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In this paper, we introduce an approach for obtaining probabilistically guaranteed upper and

lower bounds on the true optimal value of stopping problems. Bounds of existing simulation-and-

regression approaches, such as those based on least squares Monte Carlo and information relaxation,

are stochastic in nature and therefore do not come with a finite sample guarantee. Our data-

driven approach is fundamentally different as it allows replacing the sampling error with a pre-

specified confidence level. The key to this approach is to use high- and low-biased estimates that are

guaranteed to over- and underestimate, respectively, the conditional expected continuation value

that appears in the stopping problem’s dynamic programming formulation with a pre-specified

confidence level. By incorporating these guaranteed over- and underestimates into a backward

recursive procedure, we obtain probabilistically guaranteed bounds on the problem’s true optimal

value. As a byproduct we present novel kernel-based non-asymptotic uniform confidence bands for

regression functions from a reproducing kernel Hilbert space. We derive closed-form formulas for

the cases where the data-generating distribution is either known or unknown, which makes our

data-driven approach readily applicable in a range of practical situations including simulation. We

illustrate the applicability of the proposed bounding procedure by valuing a Bermudan put option.

Keywords: Stochastic programming, Optimal stopping, Finite sample guarantees, Reproducing

kernel Hilbert spaces, Approximate dynamic programming

1. Introduction

Optimal stopping is a fundamental class of problems in stochastic optimisation that has attracted

considerable attention in the operational research (OR) literature. This is attributable to the simple

elegance of optimal stopping and its wide applicability (Powell, 2019). In its standard form, an

optimal stopping problem requires the decision maker to choose when to stop in order to maximise
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(minimise) an expected reward (cost)2. When formulated as a discrete time dynamic program

using Bellman’s principle of optimality, the algorithmic solution strategy simplifies to a binary

decision at each point in time: Stop the process or continue until the next time period. There are

numerous applications in areas such as finance (Wei and Zhu, 2022), energy (Nadarajah et al., 2017),

real options (Maier et al., 2020a,b), economics (Kang, 2005), marketing (Feng and Gallego, 1995),

inventory management (Van Foreest and Kilic, 2023), and healthcare (David and Yechiali, 1985).

In addition, optimal stopping is an active area of methodological research, with recent contributions

to the OR literature extending this problem class to, e.g., risk aversion (Pichler et al., 2022), robust

optimisation (Sturt, 2023), interpretability (Ciocan and Mǐsić, 2022), pathwise optimisation (Desai

et al., 2012), duality (Ibáñez and Velasco, 2020) and randomisation (Dong, 2024).

Despite the simple formulation, finite-horizon optimal stopping problems do not permit analytic

solutions, so one has to resort to numerical approximations. Standard techniques to numerically

approximate the value of optimal stopping problems apply either a finite difference scheme, a bino-

mial/trinomial lattice (i.e. a tree) model, or Monte Carlo simulation. Simulation-based techniques

first generate a set of sample paths from the underlying stochastic model in the form a scenario fan,

and then apply dynamic programming to approximate the optimal value of the stopping problem

using the generated scenario fan. While tree-based approaches guarantee non-anticipative policies

by construction, scenario fan-based approaches have to ensure non-anticipativity in an explicit way

as part of the optimisation step. So-called simulation-and-regression approaches accomplish this

through approximating the continuation function (which is a conditional expectation) that appears

in the dynamic programming recursion by a – parametric or nonparametric – regression estimator.

Carriere (1996) was the first to present the simulation-and-regression idea using non-parametric

regression estimates. The seminal work of Longstaff and Schwartz (2001) (as well as the parallel

work of Tsitsiklis and Van Roy (2001)) then popularised the idea of blending tools from regression

analysis with stochastic dynamic programming, which is widely studied in the OR literature (see,

e.g., Nadarajah et al. (2017); Maier et al. (2020a); Wei and Zhu (2022); Ciocan and Mǐsić (2022)).

Existing simulation-and-regression approaches can be divided into those that provide lower

bounds and those that provide upper bounds on the optimal value of a stopping problem. Sub-

optimal policies that give a lower bound are often comparatively simple to determine since any

feasible policy will result in a lower bound. For example, the use of regression-based approximations

of the continuation functions in the least-squares Monte Carlo method of Longstaff and Schwartz

(2001) leads to sub-optimal decisions, and consequently gives a lower bound. Finding (good) upper

bounds, by contrast, is much more involved. The existing stream of upper-bound literature is

mainly related to a set of techniques collectively referred to as information relaxation (see the

recent monograph of Brown and Smith (2022)). The key idea behind these techniques is to first

provide the decision maker with more information by relaxing the nonanticipativity constraint, and

then to penalise violations of the temporal feasibility constraints. The resulting lower and upper

2We focus on the problem of reward maximisation throughout the paper, but all our results directly apply to the
symmetric problem of cost minimisation upon reversing the signs.
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bound estimates then provide a range for the optimal value and the gap between these two bounds

serves as an indicator for the quality of determined (sub-optimal) stopping policies.

However, lower and upper bounds of existing simulation-and-regression approaches depend on

the sampled paths of the underlying stochastic process and therefore do not come with probabilistic

guarantees. In other words, the resulting performance bounds are stochastic in nature, so are not

guaranteed to be valid with respect to the true underlying distribution. This is because even if

the generated scenario fan contains a large number of sample paths and is sufficiently rich, the

numerical estimate that results from the subsequent optimisation step still depends on the specific

set of sample paths generated. To the best of our knowledge, no guaranteed bounds for stopping

problems are available in the existing literature. Here we close this gap by introducing a data-driven

approach for obtaining probabilistically guaranteed bounds on the true optimal value of stopping

problems. In doing so, our work contributes to the extensive literature on optimal stopping and

approximate dynamic programming (Powell, 2022), but especially to the large stream of literature

on bounding methods, with its growing focus on data-driven approaches that provide finite sample

guarantees for performance bounds of stochastic optimisation problems (see, e.g., Guigues et al.

(2017); Bertsimas and Koduri (2022); Gao (2023); Baardman et al. (2023); Sadana et al. (2024)).

The main contribution of this paper is the development of the first approach for constructing

probabilistically guaranteed bounds on the true optimal value of stopping problems. Unlike existing

upper- and lower-bound approaches, whose estimates are only guaranteed to be valid with respect to

the optimal stopping problem’s sample-based approximation, our approach results in performance

bounds that are guaranteed to be valid with respect to the original optimal stopping problem. While

the numerical values of our bounds also depend on the given set of sample paths, the associated

probabilistic guarantees that we derive are valid with respect to the true underlying distribution,

meaning our guaranteed bounds allow replacing the sampling error with a pre-specified confidence

level. The key to achieving this is to bound the true (but difficult or impossible to determine)

continuation function that appears in the problem’s dynamic programming formulation by high- and

low-biased regression estimates that are (probabilistically) guaranteed to over- and underestimate,

respectively, the true conditional expectation. So, rather than directly approximating the exact

continuation function, we use guaranteed over- and underestimates of the true continuation function

at every stage of the backward recursive procedure to ensure that we obtain guaranteed upper

and lower bounds, respectively, on the stopping problem’s true optimal value. We illustrate the

applicability of the proposed data-driven approach by valuing a Bermudan-style put option.

