CPAIOR 2024 (Bucarey et al. 2024), where the single-level reformulation and a local-

search heuristic were presented. We extend this work by providing theoretical results

regarding the complexity of this problem and an alternating descent direction method.

We finally extend the experiments by including the bipartite matching problem in the

computational study.

1.1 Problem setting

We consider a nominal optimization problem with a linear objective function:

P (c) : z∗(c) := min
v∈V

c⊤v (1)

In this work, we restrict V to be a non-empty polytope, i.e. a non-empty bounded

polyhedron. For a given c, we define V ∗(c) as the set of optimal solutions to (1).

In our setting, the value of c ∈ Rn is not known, but we have access to a dataset

D = {(xi, ci)}Ni=1 with historical observations of c and correlated feature vectors x ∈

RK . Given these observations, and for a fixed set of parameters ω, we can empirically

measure the sensitivity of the decisions given by the predictions using an average regret:

Regret(D, ω) := max
v

1

N

∑
i∈[N ]

(
ci⊤vi − z∗(ci)

)
, (2)

s.t. vi ∈ V ∗(m(ω, xi)) ∀i ∈ [N ] (3)

Here, we are comparing the true optimal value z∗(ci) with the value ci⊤vi, which

is the “true cost” of a solution that is optimal for the prediction m(ω, xi). To find

the values of ω that minimize the regret (2), we must solve the following pessimistic

bilevel optimization problem.
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min
ω

max
vi∈V ∗(m(ω,xi))

1

N

∑
i∈[N ]

(
ci⊤vi − z∗(ci)

)
(4)

In this formulation, there are three nested optimization problems involved: i. the

lower-level problem optimizing m(ω, xi)⊤v over V ; ii. over all the possible optimal

solutions of the latter, take the one with the maximum (worst) regret. This corresponds

to the pessimistic version of the bilevel formulation, defining the pessimistic regret.

iii. Minimize the pessimistic regret using ω as a variable. In what follows, we use the

notation ĉi(ω) := m(ω, xi).

1.2 Importance of the pessimistic approach

To illustrate the relevance of the pessimistic approach (in contrast to the optimistic

one), we consider the following linear optimization problem with two variables:

P (c) : min
v

c1v1 + c2v2 s.t. v1 + v2 ≤ 1, v1, v2 ≥ 0.

Suppose we observe the following three instances of the true cost vectors, each

associated with a single feature value:

(x1, c1) =

(
0,

(
−3,−2

))⊤

, (x2, c2) =

(
1,

(
−2,−5

))
, (x3, c3) =

(
2,

(
−2, 0

))⊤

.

Our goal is to estimate a linear regression model of the form m(ω, x)j = ĉj(ω) =

ω0j + ω1jx, for j = 1, 2. We begin by analyzing the optimistic version, which corre-

sponds to dropping the outer maximization maxv∈V ∗(ĉi(ω)) in (4). This is equivalent

to setting ω0j = ω1j = 0 for both j = 1, 2, since in that case ĉ = (0, 0) and the solution

set becomes V ∗((0, 0)) = V (i.e., every feasible v ∈ V is optimal).
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Thus, the optimistic model “guesses” the correct decision in all cases, resulting in

zero regret. However, the pessimisticmodel, out of all possible solutions in V ∗((0, 0)),

selects the worst-case one—in this case, v1 = v2 = 0. The regrets under this decision

are 3, 5, and 2 for observations 1, 2, and 3, respectively, yielding an average regret of

10
3 . Thus, this “optimistic regret” does not adequately measure the sensitivity of the

decision with respect to the predictive model.

In contrast, a classical linear regression performs better under the pessimistic regret

criterion. The minimum squared error solution for this regression is

ω =

−2.83 0.50

−3.33 0.99

 ,

which induces the correct decision for observation 3 and results in an average regret

of 4
3 . Solving the bilevel pessimistic formulation exactly leads to an even lower regret

of 1
3 , with an optimal regression model

ω =

−1 −1
−4 1

 .

This solution correctly predicts the optimal decision for observations 2 and 3 (those

with the highest regret) and only fails on observation 1.

We also evaluate the SPO+ estimator proposed by Elmachtoub and Grigas (2022),

computed via a linear programming formulation. This method yields an average regret

of 1. Figure 1 summarizes the solutions and outcomes for each approach.
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Fig. 1: Linear regression, SPO+ estimator from Elmachtoub and Grigas (2022) and
an exact regret minimizer for the numerical example of Section 1.2. Red circles and
squares represent the input data. Dash-dotted lines correspond to the different solu-
tions for the linear model m(ω, x).

1.3 Literature Review

Bilevel optimization.

Bilevel optimization problems are hierarchical ones: they consist of an optimization

problem (called upper-level or leader problem) that contains in its constraints opti-

mality conditions of other problems, called lower-level or follower problems (Dempe

and Zemkoho 2020). In the presence of several optimal solutions at the lower-level

problems, the way that the solution is chosen opens two approaches: the optimistic

approach, also known as the strong solution, in which the solution chosen is the one

that favors the upper-level optimization problem; and the pessimistic, also known

as the weak solution, that chooses the one that worsens the most the upper-level

objective.

Optimistic bilevel optimization is NP-hard even when the upper and lower-level

problems are linear. Even having compact/efficient formulations can be a difficult task

(Kleinert et al. 2020). See Kleinert et al. (2021) for a survey on mixed-integer program-

ming techniques in bilevel optimization. The necessity of establishing the pessimistic

solution for bilevel optimization problems was first raised by Leitmann (1978) and

studied in several articles (e.g., Loridan and Morgan (1996); Aboussoror and Man-

souri (2005)). Until recently, it was a common belief that the pessimistic approach
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was much more difficult than the optimistic one. However, it has been established

that a pessimistic linear problem can be transformed equivalently, and in polynomial

time, into an optimistic one Henke et al. (2025); Zeng (2020). We refer to readers to

Wiesemann et al. (2013); Liu et al. (2018, 2020) for comprehensive surveys of the-

oretical background and methods for bilevel pessimistic optimization problems. We

note that the hardness results in bilevel optimization rule out the existence of effi-

cient general-purpose techniques that could be applied in our setting. In addition, the

polynomial-time equivalence between pessimistic and optimistic was established for

the linear case; as we will see, our model is non-linear.

Decision-focused learning.

As mentioned earlier, and to the best of our knowledge, the existing methods devel-

oped for training decision-focused predictions are primarily based on estimating the

gradient of how predictions impact a specific loss function. The main challenge in

these approaches is to estimate the changes in the optimal solution with respect to the

model parameters, known as optimization mapping. According to the recent survey

by Mandi et al. (2024), these methods can be classified into four categories: i. those

that compute the gradient of the optimization mappings analytically, as in Amos and

Kolter (2017); or ii. solving a smooth version of the optimization mapping, as seen

in Wilder et al. (2019); Mandi and Guns (2020); Ferber et al. (2020); or iii. smooth-

ing the optimization mapping by random perturbations (Pogancic et al. 2020; Niepert

et al. 2021) ; or iv. those solving a surrogate loss function that approximates regret,

as discussed in Elmachtoub and Grigas (2022); Mulamba et al. (2021); Mandi et al.

