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Abstract

This paper deals with operational models for integrated shift and task schedul-

ing problem. Staff scheduling problem is a special case of this with staff require-

ments as given input to the problem. Both problems become hard to solve when the

problems are considered with flexible shifts. Current literature on these problems

leaves good scope for potential research. In this article, we propose a new method

to solve the integrated problem and its special case, the staff scheduling problem.

We consider these problems with wide flexibility - a feature that is addressed in a

limited way in the existing literature. We introduce a new technique to solve the

problem with large demand efficiently. When the objective function is the number

of workers, we provide a tight lower bound that is easily computable. Through a

number of numerical experiments with live and simulated problem instances, we

demonstrate huge savings in the solution times over the existing ones.
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1 Introduction

Personnel scheduling problems arise in a variety of applications and deal with assignment

of shifts to workforce over a planning horizon. A large number of applications involve

flexible work schedules. Workforce requirements over the planning horizon are induced

by task characteristics such as duration, number of workers required to perform the

task, deadlines, etc. Demand, the number of workers required, in each time period

of the planning horizon, may be known exactly or assumed according to a predictable

pattern, is necessary for the purpose of planning. The flexibility in staff (or work)

schedules has two components: (i) type of shift which specifies duration, breaks and

their positioning within shift, etc., (ii) time gap between successive shifts, bounds on

the number of shifts in the planning horizon, bounds on the total number of worker-

hours, days-off, etc. The constraints in the latter component, part of the tour scheduling

process, are imposed due to labour laws, company regulations, employees preferences

and so on. The complexities and challenges are aggravated by the flexibilities of staff

and task schedules. One of the factors that is ignored in much of the existing literature

is not including breaks within shifts (see Thompson and Pullman (2007)). Breaks can

be included using implicit formulations (see Sungur et al. (2017),Aykin (1996)), but this

would dramatically increase the size of the problem.

In this article, we are concerned with two versions of personnel scheduling problem

over a discrete planning horizon. In the first version, staff schedules are flexible but the

tasks are fixed and the demand of resources (number of personnel required) for each time

period of the planning horizon is specified. The second version is an extension of the

first and it allows tasks to be scheduled within specified time periods and the tasks may

have precedence relationships. The workforce demand is a result of task scheduling. The

objective in both versions is to minimize the number of workers or an associated cost.

The second version is referred to as integrated shift and task scheduling problem (ISTSP).

The problem is so complex that it calls for special formulations and methods for solving

it. Stolletz (2010) computes the possible tours in a further restricted case of first version

of the problem (shifts without breaks, shifts restricted to 4 am to 9 pm) to the tune

of 1019. ISTSP is intractable for exact solution approaches. A common mathematical

programming approach to solving ISTSP uses set covering formulation or its variants

(Dantzig (1954)). Solution approaches presented in Maenhout and Vanhoucke (2016)

and Volland et al. (2017) are some of the recent contributions in this direction.

To the best of our knowledge, the methods for staff scheduling or ISTSP in the

existing literature have not considered a wide range of problems. For example, Stolletz

(2010) and Brunner and Stolletz (2014) have considered discontinuous tour scheduling

problems and not the problems with continuous demand. While the former considers

shifts without breaks, the latter considers shifts with only one break. Similarly, Volland

et al. (2017) does not consider breaks within shifts. Moreover, these articles implicitly

express that problems with larger demands (by classifying them under small, medium

and large) are harder to solve. Against this backdrop, we believe that this article makes

an important and significant contribution. The main contribution of this article is that
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we provide a new method for ISTSP that can

• reduce solution times drastically,

• solve problems with large demands in approximately the same time taken for

problems with small demands, and

• handle wide flexibility in shifts resulting from multiple breaks.

The organisation of the rest of this article is as follows. In the next section, we start

with the genesis of this work and present a brief discussion on the extensions of the

model assumptions and their consequences. This will be followed by a brief literature

review with focus on recent contributions relevant to this paper. In Section 3, we

present the problem description, our formulations, solution approach and a discussion

on their applications. Section 4 describes our numerical experiments with data from

live problems and simulation. The simulation exercises are carefully planned so as to

compare our approach with existing methods. Section 5 presents the summary of the

experimental results. The article is concluded in Section 6, with a summary and possible

scope for future research.

2 Motivation and Literature Review

This work is an extension of a problem that we received from a software company. For

ease of cross referencing, we shall call this the Software Industry Problem (SIP) in this

article. The requirement was to develop a method for determining staff schedules with

flexible shifts to meet workforce demand specified for every 30-minute time period (TP)

over one week planning horizon (336 TPs) with an objective of minimizing the number

of workers. Demand for a selected week is shown in Fig. 1. The admissible shifts in this

problem should satisfy four conditions: (i) shift has two tea breaks each of 15 minutes

duration and one lunch break of 60 minutes, (ii) no break in the first 90 minutes, (iii) at

least 90 minutes gap between any two successive breaks, and (iv) the duration of the

shift including breaks is 9 hours.

This work is the outcome of our effort to solve the SIP in its full flexibility. Encour-

aged by the results and the nature of our approach, we noticed that it can be extended

to ISTSP.

There is vast literature on personnel scheduling problem. The problem has been

classified into different categories depending upon the areas of applications, models

and solution approaches. For a detailed review on personnel scheduling problems, see

Ernst et al. (2004) and Van den Bergh et al. (2013), and references therein. Differ-

ent approaches are pursued for solving staff scheduling problems (see Alfares (2004),

Bellenguez-Morineau and Néron (2007) and Brunner et al. (2010)). The main hurdle in
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Figure 1: SIP demand for every 30-minute over one week (336 TPs). No demand during

10 pm to 8 am. Total demand 1258 worker-hours.

solving staff scheduling problems is their size. In SIP, there are 260 different shifts sat-

isfying the stated conditions. Since a shift can commence at the beginning of any of the

TPs, there are 12480(= 48× 260) possible shift schedules within a day. High scheduling

flexibility results in huge number of personnel schedules. Mathematical programming

formulations for solving staff scheduling problem are mostly based on the set-covering

formulation of Dantzig (1954). As the set covering formulation requires the all personnel

schedules, decomposition and column generation techniques through implicit formula-

tions are commonly used to handle the situation. Implicit formulations are developed

for several applications (see Thompson and Pullman (2007), Thompson (1995), Jarrah

et al. (1994), Jacobs and Brusco (1996),Aykin (1996), Jacobs and Brusco (1996) and

Brunner et al. (2009), and Sungur et al. (2017)). Yet, the problem remains complex

as the implicit formulations often result in large number of constraints (see Bellenguez-

Morineau and Néron (2007) and Brunner et al. (2009)). Decomposition technique is

used to breakdown the problem into stages so as to reduce the size of the problem (see

Jarrah et al. (1994), Alfares (2004), Stolletz (2010) and Brunner and Stolletz (2014)).

