A Branch-and-Price-and-Cut Algorithm for Discrete Network
Design Problems Under Traffic Equilibrium

David Rey! and Michael W. Levin?

ISKEMA Business School, Université Cote d’Azur, Sophia Antipolis, France,
david.rey@skema.edu
2Department of Civil, Environmental, and Geo- Engineering, University of Minnesota,
Minneapolis, USA, mlevin@umn.edu

November 21, 2024

Abstract

This study addresses discrete network design problems under traffic equilibrium conditions
or DNDPs. Given a network and a budget, DNDPs aim to model all-or-nothing decisions such
as link addition to minimize network congestion effects. Congestion is measured using traffic
equilibrium theory where link travel times are modeled as convex flow-dependent functions and
where users make selfish routing decisions. In this context, the collective route choice of users is
a Wardropian equilibrium and DNDPs admit a bilevel optimization formulation where the leader
represents the network designer, and the follower is a parameterized traffic assignment problem
(TAP). This study introduces a novel and exact branch-and-price-and-cut (BPC) algorithm for
DNDPs that exploits the structure of the problem and harnesses the potential of path-based
formulations for column generation (CG). Leveraging the convexity and the separability of the
objective function, we develop successive relaxations of the bilevel problem that lead to an
efficient outer approximation scheme that relies on solving a sequence of linear programs. We
combine this OA procedure with a CG approach whose pricing subproblem can be solved in
polynomial-time. This scheme is embedded within a single tree BPC algorithm to determine
lower bounds while upper bounds are computed by solving parameterized TAPs. Numerical
experiments conducted on a range of DNDP instances based on three transportation networks
reveal that our BPC algorithm significantly outperforms state-of-the-art methods for DNDPs.
Notably, we close several open instances of the literature, and we show that our BPC algorithm
can solve DNDP instances based on networks whose number of nodes and of commodities is one
order of magnitude larger than any previously solved instance.

Keywords: Bilevel optimization, Branch-and-price-and-cut, Network design, Traffic equilib-
rium, Selfish routing

1 Introduction

We consider discrete network design problems under traffic equilibrium. Discrete network design
problems aim to model all-or-nothing decision problems, such as link or node addition, in a network.
Traffic equilibrium refers to selfish routing and congestion effects in a network. In discrete network
design problems under traffic equilibrium or DNDPs for short, the goal is to minimize congestion
effects while accounting for users’ collective route choice in response to the design. Such problems have
well-documented applications in transportation and routing (Magnanti and Wong 1984) and can be
used to inform decision-making in problems where the collective behavior of users influences congestion
and therefore the choice of the network design. It-is well-known that DNDPs are NP-hard even if link
travel time functions—also known as latency functions or delay functions—are linear (Roughgarden
2006). In transportation planning applications, multiple commodities representing the travel of users
between their origin and destination often coexist and congestion functions are typically modeled as
convex nonlinear functions of link flow (Colson et al. 2007). DNDPs are often modeled using bilevel
optimization formulations where the leader represents the network designer and the follower represents
a parameterized traffic equilibrium problem (Yang and H. Bell 1998). In this context, identifying the
network design that optimizes the designer’s objective function is notoriously challenging. Existing
methods to solve DNDPs exactly do not scale well, mainly due to their inability to optimize over
large networks. This difficulty stems from the nonlinearity of link travel time functions but also from
the necessity to compute network equilibrium flows repeatedly to find optimal solutions.

The contributions of this study are as follows: we develop a novel methodology to solve DNDPs
to optimality at scale. Unlike most existing approaches to solve DNDPs, we formulate a path-based
convex relaxation of the original bilevel optimization problem. We combine outer approximation
(OA) (Duran and Grossmann 1986, Fletcher and Leyfler 1994) and column generation (CG) (Dantzig
and Wolfe 1960, Liibbecke and Desrosiers 2005) to obtain a tractable linear model that efficiently
computes lower bounds. We propose a single tree branch-and-cut-and-price (BPC) algorithm that
gradually adds cuts and path variables to this linear model and exploits the performance of state-of-
the-art traffic assignment algorithms to computer upper bounds. We enrich our BPC algorithm with
initialization heuristics and new value function cuts. Extensive numerical experiments that compare
the performance of our BPC algorithm with three benchmarks, including two exact algorithms from
the literature, highlight the benefits of the proposed approach. Notably, these experiments show that
the solving the linear path-based model via a CG approach is computationally efficient and avoids
scaling issues from solving a link-based multicommodity network design problem. Our numerical
results solve a number of unsolved DNDP instances and we introduce new larger problem instances
on medium to large-sized transportation networks to the community. For reproducibility purposes,
all data and codes of this study are made publicly available.

The remainder of this paper is organized as follows. In Section 2, we review prior work on network
design, selfish routing and traffic equilibrium. We present the problem formulation in Section 3.
The methodological components of our approach including relaxations, OA and CG procedures are
presented in Section 4. Our BPC algorithm is introduced in Section 5. Numerical experiments are
reported in Section 6. A summary of our findings and research perspectives are provided in Section 7.

2 Literature Review

We first review studies on selfish routing and traffic equilibrium in Section 2.1 before discussing
network design problems in Section 2.2. We emphasize our contributions relative to the state-of-the-art
in Section 2.3.

2.1 Selfish routing and traffic equilibrium

A milestone in the study of traffic equilibrium is the seminal work of Wardrop (1952) who introduced
the principle of traffic equilibrium to characterize the Nash equilibrium resulting from users’ selfish
routing decisions in a network: if users seek to minimize their own travel times, i.e. behave selfishly,
their collective behavior is a Wardrop equilibrium if no user may reduce her travel time by unilaterally
switching routes. Beckmann et al. (1956) later proposed a convex optimization formulation for the
traffic assignment problem (TAP) to compute user equilibrium (UE) and system optimum (SO)
network flows. The impact of selfish routing onto network congestion effects received an increased
attention after the Braess (1968) paradox showed that adding capacity onto a network may worsen
traffic conditions, and the worst-case price of anarchy was quantified by Roughgarden and Tardos
(2002) and Correa et al. (2004). These results highlight that optimizing the design of a network under
traffic equilibrium is nontrivial. Several variants of the TAP have been subsequently investigated to
study richer traffic equilibrium models (Dafermos 1980), including bounded rationality (Mahmassani
and Chang 1987) and stochastic user equilibrium (Dial 1971). Nevertheless, the original TAP is
sufficiently challenging to motivate recent work on improved solution algorithms (Bar-Gera 2010, Xie
and Xie 2016) and therefore remains relevant to the far more difficult problem of network design
under traffic equilibrium.

2.2 Network design problems

Network design problems (NDPs) can be separated into continuous and discrete network design
problems based on the type of decision modeled (Magnanti and Wong 1984). Continuous network
design problems allow decisions to take real values whereas discrete problems focus on discrete
decisions. Both continuous and discrete NDPs under traffic equilibrium have been studied in the
literature. The problem of adding continuous link capacity to minimize network-wide congestion
under traffic equilibrium is known as the continuous network design problem (CNDP) (Abdulaal and
LeBlanc 1979). Since this study is concerned with discrete NDPs, we omit studies on CNDPs in
this review of the literature and refer interested readers to Gairing et al. (2017). In addition, in the
remainder of this section, we focus our attention to exact approaches for solving discrete network
design problems under traffic equilibrium.

Most solution methods for DNDPs are based on the so-called System-Optimum (SO) relaxation
which corresponds to the high-point relaxation of the bilevel optimization formulation (Colson et al.
2007). The first exact method for the link addition DNDP was introduced by Leblanc (1975), who
combined the SO relaxation of the DNDP with a customized branching scheme to obtain valid lower
bounds via the solution of SO-TAPs. The principle of Leblanc (1975)’s algorithm consists of using
labels for tracking the status of candidate links. All candidate links are initially labeled as unfized.
At each node of the branch-and-bound (BB) tree, the SO-TAP with all unfized links opened is solved
to obtain a lower bound at this node. Since Braess’ paradox effects do not occur if traflic is assigned
under the SO principle, this provides valid lower bounds. Branching is performed on unfized links and
upper bounds are obtained by solving UE-TAPs upon reaching budget-feasible nodes. Since Leblanc
(1975)’s algorithm exclusively relies on solving SO- and UE-TAPs, it can directly benefit from recent
algorithmic advances for solving TAPs (Bar-Gera 2010, Xie and Xie 2016).

Gao et al. (2005) used generalized Benders’ decomposition to develop an exact algorithm for the
link addition DNDP. In this Benders’ decomposition approach, the master problem is a knapsack
problem enriched with Benders’ optimality cuts while the subproblem is a parameterized TAP. The
computation of Benders’ optimality cuts relied on the determination of optimal dual variables of
the Benders’ subproblem which is nontrivial since the TAP is a convex nonlinear program. The
authors introduce a single commodity instance with 20 nodes, 17 links and 6 variable links to test

their approach and also use an instance based on SiouxFalls network which consists of 24 nodes, 76
links, and 5 variable links. Farvaresh and Sepehri (2013) showed that Gao et al. (2005)’s derivation
of Benders’ optimality cuts was erroneous since these cuts were derived based on UE-TAP solutions
instead of SO-TAPs ones. Farvaresh and Sepehri (2013) were the first to exploit the convexity of the
objective function of DNDPs and use OA methods to obtain a relaxed mixed-integer linear model for
the link addition SO-DNDP to determine improved lower bounds. Using the same branching scheme
as Leblanc (1975), they employ Fletcher and Leyffer (1994)’s OA algorithm to solve the SO-DNDP
at each node of the BB tree. This is shown to produce tighter lower bounds compared to Leblanc
(1975)’s algorithm but requires the solution of multiple mixed-integer linear programs (MILPs) to
solve SO-DNDPs. They solve DNDP instances on an extended SiouxFalls network with 100 nodes
and 317 links, for a problem instance with 15 variable links.