(2022).

Our study diverges from these approaches. Instead, to find regret-minimizing mod-

els, we leverage the pessimistic bilevel optimization formulation (4), and by employing

duality arguments, we formulate it as a single-level non-convex QCQP model. Rele-

vant related methods in this regard are the following. Minimizing the expected regret
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was proposed by Jeong et al. (2022): they cast the problem, not explicitly, as an

optimistic bilevel optimization problem and use a symbolic reduction to solve it. An

optimistic approach was also used by Muñoz et al. (2022) to derive a quadratic KKT-

based reformulation. However, as mentioned by Elmachtoub and Grigas (2022) and

discussed in Section 1.2, casting this problem as an optimistic bilevel optimization

problem may lead to undesirable predictions. The recent work of Jiménez et al. (2025)

proposes a pessimistic bilevel optimization approach; their framework can consider

combinatorial nominal problems and produces an ϵ-approximation, based on the valid

relaxation framework proposed by Zeng (2020). This approximation relies on dynamic

solution generation. We note that dynamic solution generation in this context was also

proposed by Mulamba et al. (2021). The main difference of our work is that, when

the nominal problem is linear, we show how to reformulate the pessimistic problem

exactly. Based on this quadratic reformulation, we develop methods that can improve

the performance of state-of-the-art methods.

In terms of the complexity of (4), the results of Elmachtoub and Grigas (2022)

imply that this problem is NP-hard. They show that minimizing the regret function

generalizes the minimization of the 0-1 loss function, which is known to be NP-hard

(Ben-David et al. 2003). Here, we complement this by showing membership in NP of

a decision version of (4).

2 Complexity results

In this section, we focus on studying the complexity of (4) in a basic setting: when

the predictive model m(ω, x) is linear. Since we are predicting cost vectors, we can

assume our set of parameters ω is in matrix form, i.e., m(ω, x) = ωx.

As mentioned in the previous section, the results of Elmachtoub and Grigas (2022)

imply that (4) is NP-hard since it generalizes the minimization of the 0-1 loss func-

tion, which is known to be NP-hard (Ben-David et al. 2003). This NP-hardness proof
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considers a very restrictive case; among other things, the nominal problem is one-

dimensional. Thus, one could conceive that even a slightly more general nominal

problem could lead to a harder regret minimization problem (4). In this section, we

delimit this by showing membership in NP of our setting, i.e., when the nominal prob-

lem is an n-dimensional linear problem with a non-empty polytope as the feasible

region. This establishes NP-completeness of the problem under this setting, which dis-

cards complexity beyond NP-hardness. We note that a more complex (e.g., NP-hard)

nominal problem could lead to an even harder regret minimization problem, but this

setting is out of scope for this article.

Note that Buchheim (2023) recently showed that linear bilevel optimization, both

optimistic and pessimistic, belongs to NP. However, this result is not directly applica-

ble to (4) since the leader and follower variables interact non-linearly in the follower’s

problem, even when m(ω, x) is a linear function. We provide further comments on

differences with the result by Buchheim after the proof of Theorem 1.

2.1 Membership in NP

Let us consider the following decision version of (4).

Definition 1 The decision problem SIMPLE-REGRET is defined as follows. Given

(ci, xi)Ni=1 a collection of N rational vectors and matrices, a polytope V , and a rational

number M decide if there exists ω such that

max
vi∈V ∗(ωxi)

1

N

∑
i∈[N ]

(ci⊤vi − z∗(ci)) ≤ M. (5)

We note that (5) is obtained from (4) by restricting m(ω, x) = ωx.

Theorem 1 SIMPLE-REGRET ∈ NP
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Proof It suffices to show that, for any “Yes” instance of SIMPLE-REGRET, there is a

polynomially-sized ω such that (5) holds. Indeed, if we have such an ω, we can simply com-

pute the optimal faces of each of the N lower-level problems (which can be done in polynomial

time), and then solve the resulting maximization problem. Let us show that such an ω exists.

Consider an arbitrary instance of SIMPLE-REGRET, with V = {v : Av ≥ b}, and

suppose there exists ω̂ such that the value of

max
1

N

N∑
i=1

(ci⊤vi − z∗(ci)) s.t vi ∈ argmin
{
(ω̂xi)⊤v : Av ≥ b

}
is less or equal than M . We will show we can modify ω̂ to have polynomial size and not

change any of the argmins. Since we assume V is always non-empty and bounded (which can

be verified in polynomial time), strong duality always holds. The dual of the i-th lower-level

problem reads

max (ρi)⊤b s.t (ρi)⊤A = ω̂xi, ρi ≥ 0.

For each i, let us consider ρ̂i in the relative interior of the optimal face of the dual. This

means that the optimal face of the i-th primal can be described as

F i(ω̂) := {v ∈ V : a⊤j v = bj , j : ρ̂ij > 0}.

We claim that any (ω̃, ρ̃) satisfying

(ρ̃i)⊤A = ω̃xi ∀i ∈ [N ] (6a)

ρ̃ij ≥ 1 ρ̂ij > 0, ∀i ∈ [N ] (6b)

ρ̃ij = 0 ρ̂ij = 0, ∀i ∈ [N ] (6c)

is such that argmin{(ω̃xi)⊤v : Av ≥ b} = F i(ω̂) for every i ∈ [N ]. Indeed, if there are such

ω̃ and ρ̃, then

argmin{(ω̃xi)⊤v : Av ≥ b} =argmin{(ρ̃i)⊤Av : Av ≥ b}

=argmin


∑

j:ρ̂i
j>0

ρ̃ija
⊤
j v : Av ≥ b

 .
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The last objective function is lower bounded by
∑

j:ρ̂i
j>0 ρ̃

i
jbj . Moreover, this lower bound

is met if and only if a⊤j v = bj , ∀j : ρ̂ij > 0. Therefore, we obtain that each ρ̃i is dual optimal

for min{(ω̃xi)⊤v : Av ≥ b} and argmin{(ω̃xi)⊤v : Av ≥ b} = F i(ω̂).

To conclude, note that (6) is always feasible, as a rescaled version of (ω̂, ρ̂) satisfies the

system. Since the coefficients of (6) are given by the entries of A, xi, zeros, and ones, we

conclude that there must be a (ω̃, ρ̃) of polynomial size that satisfies the system. □

As mentioned earlier, Buchheim (2023) shows membership in NP of linear bilevel

optimization in both optimistic and pessimistic cases. While our result considers a

nonlinear bilevel optimization problem, one might still wonder whether the proof

for the linear case could be easily adapted to our setting. There are certainly some

(expected) similarities, as both proofs leverage optimality conditions. However, we do

not see a direct translation of the certificate by Buchheim (2023) into our setting. In

particular, the certificate of Buchheim (2023) for the pessimistic linear case relies on

two bases (primal), from which a system that can certify “Yes” instances is derived.