Also see Brucker et al. (2011) for a discussion on models and complexities in personnel

scheduling problems.

The work in this article is closely related to three articles: (i) Stolletz (2010),

(ii) Brunner and Stolletz (2014) and (iii) Volland et al. (2017). The first two of these

deal with staff scheduling with given resource input, and the the third one deals with

ISTSP. First, we shall brief the contributions of these articles and other works related

to them.

Stolletz (2010) introduced a reduced set covering formulation to solve a personnel

touring problem for check-in systems at airports. His model considers a fortnightly

planning horizon comprising 30-minute TPs. The staff requirements are needed only

in the TPs confined to time between 4 am to 9 pm. The restrictions on the shifts

are that they must start and end between 4 am and 9 pm, no breaks are allowed and

their durations must be between 6 TPs to 20 TPs (i.e., between 3 hours to 10 hours).
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With these restrictions, there are 330 staff schedules; and using these, the problem

was solved through a binary integer programming formulation. Brunner and Stolletz

(2014) expanded the scope of the problem by incorporating one period lunch break

in the shifts. They report poor convergence of the column generation subroutine and

introduce stabilized column generation procedure.SIP is similar to the one considered by

Brunner and Stolletz (2014) but with higher complexity as it involves multiple and more

flexible breaks in the shifts (12480 personnel schedules per day). Though SIP is also

discontinuous (i.e., workforce is required only between 8 am to 10 pm), we considered

the more general problem of continuous case, that is, staff requirements may be there in

all TPs. Therefore, our model is more general and more complex, in terms of the size of

the problem, compared to that of Brunner and Stolletz (2014). Stolletz and Zamorano

(2014) develop a rolling planning horizon-based heuristic for the tour scheduling problem

for agents with multiple skills and flexible contracts in check-in counters at airports.

When supply vector is fixed, ISTSP reduces to the well known resource constrained

project scheduling problem (RCPSP) with personnel as resources. See Hartmann and

Briskorn (2010) for a survey on RCPSP and its extensions. The published literature

on ISTSP is limited. For applications of the problem see Beliën and Demeulemeester

(2008), Maenhout and Vanhoucke (2013), Di Martinelly et al. (2014), Kim and Mehrotra

(2015), Volland et al. (2017) in health sector; Beliën et al. (2013) for scheduling prob-

lem in an aircraft maintenance company; and Bassett (2000) for a scheduling problem

in an agro-based industry. On the solution methods for the problem, see Alfares and

Bailey (1997), Bailey et al. (1995), Bassett (2000), Beliën and Demeulemeester (2008)

and Beliën et al. (2013) for some early papers on the subject. Maenhout and Vanhoucke

(2016) decompose the problem into a master problem and a personnel scheduling sub-

problem. The personnel schedules used in the restricted master problem are generated

iteratively through the personnel scheduling subproblems. Thus, the approach com-

prises decomposition and column generation techniques. In their model, the TPs are

days, and therefore, shifts within days are not considered.

Volland et al. (2017) propose an ILP formulation (referred to as MIP in their article)

for ISTSP with a weekly planning horizon and develop a column generation method to

derive a good starting feasible solution with a lower bound for solving the MIP. The

method uses implicit formulations for two subproblems - the shift scheduling subproblem

(S-SP) and the task scheduling subproblem (T-SP). The two subproblems are linked to

a restricted LP relaxation of the MIP to generate personnel and task schedules. The

process is continued iteratively by augmenting the restricted master problem with newly

generated personnel and task schedules until the optimum objective value of the LP

relaxation is attained. Let FLPR stand for the final LP relaxation. After building

the (personnel and task schedule) columns of FLPR, they drop a set of task columns

(by retaining only a selected set of high quality task columns) from FLPR, and add

additional personnel schedule columns to it if possible, and solve it as an ILP. Taking

the optimal solution of this ILP as a warm start, they solve the MIP.

Our model for ISTSP and the approach to solve it differ from those of Volland

et al. (2017) in three ways: (i) breaks within shifts are more flexible (Volland et al.
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(2017) does not incorporate breaks), (ii) we do not use column generation approach,

and (iii) we do not solve the MIP which is more complex. To get a solution for ISTSP,

we decompose it into two ILP subproblems. Solving the two subproblems produces

an optimal solution if the objective function depends only on the shift patterns and

their positioning, and near optimal solutions if the objective is to minimize the number

of workers. The decomposition scheme in our model is based on shift patterns. All

shift patterns (allowing full admissible flexibility) can be listed using a simple computer

program instead of deriving them through a complex traditional approach of using

implicit ILP formulations. Further, we provide a lower bound for the number of workers

when there is an upper limit on the number shifts per worker.

3 Problem description and Formulation

In this paper, we consider ISTSP over a cyclic planning horizon of one week split into T

TPs of equal duration of length ω minutes (ω = 15 or 30 are considered for the instances

of this paper). In staff scheduling, a personnel schedule assigns shifts to a worker over the

planning horizon fulfilling work schedule restrictions. Each personnel schedule will yield

a binary vector in RT with 1s representing availability of the worker, who is assigned

the schedule, in the respective TPs. Sum of all assigned personnel schedule vectors is

a nonnegative integer vector (the supply vector), and its jth coordinate specifies the

number of available workers in TP j. On the other hand, task scheduling involves

determining start TP of each task satisfying precedence relationships. This will yield a

non-negative integer vector in RT (the demand vector) specifying the number of workers

required in each TP. Under the considered ISTSP, the problem is to determine the

personnel schedules (to be assigned to workers) and a task schedule so that the resulting

supply vector is greater than or equal to the resulting demand vector. The objective is

to minimize the number of assigned personnel schedules or sum of their given associated

costs. See Table 1 for notation and input parameters.

The planning horizon is T = [1, 2, . . . , T ]. Given K tasks, numbered 1 through

K, task k has the following inputs: (i) start window [lk, uk] in which the task must

start, where lk, uk ∈ T with lk ≤ uk, (ii) dk, duration of the task specified as the

number of TPs, and (iii) the resource vector rk = (rk1, rk2, . . . , rkdk
), where rkj is the

number of workers required in the jth TP of task k, j = 1, 2, . . . , dk. For the precedence

relationships among tasks, the input is a set of task pairs P. If (k, k′) ∈ P, it means

task k should precede task k′. We use the notation k ≺ k′ to imply that (k, k′) ∈ P.