Wang et al. (2013) considered a DNDP where discrete levels of link capacity may be added
to existing links. Two methods are proposed to solve this DNDP: a first relaxation of the bilevel
problem into a single level, convex mixed-integer nonlinear programming (MINLP) is proposed to
get lower bounds while upper bounds are computed by solving best-response TAPs. Interdiction
cuts are added to forbid the last design vector to be repeated, thus producing a cut generation
algorithm that converges to the optimal bilevel solution by alternatively solving convex MINLPs and
parameterized UE-TAPs. This method is then reinforced with value function cuts that aim to cut
out bilevel-infeasible solution in the relaxed model. A mixed-integer OA model is used to represent
nonlinear link travel time functions and numerical experiments on SiouxFalls network with 5 links
available for capacity expansion and two levels of expansion are considered. Bagloee et al. (2017)
proposed a BB algorithm which uses a generalized Benders’ decomposition approach to solve the
SO-relaxation of a multimodal DNDP at each node of the tree. The authors introduce a parameter to
adjust the UE-SO gap which affect the validity of the obtained lower bounds, thus optimal solutions
may be not guaranteed if this parameter is used. Results on SiouxFalls and Winninpeg’s network are
reported with up to 20 candidate links.

Mixed, i.e. discrete-continuous, NDPs have also received some attention. Luathep et al. (2011)
study a mixed discrete-continuous NDP where both new links and the capacity expansion of existing
links are modeled. They developed an SO-relaxation based approach where follower optimality
conditions, i.e. UE, is ensure by the gradual addition of variational inequalities. The authors report
numerical results for Gao et al. (2005)’s instance, and for instances based on SiouxFalls network with
5 and 10 candidate projects for pure discrete and mixed discrete-continuous instances. Wang et al.
(2015) addressed a different mixed discrete-continuous NDP where the network designer aims to
decide which links to add and their capacity. The authors used the variational inequality formulation
of Luathep et al. (2011) but focused on developing an OA model of link travel time functions.
Numerical results are only reported for Gao et al. (2005)’s instance.

It is also noted that some studies used piecewise-linear approximations of link travel time functions
to create an approximate problem known as the linearized link addition DNDP which is then solved
exactly (Farvaresh and Sepehri 2011, Fontaine and Minner 2014, Rey 2020). Farvaresh and Sepehri
(2011) proposed a single level MILP formulation where follower optimality is enforced via linearized
UE conditions. Linearized DNDP instances with up 16 nodes, 17 links and 25 candidate links are
solved. Fontaine and Minner (2014) exploits the linearity of the linearized DNDP to derive a single
level reformulation of the bilevel problem where follower optimality is ensured by a strong duality
constraint. This reformulation is then solved using Benders’ decomposition and numerical results on
linearized DNDP instances on SiouxFalls network with 15 candidate links and on BerlinMitteCenter
network, which consists of 398 nodes and 871 links, with 10 candidate links are reported. Rey (2020)
conducted a computational study on three exact algorithms for the linearized link addition DNDP
which revealed that 20-candidate link problem instances remained challenging to solve, even using

piecewise linear approximations of link travel time functions.

2.3 Our contributions

Our objective is to solve discrete network design problems under traffic equilibrium exactly. Our
methodology builds on the bilevel optimization formulation of DNDPs and we further devote our
attention to nonlinear link travel time functions—as opposed to linear travel time functions—which
are commonly used in transportation network design studies. The main contribution of this study is to
propose a novel solution method for DNDPs that leverages the potential of path-based network design
formulations to scale-up. Our approach exploits the properties of the leader objective function, i.e.
convexity and separability, to design a tight OA model that is amenable to an efficient CG procedure.
Notably, the pricing suproblem of the CG procedure consists of solving a series of commodity-based
shortest path problems which can be executed in polynomial-time. This framework is used to design
a branch-and-price-and-cut (BPC) algorithm that gradually refines the OA model used to determine
lower bounds by cut and column generation. Upper bounds are determined by solving best-response
parameterized TAPs during search. This leads to a novel single tree BPC algorithm that is enriched
with initialization heuristics, and interdiction and value function cuts.

To demonstrate the performance of our BPC algorithm, we conduct an extensive numerical
benchmarking on a total of 180 DNDP instances based on three transportation networks of varying
sizes. The performance of our BPC algorithm is compared to its link-based counterpart that does not
require path variables and uses commodity-based link flows instead. This leads to a branch-and-cut
(BC) algorithm that is identical to the proposed BPC except that it does not require CG. In addition,
we consider two benchmarks from the literature: Leblanc (1975)’s branch-and-bound (BB) algorithm,
which introduced the labeling scheme that we adopted and only relies on the solution of UE- and
SO-TAPs; and Farvaresh and Sepehri (2013)’s OA BB algorithm, which also uses the same labeling
scheme and uses OA to determine lower bounds during search. The former approach benefits from
its reliance on TAP algorithms: since the introduction of Leblanc (1975)’s BB algorithm about
50 years ago, enormous computational gains have been obtained by improving TAP algorithms
and state-of-the-art methods have given a second life to this seminal algorithm. The latter is the
algorithm in the literature that is the most similar to our BPC algorithm since they both exploit the
convexity of the leader objective function to determine lower bounds via an OA model. The most
stringent difference is that Farvaresh and Sepehri (2013) used a link-based model that cannot scale
to larger networks. Another key difference is that their OA model and implementation do not exploit
the separability of the leader objective function. The extensive numerical experiments conducted
highlight the substantial benefits of the path-based model and its associated CG approach compared
to link-based counterparts. We also observe substantial gains compared to Leblanc (1975)’s seminal
BB algorithm, thus outlining the scale-up capabilities of our approach.

3 Problem Formulation

DNDPs can be formulated as bilevel optimization problems where the leader problem aims to
identify the optimal selection of a discrete resource to add to a network to minimize the total system
travel time (TSTT) and the follower problem represents users’ reaction, typically as a static traffic
assignment problem (TAP) under Wardrop’s user equilibrium (UE) principle (Wardrop 1952). For
presentation and experimentation purposes, we use the link addition DNDP—hereby referred to as
DNDP—as our target discrete network design problem under traffic equilibrium since this is the
most studied DNDP in the literature.

The DNDP can be defined on a network with a node set A/ and link set A as a multicommodity
network flow problem with nonlinear link travel time functions. Let d,, be the demand for commodity
weW CN xN. Let II, be the set of paths connecting commodity w € W and let II = Uy,ewIL,
be the set of all paths. Let [67]4ec,rer be the link-path incidence matrix of the network. We denote
hy the flow on path 7 € II and h = [h;]renr the vector of path flows. Let ¢,(-) represent the travel
time function on link a € A, typically modeled as a positive and increasing function of the total link
flow z, to ensure the uniqueness of the UE link flows. Let A; be the set of existing links and let As
be the set of candidate links to improve the network, A = A; U As. For each link a € A, let g, be
the cost of adding this link to the network and let y, € {0,1} be the variable representing this choice.
Let B be the available budget for optimization.

The leader represents a network designer that aims to minimize the TSTT defined as the sum
of z4tq(x,) over all links a € A, subject to a budget constraint capturing the cost of link addition
decisions y, hereby referred to as leader variables. The link flow pattern variables @ = [2,]qca are
determined by the follower problem, which is the TAP formulation under UE (Beckmann et al. 1956,
Leblane 1975, Magnanti and Wong 1984). The impact of the leader variables y in the follower is
achieved through the linking indicator constraints that require null flow on A, links that remain
closed.

The follower problem is a TAP based on Beckmann et al. (1956)’s formulation parameterized by
leader variables y:

TAP(y) : min Z " to(v)dv (1la)
x.h 0

a€A

s.t. > he=dy Yw € W (1b)
eIl
> hely =4 Va € A (1c)
well
Tq =0 if y, =0 VYa € A, (1d)
hye >0 vrell (1e)

Let TAP(y) also denote the set of optimal link flow solutions « of the parameterized TAP (1).
The DNDP can be formulated as the following bilevel optimization problem:

min Z Zata(2q) (2a)

Y acA

s.t. > Yaga < B (2b)
a€Az
ya € {0,1} Ya € Ay (2¢)
x € TAP(y) (2d)

Note that although the follower problem contains two groups of variables: path flows and link
flows, only the latter are used to compute the leader objective function. Furthermore, it is well-known
that, if link travel time functions ¢,(-) are positive and increasing then, for any leader decision y, the
objective function of the follower is strictly convex with regards to variables « and there is a unique
UE link flow pattern & € TAP(y) (Sheffi 1985).