This system is linear when the follower’s objective coefficients are constant. However,

this is not the case in our setting; the system by Buchheim becomes bilinear when

translated into our case. Our proof avoids this issue by exploiting the fact that, while

nonlinear, the leader’s variables ω appear in a structured manner. We leverage this

structure by utilizing the relative interior of the dual optimal face to describe the

optimal face of the follower, and with this, devise a system that avoids nonlinearities.

Corollary 2 SIMPLE-REGRET is NP-complete. In particular, it is not ΣP
2 -hard, unless

the polynomial hierarchy collapses at the second level.

As a final remark on this subsection, we note that the previous proof strategy can

be used to show two facts in the optimization context of (4) when m(ω, x) = ωx.
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Corollary 3 Consider (4) when m(ω, x) = ωx. The regret function (2) only has a finite

number of values, and, furthermore, the minimum regret (4) is always attained.

The piecewise constant nature of the regret (2) is known in the literature (e.g.,

Pogančić et al. (2019); Demirovic et al. (2020)). The fact that it only attains a finite

number of values in our setting, although perhaps expected, is not entirely direct. Also,

recall that some bilevel optimization problems do not attain their optimal values.

The proof of Corollary 3 follows from the fact that, once we fix the optimal faces

of each lower-level problem, the regret is fixed. For completeness, we provide the proof

of Corollary 3 in Appendix A.

2.2 Polynomial-time solvable cases

In this subsection, we show that in many cases, determining if the regret is 0 can be

done in polynomial time. This is in line with the polynomial solvability of checking

if zero loss can be achievable in empirical risk minimization in multiple cases. For

example, checking if zero loss can be achieved in 0-1 loss minimization (i.e., if the data

is separable) can be solved in polynomial time: it amounts to finding a separating

hyperplane among the two classes. However, we note that, perhaps counterintuitively,

having zero regret is not equivalent to determining if there exists ω such that ωxi = ci,

∀i ∈ [N ]. We illustrate this in the following example.

Example 1 Consider the polytope V = [0, 1]2 and the following two observations

(x1, c1) = (1, (−1,−2)⊤), (x2, c2) = (−1, (1, 1)⊤).

It is not hard to see that

argmin{c1⊤v : v ∈ [0, 1]2} = {(1, 1)⊤} and argmin{c2⊤v : v ∈ [0, 1]2} = {(0, 0)⊤}
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If we take, for example, ω = (−1,−1)⊤, we have that

argmin{(ωx1)⊤v : v ∈ [0, 1]2} = {(1, 1)⊤} and argmin{(ωx2)⊤v : v ∈ [0, 1]2} = {(0, 0)⊤}

And from this, we can deduce that ω yields zero regret. However, it is not hard to see

that there is no ω such that ωxi = ci, i = 1, 2, as (ωx1, ωx2) are always collinear in this

example, but (c1, c2) are linearly independent.

Our polynomial-time solvability result uses the following assumption.

Assumption 1 The input data (ci, xi)Ni=1 and the polytope V are such that argmin{ci⊤v :

v ∈ V } is a singleton, for all i ∈ [N ].

Assumption 1 may seem restrictive, but it can be expected for real data to satisfy

it; if the ci are drawn from a non-atomic distribution, for example, Assumption 1

is satisfied with probability 1. Additionally, note that this does not imply that the

follower will have a unique solution in general: it can still be that the optimal face

for ωxi over V is not a singleton. Finally, note that Assumption 1 can be checked in

polynomial time.

We are now ready to describe a polynomial time solvable case for (4).

Theorem 4 If the input for SIMPLE-REGRET is restricted to M = 0 (i.e., determining

if there is a solution with zero regret) and the data (ci, xi)Ni=1 and the polytope V satisfy

Assumption 1, then the problem can be solved in polynomial time.

We provide the proof of Theorem 4 in Appendix B. As a last comment in this

subsection, we conjecture that, without Assumption 1, the problem of determining

if there is a solution with zero regret becomes NP-hard. This is somewhat counter-

intuitive since some NP-hard loss minimization problems (as 0-1 loss minimization)

become easy when the question is whether zero loss is achievable or not. However, we
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conjecture this based on the discussion on Example 1: one can have zero regret with

data that cannot be fit perfectly in the traditional sense, and this can be obtained

with a non-trivial “alignment” of the optimal faces V ∗(ωxi).

3 A non-convex quadratic reformulation

While NP-hardness of (4) makes it unlikely for us to find a worst-case efficient method

for solving it, we can still hope to find methods with good practical performance.

In this section, we will apply duality arguments, supported by the assumption that

V in problem (1) is non-empty and bounded, in order to obtain a more manageable

formulation of the problem. As before, we assume (1) has the following form:

min
v

c⊤v s.t. Av ≥ b (7)

Our predicted costs have the form m(ω, x) for some feature vector x and parameters ω

(to be determined), and the terms z∗(ci) are constant. Thus, an equivalent formulation

of our (pessimistic) regret-minimization problem is:

min
ω

max
v

1

N

∑
i∈[N ]

(ci)⊤vi

s.t. vi ∈ argmin
ṽi

m(ω, xi)⊤ṽi

s.t. Aṽi ≥ b

(8)

3.1 Duality arguments

A common approach to solving optimistic bilevel problems involving convex lower-

level problems is to reformulate them by replacing the lower-level problems with their

optimality (Karush-Kuhn-Tucker or KKT) conditions (see Kleinert et al. (2021)). In
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this subsection, we follow the same type of argument twice to achieve a single-level

reformulation of the pessimistic bilevel problem (8).

Since the feasible region of the lower-level problem in (8) is a non-empty polytope,

which is unaffected by ω, we can apply LP duality and reformulate (8) as:

min
ω

max
v,ρ,α

1

N

∑
i∈[N ]

(ci)⊤vi (9a)

s.t. Avi ≥ b ∀i ∈ [N ] (9b)

A⊤ρi = m(ω, xi) ∀i ∈ [N ] (9c)

ρi ≥ 0 ∀i ∈ [N ] (9d)

m(ω, xi)⊤vi ≤ b⊤ρi ∀i ∈ [N ] (9e)

In this formulation, (9b) imposes primal feasibility, (9c)-(9d) impose dual feasibility,

and (9e) imposes strong duality. We note that strong duality is typically written as an

equality constraint; however, the ≥ inequality always holds due to weak duality. The

key here is to use strong duality directly instead of complementary slackness, as the

latter yields non-linear inequalities on (v, ρ).