The secondary contribution of this paper is a new construction of non-asymptotic uniform

confidence bands for regression functions based on the theory of reproducing kernel Hilbert spaces

(RKHSs), and demonstrating how these can be leveraged to approximate continuation functions in

a stochastic dynamic programming procedure. To the best of our knowledge, this newly established

link between non-parametric statistics and OR is the first application of non-asymptotic uniform

confidence bands that goes beyond a mere theoretical interest. There is a large body of statistical

literature on constructing confidence bands for regression functions (see, e.g., Bjerve et al. (1985);
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Knafl et al. (1985); Eubank and Speckman (1993); Sun and Loader (1994); Hall and Horowitz (2013);

Cai et al. (2014)). To establish non-asymptotic uniform bands, some assumptions are required about

the class of functions that contains the true regression function, f0. Existing results are based on

relatively strong assumptions, such as the monotonicity of f0 (see Gauffriau et al. (2021)), the

Lipschitz continuity of f0 with known Lipschitz constant (see Lederer et al. (2019)), or the exact

knowledge of the modulus of continuity of f0 (see Jiang (2019)). Such assumptions allow to bound

the form of the regression function between two observation points. More involved is the assumption

used in Csáji and Horváth (2022) that f0 is band-limited, i.e., its Fourier transform vanishes outside

a compact interval. They also have to assume that the unknown f0 is defined on the entire real line,

even though their regression estimate f̂(x) is only defined for x ∈ [0, 1]. These assumptions are too

restrictive for our purposes, so we use RKHS theory to develop novel finite sample guarantees in

the form of kernel-based non-asymptotic uniform confidence bands for general regression problems.

As a final contribution, with the generalisable guaranteed bounding approach developed here

we hope to have laid the groundwork for methodological extensions and applications to other data-

driven decision problems. Importantly, our main regularity assumption that the true but unknown

regression function is an element of an RKHS is relatively mild since the RKHS is dense in the

space of continuous functions. No restrictive assumptions are made on structural properties – such

as convexity or monotonicity – of the true regression function. Dommel and Pichler (2023) have

recently studied a generalised stochastic optimisation problem whose objective function needs to

be estimated and have shown the weak consistency of their uniform regression (function) estimator

using the RKHS framework. Their asymptotic result will also follow as a direct corollary of the

stronger finite sample guarantee developed in this paper. The idea to use the framework of RKHSs

to construct confidence bands also appears in Csáji and Horváth (2022), where the Paley-Wiener

kernel is (exclusively) used. However, their approach requires solving a quadratic optimisation

problem for each point x0 for which the bound is to be calculated. Moreover, their construction

only works in the case where the distribution of the regressors (or inputs) is known. In contrast, we

derive closed-form expressions for the probabilistic bounds both for the case where the regressors

come from a known distribution and the case where they come from an unknown distribution. This

makes our data-driven approach readily applicable in a range of situations including simulation.

The rest of this paper is organised as follows: In Section 2, we describe the fundamental prop-

erties of RKHSs and the construction of the kernel ridge regression (KRR) estimator. Section 3

contains our key statistical results in the form of probabilistic over- and underestimation guarantees

for the cases where the underlying data-generating distribution is known or unknown. In Section 4

we derive our main results by applying these statistical results to develop a novel algorithmic pro-

cedure that provides guaranteed bounds for optimal stopping problems. The applicability of our

bounding procedure is illustrated in Section 5 using the example of a Bermudan-style put option,

which is the canonical optimal stopping problem in finance. Lastly, we provide concluding remarks

and directions for future research in Section 6. Appendices A, B, and C contain proofs of lemmas, a

summary of the notation used for probability distributions, and supplementary figures, respectively.
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2. The nonparametric regression estimate

In this section, we develop the RKHS-based nonparametric regression estimator in preparation

for the subsequent derivation of closed-form formulas for the probabilistic guarantees (Section 3),

which are a key component of our guaranteed bounding procedure (Section 4). We begin with

an overview of the well-developed theory of RKHS to make our work self-contained and state

our assumptions. We then present the continuous and the empirical regularisation problem in

Subsections 2.2 and 2.3, respectively, with the latter yielding the KRR estimator. The notion of

reproducing kernels was originally introduced by Aronszajn (1950), and we refer the interested

reader to the textbooks of Wahba (1990); Schölkopf and Smola (2002); Berlinet and Thomas-

Agnan (2011) for further details. RKHS-based approaches and kernel methods in particular are

well established in artificial intelligence and machine learning, and they have recently started to

gain popularity in the OR literature (see, e.g., Ban and Rudin (2019); Bertsimas and Koduri (2022);

Schmidt and Pibernik (2024); Sadana et al. (2024)). Appendix A contains all proofs of lemmas.

2.1. Overview of reproducing kernel Hilbert spaces and assumptions

Given some non-empty (but not necessarily compact) set X ⊂ Rd, let k : X × X → R be a

function with the following properties:

(P1) Symmetry: k(x, y) = k(y, x)∀x, y ∈ X ;

(P2) Positive semi-definiteness:

m∑
i,j=1

vivjk(xi, xj) ≥ 0 ∀m ≥ 1, vi, vj ∈ R, xi, xj ∈ X .

Then k is called a kernel function, Mercer kernel, or simply kernel. In this paper we consider kernels

that additionally satisfy assumptions (A1)–(A5) for all (x, y) ∈ X × X :

(A1) Translation invariance: k(x, y) does only depend on x− y;

(A2) Boundedness: 0 ≤ k(x, y) ≤ 1;

(A3) Normalisation: k(x, x) = 1.

Consider the space Hfin of all real-valued functions f of the form

f(·) =

J∑
j=1

vjk(xj , ·) , (1)

where J <∞. Uniqueness of the representation in (1) is guaranteed by the following assumption:

(A4) Linear independence: For any finite collection of distinct points {x1, . . . , xJ} ⊆ X , the func-

tions k(xj , ·) are linearly independent on X .

On the space of functions on X , which is spanned by the set {k(x, ·)|x ∈ X}, an inner product 〈·, ·〉k
is defined by

〈k(x, ·), k(y, ·)〉k := k(x, y). (2)

5



Its bilinear extension is used for the spaceHfin. If f(x) =
∑I

i=1 vik(x, yi) and g(x) =
∑J

j=1wjk(x, zj)

are functions in span{k(x, ·)|x ∈ X}, then by linearity

〈f, g〉k =
I∑
i=1

J∑
j=1

viwjk(yi, zj) .

Consequently, the inner product 〈·, ·〉k induces a norm ‖ · ‖k on the real inner product space Hfin,

defined by

∥∥∥∥ I∑
i=1

vik(·, yi)
∥∥∥∥2

k

:=
I∑

i,j=1

vivj〈k(yi, ·), k(yj , ·)〉k =
I∑

i,j=1

vivjk(yi, yj) ≥ 0 ,

where the non-negativity is a result of the positive semi-definiteness of the kernel k . The completion

of Hfin with respect to the norm ‖ · ‖k is called the reproducing kernel Hilbert space (RKHS) H .

By construction, Hfin ⊂ H and Hfin is dense in H (finite linear combinations are dense).

Let f ∈ Hfin be a finite linear combination as in (1) and set g = k(·, x). Then

〈f, g〉k = 〈
I∑
i=1

vik(xi, ·), k(·, x)〉k =
I∑
i=1

vi〈k(xi, ·), k(·, x)〉k =
I∑
i=1

vik(xi, x) = f(x) . (3)

By density of Hfin in H , (3) is also valid for f ∈ H . Thus, the inner product with k(·, x) acts

as the evaluation functional in H . Using the Cauchy-Schwartz inequality, one then gets |f(x)| =

|〈k(x, ·), f(·)〉k| ≤ ‖k(x, ·)‖k · ‖f‖k. This further implies

sup
x
|f(x)| = ‖f‖∞ ≤ ‖f‖k ,

since ‖k(x, ·)‖k =
√
k(x, x) = 1 holds for all x ∈ X by assumption (A3).

Finally, in order to cover a broad class of regression functions, we consider kernels that satisfy

the following universality assumption (cf e.g. Sriperumbudur et al. (2011)):

(A5) Universality: The family of all continuous functions CX on X is dense in H (or equivalently

dense in Hfin) with respect to the supremum norm.