4 Relaxations, Outer Approximation and Column Generation

In this section, we present the techniques used to obtain relaxed and tractable formulations of the
DNDP. We start by relaxing the bilevel optimization problem into a single level problem via its
System Optimum (SO) relaxation. We exploit the properties of the objective function of DNDP
and propose a novel link-based Outer Approximation (OA) model to obtain a Mixed-Integer Linear
Programming (MILP) relaxation of the SO relaxation. Leveraging the path-based formulation of this
MILP relaxation, we develop a Column Generation (CG) with a polynomial-time pricing subproblem.

For presentation purposes, we define the following sets: let X be the set of (unrestricted) feasible
link flows:

XE{anGR'A Y hlf =, Va €A, D hy =duy, Yw € W, hy >0, VWEH} (3)
mell eIl

Let Y be the set of feasible link addition decisions:

y= {y e {0,111 Y yaga < B} (4)

acAs

4.1 System Optimum Relaxation

Let Q@ =), cyy dw be the total demand. A mathematical programming formulation of the system
optimum DNDP, denoted SO-DNDP is:

min Z ZTata(Tq) (5a)

cy,xeX
Y acA

s.t. Ty < Ya@ Va € Ay (5b)

Here the linking constraint (1d) is reformulated into a so-called big-M constraint (5b) which is
linear and for which a finite bound is known. The SO relaxation (5) of the DNDP formulation (2) is
a MINLP with a convex objective function, which motivates the use of dedicated algorithms, notably
OA methods.

4.2 Outer Approximation

The nonlinear link travel time functions ¢,(-) make problem (5) difficult to solve. It is well-known
that the objective function (2a) of the DNDP (and of SO-DNDP) is convex, which we use to write an
OA of the objective function (Duran and Grossmann 1986, Fletcher and Leyfler 1994). Furthermore,
the objective function of DNDP (TSTT) is separable with regards to link flow variables & (Beckmann
et al. 1956), which means that the OA can be made tighter by creating a link-based OA instead of a
single OA of the entire objective function. We exploit these properties to build a link-based OA of
the terms x,t,(x,) composing the objective function.
Formally, given a vector ¥ € X’ of feasible link flows, the gradient of x,t,(x,) at ¥ is:

d [x’;ta(:z:];)]

Tata(wh) + —— T X (0 = 25) = Tata(2s) + (25t (20) + tal)) X (e —75) (62)
=z (25t () + ta(zg)) — (25)*t (x5) (6b)
= zoap + B (6¢)

where of = 2%t/ (z%) + t,(2¥) and BF = —(2F)%t/ (2¥) are constants. Because of convexity of the
TSTT objective function, for any ¥ € X, z,af + BF is a linear under-estimator of z,tq(x,).

Let pq > 0 be a real decision variable representing the contribution of link a € A to the objective
function (2a). Let C, be the set of indices k corresponding to the link flows z¥ at which OA is
performed, i.e. C, represents the set of OA cuts used to under-estimate the contribution of link
a € A to the objective function. Given a collection of index sets [Cylqc 4, the following formulation is
a MILP relaxation of SO-DNDP:

min Z Ha (7a)

yeY,xeX,n>0

acA

s.t. o > zoak + BF Va e A keC, (7b)
ZTq < YaQ Va € As (7c)
Ya € {0,1} Va € Ay (7d)

Solving Formulation (7) yields a lower bound (LB) on the optimal objective function value (OFV)
of DNDP. In contrast to the DNDP literature, this formulation exploits the link-separability property
of the objective function of the DNDP. Farvaresh and Sepehri (2013) developed a MILP relaxation
of SO-DNDP based on the OA of the entire objective function as opposed to link-based OAs. Their
MILP formulation was also formulated using a link-based multicommodity network flow model.
Instead, Formulation (7) is path-based and contains an exponential number of path flow variables h.
We exploit the MILP structure of Formulation (7) and its amenability to CG techniques to avoid
enumerating all paths within Formulation (7).

4.3 Column Generation

To solve Formulation (7), we consider its linear programming (LP) relaxation. Let II C II be a
restricted set of paths and let IT,, C II,, be the corresponding commodity-based restricted path sets.
The restricted master problem (RMP) is:

min Z Ha (8a)

yimhp acA
s.t. o > zo0k + BF Va e Ak eC, (8b)
> Yaga < B (8¢)
a€As
> he=dy Vw € W (8d)
ﬂeﬁw
Z hr 08 =z, Yae A (8e)
mell
Tq < Yo Q Ya € Ag (8f)
0<y, <1 Ya € Asg (8g)
hy >0 vrell (8h)

Since the objective of (SO-)DNDP is to minimize network-wide congestion, link and path flows
are indirectly minimized. Hence, constraints (8d) and (8e¢) can be rewritten as inequalities to restrict

the sign of their dual variables, namely:

Z hTI' > dw Ywe W (9&)
well,,

D hady <4 Yae A (9b)
mell

We denote o, > 0 the dual variable of the demand constraint (9a) and ¢, > 0 the dual variable
of the link flow constraint (9b). Given a commodity w € W and a path 7 € IL,,, the reduced cost of
variable h,, denoted c,, is:

Cr = —0y + Z 5;r<a (10)

acA

The reduced costs of path-flow variables h can be computed in polynomial-time by solving, for
each commodity w € W, a shortest path problem in the directed network (A, A) with link costs
given by the dual vector ¢ = [(4]aeca and deducing o, from the shortest path length.

This CG approach is novel and provides a paradigm shift for solving DNDPs at scale: as shown
in our numerical experiments in Section 6, the pricing of path flows variables is computationally
inexpensive and the path-based formulation of the SO-relaxed OA model of DNDP is more efficient
than its link commodity-based counterpart.

5 Branch-and-Price-and-Cut Algorithm

We present the branch-and-price-and-cut (BPC) algorithm developed to solve the DNDP to optimality.
Our BPC algorithm implements a single tree that solves a sequence of LPs in the form of RMP (8).
Columns and cuts are added dynamically to obtain LBs. UBs are computed by determining the
follower’s best-response to a given leader decision: specifically, given an integral vector y €), solving
TAP(y) gives an UB on the OFV of DNDP. Our algorithm builds on the labeling scheme introduced
by Leblanc (1975) and refined by Farvaresh and Sepehri (2013) but differs from these approaches by
exploiting the relaxed path-based linear model (8) and its associated CG approach. Throughout this
section, we use index k to denote a node of the BPC tree and its associated branch cuts.

5.1 Labeling Scheme

We adopt the labeling scheme introduced by Leblanc (1975) to track the status of candidate links in
As during search. We define the sets of fixed links at iteration k as:

AJ(k) = {a € A : yF =0} (11a)
Ay(k) = {a € Ay Yk = 1} (11b)

Note that (AJ(k) U AL(k)) C A, in particular at the root node: A9(0) = A3(0) = (). At each
node k of the BPC tree, the budget constraint is checked for violations using the following procedure
named check(k) is executed:

o if ZaeA;(k) ga > B the budget is violated and the BPC node is labeled as infeasible;

e else if |AJ(k) U AL (k)| = |Az], then all links are fixed and the BPC node is labeled as fixed;

o else if 37 c a1(k)9a <minfge s a € Az (A3(k) U AL(k))}, then the budget is not violated but

there is not enough budget to open any of the unfixed links. In this case, set y* = 0 for all
a € Az \ (AY(k) U AL(k)), and the BPC node is labeled as fixed;

e clse: the BPC node is labeled as unfixed.

If the check(k) procedure results in the label unfixed, the selected BPC node is further processed
and a LB is computed by solving RMP (8) along with branch cuts by CG. If the outcome of the
check(k) procedure is fixed, TAP(y¥) is solved to obtain an UB on the OFV of DNDP and the tree
is pruned at this node. Analogously, if the outcome of the check(k) procedure is infeasible, the
tree is pruned at this node.

5.2 Branching and Node Selection Rules

If a BPC node is not pruned, the algorithm selects a link a € Ay \ {A9(k) U A (k)} for branching.
Priority is given to links whose y* value is fractional and if none exists, branching is performed
on unfixed links. In both cases, we use the scoring function used in the literature (Leblanc 1975,
Farvaresh and Sepehri 2013, Rey 2020) to sort candidate links for branching: links are sorted by
decreasing score(a) = z¥t,(z*) values which corresponds to their contribution to the leader objective
function. We use the best-bound first search rule to select the next BPC node during search.

5.3 OA Cut Generation

Leveraging the separability of the objective function, the generation of OA cuts can be performed on
a per-link basis and a threshold rule is used to control the density of link-based OA cuts. For each
link a € A and for each cut index k € C,, we store the link low z¥ at which OA is performed. Before
extending the index set C,, we scan stored cut indices and check if the absolute value difference of the
candidate link flow with stored link flows is greater than a predefined threshold ep 4. Formally, given
a candidate link flow z,, if there exists no index k € C, such that |z, — 2%| < epa, then we extend
C, by adding an index corresponding to the candidate link flow x,. This process is hereby referred
to as the (leader) OA procedure. In our BPC implementation, we execute the OA procedure after
each RMP solve, i.e. link-based OA cuts are generated by computing the linear-underestimators (6¢)
at points ¥ € X that solve the RMP (8).

