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Abstract We consider improving the polyhedral representation of the exten-
sive form of a stochastic mixed-integer program (SMIP). Given a facet for a
single-scenario version of an SMIP, our main result provides necessary and
sufficient conditions under which this inequality remains facet-defining for the
extensive form. We then present several implications, which show that common
recourse structures from the literature satisfy these conditions. For example,
for an SMIP with simple recourse, any single-scenario facet is also a facet for
the extensive form. For more general recourse structures, we provide additional
mild necessary and sufficient conditions.

Keywords stochastic programming · mixed-integer recourse · facet-defining
inequalities · polyhedral theory

1 Introduction

Stochastic mixed-integer programs (SMIPs) with recourse are a widely used
modeling tool to optimize discrete decisions under uncertainty. Applications
include production planning (e.g., [29]), healthcare (e.g., [37]), finance (e.g.,
[12]), and supply chain management (e.g., [39]). In a two-stage SMIP, a “here-
and-now” decision is made in the first stage before the realization of the un-
certain data is known. A realization of the uncertain data is called a scenario.
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After a scenario is realized, a recourse action is taken in the second stage. See
Birge and Louveaux [5] for more information.

SMIPs are, in general, difficult to solve when the second stage contains
integer variables [20]. Decomposition approaches are common techniques to
solve SMIPs [42]. Given a finite set of scenarios, a two-stage SMIP can be
formulated as a large-scale mixed-integer program, called the extensive form.
Another approach, which we consider here, is to solve the extensive form di-
rectly, which remains common in practice (e.g., [17,45]). However, solving the
extensive form becomes harder as the number of scenarios grows. To this end,
in this paper, we focus on improving the polyhedral representation of the con-
vex hull of the feasible space of the extensive form.

The polyhedral structure of the feasible space of the extensive form of
an SMIP is often difficult to study. To make the structure more amenable
to polyhedral analysis, we consider smaller problems, called single-scenario
problems. A single-scenario problem is a two-stage stochastic program in which
one scenario occurs with probability one, and variables and constraints related
to other scenarios are eliminated. Every deterministic problem can be cast
as a single-scenario problem, and there is often extensive literature on the
polyhedral study of single-scenario problems. Hence, this paper considers when
facet-defining inequalities for a single-scenario problem can be extended to
facet-defining inequalities for the extensive form.

In mixed-integer programs, strong valid inequalities can improve the poly-
hedral representation of the convex hull, which may lead to a significant in-
crease in the solution efficiency (e.g., [10,43]). In the literature, the polyhedral
structure of various problems is studied for deterministic settings such as the
binary knapsack polytope [18], symmetric traveling salesman polytope [14],
and variable upper-bound flow models [35], lot-sizing [4], dynamic knapsack
[25] and unit commitment problems [34]. Another widely studied polyhedral
structure in the literature is the single-node flow (SNF) polytope [1,22]. See
Nemhauser and Wolsey [30] and Conforti et al. [9] for more detail.

As every deterministic problem can be cast as a single-scenario problem,
strong valid inequalities derived for deterministic problems can also be used
for single-scenario problems. Moreover, valid inequalities for a single-scenario
problem can be extended to valid inequalities for the extensive form. However,
a natural question is the strength of these single-scenario valid inequalities
in the polyhedral description of the convex hull of the extensive form. Thus,
establishing a relation between the facial structures of the extensive form and
a single-scenario problem may significantly improve solving general SMIPs. In
the remainder of the paper, we use single-scenario valid inequalities (facets)
to refer to valid inequalities (facets) for a single-scenario problem.

In the literature, the structure of certain deterministic problems is lever-
aged to develop valid inequalities for their stochastic counterpart. Guan et al.
[16] extend valid inequalities from the deterministic lot-sizing problem to a
new class for the stochastic version, demonstrating their computational effec-
tiveness. Similarly, Guan et al. [15] generate valid inequalities for the stochas-
tic dynamic knapsack and lot-sizing problems using known inequalities from



Single-Scenario Facet Preservation for Stochastic Mixed-Integer Programs 3

deterministic counterparts. Pan et al. [36] develop several classes of valid in-
equalities for certain unit commitment problems that extend to stochastic unit
commitment problems. Liu and Küçükyavuz [24] study the static probabilistic
lot-sizing problem and propose valid inequalities which give the convex hull of
the related stochastic lot-sizing problem. Another widely studied polyhedral
structure in the literature is single-node flow (SNF) polytope, and its appli-
cations, including fixed-charge transportation problems, and facility location
problems, and lot-sizing problems ([16,26]). Mildebrath et al. [28] introduce
the stochastic version of the SNF polytope and show that single-scenario valid
inequalities can be used in the description of the stochastic SNF polytope.
Valid inequalities from a deterministic problem can also be recycled for the
robust variant (see [7,27]).

Single-scenario valid inequalities are used within decomposition algorithms
to tighten the second-stage problems. Carøe and Tind [8] generate lift-and-
project cuts based on first- and second-stage variables for each scenario for
SMIPs with mixed binary second-stage variables. Sherali and Fraticelli [41]
use the Reformulation-Linearization Technique and parametric lift-and-project
cuts to solve the second-stage problems when the problem has integer recourse.
Sen and Higle [40] apply disjunctive programming to derive single-scenario
valid inequalities to convexify the second-stage problems for SMIPs with the
binary first stage. Ntaimo and Tanner [33] use lift-and-project cuts derived for
each scenario for SMIPs with binary first-stage, and mixed binary second-stage
variables. Ntaimo [31] presents a class of valid inequalities based on disjunc-
tive programming for SMIPs with mixed binary second-stage variables and
non-fixed recourse. Ntaimo [32] derives Fenchel cutting planes that are valid
for the single-scenario problem for each scenario for SMIPs with binary first
stage. Gade et al. [13] utilize parametric Gomory cuts to iteratively tighten
the second-stage problem to solve SMIPs with binary first-stage and integer
second-stage variables. Zhang and Küçükyavuz [46] further generalize this ap-
proach for solving SMIPs with integer first- and second-stage variables. Kim
and Mehrotra [19] use mixed-integer rounding inequalities parameterized by
the first-stage variables to tighten second-stage problems. Bodur et al. [6] pro-
pose a scenario-based cut-and-project approach for SMIPs with mixed-integer
first-stage variables. Bansal et al. [3] add scenario-based valid inequalities a
priori to convexify the second-stage problems for SMIPs with integer first-stage
and mixed-integer second-stage variables. van der Laan and Romeijnders [21]
derive parametric optimality cuts for two-stage SMIPs with mixed-integer re-
course. The most similar work to ours is Mildebrath et al. [28], which provides
necessary and sufficient conditions for facet-defining inequalities for the single-
scenario problem to be facet-defining for the extensive form of the stochastic
SNF polytope.