For the staff scheduling, the following inputs/flexibility types are considered: (i) shifts

with or without breaks (as specified) having length between a specified minimum (SLmin)

and a maximum (SLmax), (ii) shift start window is the range of TPs within a day during

which a shift can start, (iii) gap between any two successive shifts assigned to a worker

in terms of number of TPs must be greater than or equal to a specified lower limit

SGmin, and (iv) an upper limit either on the number of shifts or total hours assigned to
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Table 1: Notation
Indices

k task number

j time period (TP) number in the planning horizon

i shift pattern index, i = 1, 2, . . . , q

v shift schedule index, v = 1, 2, . . . , τ

u worker index, u = 1, 2, . . . , w, where w is maximum

number of workers

Parameters

T number of time periods in the planning horizon

K Number of tasks

q number of shift patterns

lk earliest start period of task k

uk latest start period of task k

dk duration of task k in number of TPs

τ number of shift schedules from stage 1, =


ij xij

rk = (rk1, rk2, . . . , rkdk
) demand vector of task k, where rkj is the number of

workers required in the jth TP of task k

SLmin/SLmax minimum/maximum limits on the length of a shift

SGmin minimum gap (in number of TPs) to be maintained

between two successive shifts

s = (s1, s2, . . . , sm) shift pattern of length m TPs, s1, . . . , sm are worker

availabilities in the appropriate TPs

(si, j) shift schedule, shift pattern si starting at TP j

Sets and vectors

T = [1, 2, . . . , T ] T is the planning horizon and T is the number of

TPs

[lk, uk] start time window of task k

S = {s1, . . . , sq} set of shift patterns

P set of task pairs, (k, k′) ∈ P means k ≺ k′, that is,

task k must be completed before starting task k′

R = (R1, R2, . . . , RT )
t the demand vector, Rj = the number of workers re-

quired in TP j

S = (S1, S2, . . . , ST )
t the supply vector, Sj = the number of workers avail-

able in TP j

U1, U2, . . . , Uτ assigned shift schedules from stage 1 arranged in the

ascending order of their start TPs

Variables

ykj indicator variable which is one if task k is assigned

to TP j

xij number of shift schedules (si, j) (determined in

stage 1 and assigned to xij workers in stage 2)

zuv indicator variable, = 1 if Uv is assigned to worker u
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any worker in the week. Note that (ii) above is pertinent to certain specific instances.

For example, the 330 shifts referred to in Stolletz (2010) must start between 4 am and

6:30 pm but it depends on the shift length as well; the start window for a 3-hour shift

is 4 am to 6:30 pm, and start window for a 3.5 hour length shift is 4 am to 6 pm, and

so on. Even in the case of SIP, no shift can start from 10 pm to 8 am (from Fig. 1 it

can be observed that there is no demand during this period).

The traditional approach to handle ISTSP with flexible schedules is to use implicit

formulations and iterative methods using column generation techniques. In Volland

et al. (2017), a staff schedule is implicitly formulated for the entire planning horizon

combining shifts and their assignment. In order to mitigate the complexity, Stolletz

(2010) used a reduced set covering formulation where predetermined daily shifts are

implicitly embedded in the planning horizon. In this paper, we reduce the complexity

further. We present a two-stage approach to solve this problem directly without using

implicit formulations for shift patterns, iterative procedures and the column generation

techniques. We achieve this by using shift patterns as the key to the entire planning.

We first define shift pattern formally.

What is a shift Pattern?

A shift pattern of length m is a binary m-vector that satisfies all the shift constraints

such as SLmin ≤ m ≤ SLmax and the shift break period rules. We shall denote a shift

pattern by s = (s1, s2, . . . , sm).

What is a shift schedule?

A shift schedule, denoted by (s, t), is a combination of a shift pattern s and a TP t. A

shift schedule is used to specify that a worker who is assigned (s, t) must start a fresh

shift at TP t and work according to shift pattern s. The t in (s, t) may be specified

relative to a day (in this case, t ranges from 1 to 48 with ω = 30) or relative to the entire

planning horizon (in this case, t ranges from 1 to 336 with ω = 30). In our models in

this paper, t is relative to the entire planning horizon.

Stolletz (2010) used shift schedules relative to day and generated 330 of them. The

shift patterns (embedded in his shift schedules) have only 1s as their coordinates (as

no break periods are considered) and their lengths vary from 6 to 20. Similarly, in the

model used by Volland et al. (2017), there are 25 underlying shift patterns containing

only 1s as their coordinates (as no break periods are considered). For SIP, we have 260

shifts patterns because we consider tea and lunch breaks. Each of these patterns can

be described using shift patterns of length 18 with exactly fourteen 1s, two consecutive

0s and two 0.5s. For example, s = (1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0.5, 1, 1, 0.5, 1, 1, 1, 1). The

two 0s (s5 and s6) stand for a lunch break and the two 0.5s (s11 and s14) stand for the

two tea breaks1. The numbers 0, 0.5 and 1 are the proportions of a TP that a worker

1Firstly, we are abusing the definition of shift pattern by allowing the fraction 0.5. This is only done

to handle breaks of half TP. This will not cause any hinderance in solving the problems using methods

of this paper. Next, it might appear to violate the condition that the gap between two successive breaks

must be at least 90 minutes. Note that this can still be upheld by allowing the first tea break in the

first 15 minutes of the corresponding TP and allowing the 2nd tea break in the last 15 minutes of the
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is available. It must be noted that these shift patterns can be generated implicitly

through ILP formulations but that becomes very complicated. Instead, we can use a

simple computer program to generate all the shift patterns effortlessly as we did for this

problem.

We are now ready to present our two-stage solution method for ISTSP. The basic

idea is that we first determine the shift schedules in stage 1, and assign them to workers

in stage 2. The stage 1 problem is described in Section 3.1 and stage 2 in Section 3.2.

3.1 Shift Pattern Subproblem - Stage 1

In this stage we consider two sets of decision variables. The first set of decision variables

assigns the TPs to task starting times. The second set of variables decide the number

of shift patterns assigned to TPs so as to meet the required workforce demands. These

decisions yield the supply of workforce in each TP, and the two sets of decision variables

are linked through supply-demand constraints. The objective function of the problem

will be taken as the cost of shifts.

Let S = {si : i = 1, 2, . . . , q} be the set of all shift patterns and let mi be the length

of si, i = 1, 2, . . . , q. Let ykj be 1 if task k starts in TP j, and equal to 0 otherwise. Let

xij be the number of shift schedules (si, j), i = 1, 2, . . . , q and j ∈ T .

The task assignment Y = (ykj) induces a demand vector R = (R1, R2, . . . , RT )
t,

where Rj is the number of workers required in TP j. The expression for Rj is given by

Rj =

K

k=1

dk

i=1

rkiykθ(j−i+1), (1)

where θ(·) is the wrap function for the cyclic time horizon, that is, θ(0) = T, θ(−1) =

T − 1, . . . , and θ(T + 1) = 1, θ(T + 2) = 2, . . ..