5.4 Interdiction Cuts

To avoid repeating an integer solution and solving the corresponding parameterized TAP, interdiction
cuts can be added to the RMP. Let F be the set of indices corresponding to the parameterized TAPs
solved. For each f € F, we denote y/ = [yf]aca, the link addition vector corresponding to TAP(y”).
The interdiction cuts are:

Yoovt Y, (-y)>1 VfeF (12)

aEAz:y{;:O aEAz:y£:1

In our implementation of the BPC algorithm, set F is initially empty and this set is gradually
extended by adding y-vectors each time the follower best-response is computed.

10

5.5 Value Function Cuts

To tighten the feasible region of RMP (8), we consider including value function (VF) cuts. VF
cuts aim to cut out HPR-feasible solutions that are bilevel-infeasible. Lozano and Smith (2017)
proposed a cutting-plane algorithm for bilevel optimization problems with integer leader decisions
which iteratively adds VF cuts to the HPR. We build on this approach and derive customized VF
cuts for the link addition DNDP.

Proposition 1. Let ©f € TAP(y’) be the link flow vector corresponding to the follower best-response
for a given yf € Y vector. Given a vector of large enough values [My|aca,, the set of constraints:

Z/ Vv < Z/ Ddv+ Y Ma(1—), YfeF (13)

acA acA aCAs:zl>0
are value function cuts for the link addition DNDP.

Proof. Proof. From Proposition 1 of Lozano and Smith (2017), a solution (y,x) is bilevel-feasible for
link addition DNDP if and only if

Z/ v)dv < Z/ va! e TAP(y) (14)

acA acA

In the link addition DNDP, the dependency of a leader strategy y and the follower best-response
xf € TAP(y) occurs through the linking constraint (1d) which is represented in integer-linear form (8f)
in RMP (8). Observe that, given an integral vector y/ €), opening a link which is closed in yf
only extends the feasible region of the follower problem. However, any link a € A with nonzero
best-response flow z{ > 0 must be opened, i.e. y/ = 1, and closing this link makes the flow z/
infeasible. Therefore, the follower objective value may increase if links are closed, which requires
adding the “big M” term M, (1 — y,) to deactivate the constraints if any link a € A; with nonzero
best-response flow 2/ > 0 is closed, i.e. y, = 0. O O

We note that Wang et al. (2013) proposed VF cuts for a DNDP where the leader controls discrete
link capacity expansion variables. In this model, the set of network links is fixed but the capacity
of certain links can be increased by discrete amounts. This modeling choice avoids the problem
of “blocking constraints” discussed in Lozano and Smith (2017) but cannot be applied to the link
addition DNDP.

To incorporate the VF cuts (13) in RMP (8), we exploit the convexity and the separability of its
left-hand-side, i.e. the TAP objective function (1a) to determine an under-estimator via OA and
valid upper bounds on M, terms. Let By(za) = [, ta(v)dv.

Given a feasible flow =¥ € X, the gradient of B,(z,) at ="

zP d vq to(v)dv zP
/0 to(v)dv + Uodx’;()] X (14 —2h) = /0 to(v)dv + Z to(x?) x (24 — 2¥) (15a)

acA
]Jk
= zatq(2F) + / to(v)dv — xFt, (%) (15Db)
0
= TaVs + 4 (15¢)
where 7% = t,(z¥) and ¢ = fo “ to(v)dv — z¥t,(z¥) are constants.

11

Since the TAP objective function (la) is decreasing with y, it holds that }° _, Bi(za) <
> wea Ba(@h) = M, = M where 2° € TAP(y = 0). Let uZ > 0 be real variables used to capture the
contribution of link a € A in the follower objective function (1a). Let CZ be the set of indices k
corresponding to the link flows z¥ at which OA is performed for the follower objective function (1a).
The set of constraints:

pe > wave + ok Vae A kecCP (16a)
SouE < Bal@h)+M D (1), VfeF (16b)
ac A ac A a€A2:w£>O

represent a relaxation of the VF cuts (13) and are thus valid inequalities for the link addition DNDP.

5.6 Columns, OA cuts and UB Initialization

We initialize the restricted path sets II,,, for each commodity w € W, by closing all links in As
and solving a shortest path problem using free-flow link travel times. This ensures that the initial
restricted path set II = U,ewIl, is feasible for any link addition vector y €).

To attempt to obtain a competitive root node LB, OA cuts index sets [Cylqc.a are initialized by
solving SO-TAPs with a relaxed optimality gap for a series of y-vectors. We consider two heuristics
to initialize OA cuts index sets. Both heuristics start by solving SO-TAP with y = 1 and executing
the leader OA procedure at the obtained link flow vector '. This aims to ensure that all links of the
network have at least one OA cut. Subsequently, the binary knapsack problem maxycy >, Ay YaTk
is solved to obtain a feasible y, SO-TAP is solved for y and the OA procedure is executed. In
addition, the parameterized follower TAP(g) is solved to obtain an UB on the OFV of DNDP. Then,
one of two following heuristics is used:

e kBestKP: Add an interdiction cut of the form (12) to the binary knapsack problem, obtain a
“second-best” y vector, solve SO-TAP and execute the OA procedure, etc; for a predefined
number of iterations.

e LocalSearchKP: Explore the neighborhood of g by turning on or off each link one at a time,
solve SO-TAP at this neighbor and execute the OA procedure.

5.7 Algorithm Overview

The pseudo-code of the BPC algorithm is presented in Algorithm 1. The algorithm starts by
initializing the (global) lower and upper bounds LB and U B, the restricted path set IT and link-based
OA cuts index sets [Cqlaca. At each BPC iteration, three boolean control variables prune, run0OA,
runTAP are initialized to False: prune controls tree pruning; while run0A and runTAP determine
whether to update the link-based OA models by attempting to add new OA cuts and to compute the
leader OFV by solving a parameterized (UE-)TAP to attempt to update U B, respectively.

After selecting an active BPC node k, the procedure check(k) is executed: if it returns infeasible,
then the boolean prune is set to True. If it returns fixed, both prune and runTAP are set to True
and the leader OFV is computed at the corresponding y* vector. If the procedure check(k) returns
unfixed, the RMP (8) at the current BB node is solved by CG: the BPC node is pruned if the CG
procedure is infeasible or if the local LB greater than the OFV of the best known bilevel-feasible
solution, i.e. LBy > UB. Otherwise, the boolean run0A is set to True. If the BPC node is not
pruned, the branching rule is used to find the branching link a € A, \ {A9(k) U AL(k)} with the

largest score(a) value: priority is to branch on fractional variables, and if none exists, on unfixed

12

variables. In the latter case, one of the children BPC node needs not to be solved again and Line 13
can be skipped. If the node is pruned or after branching, the current node is labeled as inactive. The
algorithm terminates if the relative gap between LB and UB falls within a predetermined threshold
or if there are no more active BPC nodes.

We establish the correctness and the finiteness of our BPC algorithm in the following proposition.

Proposition 2. The BPC algorithm 1 solves the DNDP to optimality in a finite number of iterations.

Proof. Proof. Finiteness stems from the discreteness of the DNDP: since there is a finite number of
link addition variables, the maximum number of BB iterations is 212/, To demonstrate correctness,
i.e. that the algorithm solves the DNDP exactly, due to Braess paradox effects, we must show that
no integral y vector capable of improving the best known bilevel-feasible solution is skipped during
search, and that upon termination the algorithm has proven this best known bilevel-feasible solution
to be a global optimum.

Since RMP (8) is a relaxation of SO-DNDP (5) which is itself a convex relaxation of the bilevel
optimization problem (2), solving RMP (8) by CG at the root node of the BPC tree yields a LB on
the optimal OFV of (2). This LB is gradually refined through branching and at the end of any BPC
iteration, LB is updated by taking the minimum over LBs of active BPC nodes using standard BB
logic. Throughout search, UB is determined by solving y-parameterized (UE-)TAPs at integral y
points and is updated whenever the leader OFV computed at the follower best-response link flow
point @ improves on the incumbent UB. Hence, at any BPC iteration LB and UB are valid lower
and upper bounds on the optimal OFV of the bilevel optimization problem (2).

To see that no integral y vector capable of improving the best-known bilevel-feasible solution has
been skipped during search, observe that if the check(k) procedure returns fixed, the leader OFV
is computed by solving the y*-parameterized (UE-)TAP and this branch of the tree can be fathomed
since all variable links have been fixed. If the check(k) procedure returns infeasible, the branch
can be fathomed since the budget constraint is violated. Otherwise, at least one link is unfixed, and
a local LB is determined by solving RMP (8) by CG at k: this BPC node is pruned only if the RMP
is infeasible or if the local LB exceeds the best-known bilevel feasible solution. [J O

The implementation of Algorithm 1 can be tuned without affecting finitess or correctness by
adding interdiction cuts and value function cuts after solving the parameterized UE-TAP at an
integral point y* as indicated in the optional step at Line 25.

6 Numerical Results

We start by presenting the design of our numerical experiments to validate the performance of our
BPC algorithm.