Single-scenario valid inequalities are analyzed in the sparse cutting-plane
context. Dey et al. [11] examine the strength of the sparse cutting planes using
methods that describe the sparsity structure of the constraint matrix and the
cutting planes. A common approach in developing strong valid inequalities for
the stochastic problem is to combine valid inequalities for individual scenarios,
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as discussed in Riis and Andersen [38], Guan et al. [15]. However, in this paper,
we focus on the facet-defining inequalities for a single-scenario problem that
can directly be used in the description of the convex hull of the extensive form.

Given the improvements obtained by valid inequalities, using the approach
in Mildebrath et al. [28] for general SMIPs may provide promising results
when solving the extensive form. Therefore, in this paper, we look for the
conditions under which single-scenario valid inequalities can be used in the
description of the extensive form, in particular, when facet-defining inequalities
for the single-scenario problem are facet-defining for the extensive form. We
say single-scenario facets are preserved (in a sense to be made more precise
in Section 2) if they are also facet-defining for the extensive form. One of
our principle questions is under what conditions the polyhedron has preserved
single-scenario facets. Our contributions are:

1. We characterize two-stage SMIPs for which single-scenario facets are facet-
defining for the convex hull of the feasible space of the extensive form.

2. We provide necessary and sufficient conditions that ensure the preservation
of single-scenario facets.

3. We give conditions under which certain recourse structures preserve all
single-scenario facets.

4. We show that stochastic facility problems have preserved single-scenario
facets.

2 Necessary and Sufficient Conditions for Preserving Single-Scenario
Facets

Throughout this paper, we use conv(·) to denote the convex hull of a set,
projx(·) to denote the projection onto the variables in the subscript, In×n to
denote the n × n identity matrix, and ek to denote the unit vector where all
entries are zero except k-th element which is one. We also use 1n, 0n, and 0n×n

to refer to the n-dimensional vector of ones, n-dimensional vector of zeros and
n × n matrix of zeros, respectively. To denote strictly positive matrices or
vectors, i.e., xj > 0, ∀j, we use the notation x > 0, where xj denotes the j-th
element of x. For matrices, Ai and Aj denote the i-th row and j-th column
of matrix A, respectively. Proofs and examples that are not given in the main
text are provided in the Online Resource.

Let Ω be a finite set of realizations with corresponding probabilities Pr(ω)
for ω ∈ Ω. Let m1 be the number of constraints in the first stage, m2 be the
number of constraints in the second stage for each scenario, l1 be the number
of integer variables in the first stage, and l2 be the number of integer variables
in the second stage. Given a finite set of realizations, Ω, the extensive form is
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as follows:

min cx+
∑
ω∈Ω

Pr(ω)qωyω (1a)

s.t. Ax ≥ b, (1b)

Tωx+Wωyω ≥ hω, ∀ ω ∈ Ω, (1c)

x ∈ Rn1−l1
+ × Zl1

+, (1d)

yω ∈ Rn2−l2
+ × Zl2

+, ∀ ω ∈ Ω, (1e)

where A ∈ Qm1×n1 , b ∈ Qm1 , c ∈ Qn1 , qω ∈ Qn2 , Tω ∈ Qm2×n1 , Wω ∈
Qm2×n2 , and hω ∈ Qm2 for ∀ω ∈ Ω. Let X :=

{
x ∈ Rn1−l1

+ × Zl1
+ | Ax ≥ b

}
be the set of feasible first-stage solutions and Y (x, ω) :=

{
yω ∈ Rn2−l2

+ ×Zl2
+ |

Wωyω ≥ hω − Tωx
}

be the set of feasible second-stage solutions. Let S ⊂
Rn1+n2|Ω| denote the feasible space of (1) and P denote its convex hull, i.e.,
P = conv(S). We assume that P is full-dimensional, as is common in the
literature (see [28,44]).

For any given ω ∈ Ω, the feasible space of the single-scenario problem
is defined as Sω := {(x, yω) | x ∈ X, yω ∈ Y (x, ω)}. The convex hull of the
feasible space of a single-scenario problem is denoted as Pω := conv(Sω) for
ω ∈ Ω. As P is assumed to be full-dimensional, Pω is full-dimensional for
ω ∈ Ω.

In the remainder of the paper, we consider valid inequalities for Pω of the
form:

αx+ βyω ≥ τ, (F)

where α ∈ Rn1 , β ∈ Rn2 , and τ ∈ R, and their extensive form extensions:

αx+ βyω +
∑

k∈Ω\{ω}

0n2y
k ≥ τ.

For readability, we omit the zero coefficients for other scenarios and denote
αx+ βyω ≥ τ as a valid inequality for the extensive form.

Definition 1 ([20])

1. The SMIP (1) has complete recourse if, ∀x ∈ Rn1 the set Y (x, ω) ̸= ∅,
∀ω ∈ Ω.

2. The SMIP (1) has relatively complete recourse if, ∀x ∈ X the set Y (x, ω) ̸=
∅, ∀ω ∈ Ω.

3. The SMIP (1) has totally unimodular (TU) recourse if it has relatively
complete recourse, the stochasticity is constrained to the vectors hω, and
Wω is TU, ∀ω ∈ Ω.