Remark 2.1. Examples of commonly used functions satisfying properties (P1) and (P2) as well

as assumptions (A1–A5) are the sinus kernel k(x, y) = sin(π(x−y))
π(x−y) (the Paley-Wiener kernel) and

the widely used Gaussian kernel k(x, y) = exp(−α‖x− y‖2) (see Steinwart and Christmann (2008,

Corollary 4.58)). The latter kernel, which is a universal kernel (Micchelli et al., 2006) and also

know as squared-exponential or Gaussian radial basis function (RBF) kernel (Kanagawa et al.,

2018), will also be utilised in our numerical examples in Section 5.
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2.2. The continuous problem and corresponding regularisation operator

For a given probability measure P on X , consider the operator K on H :

(Kf)(x) :=

∫
X
k(x, y) f(y)P (dy) = 〈k(x, ·), f(·)〉P,2 .

To emphasise the dependence on the measure, we explicitly write 〈·, ·〉P,2 here. Only when there is

no confusion possible, we omit the index P . However, we always keep the indices 〈·, ·〉2 and 〈·, ·〉k
to clearly distinguish between the two different inner products that we use. Notice that if P is

discrete, then Kf ∈ Hfin.

By the boundedness of k, the operator K maps L2(P ) functions to L2(P ) functions and is

self-adjoint in L2 : 〈Kf, g〉2 = 〈f,Kg〉2 . It holds that

‖Kf‖2k =

∥∥∥∥∫
X
k(·, y)f(y) P (dy)

∥∥∥∥2

k

=

∫∫
X×X

k(x, y)f(x)f(y)P (dx)P (dy) .

There is an important relation between 〈·, ·〉k and 〈·, ·〉2:

Lemma 2.1. For f, g ∈ L2(P ) ∩H, the following relation between 〈·, ·〉k and 〈·, ·〉2 holds:

〈f, g〉P,2 = 〈Kf, g〉k = 〈f,Kg〉k .

Since K is symmetric and positive semidefinite, it has orthonormal (in H) eigenvectors ui and

nonnegative eigenvalues µi . If v =
∑

i αiui, then Kv =
∑

i αiµiui . Notice that some eigenvalues

µi may be zero and therefore K may be singular. However, K + λI, with I being the identity and

λ > 0 , is always invertible, since for v =
∑

i αiui it holds that

[K + λI]−1v =
∑

i
αi

1

µi + λI
ui .

Moreover, as ‖ui‖k = 1, it holds that

‖[K + λI]−1Kv‖2k =
∑

i
α2
i

(
µi

µi + λ

)2

≤
∑

i
α2
i = ‖v‖2k , (4)

and, consequently,

‖[K + λI]−1K‖k ≤ 1 . (5)

The regularisation operator based on K. For every f ∈ H and λ > 0, let Sλ(f) be the

minimiser in g of the following problem with respect to the underlying distribution P :

Opt (P ) min
g
‖f − g‖2P,2 + λ‖g‖2k ,

Since the objective is strictly convex, the solution of problem Opt (P ) is unique. Notice the close

relation of problem Opt (P ) to the notion of the proximal operator (see Parikh and Boyd (2014)).
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Lemma 2.2. Using the relation g = Kw one gets for the solution of problem Opt (P ) that w =

[K + λI]−1f and Sλ(f) = [K + λI]−1Kf.

By (4), the regularisation operator Sλ is contracting in H since ‖[K+ λI]−1Kf‖k ≤ ‖f‖k . If K
was invertible, then S0 would be the identity. However, we can guarantee invertibility of [K + λI]

only for λ > 0. In the limit λ→ 0, the following result holds:

Lemma 2.3. For any f0 ∈ KH, it holds that Sλ(f0)→ f0 in k-norm, and hence also in supremum

norm, as λ tends to zero.

2.3. The empirical problem and kernel ridge regression

Let (X1, . . . , Xn) be a set of n independent random variables from the regressor distribution

P , i.e. Xi ∼ P and (X1, . . . , Xn) ∼ Pn, with Pn being the distribution of the sample points. We

assume that P has no atoms. Let (x1, . . . , xn) ∈ X n be the set of realisations of (X1, . . . , Xn), drawn

independently from P , and let P̂n = 1
n

∑
i δxi be the pertaining (discrete) empirical distribution.

Notice that P̂n is a random object governed by Pn since it depends on the observed data (x1, . . . , xn),

which are realisations of (X1, . . . , Xn). For a given sample X = (X1, . . . , Xn), let HX be the linear

subspace of H generated by (k(·, X1), . . . , k(·, Xn)). This is a finite-dimensional subspace of H and

any function
∑n

i=1 vik(x,Xi) is characterised by the coefficients v = (v1, . . . , vn)>. We assume that

the sample points are distinct and therefore, by assumption (A4), the coefficients are unique.

We distinguish two different cases:

� Fixed design: The distribution of regressors Xi is known such that the Wasserstein distance

dW (P, P̂n) can be computed.

� Random design: The regressors represent an i.i.d. sample from an unknown distribution P .

We use the same regression estimate in the two cases, but the closed-form formulas for the probabilis-

tic guarantees that we derive will involve slightly different terms. For fixed design, (X1, . . . , Xn) ∼
Pn typically represents n i.i.d. samples from P , but in some situations the regressors Xi may be

chosen deterministically in order to minimise dW (P, P̂n). We refer to the book of Pflug and Pichler

(2014) for algorithms to solve the so-called optimal quantisation problem, which refers to construct-

ing a discrete distribution that minimises the Wasserstein distance to a given P . Their book also

deals with the problem of computing dW (P, P̂n) when (X1, . . . , Xn) is a random draw from Pn.

The empirical version of K is called K̂n, i.e.,

(K̂nf)(x) :=

∫
X
k(x, y) f(y) P̂n(dy) =

1

n

n∑
j=1

k(x,Xj)f(Xj) = 〈k(x, ·), f(·)〉P̂n,2

and

‖K̂nf‖2k =
1

n2

n∑
i=1

n∑
j=1

f(Xi)f(Xj)k(Xi, Xj) =

∫∫
X×X

k(x, y)f(x)f(y) P̂n(dx) P̂n(dy) .
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The operator K̂n is self-adjoint and maps HX to HX . Introducing the n × n symmetric positive

semi-definite matrix Kn with entries Kn(i, j) := 1
nk(Xi, Xj) , one sees that

∥∥∥∥ n∑
i=1

vik(·, Xi)

∥∥∥∥2

k

= n · v>Knv . (6)

The matrix nKn is called Gram matrix or kernel matrix. The operator K̂n acts on the coefficients

in the following way:

K̂n
( n∑
i=1

vi · k(x,Xi)

)
=

n∑
i=1

(Knv)i · k(x,Xi) . (7)

Similarly, [Kn + λI]−1K̂n
(∑n

i=1 vi · k(x,Xi)
)

=
∑n

i=1

(
[Kn + λI]−1Knv

)
i
· k(x,Xi) , and analogous

to (5), we get

‖[Kn + λI]−1Kn‖k ≤ 1 . (8)

The empirical regularisation operator based on K̂n. The following result for the empirical

distribution can be obtained in a similar way as the solution of problem Opt (P ), and by evoking

the famous Representer Theorem, see Schölkopf et al. (2001).

Theorem 2.1 (Representer Theorem). The function ĝ that solves the regularisation problem

Opt (P̂n) min
g∈H
‖f − g‖2

P̂n,2
+ λ · ‖g‖2k ,

where ‖ · ‖2
P̂n,2

is the square loss and λ > 0 is a regularisation constant controlling the smoothness

of g, is unique and can be found in HX . It has the representation ĝ =
∑n

i=1 vik(·, Xi) , where the

vector v = (v1, . . . , vn)> satisfies v = [Kn + λI]−1φ , with φ = (f(X1), . . . , f(Xn))>.