Similarly, X = (xij) induces a supply vector S = (S1, S2, . . . , ST )
t, where Sj is the

number of workers available in TP j. The expression for Sj is given by

Sj =

q

i=1

mi

t=1

sitxiθ(j−t+1), (2)

where si = (si1, . . . , s
i
mi

) and θ(·) is the wrap function defined above.

Let cij be the cost of shift schedule (si, j). Then our stage 1 problem for ISTSP,

corresponding TP.
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is given by

Minimize

q

i=1

T

j=1

cijxij (3)

subject to

q

i=1

mi

t=1

sitxiθ(j−t+1) ≥
K

k=1

dk

i=1

rkiykθ(j−i+1), for j = 1, 2, . . . , T, (4)

T

j=1

(j + dk − 1)ykj ≤
T

j=1

jyk′j for all (k, k′) ∈ P, (5)

T

j=1

ykj = 1 for k = 1, 2, . . . ,K, (6)

lk−1

j=1

ykj +

T

j=uk+1

ykj = 0, for all k (7)

ykj ∈ {0, 1} for all i, j, (8)

xijs are nonnegative integers for all i, j. (9)

Above, (4) is the supply-demand constraints, (5) takes care of the precedence relation-

ships, (6) and (7) ensure that all tasks start in their designated start windows [lk, uk]
2.

The objective function is the total cost of assigned shifts.

Remark 3.1. If we change the objective function of (3) to
q

i=1

mi

t=1 s
i
txiθ(j−t+1), the

total supply, and minimize it, then we will be minimizing the over cover (=total supply

minus total demand) because the total demand is a constant that does not depend on

task scheduling.

3.2 Staff Assignment Problem - Stage 2

From stage 1 solution, we have the shift schedules that will meet the staff demand

requirements satisfying the shift constraints. We now assign these shift schedules to

workers, maintaining staff scheduling constraints involving minimum/maximum number

of shifts/hours per worker, days-off per worker, etc. The stage 2 formulation requires

preparation of inputs. This process will be described first.

From stage 1 output, collect all shift schedules (si, j) for which xij > 0 and sort them

according to the ascending order of j. The number of such shift schedules is τ =


ij xij .

Let U1 = (si1 , j1), U2 = (si2 , j2), . . . , Uτ = (siτ , jτ ) be the τ shift schedules. Note that

j1 ≤ j2 ≤ . . . ≤ jτ , and a shift schedule (si, j) with corresponding xij is repeated xij

times in the list.

2In the actual implementation of the model for solving the problem, ykjs will be defined only for

lk ≤ j ≤ uk.
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Choose a large positive integer w representing maximum number of workers available

for scheduling during the planning horizon. Label the workers as 1, 2, . . . , w. Define the

decision variables of stage 2 as follows: zuv = 1 if worker u is assigned shift schedule Uv,

zuv = 0 otherwise, u = 1, 2, . . . , w, v = 1, 2, . . . , τ .

In order to meet the supply-demand constraints, we must assign each of the τ shift

schedules to workers. Note that f(v) =
w

u=1 uzuv is worker label to which shift schedule

v is assigned to. Therefore, stage 2 objective function is maxv f(v) which we minimize

to minimize the number of workers. This objective function is linearized by introducing

a dummy variable ξ and a constraint as follows.

Minimize ξ (10)

subject to

w

u=1

uzuv ≤ ξ, v = 1, 2, . . . , τ. (11)

Next, we formulate the constraints of stage 2 problem.

Assignment Constraints: Each of U1 to Uτ must be assigned to workers. This trans-

lates to
w

u=1

zuv = 1 for v = 1, 2, . . . , τ. (12)

Maximum number of shifts: Suppose a worker can have at most b shifts in the plan-

ning horizon. This translates to

τ

v=1

zuv ≤ b, for u = 1, 2, . . . , w. (13)

Rest period: Rest period, the gap between any two successive shifts assigned to a

worker, must be at least g TPs. For this, we first define a overlapping pair of

shift schedules Uv and Uv′ . For v < v′, say that Uv and Uv′ are overlapping

if jv′ ≤ jv + miv − 1 + g. Call (v, v′) an overlapping pair if Uv and Uv′ are

overlapping, 1 ≤ v < v′ ≤ τ . To ensure rest period, any worker can be assigned

at most one of Uv and Uv′ if (v, v′) is a overlapping pair. This translates to

zuv + zuv′ ≤ 1 for every u and every overlapping pair (v, v′). (14)

Total Hours: The total time of any worker must not exceed H TPs. Note thatτ
v=1 mivzuv is the total duration, in number of TPs, of worker u over the planning

horizon. Therefore, the constraints are

τ

v=1

mivzuv ≤ H, u = 1, 2, . . . , w. (15)

Days-Off: We shall assume that day-off must start from the first TP of a day. In a

5-day week, a worker must get two consecutive days off. We shall formulate the
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constraints taking ω = 30 and one week planning horizon (we can imitate the same

for other values of ω). Constraints for a 6-day week can be derived in a similar

fashion. A two-day period can be represented by the shift pattern s̄ with s̄i = 1 for

i = 1, 2, . . . , 96. Introduce dummy shift schedules Uv = (s̄, jv), v = τ+1, . . . , τ+7,

where j1, j2, . . . , j7 are the starting TPs of days 1 to 7 respectively (i.e., j1 =

1, j2 = 49, j3 = 97, and so on). With an abuse of convention, we shall interpret

the dummy shift schedules as days-off. That is, zu(τ+1) = 1 will be interpreted as

worker u having first two days of the week off. Interpret zu(τ+2) = 1 as 2nd and

3rd days of the week off, and so on. With this, the two-days-off constraints for

worker u, u = 1, 2, . . . , w, can be written as

τ+7

v=τ+1

zuv = 1, and for every overlapping pair(v, v′) (16)

zuv + zuv′ ≤ 1, where 1 ≤ v ≤ τ, τ + 1 ≤ v′ ≤ τ + 7. (17)

Thus, constraints for stage 2 problem can be picked from (12) to (17) depending upon

the context, and perhaps can be augmented with some more if necessary.

Optimality of solutions obtained by the two-stage method (TSM) depends upon

the nature of objective function. The following theorems are useful in this regard.

Theorem 3.1. If the objective function of ISTSP is a function of shift schedules, then

the two-stage method produces an optimal solution.

Proof. Suppose the objective function of the ISTSP is a function of shift schedules.

Assume that the problem has an optimal solution. Solving the Stage I of the two-stage

method, we obtain for the original minimization problem, an optimal number of shift

schedules and a minimum cost associated with the shift schedules. As the Stage II

problem minimizes the number of workers in the organization, it does not affect the

total number of shift schedules to be assigned to the workers, i.e., the Stage I solution.