4. The SMIP (1) has simple recourse if:
(a) The recourse matrix can be partitioned as Wω = [In2×n2 , −In2×n2 ]

and accordingly qω = [(qω)+, (qω)−], ∀ω ∈ Ω.
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(b) The objective vectors qω ≥ 0n2 , ∀ω ∈ Ω.

Definition 2 The SMIP (1) has slack recourse if the recourse matrix Wω can
be partitioned as Wω = [W̃ω, In2×n2 ], ∀ω ∈ Ω.

The relationship among the different recourse structures is summarized in
Figure 1.

Fig. 1 The relationship among different recourse structures.

Proposition 1 If SMIP (1) has relatively complete recourse, then Pω =
proj(x,yω)(P ), ∀ω ∈ Ω.

Remark 1 Proposition 1 implies that if SMIP (1) has a recourse structure
as given in Definitions 1-2, then the projection to the single-scenario space,
proj(x,yω)(P ), coincides with the single-scenario polyhedron, Pω, for all ω ∈ Ω.

Definition 3 For any ω ∈ Ω, a valid inequality (F) that is facet-defining for
Pω is a preserved single-scenario facet if it is also facet-defining for P .

Definition 4 A polyhedron P is single-scenario facet preserving (SSF-preserving)
if for every scenario ω ∈ Ω, every single-scenario facet-defining inequality (F)
for Pω, the inequality is preserved for P .

Let Q = {(z, v) ∈ Rp × Rq|Λz + Υv ≤ γ} be non-empty, with r =
rank (Λ=, Υ=), r∗ = rank (Λ=), and r̄ = rank (Υ=) where (·=) denotes the
equality subsystem. Lemmas 2-3 characterize how the dimension of a polyhe-
dron changes under projection.

Lemma 1 dim(Q) = dim(affine-hull(Q)) = p+ q − r.

Lemma 2 ([2]) If dim(Q) = p+ q, then dim(projv(Q)) = q.

Lemma 3 ([2]) dim(projv(Q)) = dim(Q)− p+ r∗.
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Let G = {(z, v) ∈ Q|az+ ζv = d} be a facet of Q. Let r∗G = rank

([
a
Λ

]=)
,

r̄G = rank

([
ζ
Υ

]=)
, and rG = rank

([
a
Λ

]=
,

[
ζ
Υ

]=)
. Lemma 4 characterizes

how the dimension of a facet changes under projection.

Lemma 4 ([2]) dim(projv(G)) = dim(projv(Q))− 1 + (r∗G − r∗).

Lemma 5 ([2]) Let G be a facet of Q. Then projz(G) is a facet of projz(Q)
if and only if r̄G = r̄.

Lemma 6 establishes a relationship between the faces of projected polyhe-
dron projv(Q) and the faces of Q.

Lemma 6 ([2]) The projection projv(G) of a face G of Q is a face of projv(Q)
if and only if Q has a face Gζ defined by an inequality of the form ζv ≥ d (i.e.
0pz + ζv ≥ d), such that projv(Gζ) = projv(G), where Gζ = {(z, v) ∈ Q|ζv =
d}.

Lemma 7 ([2]) Under the condition of Lemma 6, projv(Gζ) = projv(G) =
{v ∈ projv(Q)|ζv = d} = projv(Q) ∩ {v|ζv = d}.

In the context of stochastic mixed-integer programming, Lemma 8 shows
that the facets of the form (F) for polyhedron P remain facet-defining inequal-
ities for the projected polyhedron projx,yω (P ).

Lemma 8 ([28]) Let the inequality (F) be facet-defining for P for some ω ∈
Ω. Then, (F) is facet-defining for projx,yω (P ). Moreover, if β = 0n2

, then (F)
is facet-defining for projx,yω̄ (P ), ∀ω̄ ∈ Ω.

Theorem 1, our main result, gives the necessary and sufficient conditions
for a single-scenario valid inequality to be a facet for P .

Theorem 1 For some ω ∈ Ω, let the single-scenario valid inequality (F) be
valid for Pω, and consider the hyperplane H = {(x, y1, . . . , y|Ω|) ∈ Rn1+|Ω|n2 |
αx+ βyω = τ}, that is, the points where (F) holds with equality. Then, (F) is
facet-defining for P if and only if:

1. (F) is facet-defining for proj(x,yω)(P ), and
2. dim(proj(y1,...,yω−1,yω+1,...,y|Ω|)(P ∩H)) = (|Ω| − 1)n2.

Proof Let the single-scenario valid inequality (F) be facet-defining for P . By
Lemma 8, (F) is also facet-defining for proj(x,yω)(P ) which shows that Condi-

tion 1 holds. LetQ = P ,G = P∩H, z = (x, yω), and v = (y1, . . . , yω−1, yω+1, . . . , y|Ω|)
and apply Lemma 4. Since dim(P ) = n1 + n2|Ω|, we have dim(projv(P )) =
n2(|Ω|−1) and r∗ = 0 by Lemmas 2 and 3. To show Condition 2 holds, we show
r∗P∩H = 1 and use Lemma 4. To this end, we first show that r̄P∩H = 0. As (F)
is a facet of P and Condition 1 holds, r̄P∩H = r̄ by Lemma 5. Moreover, r̄ = 0
by Lemmas 2 and 3 because dim(projz(P )) = n1 + n2, and thus r̄P∩H = 0.
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As r̄P∩H = rank

([
ζ
Υ

]=)
= 0, the equality subsystem

[
ζ
Υ

]=
is a zero matrix,

therefore, rP∩H = rank

([
a
Λ

]=
,0

)
= r∗P∩H . To show r∗P∩H = 1, it is sufficient

to show rP∩H = 1. Because (F) is facet-defining for P , by Lemma 1, we have

dim(P ∩H) = n1 + n2|Ω| − 1 = n1 + n2|Ω| − rP∩H ,

which implies rP∩H = 1. Given r∗P∩H = 1 and r∗ = 0, by Lemma 4:

dim(projv(P ∩H)) = dim(projv(P ))− 1 + r∗P∩H − r∗

= n2(|Ω| − 1)− 1 + 1− 0 = n2(|Ω| − 1).