The regularisation problem Opt (P̂n) with respect to the empirical distribution is an optimisation

problem over the potentially infinite dimensional function space H. However, Theorem 2.1 states

that the solution of this regularised empirical risk minimisation problem can be found in the finite

dimensional space HX . It is given as a weighted sum of so-called feature vectors k(·, Xi). Note

that while the form of the obtained RKHS estimator ĝ is identical to the well-known kernel ridge

regression (KRR) estimator, we only permit kernel functions k which lead to a RKHS that is dense

in the space of continuous functions (see Assumption (A5)). Nevertheless, to ensure consistency

with the vast majority of the kernel methods literature (e.g. see Kanagawa et al. (2018) and the

discussion therein), in the following we refer to the function ĝ as the KRR estimator.

Lemma 2.4. Assume that f and k are bounded Lipschitz functions with Lipschitz constants L(f)

and L(k), respectively. Then, it holds that

‖Kf − K̂nf‖P,2 ≤ ‖Kf − K̂nf‖∞ ≤ cL(f, k)dW (P, P̂n) ,
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where dW (P, P̂n) is the Wasserstein distance defined by

dW (P, P̂n) := inf

{∫∫
‖x− y‖π(dx, dy) : π is a bivariate distribution with marginals P and P̂n

}
and cL(f, k) is the Lipschitz constant of y 7→ k(x, y)f(y), with cL(f, k) ≤ L(f) + L(k)‖f‖∞.

Let the true regression function f0 be continuous on X . Given our assumptions, f0 has a

representation of the form

f0(x) = (Kw0)(x) =

∫
X
k(x, y)w0(y)P (dy) .

We consider a standard “signal plus noise” (or additive error) model and, for simplicity, restrict

ourselves now to the univariate case (d = 1). So, for each one-dimensional Xi, i = 1, . . . , n , we

observe a Yi such that Yi = f0(Xi) + εi , where εi denotes random noise. We suppose the standard

assumptions that E[εi] = 0 ,E[ε2
i ] ≤ σ2 for all i = 1, . . . , n , and that the εi’s are conditionally

independent given the Xi (cf. e.g., the discussion in Kanagawa et al. (2018)). Note that we require

the variances of the εi’s to only be bounded rather than known exactly. Let (y1, . . . , yn) ∈ Rn be

the realisation of the set of random variables (Y1, . . . , Yn). The set of pairs (xi, yi)
n
i=1 ⊂ X × R,

which is typically referred to as training data or training set (of observations), can then be used to

obtain an estimate of the regression function f0. Set Y = (Y1, . . . , Yn)> and ε = (ε1, . . . , εn)>.

To develop finite sample results with respect to the true underlying probability distribution,

a careful distinction is required between the different probability distributions that exist in our

setting. In addition to those introduced at the beginning of this subsection, here P̄ denotes the

bivariate distribution of the pair of random variables (X,Y ), P̄n denotes the joint distribution of

the random sample ((X1, Y1), . . . , (Xn, Yn)), and P̄nX denotes the conditional sample distribution

given the regressors X1, . . . , Xn. Notice that the distribution P (Pn) introduced at the beginning

of this subsection then corresponds to the marginal distribution of component X (vector (Xi)
n
i=1)

with respect to P̄ (P̄n). For a real-valued random output variable Y and a random input variable

X from the joint distribution P̄ , the regression function f0(x) at any point x ∈ X is given by the

conditional expectation of Y given value x of the input X, i.e. f0(x) = E[Y |X = x]. Table B.2 in

Appendix B summarises all the different symbols used for probability distributions in this work.

Finally, our KRR estimator f̂n ∈ HX ⊆ Hfin ⊂ H, which is a nonparametric regression estimate

of f0, is then given by

f̂n(x) =
1

n

n∑
i=1

(
[Kn + λI]−1Y

)
i
· k(x,Xi) . (9)

3. Uniform confidence bands for regression functions

In this section we address the statistical problem of constructing non-asymptotic uniform con-

fidence bands for the true but unknown regression function. The closed-form formulas for the

probabilistic over- and underestimation guarantees that we derive here are a key component of our

10



guaranteed bounding procedure for optimal stopping problems (Section 4). We begin with the fixed

design case, where the underlying regressor distribution P is known.

Theorem 3.1 (Fixed design). Let f̂n(·) be the nonparametric regression estimate (9) in the case

where the regressors Xi come from a known distribution. Then, for a given error level 0 < β < 1,

it holds that

P̄n
[
∃x : f0(x) ≥ f̂n(x) + C

]
≤ β ,

where

C =

√
σ2 tr(Mλ)

nβ
+ cL(w0, k)dW (P, P̂n)

(
1 +

1

2
√
nλ

)
+

√
λ

2
√
n
‖w0(X)‖2 , (10)

with cL(·) defined as in Lemma 2.4, and Mλ := [Kn + λI]−1Kn[Kn + λI]−1 .

Proof. Dissect the estimated regression function (9) into

f̂n(x) =
1

n

n∑
i=1

(
[Kn + λI]−1Y

)
i
· k(x,Xi)

= m̂n(x) + R̂λ,n(x) ,

where

m̂n(x) =
1

n

n∑
i=1

(
[Kn + λI]−1((Kw0)(X))

)
i
· k(x,Xi)

represents the main part (with (Kw0)(X) = ((Kw0)(X1), . . . , (Kw0)(Xn))> and

R̂λ,n(x) =
1

n

n∑
i=1

(
[Kn + λI]−1ε

)
i
· k(x,Xi)

represents the error part. Define

f̄0,n(x) := (K̂nw0)(x) =

∫
X
k(x, y)w0(y)P̂n(dy) =

1

n

n∑
i=1

k(x,Xi) · (w0(Xi)) ,

Then f̄0,n ∈ HX ⊆ Hfin ⊂ H . Using the triangle inequality and the fact that ‖ · ‖∞ ≤ ‖ · ‖k , we get

‖f̂n − f0‖∞ = ‖m̂n + R̂λ,n − f0 + f̄0,n − f̄0,n‖∞ ≤ ‖f̄0,n − f0‖∞ + ‖f̄0,n − m̂n‖k + ‖R̂λ,n‖k . (11)

We now derive upper bounds for each of the three terms on the right hand side of (11).

(i) By Lemma 2.4, we know that

‖f0 − f̄0,n‖∞ ≤ cL(w0, k) · dW (P, P̂n) . (12)

11



(ii) For the second summand, we get

‖f̄0,n − m̂n‖k

=

∥∥∥∥∥f̄0,n −
1

n

n∑
i=1

(
[Kn + λI]−1((Kw0)(X))

)
i
· k(·, Xi)

∥∥∥∥∥
k

=

∥∥∥∥∥ 1

n

n∑
i=1

k(·, Xi) ·
(
w0(X)− [Kn + λI]−1(Kw0)(X)

)
i

∥∥∥∥∥
k

=

∥∥∥∥∥ 1

n

n∑
i=1

k(·, Xi)
(
[Kn + λI]−1[Kn + λI]w0(X)

)
i
− ([Kn + λI]−1(Kw0)(X))i

∥∥∥∥∥
k

≤ λ

∥∥∥∥∥ 1

n

n∑
i=1

k(·, Xi) ·
(
[Kn + λI]−1w0(X)

)
i

∥∥∥∥∥
k

+

∥∥∥∥∥ 1

n

n∑
i=1

k(x,Xi) ·
(
[Kn + λI]−1 (Kn · w0(X)− (Kw0)(X))

)
i

∥∥∥∥∥
k

≤ λ√
n

√
w0(X)>Mλw0(X) +

1√
n

√
(Kn · w0(X)− ((Kw0)(X)))>Mλ (Kn · w0(X)− (Kw0)(X))

≤ 1√
n

√
µmax(Mλ) (λ‖w0(X)‖2 + ‖Kn · w0(X)− (Kw0)(X)‖2)

≤ 1

2
√
nλ

(
λ‖w0(X)‖2 + cL(w0, k)dW (P, P̂n)

)
.