The inner maximization problem of (9) is an LP, which is feasible for every value

of ω. This is true because it represents a primal-dual system of a linear problem

over a non-empty polytope, meaning it always has a solution. Moreover, since the

objective function in (9a) involves only the v variables, which are bounded, we know

that strong duality holds, allowing us to take the dual once again. This yields the

following reformulation of (8):

min
ω,µ,δ,γ

∑
i∈[N ]

(
b⊤µi +m(ω, xi)⊤δi

)
(10a)

s.t. A⊤µi +m(ω, xi)γi =
1

N
ci ∀i ∈ [N ] (10b)
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Aδi − bγi ≥ 0 ∀i ∈ [N ] (10c)

µi ≤ 0, γi ≥ 0 ∀i ∈ [N ] (10d)

This is a single-level, non-convex quadratically constrained quadratic problem

(QCQP).

3.2 Shortest path as a bounded linear program

In this work, and motivated by Elmachtoub and Grigas (2022), we consider the shortest

path problem with unknown cost vectors. It is well known that this problem can be

formulated as a linear program using a totally unimodular constraint matrix. However,

the feasible region may not be bounded, as the underlying graph may have negative

cycles, which correspond to extreme rays of the corresponding polyhedron.

To apply our framework (which relies on duality arguments), we need to assume

no negative cycles exist for every possible prediction m(ω, x). For this reason, we make

the following assumption.

Assumption 2 The underlying graph G defining the shortest path is directed acyclic.

Under this assumption, we can safely formulate the shortest path problem as (7),

and every extreme point solution will be a binary vector indicating the shortest path.

Additionally, the inner maximization problem in (9) always has a binary optimal

solution, as its feasible region is an extended formulation of the optimal face of the

lower-level problem. From this discussion, we can guarantee that under Assumption

2, formulation (10) is valid for the shortest path problem with uncertain costs.

In our experiments, we also consider weighted bipartite instances. These instances

can be directly formulated as a linear program with a bounded and integral feasible

region, and thus, we do not need any extra assumption on them.
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4 Solution methods

In this section, we propose a collection of heuristic methods that are based on the

quadratic reformulation (10). In the computational section we evaluate all of them,

along with solving (10) exactly, and other state-of-the-art methods from the literature.

4.1 Penalization

Based on the ideas of Aboussoror and Mansouri (2005), we propose the following: fix

the variables γi in (10) to have all the same fixed value κ. This parameter κ is set

before optimization and can be seen as a hyperparameter of the optimization problem.

This results in the following model.

min
ω,µ,δ

∑
i∈[N ]

(
b⊤µi +m(ω, xi)⊤δi

)
(11a)

s.t. A⊤µi +m(ω, xi)κ =
1

N
ci ∀i ∈ [N ] (11b)

Aδi − bκ ≥ 0 ∀i ∈ [N ] (11c)

µi ≤ 0 ∀i ∈ [N ] (11d)

This formulation corresponds to a slice of the formulation (10) which removes all non-

linearities of the constraints. Consequently, by adopting this approach, we solve an

optimization problem with a quadratic non-convex objective and linear constraints.

We remark that this approach results in a problem that is not a traditional penal-

ization (which typically yields relaxations) but rather a restriction of the problem. The

name “penalization”, which is used in Aboussoror and Mansouri (2005), comes from

a derivation of (11), which follows a similar approach to the one described in Section

3. The difference lies in penalizing (9e) using κ before taking the dual a second time.

4.2 Local Search
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Algorithm 1 Local-search based algorithm

1: Input Training data, Starting model parameters ω0.
2: Hyperparameters: size of neighbourhood ϵ, sample size T , maximum number

of iterations L.
3: Solve Λ(ω0)
4: for i = 0, . . . , N do
5: Sample T parameters in the neighbourhood of ωi: ωt ← ωi + ϵ · N (0, 1)
6: Compute Λ(ωt) ∀t ∈ {1, . . . , T}
7: Update ωi+1 ← argmint=1,...,T F (ωt)
8: end for

In the path to derive (10), the intermediate reformulation presented in (9) can be seen

as an unrestricted optimization problem of the form

min
ω

Λ(ω).

Here, Λ(ω) is a function that for each ω returns the optimal value of the inner max-

imization problem in (9). As mentioned above, for each ω, Λ(ω) is a feasible linear

problem. We propose the following simple local-search-based heuristic: given an ini-

tial incumbent solution ω0, we randomly generate T new solutions in a neighborhood

of ω0, evaluate the regret for each, and update the incumbent solution with the one

with the smallest regret. We repeat these steps during L iterations. The procedure is

detailed in Algorithm 1.

4.3 Alternating direction method

The non-convexities of formulation (10) come from products between the model

parameter ω and dual variables γ or δ, i.e., the products are “bipartite”. Hence, if

we fix either the ω variables or the variables γ and δ, we obtain linear programming

problems. Specifically, if we fix ω to ω̄ the resulting LP reads

min
µ,δ,γ

∑
i∈[N ]

(
b⊤µi +m(ω̄, xi)⊤δi

)
(12a)
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Algorithm 2 Alternating descent algorithm

1: Input Training data, Starting model parameters ω0.
2: Hyperparameters: Maximum number of iterations L.
3: for i = 0, . . . , L do
4: Solve problem (12) using ω̄i. Retrieve optimal variables δ̄i and γ̄i
5: Solve problem (13) using δ̄i and γ̄i and retrieve a new vector of parameters ω̄i+1

6: end for
7: Return ω̄L

s.t. A⊤µi +m(ω̄, xi)γi =
1

N
ci ∀i ∈ [N ] (12b)

Aδi − bγi ≥ 0 ∀i ∈ [N ] (12c)

µi ≤ 0 ∀i ∈ [N ] (12d)

γi ≥ 0 ∀i ∈ [N ]. (12e)

Analogously, fixing γ̄ and δ̄ yields the LP

min
µ,ω

∑
i∈[N ]

(
b⊤µi +m(ω, xi)⊤δ̄i

)
(13a)

s.t. A⊤µi +m(ω, xi)γ̄i =
1

N
ci ∀i ∈ [N ] (13b)

µi ≤ 0 ∀i ∈ [N ] (13c)

Based on these observations, we propose Algorithm 2 as a heuristic to find high-

quality values for ω.

The following proposition follows directly from the definition of Algorithm 2.

Proposition 5 The sequence Λ(ω̄0),Λ(ω̄1), . . . ,Λ(ω̄L) produced by Algorithm 2 is non-

increasing.
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4.4 Enhancements: regression bounds and valid inequalities

To prevent the solver from generating solutions with large coefficients in the non-

convex QCQPs, and since the lower-level optimization problem is invariant to scalings

of the objective, we can impose arbitrary bounds on the values of ω. Any bound is

valid, but we avoided small numbers to prevent numerical instabilities.

Additionally, to improve the performance of the optimization solver, we included

the following valid inequality to (10):

∑
i∈[N ]

(
b⊤µi +m(ω, xi)⊤δi

)
≥ 1

N

∑
i∈[N ]

z∗(ci)

This is a dual cut-off constraint. Its left hand side takes the same value as

1
N

∑
i∈N (ci)⊤vi in (8), and thus, by optimality of z∗, the inequality holds. This simple

inequality provided considerable improvements in the solver’s performance.

