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We study stochastic mixed integer programs where both first-stage and recourse decisions can be mixed

integers. A new family of Lagrangian cuts, termed “ReLU Lagrangian cuts,” is introduced by reformulating

the nonanticipativity constraints using ReLU functions. These cuts can be integrated into scenario decom-

position algorithms. Unlike the ordinary Lagrangian cuts, we prove that the inclusion of ReLU Lagrangian

cuts is sufficient to solve the original stochastic mixed integer programs to optimality. Without solving the

Lagrangian dual problems, we derive closed-form expressions for these cuts. Furthermore, to speed up the

cut-generating procedures, we introduce linear programming-based techniques to enhance the cut coeffi-

cients. Numerical studies demonstrate the effectiveness of the proposed cuts compared to existing methods.
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1. Introduction

Consider a two-stage Stochastic Mixed Integer Program (SMIP) with finite support of the form:

min
xPZn1ˆRn2

#

cJx`
ÿ

sPrNs

psQspxq :Axě b

+

, (1a)

where the local recourse function is defined as

Qspxq “ min
yPZm1ˆRm2

␣

pqsqJy :W syěhs ´T sx
(

. (1b)

Here, we let x and y represent the decisions in the first and second stages, respectively. In the objec-

tive function of the first-stage problem (1a), cJx denotes the first-stage cost, and
ř

sPrNs
psQspxq

is the expected recourse function that takes the expectation of the second-stage cost (i.e., local

recourse function) over finite support. Given a first-stage decision, the local recourse function in

scenario s, denoted by Qspxq, is determined by a mixed integer program (1b). In this second-stage

problem, qs,W s,T s,hs are the realizations of random parameters in scenario s, which are assumed

to be rational (Louveaux and Schultz 2003). For notational convenience, we let n “ n1 ` n2 and

m“m1 `m2. In addition, we make the following assumptions throughout the paper:

1
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Assumption 1. The SMIP (1a) has a relatively complete recourse, that is, for every feasible first-

stage decision x in (1a), the second-stage problem (1b) is feasible.

Assumption 2. There exists a universal lower bound L for local recourse functions.

Assumption 3. The feasible region of the first-stage problem is nonempty and bounded.

Assumption 1 ensures that the conditions of the fundamental theorem of integer programming

Schrijver (1998) hold. Assumptions 1 - 3 are standard in an SMIP setting Louveaux and Schultz

(2003), which together imply that the SMIP (1a) is always feasible, and its optimal value is bounded

from below. According to Assumption 3, we can shift the feasible region such that all variables are

nonnegative, i.e., sX Ď Zn1 ˆRn2
Ş

pr0,B1s ˆ ¨ ¨ ¨ ˆ r0,Bnsq.

1.1. Related literature

A SMIP is a widely used modeling paradigm for sequential decision-making under uncertainty,

where decisions are made as uncertain parameters are revealed over time. However, solving the

SMIP is usually computationally challenging. A common approach to addressing this challenge

involves decomposing an SMIP into smaller scenario-based subproblems, which can be optimized

independently and subsequently provide valid inequalities to the master problem. To accelerate

this decomposition method, valid inequalities for the epigraph of the expected recourse function

are iteratively added to enhance the solution quality of the master problem. These inequalities are

commonly referred to as “cuts” in the literature.

Benders decomposition (Benders 1962, Van Slyke and Wets 1969) is one of the most classical

methods, where the linear programming (LP) relaxation of subproblems is solved to generate cuts.

This approach is only guaranteed to solve SMIP models with continuous second-stage decisions

to optimality. Therefore, Benders cuts can only recover the epigraph of LP relaxation of a given

local recourse function, since there exists an integrality gap between a local recourse problem and

its LP relaxation in each scenario. To resolve this issue and improve the performance of Benders

decomposition, one earlier effort is to obtain integer L-shaped cuts (Laporte and Louveaux 1993)

for purely binary first-stage decisions. Angulo et al. (2016) improve this method by introducing an

alternative cut-generating strategy and deriving new L-shaped cuts based on the explored recourse

function values. In addition, disjunctive cuts (Sen and Higle 2005, Sen and Sherali 2006), Fenchel

cuts (Gade et al. 2014), and Gomory cuts (Gade et al. 2014) have also been studied to solve an