6.1 Experiments Design

We conduct numerical experiments to test the performance of the BPC algorithm for the link
addition DNDP. We consider three benchmarks: a branch-and-cut (BC) algorithm which follows the
same single tree BB algorithm as BPC but uses a commodity link-based formulation instead of the
path-based formulation, therefore no CG is required. Therefore, the only difference between BPC
and BC is the use of a path-based formulation and the CG procedure. We also compare BPC and
BC with two benchmark algorithms from the literature: Leblanc (1975)’s BB algorithm—hereby
referred to as Leblanc—which solves SO-TAPs to determine LBs; and Farvaresh and Sepehri (2013)’s
BB algorithm which uses Fletcher and Leyffer (1994)’s OA algorithm to determine LBs—hereby

13

Algorithm 1: Branch-and-Price-and-Cut (BPC) algorithm for the DNDP

1 II < initialize path variables

2 LB+ 0

3 UB,|[Cqalaca < execute heuristic to initialize OA cuts and compute initial UB
4 Initialize BB tree with root node 0

5 while not converged do

6 k < select an active BB node
7 prune, run0A, runTAP < False
8 if check(k) = infeasible then
9 ‘ prune < True
10 else if check(k) = fixed then
11 ‘ prune, runTAP < True
12 else
13 LBy, y"*, z* < solve RMP (8) at node k by CG
14 if RMP is infeasible or if LBy, > UB then
15 ‘ prune < True
16 else
17 | runOA < True
18 if runOA = True then
19 | Update [Cqlaca at =¥
20 if runTAP = True then
21 UB;, < solve UE-TAP at y*
22 UB + min{UB,UBy}
23 Optional: add interdiction cut and value function cut at y*
24 if prune = False then
25 Afrac(k) < {a € Ay \ {AY(k) U AL(K)} : ¥ is fractional}
26 if [Af*2°(k)| > 0 then
27 | a < argmax{score(a) : a € AF™°(k)}
28 else
29 | a < argmax{score(a) : a € Ay \ {AJ(k) U A}(k)}}
30 Create two children nodes with y**! =0 and y**2 =1
31 Update LB based on active BB nodes and check convergence

14

Network (Acronym) Nodes Links Commodities Trip inflation factor

SiouxFalls (SF) 24 76 528 1
Eastern Massachusetts (EM) 74 258 1113 4
BerlinMitteCenter (BMC) 398 871 1260 2

Table 1: Transportation networks used for generating DNDP instances.

referred to as FS_NETS. All four implemented algorithms, i.e. BPC, BC, FS_NETS and Leblanc
and; use the same check(k) procedure to scan a BB node k before further processing it if it is labeled
unfixed. All TAPs are solved using our implementation of Bar-Gera (2010)’s TAPAS algorithm.

We use three transportation networks from a public repository containing traffic assignment, i.e.
network and trips, data (Transportation Networks for Research Core Team 2024) to generate DNDP
instances: SiouxFalls (SF), Eastern Massachusetts (EM) and BerlinMitteCenter (BMC). SF is a test
network with 24 nodes, 76 links and 528 commodities widely used in DNDP studies (Farvaresh and
Sepehri 2013, Wang et al. 2013, Rey 2020). EM contains 74 nodes, 258 links and 1113 commodities;
and BMC contains 398, 871 links and 1260 commodities—the latter network was also used by Fontaine
and Minner (2014) for solving the linearized link addition DNDP. To increase congestion effects on
EM and BMC networks, we inflate trips by a factor of 4 and 2, respectively. Network information is
summarized in Table 1.

We use the SF DNDP instances introduced by Rey (2020) which consist of 20 instances: 10
with 10 additional new links, i.e. |A2| = 10 thus |A| = 86; and 10 with 20 additional new links,
ie. |Az] = 20 thus |A] = 96. For the EM and BMC networks, since these networks already have
many links, we generate DNDP instances by randomly sampling |Az| links among existing links. For
each sample, we verify the impact of closing these links one at a time by solving the corresponding
UE-TAP and recording the TSTT percentage change relative to the original network. We discard
samples if more than 1/3 of the sampled links do not generate an absolute change in TSTT greater
than 1%. For both EM and BMC networks, we generate 20 DNDP instances: 10 with |Az| = 10
and 10 with |A4s| = 20 and the cost of opening As is determined by randomly perturbing a linear
function of links’ free-flow travel time and capacity. For all three networks and for each of the 20
samples of As links and their costs, we generate three DNDP instances with a budget of 25%, 50%
and 75% of the total cost of opening all links. This constitutes a dataset of a total of 180 DNDP
instances including 60 instances of each transportation network.

All algorithms are implemented in Python on a Windows machine with a i9 CPU at 3.19 GHz
and 64 GB of memory. All LPs and MILPs are solved using CPLEX 22.1 MIP solver (International
Business Machines Corporation 2024) with a single thread. We set an optimality gap of 1% for
algorithm convergence and we set a runtime limit of 1 hour for each instance. For reproducibility, all
data and codes are made available at https://github.com/davidrey123/DNDP-path.

We report the results of the computational benchmarking of DNDP algorithms in Section 6.2. A
detailed analysis on the behavior of the BPC algorithm is reported in Section 6.3.

6.2 Computational Benchmarking

The main results of this study are reported in Figure 1 which depicts performance profile-like
curves (Dolan and Moré 2002) of the four DNDP algorithms implemented, i.e. BPC, BC, FS_NETS
and Leblanc. Specifically, for each algorithm, we report the percentage of instances solved over
runtime. Figure la report performance profiles over all 180 instances considered. Performance profiles
over the 60 instances of each network are reported in Figures 1b, 1c and 1d for SF, EM and BMC

15

https://github.com/davidrey123/DNDP-path

networks, respectively. This benchmarking reveals that, overall, BPC dominates all other three
DNDP algorithms. It is able to solve to optimality over 50% of the instances within 315s while BC
and Leblanc require 591s and almost 1383s to solve the same percentage of instances, respectively.
Within the 1 hour runtime limit, BPC is able to solve 86.7% of the 180 instances whereas BC and
Leblanc achieve 80.3% and 71.1%, respectively. In contrast, our implementation of FS_NETS is
able to solve only 48.3% of the 180 instances considered within the runtime limit. A closer look at
network-based performance sheds several insights. On SF instances, BC tends to slightly dominate
BPC. We also find that FS _NETS dominates Leblanc for a significant range of runtimes. This
highlights that, for small networks, the link-based multicommodity network flow model which is
used in both BC and FS_NETS provides a viable alternative to path-based counterparts. EM
instances reveal a different pattern: here FS NETS is dominated by all other algorithms while
BPC slightly dominates BC. This emphasizes the gains obtained by exploiting the separability of
the leader objective function to generate OA cuts within the BC and BPC algorithms. Results on
BMC instances—which is the largest network tested—demonstrate the substantial benefits of the
BPC algorithm over the benchmarks considered. BPC is found to require 582s for solving 50% of
these instances—which corresponds to 10-link BMC instances—and is able to solve 68.3% of BMC
instances within the runtime limit. Leblanc is the second-best performing algorithm and requires
2096s to solve 50% of these instances. BC ranks third and requires 2545s to solve 50% of these
instances; while FS_NETS only manages to solve 11.7% of these instances within the 1 hour runtime
limit.

For a more detailed outlook, we organize instances in classes. Each class corresponds to a network
(SF, EM or BMC), a number of Ay link variables (10 or 20) links and a budget level (25%, 50% or
75%). We focus on the first three instances (identified by ID) of each class and we report the UB
and optimality gap (Gap, in percentage) upon termination, the runtime in seconds (Time) and the
number of TAPs solved during execution (nTAP); for each of the four DNDP algorithms. Table 2
summarizes SF instances results, Table 3 summarizes EM instances results and Table 4 summarizes
BMC instances results. Best performance is highlighted in boldface and rows in italics indicate that
the 1 hour runtime limit was attained. Examining these tables reveal that BPC and BC strictly
dominate 'S NETS and Leblanc for SF and EM instances. BPC and BC are able to solve all 20 SF
instances. In turn, FS_NETS and Leblanc occasionally fail to solve SF 20-link instances within the
1 hour runtime limit but achieve optimality gaps lower than 5%. Behavior on EM 20-link instances
favor BPC over BC in terms of runtime performance. We note that FS_NETS frequently times out
on EM 20-link instances, while Leblanc tends to performs better. For SF and EM 10-link instances,
few TAPs are solved and this contributes to competitive runtime overall. SF 20-link instances requires
a significantly larger number of TAPs, i.e. several thousands of solves when using BPC, BC or
Leblanc. FS_NETS requires substantially fewer TAP solves which can be attributed to its nested
search tree implementation. Overall, EM instances requires significantly fewer TAP solves, i.e. by
one or two orders of magnitude, than SF instances. For BMC 10-link instances, substantial runtime
savings of about one order of magnitude are obtained by BPC compared to BC. Leblanc strikes a
balance between BPC and BC on BMC instances although it is occasionally significantly slower than
BPC on certain BMC 20-link instances. Further, on these instances, if timing out, both BPC and
Leblanc achieve less-than-5% optimality gaps. In comparison, BC and FS_NETS systematically time
out on BMC 20-link instances and return relatively large optimality gaps of the order of 30%-40%.
This highlights the effectiveness of path-based approaches over link-based counterparts for larger
scale DNDP instances.