Hence, dim(projv(P ∩H)) = (|Ω| − 1)n2.
Now, suppose Conditions 1 and 2 hold. By Lemma 6, (F) is a face of

P and proj(x,yω)(P ∩ H) = proj(x,yω)(P ) ∩ {(x, yω) | αx + βyω = τ} by
Lemma 7. Then, dim(proj(x,yω)(P ∩H)) = dim(proj(x,yω)(P )∩{(x, yω) | αx+
βyω = τ}) = n1 + n2 − 1. Let Q = P , G = P ∩ H, z = (x, yω), and v =
(y1, . . . , yω−1, yω+1, . . . , y|Ω|) and apply Lemma 4. Because the projection of
P ∩ H onto v is full-dimensional, there cannot be any implied equality in
projv(P ∩H). Therefore, r̄P∩H = 0 as ζ = 0n2(|Ω|−1). When we project P ∩H
onto z, by Lemma 3, we have:

dim(P ∩H) = dim(projz(P ∩H)) + n2(|Ω| − 1)− r̄P∩H

= n1 + n2 − 1 + n2(|Ω| − 1)− 0 = n1 + n2(|Ω|)− 1.

Therefore, (F) is also facet-defining for P . ⊓⊔

3 Implications of Theorem 1

Theorem 1 provides a roadmap to obtain sufficient conditions for single-scenario
facets to remain facet-defining for the extensive form. Single-scenario facets for
SMIPs with relatively complete, complete, TU, simple or slack recourse satisfy
the first condition intuitively by Proposition 1. The second condition ensures
that single-scenario facet-defining inequalities are preserved as facets for the
extensive form.

Given that the single-scenario valid inequality (F) is facet-defining for Pω,
we only need to verify the second condition of Theorem 1 in order to prove
that (F) is facet-defining for P . However, verifying this may be difficult. There-
fore, we have the following results showing that single-scenario facets (F) are
preserved under more easily established conditions.

Corollary 1 Fix ω̄ and suppose that ∀ω ∈ Ω \ {ω̄} there exists a point ŷω ∈
Rn2−l2

+ ×Zl2
+ such that Wω ŷω > 0m2

. Then, P preserves single-scenario facets
(F) for P ω̄.

Corollary 2 Suppose that ∀ω ∈ Ω there exists a point ŷω ∈ Rn2−l2
+ ×Zl2

+ such
that Wω ŷω > 0m2

. Then, P is SSF-preserving.
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Although the condition in Corollary 3 implies that the SMIP (1) has com-
plete recourse, the converse does not hold.

Corollary 3 If SMIP (1) has simple or slack recourse, then P is SSF-preserving.

While preserving single-scenario facets (F) improves the representation of
the feasible space of the extensive form, single-scenario facets may not be
sufficient to describe P , as shown in Example 1 in the Online Resource.

3.1 Sufficient Conditions for Complete Recourse

In the case of complete recourse, we introduce the following condition to ensure
that Condition (2) holds:

There exists x̂(ω) ∈ Rn1 such that Tωx̂(ω) < hω. (C1(ω))

When SMIP (1) has complete recourse, this condition can be interpreted
as there exists a first-stage decision (x̂(ω)) that results in a violation of every
constraint if no recourse action (yω = 0n2

) is taken.

Corollary 4 Suppose SMIP (1) has complete recourse, and (C1(ω)) holds
∀ω ∈ Ω \ {ω̄}. Then, P preserves single-scenario facets (F) for P ω̄.

Corollary 5 If SMIP (1) has complete recourse, and (C1(ω)) holds ∀ω ∈ Ω,
then P is SSF-preserving.

Note that satisfying Condition (C1(ω)) ∀ω ∈ Ω is not necessary, as shown
by Example 2 in the Online Resource.

Corollary 6 If SMIP (1) has complete recourse, and either of the following
conditions holds:

1. Tω has m2 linearly independent columns ∀ω ∈ Ω,
2. hω > 0m2

, ∀ω ∈ Ω,

then, P is SSF-preserving.

3.2 Sufficient Conditions for Relatively Complete Recourse

When the SMIP has relatively complete recourse, consider the following con-
dition:

hω < Tωx, ∀x ∈ X \ {0n1}. (C2(ω))

Condition (C2(ω)) implies that taking no recourse actions, i.e., yω = 0n2 , is
always feasible.

Corollary 7 Let SMIP (1) have relatively complete continuous recourse with
n1 > 1 and l2 = 0. Suppose that (C2(ω)) holds ∀ω ∈ Ω \ {ω̄}. Then, P
preserves single-scenario facets (F) for P ω̄.
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We can relax Condition (C2(ω)) if SMIP (1) has variable upper bound
constraints of the form:

Uωx− Iyω ≥ 0m2 or Kωx−Dωyω ≥ 0m2 , ∀ ω ∈ Ω, (2)

where Uω,Kω ∈ Qm2+n1
+ are diagonal matrices with positive diagonal ele-

ments, and Dω ∈ Qm2+n2
++ , ∀ω ∈ Ω. The relaxed condition (C3(ω)) is given

as:

hω < Tωx, ∀x ∈ X ∩ (Rn1
++). (C3(ω))

Corollary 8 Let SMIP (1) have relatively complete continuous recourse with
n1 > 1 and l2 = 0. Suppose Condition (C3(ω)) holds ∀ω ∈ Ω \ {ω̄}. Then, P
preserves single-scenario facets (F) for P ω̄.

Examples 3 and 4 in the Online Resource illustrate when the recourse
structures fail to be necessary and/or sufficient for P to be SSF-preserving.

Remark 2 Example 3 shows that relatively complete recourse is not necessary
for P to be SSF-preserving. This implies that having neither simple, slack,
complete, or TU recourse are necessary for P to be SSF-preserving.

Remark 3 Example 4 in the Online Resource demonstrates that TU recourse
and relatively complete recourse are not sufficient for P to be SSF-preserving.