Here we used Lemma 2.4 and the fact that (K̂nw0)(X) = Kn ·w0(X) by (7). We also used the

fact that the eigenvalues of Mλ are µi/(µi + λ)2, where µi are the eigenvalues of Kn. Notice

that the maximal value of µ 7→ µ/(µ+ λ)2 is 1/(4λ).

(iii) For including the random design case in the calculation of the bound, we consider here the

conditional expectation EX (with respect to P̄nX) given the sample X = (X1, . . . , Xn) , but

remark that for the fixed design case, this is just the normal expectation (with respect to P̄n).

We get that

EX
[∥∥∥R̂λ,n(·)

∥∥∥2

k

]
= EX

 1

n2

n∑
i=1

n∑
j=1

(
[Kn + λI]−1ε

)
i
· k(Xi, Xj) ·

(
[Kn + λI]−1ε

)
j


=

1

n
EX
[
ε>[Kn + λI]−1Kn[Kn + λI]−1ε

]
=

1

n
EX

 n∑
i=1

n∑
j=1

εiMλ(i, j)εj

 ≤ σ2

n
tr(Mλ) ,

where we used (6) as well as the conditional independence of the error variables εi and their

bounded variances. By the generalised Markov inequality of second order, we then get (for

12



P̄nX or P̄n) that

P̄nX
[
‖R̂λ,n(·)‖k ≥ η

]
≤ EX

[
‖R̂λ,n(·)‖2k

]
/η2 ≤ σ2

nη2
tr(Mλ) . (13)

Finally, choosing

η =

√
σ2tr(Mλ)

nβ

and putting the pieces (i)–(iii) together, we get that

P̄n
[
∃x : f0(x) ≥ f̂n(x) + C

]
≤ P̄n

[
‖f̂n − f0‖∞ ≥ C

]
≤ P̄n

[
‖f̄0,n − f0‖∞ + ‖f̄0,n − m̂n‖k + ‖R̂λ,n‖k ≥ C

]
≤ P̄n

[
cL(w0, k)dW (P̂n, P )

(
1 +

1

2
√
nλ

)
+

√
λ

2
√
n
‖w0(X)‖2 + ‖R̂λ,n‖k ≥ C

]

= P̄n
[
‖R̂λ,n‖k ≥ η

]
≤ σ2

nη2
tr(Mλ) = β .

Corollary 3.1 (Weak consistency). Let the regressors Xi be chosen according to a deterministic

algorithm, in such a way that dW (P, P̂n) → 0 as n → ∞ . Then, it holds that C = C(n)
n→∞−−−→ 0

in Theorem 3.1, for any 0 < β < 1. Thus, the regression estimate f̂n(x) uniformly converges to the

true regression function f0(x) (in probability), as n→∞.

We now turn to the random design case. Here the distance dW (P, P̂n) is unknown and a random

quantity. Its quantiles, however, can be bounded by existing concentration inequalities, such as the

following one established by Fournier and Guillin (2015, Theorem 2):

P̄n
[
dW (P, P̂n) ≥ γ

]
≤ c1 exp

(
−c2nγ

2
)
, (14)

where the regressors Xi, i = 1, . . . , n, are an i.i.d. sample from P with bounded support X , and c1

and c2 are known constants. Note that in the random design case there is an additional uncertainty

source stemming from the sampling of the design, which typically makes the confidence regions

larger than in the fixed design case. Nevertheless, a similar result to above can be established:

Theorem 3.2 (Random design). Consider the nonparametric regression estimate f̂n(·) of the true

(but unknown) regression function f0(·), as given in (9), where the regressors Xi result from a

random sampling procedure from an unknown marginal distribution P . Then, for a given error level

0 < β < 1, it holds that

P̄n
[
∃x : f0(x) ≥ f̂n(x) + C∗

]
≤ β ,

13



where C∗ is a positive root (in C) of the equation

c1 exp

−c2n

C
2 −

√
λ

2
√
n
‖w0(X)‖2(

1 + 1
2
√
nλ

)
cL(w0, k)

+
4σ2

nC2
tr(Mλ)− β = 0 , (15)

with constants c1, c2 following from (14).

Proof. We may repeat steps (i)- (iii) of the proof of Theorem 3.1. In the summarising step, we use

the following bound

P̄nX

[
∃x : f0(x) ≥ f̂n(x) + C

]
≤ P̄nX

[
cL(w0, k)dW (P, P̂n)

(
1 +

1

2
√
nλ

)
+

√
λ

2
√
n
‖w0(X)‖2 ≥

C

2

]
+ P̄nX

[
‖R̂λ,n‖k ≥

C

2

]

= P̄nX

dW (P, P̂n) ≥
C
2 −

√
λ

2
√
n
‖w0(X)‖2(

1 + 1
2
√
nλ

)
cL(w0, k)

+ P̄nX

[
‖R̂λ,n‖k ≥

C

2

]

≤ c1 exp

−c2n

C
2 −

√
λ

2
√
n
‖w0(X)‖2(

1 + 1
2
√
nλ

)
cL(w0, k)

+
4σ2

nC2
tr(Mλ) , (16)

where the last inequality follows from (14) (for the first term) and (13) (for the second term).

Setting the right hand side in (16) equal to the target confidence level β and solving the equation

in C then gives the desired result. Since the conditional probability given X is smaller than β for

all samples X, the inequality also holds true unconditionally (i.e. with respect to P̄n).

Remark 3.1. The upper bound estimates obtained above are valid for all possible regressors and

not only for those that were observed. This becomes important for procedures where the regression

function is evaluated at freshly generated sample points (e.g. in an out-of-sample test).

While the above results are formulated in terms of an upper bound, we have, in fact, developed

a non-asymptotic uniform (or simultaneous) confidence band f̂n(·) ± C with worst-case coverage

probability (or confidence level) 1− β:

Corollary 3.2 (Uniform confidence band). For a given error level 0 < β < 1 and corresponding

constant C defined in (10) (or (15) for the random design case), it holds that

P̄n
[
f̂n(x)− C ≤ f0(x) ≤ f̂n(x) + C ∀x

]
≥ 1− β .

To numerically illustrate the uniform confidence bands proposed in Corolarry 3.2 and the effect of

varying sample sizes, Appendix C contains an application to a regression problem.
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4. Guaranteed bounds for optimal stopping problems

In this section, we utilise the non-asymptotic uniform confidence band presented in the previous

section to develop a novel procedure that provides (probabilistically) guaranteed upper and lower

bounds on the true optimal value of stopping problems.

4.1. Problem formulation

In its standard form, optimal stopping problems feature a single binary decision variable (to

stop or to wait), as well as one controllable state (with state space {waiting, stopped, expired}) and

one information state variable (e.g., the price of an underlying asset). Both state variables together

represent the necessary information to make a decision and calculate the expected discounted payoff

(or reward) when stopping the stochastic reward process, assuming it has not previously been

stopped or become expired. Consider a discrete-time setting with a finite time horizon T and a

set T := {1, . . . , T} of admissible stopping times. Let {S0, S1, . . . , ST } be a real-valued stochastic

process that describes the information available at all times t ∈ T . The value at time t = 0, S0,

is assumed to be known. Furthermore, let r be the periodic discount rate and denote the payoff

(reward) for stopping when in state St at time t by ct(St).

The goal is to find the optimal stopping time τ∗ ∈ T that results in the maximised expected

discounted payoff V0(S0), that is:

V0(S0) = sup
τ∈T

E
[
e−rτ cτ (Sτ )|S0

]
. (17)

It is well-known (see, e.g., Glasserman (2004, Chapter 8)) that an optimal stopping time τ∗, which

achieves the supremum in (17), exists in the finite horizon discrete-time setting. Hence, for consis-

tency with the notation used throughout this paper, we may replace the sup in (17) with a max

operator. For notational simplicity, we suppress the discount factor in our presentation of algorith-

mic procedures, but note that the formulations can be generalised straightforwardly to account for

discounting.