SMIP with purely binary first-stage variables. However, these methods struggle to handle problems

with general mixed integer first-stage variables, even when the underlying distribution contains

only one scenario.
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Building on Benders decomposition, Zou et al. (2019) propose Lagrangian cuts and strengthened

Benders cuts, which can be viewed as special cases of the Benders dual decomposition (BDD)

framework later introduced by Rahmaniani et al. (2020). Unlike traditional Benders decomposition,

which takes the duals of the LP relaxations of the local recourse functions, the BDD method

introduces a copy of the first-stage variables in each subproblem, and enforces nonanticipativity

constraints to ensure these copies are equal, similar to the dual decomposition method (Carøe and

Schultz 1999). The key difference from Benders decomposition is that the BDD method retains

the integrality of second-stage variables when taking the Lagrangian dual with respect to the

nonanticipativity constraints. Strengthened Benders cuts are derived by optimizing Lagrangian

functions, with Lagrangian dual multipliers equal to the Bender cuts coefficients. These cuts are

parallel to the original Benders cuts but are shifted upward to have higher vertical intercepts

by enforcing the integrality constraints in the inner minimization subproblems of the Lagrangian

duals. For the Lagrangian cuts, the cut coefficients are optimal dual multipliers. This family of cuts

is exact for binary first-stage variables, which guarantees convergence of the cutting plane method

to solve the SMIP problem to optimality. It has also been shown to be sufficient to recover the

convex hulls of epigraphs of local recourse functions (Chen and Luedtke 2022). However, generating

such cuts can be computationally demanding. Existing methods rely on first-order approaches and

require solving multiple MIPs that correspond to the inner minimization subproblems. Moreover,

the Lagrangian dual problem may have multiple optimal solutions, though not all are effective

Lagrangian cuts. For instance, Bansal and Küçükyavuz (2024) demonstrate that the integer L-

shaped cut– known for its weak global approximation and resulting slow convergence– is, in fact, a

Lagrangian cut. The existing literature improves the implementation of Lagrangian cuts primarily

in three areas: accelerating the solution procedure of Lagrangian dual problems, selecting cuts with

specific desirable properties, and improving the decomposition and cutting plane framework by

incorporating additional cut families.

Rahmaniani et al. (2020) propose a three-phase implementation strategy in which Lagrangian

cuts are generated at the final stage by heuristically solving Lagrangian duals using an inner approx-

imation. They also suggest partially relaxing integrality constraints or fixing certain variables in

subproblems and solving the Lagrangian dual to ϵ-optimality. Chen and Luedtke (2022) provide

a new formulation that can be used to derive both optimality and feasibility cuts, with the cut

coefficients restricted to the span of previous Benders cuts’ coefficients under certain normalization.

Recently, in the context of multistage SIMPs, Bansal and Küçükyavuz (2024) conduct computa-

tional studies on the alternating cut procedure for Lagrangian cuts and other valid cut families to

improve overall performance on multistage SMIP problems. Füllner et al. (2024b) generate tight

Lagrangian cuts with bounded coefficients using regularized local recourse problems, and Füllner
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et al. (2024a) extend existing concepts in Benders decomposition literature to derive facet-defining,

Pareto-optimal, or deep cuts using proper normalization techniques.

However, linear cuts, such as Lagrangian cuts, can at most recover the convex envelopes of

local recourse functions. In addition, the expectation of the convex envelopes of the local recourse

functions is not greater than, and can be strictly less than, the convex envelope of the expected

recourse function in certain first-stage decisions (van der Laan and Romeijnders 2023). To address

this issue, Zou et al. (2019) propose to approximate SMIP problems by stochastic integer programs

with purely binary first-stage decisions and prove that under some assumptions, such as Lipschitz

continuity, the number of binary variables required can be bounded based on the desired precision

of the optimal solution. Other methods directly solve the SMIP problems. For example, Ahmed

et al. (2022) introduce reverse norm cuts, which leverage the Lipschitz continuity of local recourse

functions, and augmented Lagrangian cuts. The tightness of the reverse norm cuts is ensured by

the strong duality of the augmented Lagrangian duals, as shown in Feizollahi et al. (2017). van der

Laan and Romeijnders (2023) derive scale cuts for the expected recourse function and recently

extend them on multistage SMIP problems Romeijnders and van der Laan (2024).