5 Computational experiments

5.1 Computational set-up

Data generation.

We consider an adaptation of the data generation process described in Elmachtoub and

Grigas (2022) and Tang and Khalil (2024). The training data consists of {(xi, ci)}Ni=1

generated synthetically in the following way.

We consider two families of instances: small instances including values of N =

{50, 100, 200} where all methods can be run in moderate running times, and instances

with N = 1000 to test the scalability of our approach. Each dataset is separated

into 70% for training and 30% for testing. Feature vectors are generated by sampling

them from a standard normal distribution (mean zero and standard deviation equal
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to 1). We generate cost vectors by first generating the parameters ω of the model—

representing the true underlying model—and then using the following formula (see

Elmachtoub and Grigas (2022) and Tang and Khalil (2024)):

cia =

[
1

3.5Deg

(
1√
K

( K∑
k=1

ωkx
i
ak

)
+ 3

)Deg

+ 1

]
· ε (14)

where cia is the component of the cost vector ci corresponding to the arc a in the graph.

The Deg parameter specifies the extent of model misspecification; as a linear model is

used as a predictive model in the experiments, the higher the value of Deg, the more

the relation between the features and cost coefficients deviates from a linear one (and

thus, the larger the errors will be). Finally, a multiplicative noise term ε is sampled

randomly from a uniform distribution in [0.5, 1.5]. We perform our experiments by

considering the values of the parameter Deg in {2, 8, 16}.

We consider two nominal problems: shortest path over a directed acyclic grid graph

of 5 × 5 nodes; a maximum weight matching on a bipartite graph of 13 and 12 nodes.

To obtain graphs of similar sizes in both families of instances, we fix the number of

edges of the bipartite matching graph to 40.

We remark that the exact reformulation requires solving a challenging non-convex

problem, and that the underlying problem is NP-complete; these are the main reasons

why we focus on moderate instance sizes in this work. To provide some perspective,

the reformulation involves N · (#Nodes + 2 ·#Edges + 1)+K ·#Edges variables and

N · (#Nodes+#Edges) constraints, from which N ·#Edges are quadratic non-convex

constraints.

Hardware and Software

We implemented all the aforementioned routines using Python 3.10. All non-convex

quadratically constrained quadratic models were solved using Gurobi 10.0.3 (Gurobi
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Optimization, LLC 2023). All experiments were run single-threaded on a Linux

machine with an Intel Xeon Silver 4210 2.2G CPU and 128 GB RAM.

Repository

The codes and instances considered in this article can be found in the repository in

the following link.

5.2 First experiments: evaluation of QCQP-based methods

In this subsection, we describe experiments to evaluate the performance of the different

methods described in Section 4, all of which are based on the QCQP reformulation

(10).

5.2.1 Algorithms

Since many of the methods described in Section 4 require, or are heavily benefited by,

initial solutions, in all of them we start from the solution given by the SPO+ method

(Elmachtoub and Grigas (2022)). This method generates a solution through one LP.

We consider the following sequence of steps to generate decision-focused predic-

tions:

1. Generate an initial solution using the SPO+ method (SPO)

2. Improve the previous solution using Algorithm 1 (LS)

3. Either:

(a) Solve (11) (Penalized) using Gurobi with the solution produced by LS as a warm

start

(b) Solve (10) (Exact) using Gurobi with the solution produced by LS as a warm

start

(c) Use the Alternating Method (Algorithm 2) with the solution produced by LS as

the starting point

(d) Use the Alternating Method (Algorithm 2) with SPO as starting point
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In terms of computational efficiency, Step 1 involves solving one LP; Step 2 solves a

fixed number of LPs; Steps 3(a) and 3(b) are non-convex quadratically constrained

quadratic problems; and Steps 3(c) and 3(d) are sequences of LPs.

This generates six different combinations that we test, with their names indicating

the sequence: SPO, SPO-LS, SPO-LS-EXA, SPO-LS-PEN, SPO-LS-ALT, and SPO-

ALT. In all variants, we limit the entire suite of algorithms to one hour in the following

way. We set a maximum time limit of 20 minutes for the SPO-LS part, leaving the

remaining time for executing either EXA, PEN, or ALT. In our results, we provide the

intermediary performance of SPO-LS. We remark that SPO can be solved in seconds.

For instance, in our experiments, a typical instance with N = 1000 is solved in less

than a minute.

5.2.2 Results

In this section, we compare the decision-focused predictions obtained using the afore-

mentioned methods by evaluating the regrets they achieve. To ensure the regrets are

displayed on the same scale, and following the approach in Elmachtoub and Grigas

(2022), we use the normalized regret instead of reporting the direct regret (as defined

in (2)). The normalized regret is defined as

Regret(D, ω)∑
i∈[N ] z

∗(ci)
.

Henceforth, when we reference the regret, we mean this normalized version. In this

section, we focus mainly on training performance, i.e., how well we can solve or

approximate (10). In the following section we evaluate test set performance as well.

Figure 2 summarizes the performance of the methods on the training set for small

instances of shortest paths (top) and maximum weight bipartite matching (bottom).

We use the regret returned by SPO as the baseline, represented as the horizontal line

at zero. Each bar displays the percentage decrease/increase in regret achieved by our
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methods. The method with the best performance, in terms of normalized regret, is

the one with the most negative value.

In the shortest path instances, the alternating method, either by itself or in tandem

with local search, achieves the best performance in terms of regret. We also observe

that the penalized method may often improve (decrease) the regret, but in some

instances, it can dramatically increase the regret (the bars with positive value). This

occurs whenever the starting point is not valid for the slice given by the chosen penalty

factor in (11), causing the solver to reject the solution. For bipartite matching, there

are cases where the penalized method was the best. However, the alternating method

obtained the overall best results.

We also note that, in some cases, the performance of the alternating method varies

considerably depending on its starting point. In most cases, starting from the solution

provided by the local search algorithm yields a better outcome than starting with

SPO. However, overall, the results for the alternating method are fairly robust.

We believe that these results for the training set are highly encouraging. All meth-

ods we develop here are tailored for improving the training performance in moderate

running times, to which we succeeded for these challenging instances. In Appendix C,

we show the detailed values for Figure 2.

To better understand the performance of the different algorithms, now we provide

more details on their execution. Both the exact method (EXA) and the penalized

method (PEN) often reach the time limit; in Table 1 we report the final gap values

reported by Gurobi. The penalized method, in particular, shows a tendency to return

exceedingly large optimality gaps. This occurs because PEN sometimes rejects the

initial feasible solution and struggles to find either good bounds or high-quality feasi-

ble solutions. In one extreme case, the penalized method failed to identify a feasible

solution for the shortest path instance entirely. Also, note that the bipartite matching

instances always finish with larger gaps than their shortest path counterpart.
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Fig. 2: Training set performance on small shortest path (top) and bipartite matching
(bottom) instances. Each bar represents the reduction/increment of normalized regret
over the baseline SPO+; the more negative, the better the performance.