As the feasible region for the stage I problem is the same as the feasible region for the

ISTSP, the two-stage method produces an optimal solution.

Theorem 3.2. If the objective of ISTSP is to minimize the number of workers with one

of the constraints as 13, then ⌈B
b ⌉ is a lower bound for the number of workers, where B

is any lower bound for stage 1 objective function, the number of shift schedules assigned.

Proof. Suppose, the objective of ISTSP is to minimize the total number of workers and

the number of shifts that can be assigned to a worker is limited by b (constraint 13).

The two-stage method in this case may not provide an optimal solution, however, we

can compute a lower bound to the optimal solution. As a maximum of b shift schedules

can be assigned to each worker, assume the best case scenario. That is, each worker in

the organization can be assigned b shift schedules out of B obtained in Stage I, without

overlap. This gives a lower bound, ⌈B
b ⌉ to the number of workers in the organization.
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One of the factors that appears to have a significant bearing on the solution time

of ISTSP is the total demand


j Rj . In the existing literature, the problem instances

are classified as small, medium and large based on this factor. We introduce a split

technique to handle problems with large demands. It has a cascading effect on reducing

the solution time of ISTSPs with large demands.

3.3 The Split Technique

Consider an ISTSP and suppose that R is a demand vector that is optimal or near

optimal. We split the demand vector R into sum of two new demand vectors R1 and

R2 so that R = R1 + R2. Then, we solve two new subproblems with fixed demand

vectors R1 and R2 separately using the two-stage approach and combine the solution

to get a solution to the original problem. If w1 and w2 are optimal (or near optimal)

objective values of the two subproblems, then we have a solution for the ISTSP with

w1 + w2 workers. We shall explain this approach with the help of some examples.

One of the problem instances (corresponds to P4 in Table 3) is a problem with fixedR

(no task scheduling) and has a total demand 3736 worker-hours. Solving this using two-

stage method, stage 1 was solved to near optimality in 32 seconds with a lower bound

of 499; but stage 2 got abandoned due to insufficient memory. Then, we solved the

two subproblems taking R1
j = ⌊Rj

2 ⌋ and R2
j = Rj −R1

j , j = 1, 2, . . . , 336. The resulting

subproblems have demands 1836 (forR1) and 1900 (forR2). Solving these two problems

using two-stage method yielded the following results. The R1-subproblem resulted in a

near optimal solution (in 201 seconds) with 52 workers, and the R2-subproblem resulted

in a near optimal solution (in 198 seconds) with 54 workers. Combining the solutions of

the two subproblems, we have a solution to the original problem with 106 workers. From

Theorem 3.2, 100 (= ⌈ 499
5 ⌉) is a lower bound for the problem. Therefore, the solution

with 106 workers is at least 94% (= 100 − 106−100
100 × 100) optimal, and the problem is

solved in less than 7 minutes.

How to solve faster?

Consider a case where the total demand is so large that even after splitting the demand

vector, we still have a problem. Even for such cases, we solve only two subproblems to

get a solution. Consider the problem with a total demand of 5136 worker-hours (see P20

in Table 3). For this problem, we take R1
j = ⌊Rj

3 ⌋ and R2
j = Rj −

2R1
j

3 , j = 1, 2, . . . , 336.

With this, the demands for R1 and R2 subproblems are 1669 and 1798 worker-hours

respectively. Note that R = 2R1 + R2. Solving the two subproblems, we found a

solution for R1-subproblem with 57 workers, and for R2-subproblem with 58 workers.

To obtain a solution for the original problem, we apply the solution of R1-subproblem

to two sets of 57 workers each, and apply the solution of R2-subproblem to another set

of 58 workers. The resulting allocation is a solution to the original problem with 172

(= 2×57+58) workers. To find the optimality percentage, we use the lower bound of the

stage 1 problem with original demand vector. For the instance in question, the stage 1

problem with the original demand vector with demand of 5136 worker-hours produced
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an optimal solution (in 2 seconds) with 852 shift schedules. From Theorem 3.2, the

number of workers is at least 171, and hence the solution obtained using split technique

is at least 98.8% optimal. The whole process took 6 minutes and 22 seconds.

Consider another instance with a total demand of 5615 worker-hours (P21 in Ta-

ble 3). Splitting R = 2R1 + R2 with R1 = ⌊R
3 ⌋ and solving this problem took 10

minutes 18 seconds. The number of workers in this case is 183 and the lower bound

from stage 1 solution is 181 (stage 1 took 2 seconds). Taking R = 3R1 + R2 with

R1 = ⌊R
4 ⌋ and solving this problem (P22) took only 4 minutes 2 seconds. The number

of workers in the resulting solution is 182. In general, we can use R1 = ⌊R
ρ ⌋, where the

splitting factor ρ > 1. Choosing large ρ will reduce the solution time but will affect

the optimality. Therefore, we should choose ρ judiciously.

Remark 3.2. Under the split technique, we solve only two subproblems with demand

vectors R1 and R2 and use the solutions to derive a solution to the original problem.

Remark 3.3. The split technique is found to be very effective in solving problems with

large demands. However, this method requires the demand vector R. For problems of

ISTSP, the optimal demand vector is to be obtained first in order to apply the split

technique. It must be noted that stage 1 of our approach produces optimal or near

optimal demand vector R very efficiently even for the cases where the demand is very

high (see Table 3). Thus, our two stage approach clubbed with the split technique (if

needed) can solve ISTSPs even with large demands very efficiently.

Based on our empirical experience, we make the following proposition.

Proposition 3.1. The total demand does not appear to be a factor that affects the

complexity of ISTSP.

4 Live Instances and Numerical Experiments

In this section we assess the performance of the two-stage approach clubbed with split

technique (where necessary) with a number of live and simulated instances. For this, we

consider two categories of problems. The first one corresponds to the type of problems

considered in Stolletz (2010) and Brunner and Stolletz (2014) where the tasks are already

scheduled and we have a demand vector R as input to the problem. The second category

of problems corresponds to the type of problems dealt with in Volland et al. (2017) where

both tasks and shifts have to be scheduled, that is, proper ISTSPs. The live instances

for the first category are taken from requirements from software industry, airport check-

in counter staff requirements and call center data. For the second category of problems,

we use simulated data. For the purpose of comparison, the data are simulated using the

distributions specified in Volland et al. (2017) as well as some new distributions. We

also have one live data from emergency medical services (108 service in India) for this

category. For the first category of problems, we consider ω = 30 and T = 336, and for
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the second category, ω = 15 and T = 672. All problems are treated with cyclic planning

horizon.