16

$100 dm}lOO
2 o
S c
2 IS
Z
2 80 2 g0
o
Q 3
s 60 E 60
: =
o
H 2
S 40 & 40
8 $
2 BPC < BPC
© +
2 20 —— BC a 20 — BC
E FS_NETS < FS_NETS
g —— Leblanc N —— Leblanc
0 0
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Runtime (s) Runtime (s)
(a) All instances (b) SF instances
100 100
4] BPC
1% o
g g — BC
2 80 2 80 FS_NETS
o o —— Leblanc
©o ©o
s s
£ 60 £ 60
o o
° o
(% [
= 2
2 40 3 40
w wv
[[
2 BPC 2
8 2
v 20 — BC 2 20
b FS_NETS =
o - (=]
X —— Leblanc S
0 0
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Runtime (s) Runtime (s)
(¢) EM instances (d) BMC instances

Figure 1: Performance profiles of DNDP algorithms: BPC, BC, FS_NETS and Leblanc.

6.3 BPC Algorithm Analysis

We investigate the impact of tuning algorithmic parameters within the BPC algorithm. For this
analysis, we consider five BPC algorithm configurations whose names and features are listed in
Table 5. We report the impact of three features that were found to affect algorithm behavior the most:
the choice of the initialization heuristic among the considered (see Section 5.6), the threshold epa
used to generate OA cuts (see Section 5.3) and the use of interdiction and value function (VF) cuts
(see Sections 5.4 and 5.5). The best-performing configuration is named 1s5: this configuration uses
the LocalSearchKP heuristic, a 5% OA cut threshold and no interdiction or VF cuts. We explore
alternate configurations: kb5 uses the kBestKP initialization heuristic; 1s10 and 1s1 use OA cuts
thresholds of 10% and 1%, respectively; and 1s5cuts adds interdiction and VF cuts during search.

The results of this analysis are summarized in Table 6: we focus on six DNDP instances, two per
network including one with 10 As links and one with 20 A5 links. For each of these six instances, we

17

Instance BPC BC FS_NETS Leblanc

Network |Az| By ID UB Gap Time nTAP UB Gap Time nTAP UB Gap Time nTAP UB Gap Time nTAP
SF 10 25 1 6219.7 0.63 3.3 11 6219.7 0.90 3.4 13 6219.7 0.00 20.1 7 6219.7 0.01 18.1 14
SF 10 25 2 65304 0.88 5.0 19 65304 0.88 4.3 19 65304 0.75 24.8 13 65304 0.81 13.8 13
SF 10 25 3 62195 0.94 10.3 29 6219.5 0.97 9.8 30 62195 0.29 32.9 15 6219.5 0.80 25.9 28
SF 10 50 1 56859 0.99 18.8 43 56859 0.96 20.3 46 56859 0.95 68.9 12 5685.9 0.81 99.7 52
SF 10 50 2 5763.1 0.94 3.9 9 5763.1 0.94 3.4 9 5763.1 1.00 34.7 8 5763.1 0.77 14.9 8
SF 10 50 3 5447.8 0.86 24.5 91 54478 0.97 29.1 100 5447.8 0.98 149.2 59 5447.8 0.99 103.3 76
SF 100 75 1 52831 097 6.3 16 5283.1 0.97 6.1 16 5283.1 0.50 84.5 16 5283.1 0.97 89.1 34
SF 10 75 2 5084.4 0.00 2.2 5 50844 0.00 2.0 5 50844 0.00 22.0 6 50844 0.00 9.0 5
SF 10 75 3 50714 1.00 37.4 133 50714 0.95 37.8 137 50714 0.99 176.6 125 50714 0.94 129.0 109
SF 20 25 1 5181.3 1.00 555.8 1484 5181.3 1.00 498.0 1465 5181.3 0.99 13434 435 5181.3 1.00 3520.5 1663
SF 20 25 2 50494 0.99 610.3 1639 50494 0.99 495.4 1613 5049.4 1.00 873.3 140 5049.4 1.00 2396.6 1722
SF 20 25 3 52354 0.99 747.8 2033 52354 0.99 624.1 2053 5251.7 0.99 1257.9 484 52354 1.00 2936.8 2053
SF 20 50 1 4286.6 1.00 1835.1 4300 4286.6 1.00 1715.1 4213 4286.7 2.89 3601.0 310 4286.6 4.93 3601.6 1205
SF 20 50 2 41172 1.00 384.1 973 4117.2 1.00 360.8 1081 4117.2 0.93 4777 90 41172 1.00 3088.6 1675
SF 20 50 3 43079 1.00 17749 4090 4307.9 1.00 1442.6 4045 4345.5 2.36 3601.1 587 4307.9 3.70 3600.0 1746
SF 20 75 1 3904.0 1.00 8169 2194 3904.0 1.00 692.6 2168 3904.0 1.03 3602.2 1464 39040 0.99 2313.7 1296
SF 20 75 2 39183 1.00 679.0 2801 39183 1.00 557.9 2736 39183 1.00 3198.5 2476 39183 1.00 1666.8 2500
SF 20 75 3 4038.7 1.00 1567.9 5381 4038.7 1.00 1302.0 5384 4038.7 2.82 3600.1 1507 4038.7 1.22 3600.1 4396

Table 2: Benchmarking of BPC, BC, FS_NETS and Leblanc’s algorithms on SF network instances: performance is
reported on the three first instances of each instance class. Optimality gaps (Gap) are reported in percentage and
runtimes (Time) in seconds. Rows in italics indicate that the runtime limit was attained. Best performance among
algorithms that converged before the runtime limit is highlighted in boldface.

report the performance of the five BPC algorithm configurations listed in Table 5. From left to right,
the header of Table 6 reports: the UB and the optimality gap upon convergence, the root node LB
(LB(0)). The next five columns summarize runtime data in seconds including, total, RMP, pricing
(Pre.), OA cut generation (OA) and TAP solves (TAP) runtimes. The two right-most columns report
the number of BPC iterations (It.) and the number of TAPs solved (nTAP). For each instance,
we highlight best performance, i.e. largest root node LB, lowest total runtime, lowest number of
iterations in boldface. Rows in italics corresponds to runs that attained the runtime limit of 1 hour
and this data is excluded from consideration in terms of best performance.

The best performance overall in terms of runtime is obtained by configuration 1s5: it outperforms
other configurations for all but the 10-link EM instance. In turn, we find that 1s1 and 1s5cuts fail
to solve the 20-link SF instance. The majority of the runtime is spent solving TAPs. For 20-link
instances, the second most time-consuming procedure of the BPC algorithm is solving the RMP (8).
On SF and EM instances, the pricing runtime is of the order of 1-10s for 10-link instances and of
100s for 20-link instances. The runtime of this procedure is larger by one order of magnitude larger
for BMC instances which can be attributed to the larger size of this network. OA cut generation
does not require much computational effort relative to the other procedures of the BPC algorithm.
We observe that reducing the OA cut generation threshold from 5% to 1% yields tighter root node
LBs as shown by the performance of 1s1. This also tends to reduce the number of iterations and the
number of TAPs solved. Adding interdiction and VF cuts also tends to reduce the number iterations.
In particular, on BMC instances, 1s5cuts achieves the lowest number of iterations among the five
configurations tested.

To further explore the behavior of the CG component of the BPC algorithm, we graph the number
of path variables over BPC iterations using configuration 1s5 for the six instances considered. The
results are shown in Figure 2 where the x-axis represent the progression of the BPC algorithm as the
percentage of BPC iterations until convergence. This figure reveals that, for all six instances tested,
the number of paths tends to increase sub-linearly during the course of the algorithm. For all three