These results indicate that, even though EXA provides an exact reformulation of

(8), the current solver technology is still unable to provide a provably optimal solution

in these instances.

We also performed experiments on larger instances: with N = 1000. Based on

the analysis above, we exclude from further consideration the methods involving the

exact method (EXA) and the penalized method (PEN), since their performance is

dramatically affected by instance size. We report our results in Tables 2 and 3. From

these results, we see that our methods remain competitive, improving the performance

of SPO in many cases. In two extreme cases, we obtained improvements of 25.9%

(for shortest path) and 39.1% (for bipartite matching). However, overall, we note that

these improvements start to become more modest than in the smaller instances. As

before, the case of bipartite matching is harder to improve than the shortest path.
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Table 1: Gap (percentage) returned by Gurobi at time limit for Exact and Penalized
approaches.

Shortest Path Bipartite Matching

N Deg Noise SPO-LS-EXA SPO-LS-PEN SPO-LS-EXA SPO-LS-PEN

50 2 0.0 3.4 2.8 6.0 3.7
50 2 0.5 11.7 11.4 11.9 8.8
50 8 0.0 10.4 17.3 42.9 52.4
50 8 0.5 17.3 46.1 26.7 33.7
50 16 0.0 27.0 10.9 43.8 155.6
50 16 0.5 26.0 18.9 30.6 436.7

100 2 0.0 7.2 8.5 10.0 5.0
100 2 0.5 16.3 18.6 22.3 11.7
100 8 0.0 28.5 42.9 53.6 138.1
100 8 0.5 28.9 42.4 37.5 101.6
100 16 0.0 55.7 43.4 70.8 930.8
100 16 0.5 62.2 91.2 87.8 840.0

200 2 0.0 8.2 9.3 11.5 14.0
200 2 0.5 18.7 18.8 26.2 34.7
200 8 0.0 36.6 45.9 56.4 121.8
200 8 0.5 38.0 49.5 63.1 122.6
200 16 0.0 45.8 - 65.0 1276.6
200 16 0.5 56.0 58.6 78.6 1348.2

Finally, to provide a more fleshed-out analysis on the alternating method and shed

light on the reduced improvements for large instances, we show per-iteration statistics

in Table 4. This table shows the number of iterations and average time-per-iteration of

the two versions of the alternating method: starting from SPO directly or from local

search.

From Table 4, we note that the number of iterations reduces dramatically as N

increases: this can partially explain why we observed more moderate improvements

with respect to SPO in N = 1000. We also note that, even if running local search

reduces the number of iterations that ALT can perform (since the budget time is

shared), the results in Tables 2 and 3 suggest that it may be worth running them in

tandem.
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Table 2: Training and test performance on large (N = 1000) shortest path instances

Train Set Test Set

Deg Noise SPO SPO- SPO- SPO- SPO- SPO- SPO- SPO-
LS LS- ALT LS LS- -ALT

ALT ALT

2 0.0 0.097 0.0% -2.1% -2.1% 0.1 0.0% -2.0% -2.0%
2 0.5 0.245 0.0% -1.2% -1.2% 0.268 0.0% -0.7% -1.1%
8 0.0 0.532 -6.4% -9.0% -0.8% 0.601 -5.3% +0.7% -0.7%
8 0.5 0.678 0.0% -4.4% -4.4% 0.699 0.0% -0.3% -0.1%
16 0.0 3.983 -24.4% -25.9% -0.5% 13.977 -43.2% -43.7% -0.0%
16 0.5 3.712 -11.3% -14.4% -0.2% 4.155 -2.0% -1.8% -0.4%

Table 3: Training and test performance on large (N = 1000) bipartite matching
instances

Train Set Test Set

Deg Noise SPO SPO- SPO- SPO- SPO- SPO- SPO- SPO-
LS LS- ALT LS LS- -ALT

ALT ALT

2 0.0 0.117 0.0% -1.7% -1.7% 0.118 0.0% 0.0% 0.0%
2 0.5 0.225 0.0% -0.9% -0.9% 0.242 0.0% +0.4% +0.4%
8 0.0 0.406 0.0% -0.7% -0.7% 0.416 0.0% -0.5% -0.5%
8 0.5 0.411 0.0% -1.5% -1.5% 0.449 0.0% 0.0% 0.0%
16 0.0 0.673 -11.0% -11.6% -0.9% 0.652 +6.3% +6.4% +0.5%
16 0.5 0.604 -38.9% -39.1% -0.3% 0.697 -4.9% -5.0% +1.0%

We believe that these results suggest that a batch version of the alternating

method can be worthwhile for large instances. We strongly believe that this, along

with other computational enhancements, can scale the strong result we observed in

small instances.

5.3 Second experiments: comparison with other

state-of-the-art methods
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Table 4: Detailed performance metrics of alternating method. The reported times are the average
iteration time in the alternating method.

Shortest Path Bipartite Matching

N Deg Noise SPO-LS-ALT SPO-ALT SPO-LS-ALT SPO-ALT
Iterations (Time) Iterations (Time) Iterations (Time) Iterations (Time)

50 2 0.0 332 (1.60s) 456 (1.62s) 1922 (0.83s) 2308 (0.87s)
50 2 0.5 327 (1.63s) 471 (1.65s) 2197 (0.72s) 2262 (0.72s)
50 8 0.0 353 (1.63s) 448 (1.65s) 1717 (1.22s) 1759 (1.23s)
50 8 0.5 610 (1.09s) 583 (1.11s) 1770 (1.14s) 1812 (1.14s)
50 16 0.0 318 (1.62s) 435 (1.95s) 1792 (1.28s) 1688 (1.20s)
50 16 0.5 333 (1.67s) 449 (1.61s) 1379 (1.24s) 1754 (1.59s)

100 2 0.0 141 (6.15s) 182 (5.86s) 862 (2.39s) 872 (2.33s)
100 2 0.5 114 (6.99s) 198 (7.13s) 880 (2.41s) 852 (2.33s)
100 8 0.0 115 (6.59s) 202 (7.01s) 918 (2.25s) 896 (2.16s)
100 8 0.5 121 (7.09s) 177 (5.94s) 754 (2.85s) 763 (2.79s)
100 16 0.0 182 (4.46s) 208 (4.70s) 741 (2.88s) 802 (2.90s)
100 16 0.5 160 (4.28s) 223 (4.55s) 830 (2.69s) 796 (2.57s)