1.2. Summary of contributions

The main contributions of this work are summarized below.

1) We introduce a new family of nonlinear cuts, referred to as “ReLU Lagrangian cuts.” These cuts

are effective for solving a two-stage SMIP that involve general mixed integer decisions in the

first stage. Through establishing a strong duality theory, we show that the ReLU Lagrangian

cuts are tight, enabling the recovery of the epigraphs for both the local recourse functions and

the expected recourse function.

2) We compare ReLU Lagrangian cuts with existing cut families from two perspectives: (i) ReLU

Lagrangian cuts provide outer approximations of local recourse epigraphs and their convex hulls

that are at least as strong as those from existing methods, requiring fewer iterations before the

cutting plane method terminates, and (ii) since existing cuts are special ReLU Lagrangian cuts,

they can serve as starting points for generating the strong ReLU Lagrangian cuts.

3) We show the equivalence between traditional Lagrangian cuts and ReLU Lagrangian cuts for

purely binary first-stage decisions. We propose a cut generation scheme that begins with integer

L-shaped cuts and strengthens them by solving LPs. This approach overcomes a limitation

in the existing literature, where obtaining ideal coefficients for Lagrangian cuts often requires

solving multiple MILPs within an iterative procedure.

4) For pure integer first-stage decisions, we theoretically compare two alternative approaches for

generating initial ReLU Lagrangian cuts: (i) focusing on the original space to generalize integer
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L-shaped cuts, and (ii) using the binary expansion technique from Zou et al. (2019). For mixed-

integer first-stage decisions, we propose both binary search and closed-form methods to derive

the initial ReLU Lagrangian cuts. In both cases, the cuts are further strengthened using an

LP-based approach.

Organization. In Section 2, we review the ordinary Lagrangian cuts and introduce the ReLU

Lagrangian cuts. In Section 3 and Section 4, we study the properties of ReLU Lagrangian cuts

for SMIPs with purely binary and general mixed integer first-stage decisions, respectively. Section

5 shows the numerical evidence of the effectiveness of the proposed ReLU Lagrangian cuts, and

Section 6 concludes the paper.

Notation. For a given function f defined with domain S, let epiSpfq :“ tpx, θq P SˆR : θě fpxqu

denote its epigraph and convpepiSpfqq denote the convex hull of its epigraph. Let us define the sets

sX “ tx P Zn1 ˆRn2 :Axě bu, X “ tx P t0,1un :Axě bu, and XLP “ tx P r0,1sn :Axě bu. Given a

positive integer τ and a nonnegative integer ℓď τ , we let rτ s “ t1, . . . , τu and rℓ, τ s “ tℓ, ℓ`1, . . . , τu.

A variable is bold when it is a vector.

2. ReLU Lagrangian Cuts

In this section, we introduce a new family of cuts, termed ReLU Lagrangian cuts, which generalize

the ordinary Lagrangian cuts (Zou et al. 2019). Throughout this paper, unless otherwise specified,

each cut is a local cut, that is, it is derived based on a given scenario s P rN s.

2.1. Preliminary: ordinary Lagrangian cuts

Lagrangian cuts, as introduced in Zou et al. (2019), are derived by dualizing the nonanticipativity

constraints. Namely, for a given feasible first-stage decision px P sX and a scenario s P rN s, we have

Qsppxq “ inf
x

␣

Qspxq :x“ px, x P sX
(

“ inf
x

tθ : px, θq P epi
ĎXpQsq, x“ pxu , (2)

where the epigraphical set

epi
ĎXpQsq “

"

px, θq : θě min
y

␣

pqsqJy : T sx`W syěhs,y P Zm1 ˆRm2
(

,x P sX

*

“
␣

px, θq : Dy P Zm1 ˆRm2 , θě pqsqJy,T sx`W syěhs,x P sX
(

.

We observe that set epi
ĎXpQsq can be described by linear inequalities and integrality constraints.