18

Instance BPC BC FS_NETS Leblanc

Network |Az| By ID UB Gap Time nTAP UB Gap Time nTAP UB Gap Time nTAP UB Gap Time nTAP
EM 10 25 1 821.5 0.00 81.9 6 821.5 0.00 113.3 8 821.5 0.77 255.2 2 821.5 0.00 196.0 5
EM 10 25 2 766.1 0.00 43.3 2 766.1 0.00 36.1 2 766.1 0.00 256.2 3 766.1 0.00 109.2 2
EM 10 25 3 7423 0.66 79.1 4 7423 0.66 80.8 4 742.3 0.00 327.9 4 7423 0.63 274.7 1
EM 10 50 1 5679 0.77 72.9 4 5679 0.77 65.9 4 567.9 0.00 683.2 4 5679 0.22 213.9 2
EM 10 50 2 554.6 0.00 84.2 5 554.6 0.00 77.9 5 554.6 0.00 424.6 5 554.6 0.00 205.2 3
EM 10 50 3 568.3 0.46 115.6 7 5683 046 112.2 7 568.3 0.00 760.5 5 5683 0.81 367.7 6
EM 10 75 1 521.5 0.98 132.1 10 521.5 098 118.3 10 521.5 0.71 12789 4 521.5 0.91 359.7 6
EM 10 75 2 516.2 0.48 8.7 7 516.2 0.71 63.8 6 516.2 0.81 787.1 4 516.2 0.87 199.1 3
EM 10 75 3 5149 098 91.4 7 5149 0.99 80.8 7 5149 0.00 727.2 5 5149 0.64 306.2 2
EM 20 25 1 9177 0.75 2194.3 143 9177 0.76 2827.2 142 957.8 3175 3766.5 2 940.8 22.18 36078 57
EM 20 25 2 7089 0.86 427.5 22 7089 0.87 488.5 21 708.9 1.56 3653.6 2 7089 0.86 2489.2 14
EM 20 25 3 11634 0.74 427.1 24 11634 0.71 499.0 25 1163.4 24.17 3630.3 2 1163.4 0.86 2380.2 29
EM 20 50 1 6157 1.00 2127.1 161 615.7 1.00 2662.3 140 652.8 15.13 3631.5 2 669.7 16.86 3609.5 42
EM 20 50 2 570.0 1.00 604.1 37 570.0 0.98 750.1 38 5716 1.10 3618.2 2 570.0 1.88 3615.0 23
EM 20 50 3 699.5 0.99 1607.5 114 699.5 0.96 2062.4 110 718.8 21.11 3634.5 2 700.8 10.92 3610.4 50
EM 20 75 1 522.1 0.93 368.1 23 522.1 1.00 499.5 29 523.4 1.60 3601.5 2 522.1 0.94 2393.3 23
EM 20 7 2 5188 0.96 314.1 21 5188 0.96 240.3 16 520.4 0.69 30385 3 5188 093 1954.7 13
EM 20 75 3 5499 095 655.3 42 5499 0.98 709.4 43 5541 216 3614.1 2 5499 2.07 3610.2 32

Table 3: Benchmarking of BPC, BC, FS NETS and Leblanc’s algorithms on EM network instances: performance is
reported on the three first instances of each instance class. Optimality gaps (Gap) are reported in percentage and
runtimes (Time) in seconds. Rows in italics indicate that the runtime limit was attained. Best performance among
algorithms that converged before the runtime limit is highlighted in boldface.

networks, the 20-link instance requires more path variables than the 10-link instance. The largest
number of path variables handled by the RMP is observed for the 20-link EM instance and is of the
order of 12,000. This illustrates the potential of the path-based formulation of the OA relaxation of
SO-DNDP and the proposed CG procedure to solve DNDP instances at scale.

7 Conclusion

In this study, we presented a novel single tree branch-and-price-and-cut (BPC) algorithm for discrete
network design problems under traffic equilibrium or DNDPs for short. DNDPs are notoriously
challenging optimization problems which admit a natural Stackelberg game formulation in the presence
of traffic equilibrium constraints. In this bilevel optimization formulation the leader represents the
network designer while the follower represents a parameterized traffic equilibrium problem. In
transportation, Wardrop’s user equilibrium is often selected to model network users’ route choice
under congestion effects. Exploiting the separability and the convexity of the leader objective function,
we introduce a new outer approximation (OA) scheme for the system-optimum (SO)-DNDP which
corresponds to the high-point relaxation of the DNDP. Combining these successive relaxations of
the bilevel problem with the path-based formulation of the DNDP, leads to a linear programming
formulation that can be solved efficiently by column generation (CG). We develop a BPC framework
to implement our approach and propose initialization techniques, cut generation rules and interdiction
and value function cuts for algorithmic tuning.

We validate the performance of our BPC algorithm through comprehensive computational

experiments over 180 problem instances based on three transportation networks of varying sizes.

We use three alternative methods to compare the performance of the BPC algorithm including its
branch-and-cut (BC) counterpart where a link-based multicommodity network model is used instead
of the path-based network model. We show that our BPC algorithm outperform BC and existing

19

Instance BPC BC FS_NETS Leblanc

Network |Az| By ID UB Gap Time nTAP UB Gap Time nTAP UB Gap Time nTAP UB Gap Time nTAP
BMC 10 25 1 26203 0.68 313.3 92 2620.3 0.00 12345 372 2628.7 36.93 3606.1 2 26203 0.87 531.8 88
BMC 10 25 2 30881 0.00 40.8 2 3088.1 0.00 117.7 41 3088.1 0.00 1068.1 3 3088.1 0.00 63.2 2
BMC 10 25 3 2605.8 0.79 192.8 52 2605.8 0.00 871.3 321 2605.8 37.67 3610.0 2 2605.8 1.00 477.1 54
BMC 10 50 1 2573.0 0.95 410.9 156 2573.0 0.00 1722.1 512 2573.0 85.83 3613.4 2 2573.0 093 1353.0 154
BMC 10 50 2 27575 0.81 123.3 28 2757.5 0.69 696.4 263 2765.0 41.81 3612.5 2 27575 0.61 377.9 29
BMC 10 50 3 2570.8 0.98 292.4 90 2570.8 0.00 1485.6 512 2570.8 39.62 3683.5 2 2570.8 0.84 814.3 106
BMC 10 75 1 2573.0 0.95 442.6 156 2573.0 0.00 2087.3 652 2573.0 35.21 3608.8 2 2573.0 0.93 1383.1 154
BMC 10 75 2 25880 093 112.0 31 2588.0 0.00 1176.4 490 2592.4 38.60 3621.1 2 2588.0 0.82 3434 30
BMC 10 75 3 2570.8 0.98 304.3 101 2570.8 0.00 1892.2 703 2570.8 40.25 3608.2 2 25708 0.84 1226.1 112
BMC 20 25 1 2730.8 1.00 582.0 83 2730.8 381.02 3600.6 1404 2730.8 40.86 3605.8 2 2730.8 098 2096.4 72
BMC 20 25 2 26982 099 7234 184 2698.2 26.94 3600.8 1614 27744 40.01 3603.8 2 26982 097 2139.0 173
BMC 20 25 3 26035 1.68 3601.8 1217 2603.5 28.72 8601.6 1612 2620.0 40.93 3604.6 2 2603.5 3.27 3604.4 212
BMC 20 50 1 25814 099 1822.3 675 2581.4 28.91 3602.0 1605 2581.4 8741 3605.7 2 2581.4 2.02 3600.3 319
BMC 20 50 2 2574.0 099 1524.8 524 2574.0 27.68 3600.8 1563 2574.0 36.06 3611.2 2 2574.0 1.00 34983 494
BMC 20 50 3 2575.8 3.01 3600.4 1359 2575.8 29.16 3601.6 1540 2581.0 40.33 3610.5 2 25758 4.06 3611.8 271
BMC 20 75 1 2573.7 1.00 2763.7 925 25737 28.94 3600.5 1567 2573.7 87.91 3610.1 2 25737 2.15 3604.8 374
BMC 20 75 2 2571.3 1.07 8600.0 1275 2571.3 28.69 3600.7 1489 2571.3 36.31 36074 2 2571.3 2.79 3604.2 404
BMC 20 75 3 25715 355 8600.2 1265 2571.5 29.36 3602.1 1529 2571.8 40.33 3605.1 2 25715 .26 3603.9 280

Table 4: Benchmarking of BPC, BC, FS_NETS and Leblanc’s algorithms on BMC network instances: performance
is reported on the three first instances of each instance class. Optimality gaps (Gap) are reported in percentage and
runtimes (Time) in seconds. Rows in italics indicate that the runtime limit was attained. Best performance among
algorithms that converged before the runtime limit is highlighted in boldface.

Config. Init. heuristic OA cuts threshold Interdiction and VF cuts

1s5 LocalSearchKP 5% No

kb5 kBestKP 5% No
1s10 LocalSearchKP 10% No
1s1 LocalSearchKP 1% No
1s5cuts LocalSearchKP 5% Yes

Table 5: Names and features of BPC algorithm configurations tested.

approaches in the literature. Notably, we demonstrate that our BPC algorithm is efficient on both
small and larger scale problem instances whereas other DNDP algorithms either fail to scale-up
due to their reliance on link-based multicommodity network models (i.e. BC and FS_NETS) or to
the inherent structure (Leblanc). In contrast, the BPC algorithm is able to consistently solve—or
achieve competitive optimality gaps on—problem instances of varying number of variable links
and/or network features. For reproducibility purposes, all data and codes used in this study are
made publicly available at https://github.com/davidrey123/DNDP-path. For presentation and
experimentation purposes, we focused on the link addition DNDP which is the most studied DNDP
in the literature. We emphasize that most of the methods developed can be immediately applied to
other DNDPs such as mixed discrete-continuous DNDPs or node-addition DNDPs.