200 2 0.0 50 (24.01s) 73 (22.85s) 298 (6.34s) 397 (6.53s)
200 2 0.5 50 (16.73s) 84 (21.36s) 266 (7.44s) 348 (7.59s)
200 8 0.0 52 (20.27s) 77 (19.27s) 310 (6.89s) 342 (6.82s)
200 8 0.5 49 (18.96s) 78 (21.53s) 259 (8.07s) 320 (8.09s)
200 16 0.0 59 (13.48s) 116 (14.69s) 326 (6.66s) 349 (6.36s)
200 16 0.5 53 (15.19s) 83 (19.31s) 318 (6.69s) 341 (6.56s)

1000 2 0.0 32 (10.36s) 49 (10.41s) 173 (5.42s) 256 (5.45s)
1000 2 0.5 33 (7.61s) 50 (7.03s) 184 (4.39s) 276 (4.42s)
1000 8 0.0 33 (7.74s) 50 (7.59s) 167 (5.76s) 250 (5.78s)
1000 8 0.5 33 (7.88s) 50 (7.82s) 166 (6.08s) 245 (5.86s)
1000 16 0.0 33 (8.29s) 50 (8.47s) 151 (6.70s) 233 (7.32s)
1000 16 0.5 33 (8.90s) 49 (7.76s) 146 (6.61s) 230 (7.69s)

The main takeaway message of Section 5.2 is that exploiting (10), even heuristically,

can provide significant improvements in training, and that the alternating direction

(ALT) method is the most robust option out of the ones considered. In this section,

we focus on the ALT method, and show its performance when used in tandem with a

number of state-of-the-art methods.

The methods we consider are based on implementations included in PyEPO (Tang

and Khalil 2024) for shortest paths, namely: Learning-to-rank (LTR) by Mandi et al.
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(2022); Noise Constrastive Estimation (NCE) by Mulamba et al. (2021); Perturbed

Fenchel-Young Loss (PFY) by Berthet et al. (2020); Implicit Maximum Likeli-

hood Estimation (IMLE) by Niepert et al. (2021); and Differentiation of Blackbox

Combinatorial Solvers (DBB) by Pogančić et al. (2019).

For these experiments, we set N = 250. For the data generation based on (14),

we consider the noise parameter ε = 0.5, and we compare degrees Deg ∈ {1, 2, 8, 16}.

Figure 3 reports the regret on the training instances obtained when initializing ALT

with each of the six baseline methods. At iteration 0 (i.e., before applying the alter-

nating updates), PFY yields the best regret across all methods for Deg = 2 and 8,

SPO+ for Deg = 1, and IMLE for Deg = 16. Applying ALT substantially boosts all

the methods. Additionally, ALT can change the relative ranking of methods; Deg = 2,

the ordering between LTR and PFY is reversed after a few alternating iterations.

The same happens for Deg = 16 between IMLE and PFY. These results also indicate

that ALT is sensitive to the initialization, which makes it a natural post-processing

step to refine solutions produced by any DFL approach. Finally, we note that most

of the gains are achieved with only a few alternating iterations. In other words, by

solving a small number of LPs coming from our ALT method, the performance of any

DFL method can be improved. This is a consequence that ALT is designed over an

exact formulation of the pessimistic regret minimization and, at each iteration, it is

guaranteed to have non-increasing series of values for train regret (Proposition 5).

Finally, we evaluate whether improvements in training regret translate into

improved test performance or if there are signs of overfitting. To do so, we conducted

30 replications of the tandem comprising the benchmark method and the resulting

estimator after applying our alternating method. As before, the models were trained

using 250 instances, and in each of the 30 replications, performance was evaluated on

1,000 test observations. We set the solution time for ALT to 5 minutes or a maximum

of 20 iterations, whichever occurs first.
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Fig. 3: Improvement on regret of the alternating descent method (ALT) from different
starting points in training instances.

Figure 4 presents the resulting distributions of the regrets in the test set, for the

different values of Deg. The gray box-plots correspond to the benchmark methods

before applying ALT, while the blue box-plots show the results after applying ALT.

We observe that the resulting distribution is consistently improved after applying our

alternating method. While the final regret varies depending on the solution given to

ALT, in many cases it is considerably lower than the starting point. This indicates

that ALT works well with existing approaches and that, using a small number of linear

programs, better predictive models can be obtained.
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Fig. 4: Comparison of test evaluation for each method for Deg = 1, 2, 8, 16. The gray
boxes indicate the performance of the six benchmark methods without applying ALT,
and the blue boxes indicate the performance after applying the ALT method.

6 Conclusions

In this work, we present an in-depth analysis of the optimization problem behind the

training task of decision-focused learning. Our proof of membership in NP indicates

that this problem is not higher in the computational complexity hierarchy, unless the

latter collapses. In addition, we show that the problem of determining if regret zero is

achievable or not is polynomial time solvable, under mild assumptions. Additionally,

we derive a non-convex QCQP reformulation of the problem, whose structure we

exploit.
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We tested various approaches that exploit this formulation, and noted that

improvements over SPO can be obtained. However, as expected, solving the non-

convex formulation exactly does not scale well. On the other hand, heuristics based on

the quadratic formulation, such as the alternating method, provide a light and well-

founded way to reduce regret on the training data by solving only two single LPs per

iteration.

Our results show that improvements (both in training and test instances) over

state-of-the-art methods can be achieved, thus effectively producing better decision-

focused predictive models. This indicates a great potential of our non-convex optimiza-

tion framework, and we strongly believe that, after computational enhancements, such

as a batch version of the alternating algorithm, these methods can achieve large-scale

tractability.
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A Proof of Corollary 3

Corollary 3: Consider (4) when m(ω, x) = ωx. The regret function (2) only has a finite

number of values, and, furthermore, the minimum regret (4) is always attained.

Proof Let Ii be an arbitrary set of indices of active constraints defining a face F i of V for

the i-th follower. We can consider the following system, which is similar to (6):

(ρi)⊤A = ωxi ∀i ∈ [N ] (15a)

ρij > 0 ∀ j ∈ Ii, ∀i ∈ [N ] (15b)

ρij = 0 ∀ j ̸∈ Ii, ∀i ∈ [N ] (15c)

If (15) is infeasible, there is no ω “consistent” with those faces. And if (15) is feasible, every

ω that is valid for (15) satisfies V ∗(ωxi) = F i, thus the regret is the same for all of them.

Since the number of possible (Ii)i∈[N ] is finite, we conclude. □

B Proof of Theorem 2

Theorem 2: If the input for SIMPLE-REGRET is restricted to M = 0 (i.e., deter-

mining if there is a solution with zero regret) and the data (ci, xi)Ni=1 and the polytope

V satisfy Assumption 1, then the problem can be solved in polynomial time.