Types of shift patterns

For our numerical experiments, we considered four types of shift patterns described

below. The first three of them are used in problems with ω = 30 and T = 336. The

fourth one, FX29, is used in problems with ω = 15 and T = 672.

FX260 Under this, all shifts have fixed duration of 9 hours (18 TPs of length ω = 30)

with breaks satisfying conditions (i) to (iv) stated at the beginning of Section 2.

The number 260 is the number of shift patterns under FX260.

FL15 There are 15 patterns under this with durations varying from 3 hours to 10 hours.

Relief breaks are incorporated at appropriate positions depending on duration of

the shift (3-5h: no break, 5.5-6h: one 15-minute break, 6.5-8h: one 30-minute

break, 8.5-10h: two 15-minute and one 30-minute breaks).

FL135 Brunner and Stolletz (2014) considered lunch breaks in the shift patterns. The

duration of the shifts varies from 3 to 10 hours with exactly one 30-minute break

with the condition that no break in the first one hour and in the last one hour of

the shift. There are 135 such shift patterns.

FX29 These are shift patterns with durations varying from 3 hours to 10 hours without

breaks. These are the 29 patterns considered in Volland et al. (2017) for their

numerical experiments.

In all, we solved 40 instances (see tables 3 and 4). All problems are solved using the

LINGO professional solver Version 13.0 on an i7 64-bit processor with 2.80GHz clock

speed and 16 GB RAM running on a Windows 10 platform. Unless specified otherwise,

the objective for all the problems is taken as minimizing the number of workers. The

instances are described in the following subsections. Their results are discussed in

Section 5.

4.1 The Software Industry Problem

The background of this problem was described at the beginning of Section 2. For this

problem, ω = 30, T = 336, q = 260, mi = m = 18 for i = 1, 2, . . . , q. This problem

is similar to the discontinuous tour scheduling problem of Stolletz (2010). There is no

demand during the periods 10pm to 8am on all days. For an instance of this problem,

the total demand is 1258 worker-hours (see P1 in Table 3), and the number of workers

required over TPs varies from 0 to 25 (see Fig. 1) with an average of 6.4 workers per

TP. The problem is solved using FX260 shift patterns without imposing any restriction

on the start times of shift patterns. Additional restrictions imposed on the problem are:

(i) at most 5 shifts per worker and (ii) at least 12 hours gap between any two successive

shifts of any worker. For simplicity, we have not imposed the day-offs to be consecutive.
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The stage 1 problem was solved in 11 seconds with an optimum objective value of 220

shift schedules. Stage 2 problem was solved in 77 seconds with the optimum objective

value of 44 workers. Since this objective value is equal to the lower bound (44 = ⌈ 220
5 ⌉),

the solution is optimal for the problem.

4.2 Airport Check-in Counter Requirement Problem

In this problem, we consider agent requirements to man the check-in counters. Airline

departures over a season (spanning about 6 months) are planned in advance based

on weekly roster. The number of counters allocated to each airline varies over time

depending on the departures of that airline. In Lalita et al. (2020), these requirements

were worked out for various airlines’ schedules from a major international airport in

India. The weekly departures of an airline gives rise to agent requirements over the

week. Taking domestic and international departures separately of three airlines, coded

as JAW, AAW and BAW, we formed five demand vectors for JAW-I, JAW-D, BAW-I,

BAW-D and AAW-D. From these, we derived 10 instances by combining them with the

three shift pattern types FX260, FL15 and FL135, objective function type and the type

of constraint on the worker load. These 10 instances correspond to P2 to P15 in Table 3.

For example, P2 instance is formed by taking the departures of BAW-I, FX260 shift

patterns, worker-load constraint as the maximum number of shifts per worker in the week

and the objective function as the number of workers. For details of other instances, see

the note under Table 3. P7 to P10 correspond to the instance but solved under different

constraints and different objective functions (see Fig 3). The demands vary from 608

to 3752 agent-hours (see Table 3). Unlike the discontinuous tour scheduling problem

considered in Stolletz (2010), P2 to P15 have continuous requirements over the planning

horizon.

We shall discuss the results of our approach of solving two instances - P4 and P5

with demands 3736 and 1467 agent-hours respectively. Assuming that the agents can

start their shifts at the beginning of every half hour, the requirements were computed

based on 30-minute TPs for weekly planned departures. Fig 2 presents the demand

patterns for the two problems.

Note that Stolletz (2010) starts with 330 shift schedules (per day) and uses them

in his model to obtain staff schedules over the entire planning horizon. For problems

with FX260, ω = 30 and T = 336, there are 12480(= 260× 48) shift schedules per day.

Brunner and Stolletz (2014) observed that with one flexible lunch break, the number of

shift schedules (per day) rises to 2690 and point out that they were not able to solve

the problem with their model using standard MIP software. The major difference be-

tween the two problems (P4 and P5) and the discontinuous tour scheduling problem

considered in Stolletz (2010) is the continuous requirement of agents over the planning

horizon. With FX260 patterns and continuous requirements over one week cyclic plan-

ning horizon, the number of possible shifts combinations per worker is approximately

1019. The results of solving the two problems, P4 and P5, are summarized below.
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Figure 2: Agent requirements for JAW domestic and international departures

Instance P5

The total demand for this problem is 1467 agent-hours. The stage 1 model for this

problem produced a solution with 227 shift schedules in 59 seconds with a lower bound1

of 224 on the objective function. The best objective value remained at 227 even after

five minutes CPU running time. We aborted the solver and took the solution with 227

shift schedules and solved stage 2 problem. This produced an optimal solution in 78

seconds with 46 agents. Applying Theorem 3.2 on the lower bound 224, the number of

agents must be at least 45. Therefore, solution obtained for this problem with 46 agents

is at least 97.7% optimal.

Instance P4

Recall the discussion about this problem under the introduction of split technique. While

solving stage 2 model for this problem, the solver aborted the solution process reporting

insufficient memory. We observed this phenomenon whenever we tried to solve stage 2

problem with huge demand. The reason is that high demand requires large number

of shift schedules which in turn results in large number of overlapping shift schedule

pairs. As a result, the number of constraints under (14) increases dramatically (for this

problem the number of constraints is 5054445 and the number of variables is 87041).

Applying the split technique, this problem was solved in less than 7 minutes and the

optimality gap is at most 6%.

Instances with cost objective and work load constraints

Since there are shifts with short lengths, we solved stage 2 problem once with the

constraint on the number of shifts per week per worker (maximum 5 shifts) and once with

the constraint on maximum number of worker-hours per week per worker (maximum

50 hours). Again, with respect to objective function, we have two options, number of

workers and cost. Thus, we have four combinations which are represented by instances

1The best lower bound produced by the solver during the exucution.
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P7 to P10 (see Fig 3). For simplicity, cost is taken as a function of shift duration alone.