The proofs of Corollaries 7-8 imply that when Conditions (C2(ω)) and
(C3(ω)) hold ∀ω ∈ Ω, relatively complete recourse is sufficient for preserving
the single-scenario facets (F).

Corollary 9 Let SMIP (1) have relatively complete recourse with n1 > 1 and
yω ∈ Rn2

+ , ∀ω ∈ Ω. Suppose that ∀ω ∈ Ω, Condition (C2(ω)) holds. Then, P
is SSF-preserving.

Corollary 10 Let SMIP (1) have relatively complete recourse with variable
upper bound constraints (2) and yω ∈ Rn2

+ , ∀ω ∈ Ω. Suppose that (C3(ω))
holds ∀ω ∈ Ω. Then, P is SSF-preserving.

Remark 4 Example 5 in the Online Resource shows that stochastic facility
location problems [23,26] are SSF-preserving.

4 Conclusion

We introduce facet preservation as a new characterization for SMIPs and
single-scenario facet-defining inequalities (F) to provide a better understand-
ing of the facial structure of the convex hull of the extensive form and a
better assessment of the strength of such inequalities. We also provide a gen-
eral result showing the relation between the facial structures of the projected
single-scenario polyhedron and the convex hull of the extensive form. Then,
we present sufficient conditions for SSF preservation. Future directions include
extending these results to multi-stage SMIPs.
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9. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, vol. 271. Springer
(2014)

10. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Mathematical
Programming 112(1), 3–44 (2008)

11. Dey, S.S., Molinaro, M., Wang, Q.: Analysis of sparse cutting planes for sparse MILPs
with applications to stochastic MILPs. Mathematics of Operations Research 43(1),
304–332 (2018)

12. Dupacova, J., Hurt, J., Stepan, J.: Stochastic Modeling in Economics and Finance,
vol. 75. Springer Science & Business Media (2006)
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5 Appendix

Proposition 1 If SMIP (1) has relatively complete recourse, then Pω =
proj(x,yω)(P ), ∀ω ∈ Ω.

Proof Fix ω ∈ Ω.
“⊇:” By definition, proj(x,yω)(P ) = {(x, yω)|∃(y1, . . . , yω−1, yω+1, . . . , yΩ)

s.t. (x, y1, . . . , yΩ) ∈ P}. Let (x̂, ŷω) ∈ proj(x,yω)(P ). Then, there exists (ŷ1, . . . ,

ŷω−1, ŷω+1, . . . , ŷ|Ω|) such that (x̂, ŷ1, . . . , ŷ|Ω|) ∈ P . If (x̂, ŷ1, . . . , ŷ|Ω|) ∈ S,
we have (x̂, ŷω) ∈ Pω. If (x̂, ŷ1, . . . , ŷ|Ω|) /∈ S, then the point (x̂, ŷ1, . . . , ŷ|Ω|)
can be written as a convex combination of points in S, i.e., (x̂, ŷ1, . . . , ŷ|Ω|) =∑k

i=1 µi(x̄i, ȳ
1
i , . . . , ȳ

ω−1
i , ȳωi , ȳ

ω+1
i , . . . , ȳ

|Ω|
i ) where (x̄i, ȳ

1
i , . . . , ȳ

ω−1
i , ȳωi , ȳ

ω+1
i ,

. . . , ȳ
|Ω|
i ) ∈ S and µi ∈ [0, 1] for i = 1, . . . , k with

∑k
i=1 µi = 1. Then, (x̄i, ȳ

ω
i ) ∈

Sω for i = 1, . . . , k. The convex combination of these points
∑k

i=1 µi(x̄i, ȳ
ω
i ) =

(x̂, ŷω), therefore, (x̂, ŷω) ∈ Pω.
“ ⊆:” Let (x̂, ŷω) ∈ Pω. If (x̂, yω̂) ∈ Sω, then there exists yω̂ ∈ Y (x̂, ω̂) for

all ω̂ ∈ Ω \ {ω} because SMIP (1) has relatively complete recourse. Therefore,
(x̂, ŷω) ∈ proj(x,yω)(P ). If (x̂, yω̂) ∈ Sω, then (x̂, ŷω) can be written as a convex

combination of points in Sω, i.e., (x̂, ŷω) =
∑k

i=1 µi(x̄i, ȳ
ω
i ), where (x̄i, ȳ

ω
i ) ∈

Sω and µi ∈ [0, 1] for i = 1, . . . , k with
∑k

i=1 µi = 1. Then, for every x̄i,
there exists ȳω̂i ∈ Y (x̂, ω̂) for all ω̂ ∈ Ω \{ω} for i = 1, . . . , k because SMIP (1)
has relatively complete recourse. Then, the convex combination of these points

(x̂, ŷ1, . . . , ŷω−1, ŷω, ŷω+1, . . . , ŷΩ) =
∑k

i=1 µi(x̄i, ȳ
1
i , . . . , ȳ

ω−1
i , ȳωi , ȳ

ω+1
i , . . . , ȳ

|Ω|
i )

lies in P , therefore, (x̂, ŷω) ∈ proj(x,yω)(P ). ⊓⊔

Lemma 9 ([28]) Suppose {(f (i), g(i)) ∈ RM1+M2 | i = 1, . . . , N} is a set of N
points such that f (1), . . . , f (N) are affinely independent. Suppose h(1), . . . , h(t)

are t linearly independent points in RM2 . Then, for any s ∈ {1, . . . , N}, the
N + t points(

f (1)

g(1)

)
, ...,

(
f (N)

g(N)

)
,

(
f (s)

g(s) + h(1)

)
, ...,

(
f (s)

g(s) + h(t)

)
are affinely independent.

Corollary 2 Fix ω̄ and suppose that ∀ω ∈ Ω \ {ω̄} there exists a point ŷω ∈
Rn2−l2

+ ×Zl2
+ such that Wω ŷω > 0m2

. Then, P preserves single-scenario facets
for P ω̄.