Therefore, its convex hull convpepi
ĎXpQsqq is a polyhedron. Following theorem 1 from Geoffrion

(1974), We further obtain that

Qsppxq ě min
x

tθ : px, θq P convpepi
ĎXpQsqq,x“ pxu (3a)

“ max
π

!

min
x

␣

Qspxq `πJppx´xq :x P sX
(

)

, (3b)
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where the equality follows from the strong duality of linear programming and the fact that mini-

mizing a linear function over a set is equivalent to minimizing over its convex hull. Here, problem

(3b) is a Lagrangian dual of the equivalent formulation (2) for a given first-stage decision. The LP

(3a) is the primal characterization of the Lagrangian dual. This LP is feasible and bounded since

px P sX and Qspxq ěL for all x P sX. Thus, there always exists an optimal dual multiplier π to (3b).

Zou et al. (2019) further prove that the inequality of (3a) holds at equality when the first-stage

variables are binary and introduce the following Lagrangian cuts.

Definition 1 (Lagrangian Cuts). Given a feasible first-stage decision px P sX, let pπ be optimal

to the outer maximization problem of (3b). A Lagrangian cut takes the form

θě Lsppπ; pxq ` pπJpx´ pxq, (4)

where Lspπ; pxq :“ minx

␣

Qspxq `πJppx´xq :x P sX
(

.

By preserving the integrality constraints in each local recourse problem, the Lagrangian dual

(3b) yields a stronger lower bound for the local recourse function value compared to the bound

obtained from the LP relaxation used to derive a Benders cut. Under certain conditions, this lower

bound is exact, and the resulting cut is referred to as a tight cut.

Definition 2 (Tight Cuts). A cut generated for a function f at the incumbent solution px is

tight if the cut’s corresponding hyperplane passes through the point ppx, fppxqq.

It is known (Zou et al. 2019) that when the first-stage decision variables are binary, the Lagrangian

cuts are tight. However, this property does not extend to general mixed integer first-stage stochastic

programs. In fact, the primal characterizations (3a) of the Lagrangian dual also define the convex

envelopes of the local recourse functions, as formally proved in Füllner et al. (2024b). Furthermore,

Chen and Luedtke (2022) showed that Lagrangian cuts are sufficient to describe the convex hulls

of epigraphs of the local recourse functions, which we refer to as the “local convex hulls.”

Proposition 1. [Theorem 3.9, Füllner et al. 2024b] The primal characterization

inf
x

tθ : px, θq P convpepi
ĎXpQsqq,x“ pxu “ copQsppxqq,

where the convex envelope of Qs, denoted by copQsq : convp sXq Ñ R, is defined as copQsqpxq “

suptgpxq : g is convex and gpzq ď Qspzq,@z P sXu.

Proposition 2. [Proposition 2, Theorem 3, Chen and Luedtke 2022] Let us define Ds
px “

tπ :π is optimal to (3b)u for any feasible first-stage decision px P sX. Then, the local convex hull

convpepi
ĎXpQsqq “ tpx, θq P convp sXq ˆR : θě Lspπ; pxq `πJpx´ pxq,@px P sX,π P Ds

pxu.
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The following corollaries provide insights into the properties of Lagrangian cuts.

Corollary 1. Given a first-stage solution px P sX, a dual multiplier π P Ds
px if and only if it satisfies

the optimality condition:

Lspπ; pxq “ min
x

tQspxq `πJppx´xq :x P sXu ě copQsqppxq. (5)

The result in Corollary 1 follows directly from Proposition 1 and the strong duality between (3a)

and (3b).

Corollary 2. A Lagrangian cut generated at px P sX is tight if and only if there exists α P Rn,

α‰ 0, such that αJx` θěαJ
px`Qsppxq for all px, θq P convpepi

ĎXpQsqq.

Proof. See Appendix A.1. ˝

When ppx,Qsppxqq is an extreme point of convpepi
ĎXpQsqq, such a supporting hyperplane always

exists, and a Lagrangian cut derived at this point is tight. The following corollary shows that a

local convex hull can be characterized using tight Lagrangian cuts generated at its extreme points.