It is also well known that the optimal stopping policy and, ultimately, the optimal value of prob-

lem (17) can be determined recursively using backward stochastic dynamic programming (SDP).

Let Vt(St) denote the value of the optimal stopping problem when in (information) state St at time

t ∈ T . Then, at the terminal time t = T , the value of the stopping problem is given by:

VT (ST ) = cT (ST ) . (18)

Proceeding in a backward recursive manner, the value at times t = T − 1, T − 2, . . . , 1 is given by:

Vt(St) = max
{
ct(St),E[Vt+1(St+1)|St]

}
. (19)

Finally, assuming without loss of generality that no decision can be made at time t = 0, the optimal
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value of the stopping problem is given by:

V0(S0) = E[V1(S1)|S0] . (20)

Based on Bellman’s principle of optimality, the values given by (17) and (20) coincide. Assuming

cT (·) ≥ 0, it is clear that V0(S0) ≥ 0 holds for all S0, meaning that the optimal value of the stopping

problem is non-negative.

4.2. The simulation-and-regression approach

Let (S0, S
(j)
1 , . . . , S

(j)
T ), j = 1, 2, . . . , n, be n independent (simulated) sample paths from the pro-

cess (St). The empirical distribution of the set of sample realizations at time t,
(
S

(1)
t , S

(2)
t , . . . , S

(n)
t

)
,

is thus a sampled approximation of the (continuous) distribution of the random variable St. The key

idea behind simulation-and-regression-based approaches is to approximate the (unknown) continua-

tion function3 within a backward recursive procedure, by regressing realised continuation values on

(basis) functions of realised scenario values at the preceding time step. In particular, the function

Φt(s) = E[Vt+1(St+1)|St = s] is approximated by a regression estimate based on the n available data

pairs of the form (Xi, Yi) with Xi = S
(i)
t and Yi = Vt+1(S

(i)
t+1) . For each state, its associated value

is then determined by comparing the estimated expected continuation value with the reward from

immediate stopping. Backward iteration eventually yields an approximation of the value V0(S0) ,

which (under certain assumptions) can be shown to converge to true value as the number of sampled

paths of the scenario process (St) tends to infinity. For details, we refer the reader to the excellent

book of Glasserman (2004) and to the classical papers of Carriere (1996); Tsitsiklis and Van Roy

(2001); Longstaff and Schwartz (2001).

It is well known that, depending on the update rule applied in simulation-and-regression-based

approaches, the obtained approximation is typically either low-biased (due to the suboptimality of

the stopping rule used when updating with realised continuation values) or unpredictably-biased

(when updating using estimated continuation values, since the regression-based approximation may

under- and/or over-estimate the true continuation function). For example, while approaching the

true value V0(S0) in the limit as n→∞, the algorithmic approach of Longstaff and Schwartz (2001)

typically yields a low estimator because it underestimates the true value using realised continuation

values under a sub-optimal stopping rule. On the other hand, the sign of the bias of the regression-

based approach of Tsitsiklis and Van Roy (2001) is typically not predictable as their estimator relies

on the quality of the regression functions, whose accuracy depends on the basis functions chosen

and which may over- and under-estimate the true continuation function for different values of the

sampled stock price paths. Carrying out an out-of-sample analysis by running the regression-based

algorithm using a second set of sample paths addresses the in-sample bias but also leads, as noted

by Glasserman (2004), to a low-biased estimator of the true but unknown objective value.

3The continuation function is the expected profit if the process is not stopped.
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4.3. The guaranteed bounding procedure

Following the regression-based approach just described, the statistical results developed in Sec-

tion 3 can be utilised to design an algorithmic procedure that yields (probabilistically) guaranteed

performance bounds on the true optimal value of the stopping problem. The key to obtain guar-

anteed upper and lower bounds is to uniformly over- and under-estimate, respectively, the true

regression function Φt(·) (with a given confidence) in each step of the backward recursion. The

procedure’s main steps to generate an upper bound can be summarised as follows:

(i) At the terminal time t = T , for each path j ∈ {1, 2, . . . , n}, evaluate:

V̂T
(
S

(j)
T

)
= cT

(
S

(j)
T

)
.

(ii) For t = T − 1, T − 2, . . . , 1, follow the backward recursion:

V̂t
(
S

(j)
t

)
=

ct
(
S

(j)
t

)
if ct

(
S

(j)
t

)
> Φ̂t

(
S

(j)
t

)
Φ̂t

(
S

(j)
t

)
if ct

(
S

(j)
t

)
≤ Φ̂t

(
S

(j)
t

)
,

where Φ̂t

(
S

(j)
t

)
is a high-biased approximation (i.e., an over-estimate) of E[V̂t+1(St+1)|S(j)

t ] ,

calculated based on the data pairs (Xj = S
(j)
t , Yj = V̂t+1

(
S

(j)
t+1

)
) according to Theorem 3.1 (or

Theorem 3.2 for the random design case). Notice that the constant C (or C∗) appearing in

Theorem 3.1 (Theorem 3.2) depends here on the set of realizations at time t, so it typically

changes over time.

(iii) Finally, at time t = 0, the high-biased estimate of the optimal stopping problem’s value is

obtained by calculating a simple sample average over approximated time t = 1 values using

the over-estimated one-step ahead (unconditional) expectation:

V̂0(S0) =
1

n

n∑
j=1

V̂1

(
S

(j)
1

)
.

An analogous procedure yields a guaranteed lower bound V̌0(S0) on the true optimal value

V0(S0) of the stopping problem. It simply requires replacing Φ̂t

(
S

(j)
t

)
in step (ii) with its low-biased

counterpart Φ̌t

(
S

(j)
t

)
, which is obtained by subtracting (instead of adding) the constant C (or C∗) in

Theorem 3.1 (Theorem 3.2). The following result summarises the guaranteed confidence associated

with bounds resulting from the above approach.

Theorem 4.1 (Guaranteed bounds). Consider the nonparametric regression-based estimates V̂0(S0)

and V̌0(S0) for the true (but unknown) optimal value V0(S0), as determined by the above described

procedures. Then, for given error levels 0 < βt < 1 at times t = 1, . . . , T − 1, it holds in the worst

case of stage-wise dependence, that

P
[
V̌0(S0) ≤ V0(S0) ≤ V̂0(S0)

]
≥ 1−

T−1∑
t=1

βt .
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If, on the other hand, stage-wise independence can be assumed, then the probability on the right-hand

side slightly improves to
∏T−1
t=1 (1− βt) .

Proof. The fact that V̂0(S0) and V̌0(S0) represent guaranteed upper and lower bounds, respectively,

on the true value V0(S0) follows immediately from the fact that the recursive construction of the

estimates ensures (probabilistically) guaranteed stage-wise high- and low-biased estimates.

5. Numerical Example: Bounds for American-style put options

To demonstrate the applicability of our guaranteed bounding approach, we consider the example

of valuing an American-style put option. An American put option entitles its holder with the right,

but not the obligation, to sell the option’s underlying asset at a predetermined price (the “strike

price”) at any time before maturity T (Hull, 2021). Based on the Fundamental Theorem of Asset

Pricing, the fair value of a financial option corresponds to its expected payoff under a so-called risk-

neutral probability measure. In the case of an American option, however, the payoff depends on

the exercise strategy and determining the option’s fair value thus requires determining an optimal

exercise strategy. Therefore, the pricing problem boils down to solving an optimal stopping problem.

In practice, there are situations where the potential exercise times are limited to a predetermined

discrete set of dates. Such options (which are frequently traded, but mostly over-the-counter) are of-

ten referred to as Bermudan options instead of American options. Clearly, the value of a Bermudan

option with a large number of potential exercise times approximates the value of the correspond-

ing American option. Given that solving optimal stopping problems analytically is generally not

possible, meaning that there are no closed-form pricing formulas available for American-style put

options, their value is typically approximated using numerical methods by way of determining the

value of a Bermudan-style option with the same parameters and sufficiently frequent exercise dates.