Proof Let ω̄ = 1 without loss of generality. First, we need to show P 1 =
proj(x,y1)(P ). Note that proj(x,y1)(P ) ⊆ P 1 by definition. For every (x, y1) ∈
P 1, there exists ϕω ∈ Z+ for every scenario ω ̸= 1 such that yω ∈ Zn2|Ω|, Tωx+
ϕωWωyω ≥ hω, i.e., (x, y1, ϕ2ŷ2, . . . , ϕ|Ω|ŷ|Ω|) ∈ P , because for all ω ∈ Ω \{1}
there exists ŷω ∈ Rn2−l2

+ × Zl2
+ such that Wω ŷω > 0m2 . Therefore, (x, y

1) ∈
proj(x,y1)(P ) showing that P 1 = proj(x,y1)(P ).

Suppose that the single-scenario valid inequality (F) is facet-defining for
P 1. Then, there exist n1+n2 affinely independent points f (i) = (xi, y1,i)n1+n2

i=1
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in S1 that satisfy (F) with equality. As for all ω ∈ Ω \ {1} there exists a point
ŷω ∈ Rn2−l2

+ × Zl2
+ satisfying Wω ŷω > 0m2 , for every point i = 1, . . . , n1 + n2

and every scenario ω ̸= 1, there exists ϕω,i ∈ Z+ such that

Tωxi + ϕω,iWω ŷω > hω,

and

Tωxi + ϕω,iWω ŷω > hω − (Wω)j ,

for all j = 1, . . . , n2, where (Wω)j is the jth column of Wω. Define the least

common multiple ϕ̂ω := lcm{ϕω,1, . . . , ϕω,n1+n2}. Then,

zi := (xi, y1,i, ϕ̂2ŷ2, . . . , ϕ̂|Ω|ŷ|Ω|),

lies in S and satisfies (F) with equality for i = 1, . . . , n1+n2. By construction,

if we take z1 and add 1 to the jth entry of the vector ϕ̂ω ŷω for any scenario
ω ̸= 1, and any j = 1, . . . , n2, then the resulting point still lies in S and
satisfies (F) with equality. Now, we show that the resulting set of points is
affinely independent.

Let g = (ϕ̂2ŷ2, . . . , ϕ̂|Ω|ŷ|Ω|) and h(k) = ek for k = 1, . . . , n2(|Ω|−1) where
ek is the kth unit vector of dimension n2(|Ω| − 1). Then, n1 + n2|Ω| points:(

f (1)

g

)
,

(
f (2)

g

)
, ...,

(
f (n1+n2)

g

)
,(

f (1)

g + h(1)

)
,

(
f (1)

g + h(2)

)
, ...,

(
f (1)

g + hn2(|Ω|−1)

)
are affinely independent by Lemma 9. ⊓⊔

Corollary 3 Suppose that ∀ω ∈ Ω there exists a point ŷω ∈ Rn2−l2
+ ×Zl2

+ such
that Wω ŷω > 0m2 . Then, P is SSF-preserving.

Proof This condition implies that the SMIP (1) has complete recourse, there-
fore, Pω = proj(x,yω)(P ) for all ω ∈ Ω. The rest of the proof is very similar to
the proof of Corollary 1. ⊓⊔

Example 1 Consider an instance of (1) where n1 = 1, n2 = 2, Ω = {1, 2},
A = [−1], b = [−10], T 1 = T 2 = [2] and: W 1 = W 2 =

[
1 −1

]
, h1 = [2], h2 =

[5], where all variables are integral. Note that this problem has simple recourse.
The polytope P is full-dimensional. Moreover, it is SSF-preserving. However,
the valid inequality −25x + y11 − y12 − 15y21 = −65 is facet-defining for P .
Therefore, single-scenario facets are not sufficient to describe P .

Corollary 4 Suppose SMIP (1) has complete recourse, and (C1(ω)) holds
∀ω ∈ Ω \ {ω̄}. Then, P preserves single-scenario facets for P ω̄.
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Proof Fix ω̄ = 1 without loss of generality. Recall Condition (C1(ω)) that
∃x̂(ω) ∈ Rn1 such that Tωx̂(ω) < hω. By Corollary 1, it is sufficient to show
that for all ω ∈ Ω \ {1} there exists a point ŷω ∈ Rn2−l2

+ × Zl2
+ such that

Wω ŷω > 0m2
. Because (C1(ω)) holds, for all ω ∈ Ω \ {1}, there exists x̂(ω) ∈

Rn1 such that Tωx̂(ω) < hω. Then, as the problem has complete recourse, the
set Y (x̂(ω), ω) ̸= ∅ for all ω ∈ Ω. Therefore, for all ω ∈ Ω \ {1}, there exists
ŷω such that

Tωx̂(ω) +Wω ŷω ≥ hω.

Since we have Tωx̂(ω) < hω for all ω ∈ Ω \ {1}, ŷω satisfies Wω ŷω > 0m2
for

all ω ∈ Ω \ {1}. ⊓⊔

Example 2 Consider an instance of (1) with n1 = 2, n2 = 2, Ω = {1, 2},

A = −I2×2, b = −12, T 1 = T 2 =

[
1 0
−1 0

]
and: W 1 = W 2 =

[
1 −1
0 1

]
,

h1 =

[
−2
−1

]
, h2 =

[
−1
0

]
. All variables are integral and the first-stage variables

are restricted to be binary. Note that this problem has complete recourse. The
polytope P is full-dimensional. Moreover, it is SSF-preserving by Corollary 3.
However, Condition (C1(ω)) does not hold for either scenario.

Corollary 6 If SMIP (1) has complete recourse, and either of the following
conditions holds:

1. Tω has m2 linearly independent columns ∀ω ∈ Ω,
2. hω > 0m2 , ∀ω ∈ Ω,

then, P is SSF-preserving.