Proof This proof uses similar concepts to the proof of Theorem 1, but there are some impor-

tant differences. We begin by noting that, since vi ∈ V , it always holds that ci⊤vi−z∗(ci) ≥ 0,

i.e., the regret is always nonnegative. Thus, for M = 0, SIMPLE-REGRET outputs ‘Yes’ if

and only if there exists ω such that

max
vi∈V ∗(ωxi)

ci⊤vi − z∗(ci) = 0 ∀i ∈ [N ] (16)

In other words, the optimal face of

max
vi∈V ∗(ωxi)

ci⊤vi

is contained in the optimal face defining z∗(ci), i.e., V ∗(ci). By Assumption 1, V ∗(ci) is a

singleton.
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Let Ii be the indices of every active constraint at V ∗(ci) (which can be computed in

polynomial time). We claim that (16) holds for some ω̃ if and only if the following linear

system (over variables ρ, ω) is feasible:

(ρi)⊤A = xiω ∀i ∈ [N ] (17a)

ρij = 0 ∀j ̸∈ Ii, ∀i ∈ [N ] (17b)

ρij ≥ 1 ∀j ∈ Ii, ∀i ∈ [N ] (17c)

We note that the ω̃ certifying (16) may or may not be the same as the ω in (17). Proving

this equivalence suffices, as system (17) can be solved in polynomial time.

Suppose the system (17) is feasible, and take (ρ, ω) that satisfy it. Additionally, for each

i, take vi the unique optimal solution in V ∗(ci). We claim that each (vi, ρi) optimize V ∗(ωxi)

and its dual. Indeed, primal and dual feasibility hold by construction. Complementary

slackness also holds by construction, as for each j either a⊤j vi − bj = 0 or ρij = 0.

Fixing the dual solutions ρi, and via complementary slackness again, we see that any

ṽi ∈ V ∗(ωxi), must satisfy a⊤j ṽi − bj = 0 ∀j ∈ Ii. This means that V ∗(ωxi) is a singleton.

This implies (16) using ω̃ = ω.

For the other direction, suppose (16) holds for some ω. This directly implies that

V ∗(ωxi) = V ∗(ci) = {vi}, since any other vector in the polytope has a strictly larger value

than ci⊤vi by assumption. By optimality conditions for V ∗(ωxi), there exists ρ̃ such that

(ρ̃i)⊤A = xiω ∀i ∈ [N ]

ρ̃i ≥ 0 ∀i ∈ [N ]

ρ̃ij(a
⊤
j vi − b) = 0 ∀j, ∀i ∈ [N ]

Furthermore, we can take ρ̃i to be strictly complementary with vi (as the latter is the

unique optimal solution). Thus, the following holds

(ρ̃i)⊤A = xiω ∀i ∈ [N ]

ρ̃ij > 0 ∀j ∈ Ii, ∀i ∈ [N ]

ρ̃ij = 0 ∀j ̸∈ Ii, ∀i ∈ [N ]
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We can then rescale ρ̃ and ω to obtain (17). □
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Table 5: Training set performance on small shortest path instances. The first three columns
specify the instance parameters. The column labeled SPO provides the normalized regret achieved
by the SPO+ method. Subsequent columns provide the improvements over SPO. Best regrets
are highlighted in color.

N Deg Noise SPO SPO-LS SPO-LS-EXA SPO-LS-PEN SPO-LS-ALT SPO-ALT

50 2 0.0 0.035 0.0% -14.3% -17.1% -42.9% -54.3%
50 2 0.5 0.171 0.0% -22.2% -25.1% -43.3% -43.3%
50 8 0.0 0.133 0.0% -13.5% +53.4% -19.5% -19.5%
50 8 0.5 0.381 -23.6% -45.1% +9.2% -67.5% -64.8%
50 16 0.0 1.254 -66.4% -70.6% -6.7% -82.0% -75.4%
50 16 0.5 0.99 -59.5% -64.5% +253.5% -71.2% -77.8%

100 2 0.0 0.078 0.0% 0.0% 0.0% -32.1% -32.1%
100 2 0.5 0.195 0.0% 0.0% 0.0% -37.9% -40.5%
100 8 0.0 0.399 0.0% 0.0% 0.0% -20.8% -20.8%
100 8 0.5 0.572 -29.0% -29.0% -29.0% -47.6% -44.9%
100 16 0.0 3.243 -61.2% -61.2% -23.0% -69.1% -13.8%
100 16 0.5 1.945 -15.3% -15.3% +76.1% -28.0% -5.3%

200 2 0.0 0.089 0.0% 0.0% 0.0% -20.2% -20.2%
200 2 0.5 0.232 -0.9% -0.9% -0.9% -11.2% -13.4%
200 8 0.0 0.693 -16.7% -16.7% -16.7% -25.4% -4.0%
200 8 0.5 0.621 -1.4% -1.4% -1.4% -22.1% -16.1%
200 16 0.0 2.14 -60.5% -60.5% -60.5% -61.5% -2.9%
200 16 0.5 6.194 -79.4% -79.4% -79.4% -80.4% -0.2%

C Numerical results on training set

In Tables 5 and 6, we present the detailed results of Figure 2. We use the regret

returned by SPO as the baseline. The subsequent columns display the percentage

decrease in regret achieved by our methods. The method with the best performance

in terms of normalized regret is highlighted in orange.
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Table 6: Training set performance on small bipartite matching instances. The first three columns
specify the instance parameters. The column labeled SPO provides the normalized regret achieved
by the SPO+ method. Subsequent columns provide the improvements over SPO. Best regrets
are highlighted in color.

N Deg Noise SPO SPO-LS SPO-LS-EXA SPO-LS-PEN SPO-LS-ALT SPO-ALT

50 2 0.0 0.065 0.0% -12.3% -46.2% -56.9% -56.9%
50 2 0.5 0.125 0.0% -15.2% -35.2% -46.4% -46.4%
50 8 0.0 0.344 0.0% -12.8% -24.4% -31.7% -31.7%
50 8 0.5 0.249 0.0% -15.3% -11.2% -39.4% -39.4%
50 16 0.0 0.316 -3.5% -11.4% +5.1% -52.2% -50.0%
50 16 0.5 0.344 -18.3% -32.0% -18.3% -74.1% -38.4%

100 2 0.0 0.091 0.0% -4.4% -47.3% -29.7% -29.7%
100 2 0.5 0.182 0.0% 0.0% -42.3% -27.5% -27.5%
100 8 0.0 0.391 -10.7% -10.7% -10.7% -40.2% -20.2%
100 8 0.5 0.29 0.0% -5.9% 0.0% -27.6% -27.6%
100 16 0.0 0.415 0.0% -6.7% 0.0% -19.8% -19.8%
100 16 0.5 0.536 -12.9% -12.9% -12.9% -38.6% -19.8%

200 2 0.0 0.103 0.0% 0.0% 0.0% -15.5% -15.5%
200 2 0.5 0.207 0.0% 0.0% 0.0% -11.6% -11.6%
200 8 0.0 0.361 0.0% 0.0% 0.0% -8.9% -8.9%
200 8 0.5 0.387 0.0% 0.0% 0.0% -7.5% -7.5%
200 16 0.0 0.478 -17.6% -17.6% -17.6% -28.9% -17.6%
200 16 0.5 0.589 -25.3% -25.3% -25.3% -33.8% -28.5%
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