This research can be extended in several directions. From a methodological standpoint, further
research may explore the integration of additional cuts or penalty methods to reduce the optimality
gap during search. While the value function cuts considered tend to reduce the number of BPC
iterations, their incorporation leads to excessive computational efforts. Techniques to mitigate these
effects could be explored. From a modeling perspective, this study focused on discrete NDPs, however
the proposed OA relaxations and the CG approach can be applied to continuous NDPs as well. In

20

https://github.com/davidrey123/DNDP-path

Instance Time (s)

Network |Az| By ID Config. UB Gap (%) LB(0) Total RMP Prc. OA TAP It. nTAP
1s5 5685.9 0.99 4829.2 18.8 4.3 1.2 08 13.0 197 43

kb5 5685.9 1.00 4826.1 20.1 4.4 1.2 1.6 12.8 199 44

SF 10 50 1 1s10 5685.9 0.98 4810.3 23.6 3.4 1.4 1.0 17.7 187 51
1s1 5685.9 0.89 4836.3 26.7 11.8 1.4 1.0 12.3 169 39

1sbcuts 5685.9 0.99 4829.2 20.9 5.8 1.2 0.8 12.8 177 43

1sb 4286.6 1.00 3559.3 1835.1 710.0 73.7 3.4 950.2 19057 4300

kb5 4286.6 1.00 3555.1 1916.6 719.6 764 5.4 1005.7 18841 4262

SF 20 50 1 1s10 4286.6 1.00 3554.8 2039.7 621.2 89.6 3.0 1213.7 19641 4592
1sl 4286.6 1.87 8571.7 83600.0 2645.8 688 1.1 791.3 13857 = 2843

1lsbcuts 4286.7 1.03 8559.3 8600.0 2861.3 487 8.1 603.5 12058 2593

1s5 567.9 0.77 487.1 72.9 3.2 9.0 7.0 45.0 23 4

kb5 567.9 0.17 487.4 70.7 4.0 109 9.7 45.8 29 4

EM 10 50 1 1s10 567.9 0.85 485.9 7.3 3.3 118 82 53.7 25 4
1s1 567.9 0.71 487.6 64.2 34 88 6.9 44.9 23 4

1sbcuts 567.9 0.81 487.1 81.0 4.5 9.9 7.0 45.6 23 4

1s5 615.7 1.00 489.9 2127.1 332.2 76.6 124 1702.0 1477 161

kb5 615.7 1.00 487.6 2331.3 423.5 88.7 15,5 1799.2 1479 156

EM 20 50 1 1s10 615.7 1.00 488.7 23289 333.6 93.8 13.8 1884.1 1411 149
1s1 615.7 0.99 490.2 2780.4 945.6 88.7 13.5 1723.1 1503 146

1s5cuts 615.7 0.99 489.9 2643.6 714.4 79.1 13.2 1817.0 1459 170

1s5 2573.0 0.95 2420.1 410.9 16.2 42,9 125 338.1 423 156

kb5 2573.0 0.99 2418.6 420.1 16.5 44.6 14.0 344.0 421 156

BMC 10 50 1 1s10 2573.0 0.93 2416.7 504.0 176 52.7 152 4173 441 164
1s1 2573.0 0.91 2422.6 502.3 38.5 49.7 13.7 398.7 415 152

lsbcuts 2573.0 0.95 2420.1 453.2 39.5 454 13.1 351.1 381 156

1s5 25814 0.99 24175 1822.3 174.8 2425 232 1375.6 2225 675

kb5 2581.4 1.00 2413.6 2094.5 263.7 310.0 23.9 1488.7 2783 728

BMC 20 50 1 1s10 2581.4 0.99 24149 27029 2154 359.5 26.9 2092.8 2743 827
1s1 2581.4 1.00 2422.5 2198.3 436.8 2742 29.5 1448.0 2245 653

1sbcuts 2581.4 1.00 2417.5 24034 653.7 254.2 243 1460.0 2131 662

Table 6: Analysis of the BPC algorithm under multiple parameter configurations. Six DNDP instances
are selected: two per network including one with |A3| = 10 and one with |A3| = 20. Rows in italics
indicate that the runtime limit was attained. Best performance among algorithms that converged
before the runtime limit is highlighted in boldface.

21

SF_10
E‘_12000 SF_20
s EM_10
o EM_20
£10000 BMC_10
] BMC_20
o)
.= 8000
©
>
ey
3 6000
o
‘G
5 4000
o)
IS
=]
= 2000

0

0 20 40 60 80 100

% of BPC iterations

Figure 2: Analysis of the column generation procedure of the BPC algorithm for the best performing
configuration. Six DNDP instances are selected: two per network including one with |As| = 10 and
one with |Az| = 20.

this context, the branch-and-bound framework may be omitted and continuous NDPs could benefit
from exploiting the OA and CG procedures developed in this study. DNDPs under traffic equilibrium
have several practical applications notably in transportation networks but also in telecommunications
networks (Correa and Stier-Moses 2011). Discrete NDPs arising in these contexts can benefit from
the proposed approach by adapting its core elements to specific problem contexts and also extend to
other discrete problems such as bilevel facility location or network operation scheduling problems
under Wardropian equilibria.

References

Abdulaal M, LeBlanc LJ (1979) Continuous equilibrium network design models. Transportation Research
Part B: Methodological 13(1):19-32.

Bagloee SA, Sarvi M, Patriksson M (2017) A hybrid branch-and-bound and benders decomposition algorithm
for the network design problem. Computer-Aided Civil and Infrastructure Engineering 32(4):319-343.

Bar-Gera H (2010) Traffic assignment by paired alternative segments. Transportation Research Part B:
Methodological 44(8-9):1022-1046.

Beckmann M, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Technical report.
Braess D (1968) Uber ein paradoxon aus der verkehrsplanung. Unternehmensforschung 12(1):258-268.

Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Annals of Operations Research
153(1):235-256.

Correa JR, Schulz AS, Stier-Moses NE (2004) Selfish routing in capacitated networks. Mathematics of
Operations Research 29(4):961-976.

Correa JR, Stier-Moses NE (2011) Wardrop equilibria. Encyclopedia of Operations Research and Management
Science. Wiley .

Dafermos S (1980) Traffic equilibrium and variational inequalities. Transportation Science 14(1):42-54.

22

Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Operations Research 8(1):101-111.

Dial RB (1971) A probabilistic multipath traffic assignment model which obviates path enumeration.
Transportation Research 5(2):83-111.

Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Mathematical
programming 91:201-213.

Duran MA, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Mathematical Programming 36(3):307-339.

Farvaresh H, Sepehri MM (2011) A single-level mixed integer linear formulation for a bi-level discrete network
design problem. Transportation Research Part E: Logistics and Transportation Review 47(5):623-640.

Farvaresh H, Sepehri MM (2013) A branch and bound algorithm for bi-level discrete network design problem.
Networks and Spatial Economics 13:67-106.

Fletcher R, Leyffer S (1994) Solving mixed integer nonlinear programs by outer approximation. Mathematical
Programming 66:327-349.

Fontaine P, Minner S (2014) Benders decomposition for discrete—continuous linear bilevel problems with
application to traffic network design. Transportation Research Part B: Methodological 70:163-172.

Gairing M, Harks T, Klimm M (2017) Complexity and approximation of the continuous network design
problem. SIAM Journal on Optimization 27(3):1554-1582.

Gao Z, Wu J, Sun H (2005) Solution algorithm for the bi-level discrete network design problem. Transportation
Research Part B: Methodological 39(6):479-495.

International Business Machines Corporation (2024) IBM ILOG CPLEX Optimization Studio. URL https:
//www.ibm. com/products/ilog-cplex-optimization-studio.

Leblanc LJ (1975) An algorithm for the discrete network design problem. Transportation Science 9(3):183-199.

Lozano L, Smith JC (2017) A value-function-based exact approach for the bilevel mixed-integer programming
problem. Operations Research 65(3):768-786.

Luathep P, Sumalee A, Lam WH, Li ZC, Lo HK (2011) Global optimization method for mixed transportation
network design problem: a mixed-integer linear programming approach. Transportation Research Part
B: Methodological 45(5):808-827.

Liibbecke ME, Desrosiers J (2005) Selected topics in column generation. Operations Research 53(6):1007-1023.

Magnanti TL, Wong RT (1984) Network design and transportation planning: Models and algorithms.
Transportation Science 18(1):1-55.

Mahmassani HS, Chang GL (1987) On boundedly rational user equilibrium in transportation systems.
Transportation Science 21(2):89-99.

Rey D (2020) Computational benchmarking of exact methods for the bilevel discrete network design problem.
Transportation Research Procedia 47:11-18.

Roughgarden T (2006) On the severity of Braess’s paradox: Designing networks for selfish users is hard.
Journal of Computer and System Sciences 72(5):922-953.

Roughgarden T, Tardos E (2002) How bad is selfish routing? Journal of the ACM (JACM) 49(2):236-259.
Sheffi Y (1985) Urban transportation networks, volume 6 (Prentice-Hall, Englewood Cliffs, NJ).

Transportation Networks for Research Core Team (2024) Transportation Networks for Research. URL
https://github.com/bstabler/TransportationNetworks.

Wang DZ, Liu H, Szeto W (2015) A novel discrete network design problem formulation and its global
optimization solution algorithm. Transportation Research Part E: Logistics and Transportation Review
79:213-230.

Wang S, Meng Q, Yang H (2013) Global optimization methods for the discrete network design problem.
Transportation Research Part B: Methodological 50:42—60.

Wardrop JG (1952) Some theoretical aspects of road traffic research. Inst Civil Engineers Proc London/UK/.

23

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/bstabler/TransportationNetworks

Xie J, Xie C (2016) New insights and improvements of using paired alternative segments for traffic assignment.
Transportation Research Part B: Methodological 93:406—424.

Yang H, H Bell MG (1998) Models and algorithms for road network design: a review and some new
developments. Transport Reviews 18(3):257-278.

24