Proof Either condition implies that Condition (C1(ω)), i.e., ∃x̂(ω) ∈ Rn1 such
that Tωx̂(ω) < hω, holds for all ω ∈ Ω. Since the problem has complete
recourse both conditions of Theorem 1 are satisfied for every ω ∈ Ω. Hence,
P is SSF-preserving. ⊓⊔

Corollary 7 Let SMIP (1) have relatively complete continuous recourse with
n1 > 1 and l2 = 0. Suppose that (C2(ω)) holds ∀ω ∈ Ω \ {ω̄}. Then, P
preserves single-scenario facets for P ω̄.

Proof Let ω̄ = 1 without loss of generality. Recall Condition (C2(ω)) that
hω − Tωx < 0m2 , ∀x ∈ X with x ̸= 0n1 . Suppose that the single-scenario
valid inequality (F) is facet-defining for P 1. Then, there exist n1 + n2 affinely
independent points f (i) = (xi, y1,i), i = 1, . . . , n1 + n2, in S1 that satisfy
(F) with equality. As (1) has relatively complete recourse, for every xi, i =
1, . . . , n1 + n2, there exists ŷω,i ∈ Rn2

+ such that Tωxi + Wω ŷω,i ≥ hω for
all ω ∈ Ω \ {1}. Also, the assumption n1 > 1 implies that there exists i0 ∈
{1, . . . , n1 + n2} such that xi0 ̸= 0n1 , since xi = 0n1 for i = 1, . . . , n1 +
n2 contradicts with points (f (i))n1+n2

i=1 being affinely independent. Because
(C2(ω)) holds ∀ω ∈ Ω\{ω̄}, we have hω−Tωxi0 < 0m2

for all ω ∈ Ω\{1}. If we
set ŷω,i0 = 0n2

for ω ∈ Ω \{1}, we have Tωxi0 +Wω ŷω,i0 > hω for ω ∈ Ω \{1}
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as hω − Tωxi0 < 0m2 for ω ∈ Ω \ {1}. Then, there exist scalars ϕω,j > 0 such
that Tωxi0 + Wω(ŷω,i0 + ϕω,jej) ≥ hω, for all j = 1, . . . , n2 and ω ∈ Ω \ {1},
where ej is the jth unit vector. Then, the points
zi := (xi, y1,i, ŷ2,i, . . . , ŷ|Ω|,i),
for i = 1, . . . , n1 + n2 lie in P and satisfy (F) with equality as (xi, y1,i) ∈ S1

for i = 1, . . . , n1 + n2 and yω,i ∈ Rn2 . By construction, if we add ϕω,j to the
jth entry of the vector ŷω,i0 for any scenario ω ̸= 1, and any j = 1, . . . , n2,
then the resulting vectorsŷω,i0

1
...

ŷω,i0
n2

+ ϕω,jej , for ω ̸= 1 and j = 1, . . . , n2

remain feasible for given (xi0 , y1,i0) and satisfy (F) with equality. Now, we show
that the resulting set of points is affinely independent. For this, we define the
vector Φ ∈ Rn2(|Ω|−1) as follows:
Φ = (ϕ2,1, ..., ϕ2,n2 , ϕ3,1, ..., ϕ3,n2 , . . . , ϕ|Ω|,1, ..., ϕ|Ω|,n2).

Let g(i) = (ŷ2,i, . . . , ŷ|Ω|,i) for i = 1, . . . , n1 + n2 and h(k) = Φkek for
k = 1, . . . , n2(|Ω| − 1). Then, n1 + n2|Ω| points:(

f (1)

g(1)

)
, ...,

(
f (i0)

g(i0)

)
, ...,

(
f (n1+n2)

g(n1+n2)

)
,(

f (i0)

g(i0) + h(1)

)
,

(
f (i0)

g(i0) + h(2)

)
, ...,

(
f (i0)

g(i0) + hN2

)
are affinely independent by Lemma 9. ⊓⊔

Corollary 8 Let SMIP (1) have relatively complete continuous recourse with
n1 > 1 and l2 = 0. Suppose Condition (C3(ω)) holds ∀ω ∈ Ω \ {ω̄}. Then, P
preserves single-scenario facets for P ω̄.

Proof Let ω̄ = 1 without loss of generality. Recall Condition (C3(ω)) that hω−
Tωx < 0m2

, ∀x ∈ X∩(Rn1
++). Suppose that the single-scenario valid inequality

(F) is facet-defining for P 1. Then, there exist n1 + n2 affinely independent
points f (i) = (xi, y1,i) ∈ S1, i = 1, . . . , n1 + n2 that satisfy (F) with equality.
As (1) has relatively complete recourse, for every xi, i = 2, . . . , n1 + n2, there
exists ŷω,i ∈ Rn1

+ such that Tωxi + Wω ŷω,i ≥ hω for all ω ∈ Ω \ {1}. Let
g(i) = (ŷ2,i, . . . , ŷ|Ω|,i) for i = 2, . . . , n1 +n2 and (f̄ , ḡ) be the average of these
points: (

f̄
ḡ

)
=

1

n1 + n2

n1+n2∑
i=1

(
f (i)

g(i)

)
,

which lies in P and satisfies (F) with equality. Then, the points(
x̄
ȳ1

)
,

(
x2

y1,2

)
, . . . ,

(
xn1+n2

y1,n1+n2

)
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are also affinely independent as f̄ is an affine combination of f (i), i = 1, . . . , n1+
n2. Note that for each j = 1, . . . , n1, there exists xi such that xi

j > 0 as oth-

erwise there exists j such that xi
j = y1,ij = 0 for all i = 1, . . . , n1 + n2 which

implies that the points (xi, y1,i)n1+n2
i=1 are not affinely independent. Therefore,

we have x̄j > 0 as for each j = 1, . . . , n1, there exists xi such that xi
j > 0.