Consider a Bermudan put option with strike price K and potential exercise times t ∈ T :=

{1, 2, . . . , T}, with the option expiring at time T (which is the option’s maturity date). Further,

assume that the price of the single underlying asset, St, has been sampled for all times t ∈ T . Then,

at maturity T , the value of an unexercised put option is:

VT (ST ) = max{K − ST , 0} .

At each potential exercise time 0 < t < T , the optionholder compares the immediate exercise value

max{K−St, 0} with the expected continuation value, E [Vt+1(St+1)|St]. The value of the put option

given state St at time t, Vt(St), is thus recursively defined as

Vt(St) = max {max{K − St, 0},E [Vt+1(St+1)|St]} .

In the approximative calculation, the inner conditional expectation is carried out for a finite sample

and not for the entire continuous distribution. However, our guaranteed bounds for the conditional

expectation must be valid for the underlying distribution and not only for the sample. This is where
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our assumption that the unknown regression function lies in the RKHS comes into play as it allows

us to make a statement regarding all possible regressor values – not just those that were observed.

In our numerical example, we consider a Bermudan put option in the Black-Scholes model with

strike price K = 105, final expiration date T = 3, annualised risk-free rate r = 0.02, annualised

volatility σ̄ = 0.20, and three different initial spot prices, S0 ∈ {100, 105, 110}, representing in-

the-money, at-the-money and out-of-the-money situations, respectively. Given that the option is

exercisable at times t ∈ {1, 2, 3} and assuming that t = 3 represents a final maturity date of one

year, we simulated n = 1000 trajectories of a geometric Brownian motion (gBm) process according

to the following discretised risk-neutral stock price dynamics:

St+1 = St exp

{(
r − σ̄2

2

)
∆ + σ̄

√
∆ξt+1

}
,

where ∆ = 1/T is the exercise frequency and ξt+1 denotes a standard normal random variable (i.e.

ξt+1
iid∼ N (0, 1)). Figure 1 shows 50 sampled trajectories (a scenario fan) of the stock price process

using S0 = 100. To construct our nonparametric regression functions, we employed the squared
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Figure 1: Selection of 50 equally likely trajectories of the discrete-time stock price process for S0 = 100.

exponential kernel with parameter α = 0.01 and set λ = 0.01 . Given the set of sampled trajectories

of the underlying asset, we can readily apply our proposed bounding procedure of Section 4, with

confidence bands calculated according to the fixed design case.

The closed-form formulas for our probabilistic bounds involve several constants. However, it is

important to point out that determining the bounds numerically does not require knowledge of the

exact values of these constants but only upper bounds for their values. In practical applications

upper bounds can often be inferred from structural properties such as side information about the

problem at hand and problem-dependent features. If this is not possible, experiments may be

undertaken to obtain a reliable overestimate of the constants. For the present application, we

applied the following procedure: Given the relation f0 = Kw0 , we first sampled the stock price

paths and determined the corresponding continuation values to estimate both the matrix Kn and the
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KRR estimator f̂n , before determining an estimate for w0 by setting w0 ≈ K−1
n f̂n . To determine

an upper bound for ‖w0(X)‖2 , which is the quantity needed for our guaranteed bounds on the

optimal objective value, we repeated this procedure 100 times and used a value larger than the

largest observation plus twice the sample standard deviation. In a similar fashion, to obtain a

conservative overestimate for the Lipschitz constant cL(w0, k) we observed the largest difference in

values of f̂n over a fine grid and then repeated this procedure for each of the 100 generated scenario

fans. While an upper bound for the noise variance σ can be obtained in a similar way, it is also

possible here to use theoretical considerations in order to determine an analytic upper bound for σ

in terms of the volatility σ̄ of the stock price process, which is the driving source of uncertainty.

The resulting guaranteed bounds on the true value of the Bermudan put option, considering three

different levels of both overall confidence and initial stock price, are shown in Table 1. For a rough

Table 1: Guaranteed bounds – lower bound (LB) and upper bound (UB) – for Bermudan put option prices
considering three different overall confidence levels, (1− β1 − β2), and initial stock prices, S0.

Spot
price

Binomial
lattice

Confidence 80% Confidence 90% Confidence 95%
(β1 = β2 = 0.10) (β1 = β2 = 0.05) (β1 = β2 = 0.025)

S0 American LB UB ∆rel
† LB UB ∆rel LB UB ∆rel

100 9.900 9.412 10.196 07.69 9.281 10.365 10.46 9.102 10.623 14.32
105 7.465 6.882 07.852 12.35 6.737 08.058 16.39 6.545 08.350 21.62
110 5.527 4.965 05.968 16.81 4.799 06.183 22.38 4.577 06.487 29.44

†Relative performance gap (in %): ∆rel=(UB-LB)/UB*100.

comparison, the table also gives the estimated (non guaranteed) fair value of the corresponding

American-style option, which was determined using a standard Binomial lattice with 1000 steps.

Notice, however, that the price for a Bermudan option is always lower than the price for the

corresponding American option (since the exercise times are restricted), so their prices should not

be compared directly4. It can be seen that the gap between low- and high-biased option prices or,

in other words, the difference between lower bound (LB) and upper bound (UB), increases in both

the initial stock price, S0, and in the overall required level of confidence, (1− β1 − β2). The former

effect is largely due to the more frequent use of the very conservatively over and underestimated

continuation functions, as immediate exercise becomes less likely the higher the stock price relative

to the option’s strike price.

By contrast, the widening of the performance gap in the required overall confidence level can be

attributed to the fact that a higher probability for the true value V0(S0) being in [V̌0(S0), V̂0(S0)]

necessitates wider confidence bands at every possible exercise time, given the recursive construction

of our uniform over- and underestimates. Indeed, as can be seen from Figure 2, which illustrates

4More generally, it should be emphasised that since there are no other constructions of guaranteed bounds for
stopping problems in the existing literature – numerical values resulting from any other available approach are only
valid with respect to the sampled stock price paths, so do not come with a probabilistic guarantee –, there exist no
benchmarks that would allow for a meaningful comparison.
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high- and low-biased continuation function approximations and the underlying data points at times

2 and 1 for an 80% (left) and a 95% confidence level (right), the estimated continuation functions

and underlying data on the right are lying above those on the left. The larger upward (downward)

shift of the high-biased (low-biased) continuation functions for the higher overall confidence level

can be seen in Figure 2b and Figure 2c on close inspection, but it is clearly apparent visually

in Figure 2a. Note that while the latter figure displays the high- and low-biased nonparametric

regression functions for each overall confidence level, plotting both functions together with data

at time 1 in one figure is not practical since the underlying data points for high- and low-biased

function approximations are different at that point. This is because the underlying data themselves

are (partly) based on over- and underestimated continuation values at time 2, given the estimates’

recursive construction. Finally, note that while our kernel-based approach does not rely on structural

properties – such as the Bermudan option’s theoretical lower-bound value of zero5 –, accounting for

these can be expected to greatly improve the quality of our guaranteed bounds.

6. Conclusion

This paper presents for the first time an approach for obtaining guaranteed bounds for optimal

stopping problems using non-asymptotic uniform confidence bands based on a KRR estimator.