We took the costs as shown in Fig 3.

Figure 3: Parameters of instances P7 to P10

4.3 Call Center Data

We have data on number of agents worked, hour-wise, for 36 weeks from a call center.

Like in check-in counters problem, the requirement of agents is round the clock. We

combined two weeks (14 days) data to form an instance. For simplicity, we treat the

hourly requirements as requirements for 30 minute periods. Data are taken from two

different streams with total demand varying from large to very large. There are six

instances, P16 to P21 in Table 3. The variation in the demand pattern is shown in

Figure 4. The total demands vary from 2155 to 5615 agent-hours. As demands are high,

all the six instances had to be solved using split technique. The results are summarized in

Table 3. The solutions to these instances demonstrate the efficacy of the split technique.

Since P21 took a long time (10 minutes and 18 seconds), we solved this problem again

(P22) with R = 3R1 +R2 and R1 = ⌊R
4 ⌋ (see Section 3.3). As a result, the problem

could be solved in less than 5 minutes.

Figure 4: Agent requirements for call center problems
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4.4 Instances for ISTSP

In this section we describe the data for instances on ISTSP which requires task schedul-

ing as well. We have one live data set from emergency medical services (108 service).

For the other instances, P23 to P40 of Table 4, data are simulated following Volland

et al. (2017). All instances under this case are solved assuming FX29 patterns.

Medical emergency data (P41)

We have historical data on the 108 service pertaining to a province in Andhra Pradesh,

India. The service brings patients needing emergency medical care to a hospital. The

most commonly reported emergencies (about 70% of the cases) are related to pregnancy,

acute abdomen, trauma (vehicular), fevers (infections) and cardiac/cardio vascular is-

sues. Of these, pregnancy cases alone accounted for 23%. Therefore, we took data

(number of patients arriving in every 15 minutes) on pregnancy cases for one week (7

consecutive days) of a month. There were 588 such cases. We took the duration of

redressal of these cases (tasks) to the nearest 15 minutes, and used the seriousness of

the cases to set the start windows and the precedence relations. We took the earliest

start time of a task as the arrival TP of the patient, and set the latest start time based

on the seriousness of the case. The resulting instance has the following characteristics:

K = 588, T = 672, ω = 15, maximum width of start window of task that is not involved

in precedence relationships is 4ω, total demand is 1151 worker-hours (
672

j=1 Rj = 4603);

number of tasks involved in precedence relationships is 116 with a total of 113 precedence

relationships. The demand pattern is shown in Fig. 5.

Figure 5: Staff requirements for medical emergency problem

The stage 1 model for this problem produced a near optimal solution with objective

value of 118 shift schedules in 119 seconds with a lower bound of 116. We terminated

stage 1 at this time and solved stage 2 problem which produced an optimal solution

in 235 seconds with optimum objective value of 37 workers. Applying Theorem 3.2

on the lower bound 116, the minimum number of workers is at least 24. In order

to find a better lower bound, we took the stage 1 objective function as maxj Rj and

minimized it. The optimum objective value for this was 26. Therefore, the number
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of workers for this problem cannot be less than 26. We then solved stage 1 problem

once again with the original objective function but this time by adding an additional

constraint maxj Rj ≤ 26. This resulted in the same objective value and lower bound as

before (118/116) but the solution was different. The resulting solution was used to solve

stage 2 problem, and that produced a global optimum objective value of 36 workers.

Thus, the final solution was at least 62% (= 100− 36−26
26 × 100) optimal.

Simulated data

We simulated data for ISTSP following the procedure described in Section 5.2.2 of

Volland et al. (2017). Under this procedure, three types of tasks (day long, peak and

precedence) and three problem sizes (small (600 hours), medium (1000 hours) and large

(1400 hours)) are considered. For each size, three different distributions of task types

(S1, S2 and S3) were used. The parameters for simulation are summarized in Table 2.

Thus, there are nine scenarios under this situation. We simulated nine instances, P23

to P31 of Table 4, following the procedure for these nine parameter settings. The

corresponding instances from Volland et al. (2017) are listed in Table 5. We ignored the

additional instances considered by Volland et al. (2017) (presented in Table 5 of their

paper) because those instances are more restricted (either shift patterns are limited to

two or start window lengths are reduced by 50%). We simulated the nine instances

using the same shift patterns used in Volland et al. (2017), namely FL29 shift patterns.

Additionally, we created nine more instances by considering three more distributions

Table 2: Parameters for simulation of instances for ISTSP

for the three types of tasks, say S4, S5 and S6. These distributions are (81, 17, 2),

(79, 17, 4) and (72, 16, 12). These are the resulting distributions if we apply the S1,

S2, S3 distributions to number of tasks instead of applying them to number of hours.

These additional 9 instances are P32 to P40 in Table 4. Besides the differences in the

distributions, one major difference between the two sets, P23 to P31 and P32 to P40, is

that in the latter the task start time windows of all tasks have been chosen uniformly

throughout the days. However, we have not changed the characteristics of the start

window widths and task durations.
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5 Summary of Experimental Results

In this section we shall present the results of our numerical experiments. We have

solved 39 problem instances and the results are summarised in Tables 3 and 4. Table 3

presents the results of problems with fixed demand vector where task scheduling is

not required. These problems are similar to the ones considered in Stolletz (2010)

and Brunner and Stolletz (2014). Table 4 presents the results for problems with task

scheduling requirements involving precedence relationships. These problems are similar

to the ones considered in Volland et al. (2017). The parameters affecting the complexity

of ISTSP are: (i) the length of planning horizon T , (ii) number of tasks, K, (iii) demand

and its pattern (dis, riks), (iv) number of precedence relationships and (v) number of

shift patterns. The range of these parameters in our instances are such that the results

can be compared with the results of the respective papers mentioned above.

To assess the merit of any solution, we consider four parameters: the total de-

mand, solution time, optimality metric and utilization metric. For problems where task

scheduling is involved, one should also look at the number of tasks involved in the prece-

dence relationships and the number of precedence relations. Total demand, expressed

as total number of worker-hours required, is equal to (


j Rj)ω/60. For any solution

with objective value Os and lower bound OL, the percentage optimality gap is at most
OS−OL

OL
× 100. Therefore, we take µ = 100 − OS−OL

OL
× 100 as the measure of optimal-

ity. Utilization metric is taken as 100 times the ratio of total demand to total supply.

Stage 1 model plays a crucial role in our solution approach. We shall first discuss the

results with respect to stage 1 problems.