Also, we have hω − Tωx̄ < 0m2
for all ω ∈ Ω since x̄ > 0n1

. Hence, we can set
ȳω = 0n2

for ω ∈ Ω \ {1} such that the point

z̄ = (x̄, ȳ1,0n2 , . . . ,0n2)

and the points

zi = (xi, y1,i, ŷ2,i, . . . , ŷ|Ω|,i), i = 2, . . . , n1 + n2

lie in P and satisfy (F) with equality. Moreover, as Tωx̄ > hω for every scenario
ω ∈ Ω, there exist scalars ϕω,j > 0 such that

Tωx̄+Wω(0n2
+ ϕω,jej) ≥ hω,

for all j = 1, . . . , n2 and ω ∈ Ω \ {1}.
Now, we show that the resulting set of points is affinely independent. For

this, we define the vector Φ ∈ Rn2(|Ω|−1) as follows:
Φ = (ϕ2,1, . . . , ϕ2,n2 , ϕ3,1, . . . , ϕ3,n2 , . . . , ϕ|Ω|,1, . . . , ϕ|Ω|,n2).

We set ḡ = (0, . . . , 0) and h(k) = Φkek for k = 1, . . . , n2(|Ω| − 1). Then,
n1 + n2|Ω| points:(

f̄
ḡ

)
,

(
f (2)

g(2)

)
, . . . ,

(
f (n1+n2)

g(n1+n2)

)
,(

f̄
ḡ + h(1)

)
,

(
f̄

ḡ + h(2)

)
, . . . ,

(
f̄

ḡ + h(n2(|Ω|−1))

)
are affinely independent by Lemma 9 and lie in P as z̄ and zi, i = 2, . . . , n1+n2

lie in P and yω ∈ Rn2 , ω ∈ Ω. ⊓⊔

Example 3 Consider an instance of (1) with n1 = n2 = 3, Ω = {1, 2}, and
the following feasible region:

yωi ≥ xi, ∀ i ∈ {1, 2, 3}, ω ∈ Ω,

yω1 + yω2 + yω3 ≤ dω, ∀ ω ∈ Ω,

xi ∈ {0, 1}, ∀ i ∈ {1, 2, 3},
yωi ∈ {0, 1}, ∀ i ∈ {1, 2, 3}, ω ∈ Ω,

where d1 = 2 and d2 = 3. This model does not have relatively complete re-
course, because the vector 13 ∈ X, but the set Y (13, 1) is empty. However, P
preserves facets from Pω for ω ∈ Ω. Therefore, P is SSF-preserving.
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We provide facet-defining inequalities for P, P 1 and P 2 to show that P
preserves all single-scenario facets. Facet-defining inequalities for P :

− x1 + x2 − x3 + y11 + y13 + y21 − y22 + y23 ≤ 3,

x1 − y11 ≤ 0, x2 − y12 ≤ 0, x3 − y13 ≤ 0,

y11 + y12 + y13 ≤ 2, y11 ≤ 1, y12 ≤ 1, y13 ≤ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

x1 − y21 ≤ 0, x2 − y22 ≤ 0, x3 − y23 ≤ 0,

y21 ≤ 1, y22 ≤ 1, y23 ≤ 1.

Facet-defining inequalities for P 1:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

x1 − y11 ≤ 0, x2 − y12 ≤ 0, x3 − y13 ≤ 0,

y11 + y12 + y13 ≤ 2, y11 ≤ 1, y12 ≤ 1, y13 ≤ 1.

Facet-defining inequalities for P 2:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

x1 − y21 ≤ 0, x2 − y22 ≤ 0, x3 − y23 ≤ 0,

y21 ≤ 1, y22 ≤ 1, y23 ≤ 1.

Example 4 Consider an instance of (1) with n1 = n2 = 2, Ω = {1, 2}, and
the following data:

A = −I2×2, b = −12,

T 1 = T 2 = I2×2, W 1 = W 2 = −I2×2,

with right-hand-side vectors h1 = −12 and h2 = 02. All variables are restricted
to be integers. Note that this problem has TU recourse (i.e., relatively complete
recourse, Wω is TU for ∀ω ∈ Ω, uncertainty is constrained to the vectors
hω). Moreover, the polytope P is full-dimensional. Inequalities xi ≥ 0 for
i = 1, 2 are facet-defining for P 1 because the four affinely independent points
(0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0, 1) in P 1 satisfy x1 ≥ 0 with equality.
Similarly, we can find four affinely independent points in P 1 that satisfy x2 ≥
0 with equality. However, there are not six affinely independent points in P
satisfying xi ≥ 0 with equality because xi = 0 enforces y2i to be zero for i = 1, 2.
Therefore, P is not SSF-preserving.

Example 5 (Stochastic Facility Location Problem) Consider the set of cus-
tomers M = {1, . . . ,M} and the set of plants N = {1, . . . , N}. Let dωi > 0
denote the demand of customer i under scenario ω ∈ Ω, and let each plant
have the capacity Cω satisfying (1/N)

∑
i∈M dωi ≤ Cω <

∑
i∈M dωi , ∀ω ∈ Ω.
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The feasible space of the stochastic capacitated plant location problem is defined
by the following constraints [23]:

yωij ≤ xj , ∀i ∈ M, ∀j ∈ N , ∀ω ∈ Ω (3a)∑
j∈N

yωij ≤ 1, ∀i ∈ M, ∀ω ∈ Ω (3b)

∑
i∈M

dωi y
ω
ij ≤ Cωxj , ∀j ∈ N , ∀ω ∈ Ω (3c)

yωij ≥ 0, ∀i ∈ M, ∀j ∈ N , ∀ω ∈ Ω (3d)

xj ∈ {0, 1}, ∀j ∈ N . (3e)

The stochastic facility location problem has relatively complete recourse and
satisfies Condition (C3(ω)) ∀ω ∈ Ω. Therefore, (3) is SSF-preserving by Corol-
lary 10. If we write problem (3) in the form of (1), we obtain:

Tω =


IN×N

...
IN×N

0M×N

CωIN×N

 , hω =


0N

...
0N

−1M

0N .



hω − Tωx =


−x
...

−x
−1M

−Cωx

 .

Therefore, hω < Tωx, ∀x ∈ {0, 1}N∩RN
++ as Cω > 0 which satisfies Condition

(C3(ω)) ∀ω ∈ Ω.
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