Nonparametric regression estimates require an assumption about the space of admissible functions:

Without such an assumption, weak consistency cannot be guaranteed for the sample size tending

to infinity. In the literature, one can find assumptions regarding a bounded second or higher

derivative or regarding the boundedness of the Fourier transform. Such assumptions require the

bound to be known. In contrast, the main assumption of the present paper is that the unknown

regression function lies in the considered RKHS. This assumption is relatively weak, since these

RKHS functions are dense in the space of continuous functions. Our proposed approach does not

require the knowledge of a boundedness parameter for the considered function space, but we did

require that the independent variable for the regression problem is univariate (in the considered

optimal stopping problem, we accounted for a single stochastic process, or factor). An extension

to multivariate regressors seems possible, but this is left for future work. If the observations are

noise free, then a quite substantial simplification would take place: Both the error limit β as well as

the parameter σ could be set to zero in our formulas. In this case, increasing the number of stages

would not worsen the quality of the estimates and a much larger number of stages could easily be

treated. However, a model with noise free observations may be unrealistic in certain applications.

We have illustrated the applicability of our proposed bounding procedure for optimal stopping

problems by valuing a Bermudan-style put option. Optimal stopping problems feature a single

binary decision variable, such as whether or not to exercise a put option. While such problems

require the calculation of just one regression function per time stage, the presented methodology for

5Our low-biased continuation values Φ̌2(S2) and Φ̌1(S1) may become marginally negative for high stock prices S2

and S1, respectively.
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(a) Realised and approximated (high- and low-biased) continuation values at time t = 2.
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(b) High-biased realisations and approximation of continuation values at time t = 1.
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(c) Low-biased realisations and approximation of continuation values at time t = 1.

Figure 2: Nonparametric regression functions and underlying data for overall confidence levels of 80% (left) and 95%
(right) and a put option that is in the money at time 0 (with S0 = 100).
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over- and underestimation of a regression function is quite general. Indeed, it could be adapted for

decision problems with a finite number of possible actions. This, however, would require regression

estimates for all feasible actions in a given state of the system, which would increase the complexity.

On a related note, the simple example that was used to illustrate our proposed methodology involved

only three decision stages. Again, this is not a fundamental restriction of our data-driven approach.

Every additional stage, however, would make the total estimation error increase, so obtaining tight

bounds might then require larger sample sizes. Although all nonparametric regression estimates

exhibit some boundary effects, such boundary effects only had a minor impact on the computed

bounds in our example. Note that for the studied option pricing problem, the quality of the decision

depends on the accuracy of the estimate in the region where the option is in-the-money. Lastly,

improvements in performance may be achieved through hyperparameter tuning (e.g. kernel type,

model-specific choices, and regularisation constant), which would be an interesting avenue for future

research as well.
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Appendix A. Proofs of Lemmas

Proof of Lemma 2.1

Let f(·) =
∫
X k(·, x)v(x)Q(dx). Then

〈f,Kg〉k = 〈
∫
X
k(·, x)v(x)Q(dx),

∫
X
k(·, y)g(y)P (dy)〉k

=

∫∫
X×X
〈k(·, x), k(·, y)〉kv(x)Q(dx)g(y)P (dy)

=

∫
X

[∫
X
k(x, y)v(x)Q(dx)

]
g(y)P (dy)

=

∫
X
f(y)g(y)P (dy) = 〈f, g〉P,2 .

Proof of Lemma 2.2

By Lemma 2.1 we get that

‖Kw‖2k = 〈Kw,Kw〉k = 〈Kw,w〉P,2 .
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By using g = Kw we have to minimise (in w)

‖f −Kw‖22 + λ〈Kw,w〉2 = ‖f‖22 − 2〈f,Kw〉2 + 〈Kw,Kw〉2 + λ〈Kw,w〉2 .

The first order optimality condition for this expression is

−2Kf + 2K2w + 2λKw = 0 .

Hence, w = [K2 + λK]−1Kf = [K + λI]−1f and Sλf = [K + λI]−1Kf .

Proof of Lemma 2.3

Set fλ := Sλf0 and let f0 = Kw0. Since [K + λI]−1K = I − λ[K + λI]−1, using Lemma 2.2 we

get

fλ(x) = (Sλf0)(x)

= 〈k(x, ·), [K + λI]−1K2w0〉k
= 〈k(x, ·),Kw0 − λ[K + λI]−1Kw0〉k
= 〈k(x, ·),Kw0〉k − λ〈k(x, ·), [K + λI]−1Kw0〉k
= f0(x)− λ([K + λI]−1Kw0)(x) .

From (5) we have that ‖[K + λI]−1K‖k ≤ 1. Therefore

‖f0 − fλ‖∞ ≤ ‖f0 − fλ‖k ≤ λ‖[K + λI]−1Kw0‖k ≤ λ‖w0‖k .

Proof of Lemma 2.4

The main assertion follows from the well known fact that∣∣∣∣∫ h(y)P (dy)−
∫
h(y)Q(dy)

∣∣∣∣ ≤ L(h)dW (P,Q) .

To see that cL(f, k) ≤ L(f) +L(k)‖f‖∞, first notice that for the Lipschitz constant L of a product

of two functions h1 and h2 (with Lipschitz constants L(h1) and L(h2), respectively) it holds that

L(h1 · h2) ≤ L(h1) · ‖h2‖∞ + L(h2) · ‖h1‖∞. Now, using the fact that ‖k‖∞ = 1 gives the desired

result.

Appendix B. Notation for probability distributions

Table B.2 lists and describes the different symbols used in the main text for the various proba-

bility distributions.
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Symbol Interpretation Notation

P̄ joint (bivariate) distribution of (X,Y ), (x, y) ∈ X × R (X,Y ) ∼ P̄
P marginal (univariate) distribution of X w.r.t. P̄ X ∼ P
P̄n joint distribution of (Xi, Yi)

n
i=1, (xi, yi)

n
i=1 ⊂ X × R ((X1, Y1), . . . , (Xn, Yn)) ∼ P̄n

P̄nX conditional distribution of sample given all Xi (Y1, . . . , Yn|X1, . . . , Xn) ∼ P̄nX
Pn marginal distribution of (Xi)

n
i=1 w.r.t. P̄n (X1, . . . , Xn) ∼ Pn

P̂n empirical distribution associated with Pn P̂n[X = x] = 1
n

∑n
i=1 δxi(x)

Note: x ∈ X and y ∈ R are the realisations of random variables X and Y , respectively, at sample point ω ∈ Ω, with
sample space Ω, such that x = X(ω) and y = Y (ω). Equally, xi = Xi(ω) and yi = Yi(ω) are the realisations of random
variables Xi and Yi, respectively, with (Xi, Yi) ∼ P̄ .

Table B.2: Notation for probability distributions.

Appendix C. Supplementary figures

In this appendix, we illustrate the application of the key theoretical result of Section 3 using

the numerical example of constructing uniform (or simultaneous) confidence bands in regression.

Assume that X ∼ U(0, 1) and consider a regression function of the form f0(x) = 1 + 0.5 · sin(3πx).

The n observed pairs (Xi, Yi) are i.i.d., where each Yi = f0(Xi) + εi, with εi
iid∼ N (0, 0.152). Given

that P = U(0, 1), the optimal (deterministic) choice of regressors Xi, such that dW (P, P̂n) is min-

imised, is given by xi = i−1
n−1 , i = 1, . . . , n , meaning P̂n is the discrete uniform distribution supported

on
{

0, 1
n−1 ,

2
n−1 , . . . , 1

}
. Thus, dW (P, P̂n) = 1

n−1 . To obtain the KRR estimator f̂n(x), we used a

Gaussian kernel with α = 10. Lastly, set β = 0.05. Figures C.3a and C.3b illustrate uniform

95% confidence bands f̂n(x) ± C for the true, but typically unknown, regression function f0(x)

considering sample sizes of n = 101 and n = 1001, respectively.
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(a) n = 101 (with λ = 0.02).
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(b) n = 1001 (with λ = 0.01).

Figure C.3: Uniform (or simultaneous) 95% confidence bands f̂n(x)±C, centred around the KRR estimator f̂n(x), for
the true regression function f0(x), using training data (xi, yi), i = 1, . . . , n, where xi ∈ {0, 1/(n−1), 2/(n−1), . . . , 1}.
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