5.1 Results for stage 1 model

In order to apply split technique for large demands in the case of ISTSP, solving stage l

model efficiently is crucial (see Remark 3.3). Fortunately, our experiments show that

stage 1 model is solved very efficiently despite the fact that it is more complex in the case

of problems involving task scheduling with precedence relationships compared to those

for which the demand vector is an input. Fig.6 presents the stage 1 model performance.

All solutions are at least 96% optimal (65% are 100% optimal), and found in less than

two minutes (with one exception which took 228 seconds). Average demand is 2117

worker-hours. It should be noted that the high demand instances took smaller times

(see tables 3 and 4).

5.2 Results of problem instances with given demand vector

Instances of P1 to P22 are under this category. For each of these instances, ω = 30, T =

336 and the demand varies from 608 to 5615 worker-hours. For all instances with demand

(number of worker-hours) less than 1500, we could get solution directly. For the other
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Figure 6: Performance of stage 1 model

Figure 7: Performance metrics of two stage method for P1 to P17
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Table 3: Results for staff scheduling problem instances

Note: P1 is SIP, P2 to P15 are check-in counter problems and P16 to P21 are call

center problems. For all problems, P1 to P21, with the exception of P8 and P10, the

worker load constraint is on the number of shifts, that is, each worker is assigned a

maximum of 5 shifts; for P8 and P10, it is on the number of hours, a maximum of

50 hours per week. Similarly, for all patterns other than P9 and P10, the objective

function is number of workers, and for P9 and P10, it is the cost. P11 and P12 are

same instance but solved differently. Likewise, P20 and P21 are same instance but

solved differently. The columns under Stage 2 present the size of the problem for the

stage 2 problem with the original demand vector.
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instances, minimum demand is above 2000. For these instances, the problems had to

be solved using the spit technique (see the discussion under Instance P4 on page 17).

The method used (‘Direct’ or ‘Split(ρ)’) is specified in Table 3. Instance P11 is solved

twice with ρ = 3, 4. In both cases, the solutions are near optimal (95% and 98%), and

the solution times are also close (75 and 81 seconds). Similarly, P21 was solved twice

with ρ = 3, 4. Split(3) took 618 seconds and split(4) took 242 seconds. In both cases,

the solutions are at least 99% optimal. The necessity for splitting is arising from large

demand. To highlight this, the number of variables and constraints of stage 2 model

with the original demand vector are presented in Table 3. From the table, it can be

seen that for the instances solved with split technique, the number of constraints ranges

from 1.7 millions to 16.8 millions. The performance metrics of two stage method (with

split technique where needed) as applied to instances of P1 to P22 are presented in

the last three columns of Table 3 and in Fig.7. In all but two of the instances, the

optimality was at least 94%. In one case, P7, it is 86% and in the other case, P8, it is

63%. The optimality metric µ for P8 is computed using a poor lower bound, namely

total demand by the maximum number of hours that a worker can be assigned (recall

that P8 constraints are based on maximum number of hours and not the number of

shifts, see Fig.3). The average solution time is 2 minutes 40 seconds and the average

utilization is 79%.

Stolletz (2010) reports the solution times for three different cases. Though our case

(continuous demand) is more complex, a comparison is presented in Fig.8 with respect

to solution times.

Figure 8: A comparison of solution times. The demands (D) in red are the figures taken

from Stolletz (2010) and the demands in blue are simulated figures for this article.

5.3 Results of ISTSP problem instances

Instances P23 to P41 are under this category. Task scheduling is a part of the problem.

Results are presented in Table 4. For these problems, ω = 15 and T = 672, number

of tasks K varies from 100 to 588, and the demand varies from 450 to 3032 with an
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Table 4: Results for ISTSP instances

average of 1266 worker-hours. Instances P23 to P40 are simulated, and P41 is based

on a live problem. All simulated instances with the exception of P30 have been solved

to optimality by the two stage method (without the need for split technique). The

solution to P30 is at least 95% optimal. Utilization in the solutions varied from 75%

to 98% with an average of 85%. Solution times varied from 13 to 427 seconds with an

average of 111 seconds. The solution for the instance with live data (P41) is at least

58% optimal but the utilization is 98%. The demand for this problem is 1151 worker-

hours and it took 354 seconds to solve. Fig.9 presents the performance of two stage

method. We shall compare the performance of the two stage method with that of

Volland et al. (2017). For this, we use the results of instances P23 to P31. Since we do

not have the data used in Volland et al. (2017), we use the simulation approach. Recall

that instances P23 to P31 are simulated following the procedure stated in Volland et al.

(2017). It must be pointed out that the comparison is not based on exact instances

but on similar instances. Table 5 presents the one-to-one correspondence between the

two sets of problem instances along with respective solution times. The solution times

for Volland et al. (2017) are taken from their article. Both methods produced optimal
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Figure 9: Performance metrics of two stage method for P23 to P41

solutions for all the nine instances. The last column of the table presents the reduction

percentages in the solution times. The solution times are also shown in Fig.10

Table 5: Comparison with VF w.r. to time wise performance
Correspondence Time (seconds) Reduction

Size Demand VF TSM tV F tTSM Percent

595 SMA-S1-LW-FL P23 240 15 93

Small 592 SMA-S2-LW-FL P26 360 24 93

588 SMA-S3-LW-FL P29 900 51 94

990 MED-S1-LW-FL P24 10800 26 99

Medium 990 MED-S2-LW-FL P27 600 111 81

994 MED-S3-LW-FL P30 3180 101 96

1384 LAR-S1-LW-FL P19 10800 26 99

Large 1393 LAR-S2-LW-FL P28 300 74 75

1388 LAR-S3-LW-FL P31 2760 231 99

Note: ttotal is the total time extracted Table 5 of Volland et al. (2017); tTSM is the total

solution time by two stage method (TSM) taken from Table 4. Comparison is made based on

similar but not the same instances.

6 Conclusion

In this article, we considered the integrated staff and task scheduling problem. This

work is a part of the Ph.D. thesis of Dr. T R Lalita, and the work is presented in

Chapter 2 of the thesis (see Lalita (2021)). The staff and task scheduling problem is

hard to solve even for a predetermined task schedule. Several authors have considered

the problem and proposed column generation methods to solve. In this article, we

proposed a two stage approach to the problem and introduced the split technique to

handle problems with large demands. We have demonstrated the efficacy of the two stage

method with split technique through a number of numerical experiments in reducing

solution times dramatically. In the existing literature, solution methods are assessed at

different demand sizes such as small, medium and large. Through the split technique

introduced in this article, we are able to handle problems with large demands efficiently.

This raises a question that whether demand size has any influence on the complexity of
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Figure 10: Comparison of solution times of two stage method (TSM) with Volland et al.

(2017) (VF) method.

the problem. This point needs to be explored theoretically. Another direction for future

research is extending the methods introduced in this article to multi-skill personnel staff

scheduling problems.
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