Since the set convpepi
ĎXpQsqq is a polyhedron and sX is nonempty and bounded, we have that

Corollary 3. Set convpepi
ĎXpQsqq “ convtpxk,Qspx

kqq : k P Ku ` conetp0,1qu, where

tpxk,Qspx
kqqukPK are the extreme points of convpepi

ĎXpQsqq. In addition, the local convex hull can be

represented as convpepi
ĎXpQsqq “ tpx, θq P convp sXq ˆR : θě Qspx

kq `πJpx´xkq,@k PK,π P Ds
xku.

The above results show that by generating facet-defining Lagrangian cuts, we can efficiently

recover the local convex hulls. Taking the average of the Lagrangian cuts over all scenarios, we

obtain a cut that is valid for the expected recourse function. This cut is tight for the expected

recourse function if and only if the cut for each individual scenario is tight. However, due to the

linearity of a Lagrangian cut, tightness is achieved only if the incumbent solution used to construct

the Lagrangian cut is separable from the local convex hull convpepi
ĎXpQsqq for each s P rN s. Thus,

this approach may yield only a lower estimate of the expected recourse function rather than an

exact characterization, resulting in only a lower bound of (1a) (see the example below).

Example 1. Consider a two stage problem mint´x`Qpxq : x P t0,1,2uu, where Qpxq “ 1
2
Q1pxq `

1
2
Q2pxq and local recourse functions are given by Q1pxq “ minty : y ě 1

2
x` 1, y P Z`u and Q2pxq “

minty : y ě 2x ´ 1, y P Z`u. The values of the local recourse functions are Q1p0q “ 1,Q1p1q “

2,Q1p2q “ 2 (see Figure 1(a)) and Q2p0q “ 0,Q2p1q “ 1,Q2p2q “ 3 (see Figure 1(b)). Thus,

the expected recourse function values are Qp0q “ 1
2
,Qp1q “ 3

2
,Qp2q “ 5

2
. At x “ 1, the optimal

Lagrangian dual values yield copQ1qp1q “ 3
2
and copQ2qp1q “ 1, resulting in an outer approxima-

tion of the expected recourse function:
ř

sPr2s
pscopQsqp1q “ 5

4
. However, as depicted in Figure 1(c),

copQqp1q “ Qp1q “ 3
2
. In fact, solving the problem solely using Lagrangian cuts provides only a
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1 2

1

2

3

Q1pxq

copQ1qpxq

x

(a) Scenario 1

1 2

1

2

3

Q2pxq

copQ2qpxq

x

(b) Scenario 2

1 2

1

2

3

Qpxq

copQqpxq

1
2
copQ1qpxq ` 1

2
copQ2qpxq

x

(c) Expected

recourse function

Figure 1 The illustration of Example 1

lower bound of 1
4
with the solution x“ 1. However, the optimal value of this two-stage problem is

1
2
, achieved at points x“ 0,1,2. ˛

This example indicates that, for a general mixed integer stochastic program, the convex envelope

of the expected recourse function may be strictly greater than the expected convex envelope of the

local recourse functions. However, to solve (1a) to optimality, we need an approximation that is at

least as strong as the convex envelope of the expected recourse function. Unfortunately, Lagrangian

cuts are often insufficient for general mixed integer first-stage decisions.

To address this issue, one approach is to derive linear cuts directly for the expected recourse

function, such as the scaled cuts proposed in van der Laan and Romeijnders (2023), which cannot

be computed using scenario decomposition algorithms. Another approach is to develop nonlinear

cuts that recover the epigraphs of local recourse functions directly instead of their convex hulls,

such as the reverse norm cuts and augmented Lagrangian cuts introduced in Ahmed et al. (2022).

We will derive stronger cuts that remain tight for general mixed-integer first-stage decisions while

preserving the effectiveness of Lagrangian cuts in representing local convex hulls.

2.2. ReLU Lagrangian cuts

In this section, we introduce the ReLU Lagrangian cuts. Using strong duality, we prove that

the cut generated at any feasible first-stage decision is tight, directly recovering the epigraphs

of both the local recourse function and its expectation. Unlike ordinary Lagrangian cuts, where

nonanticipativity constraints are linear and only linear cuts are produced that are valid for the

local convex hull, we study new nonanticipativity constraints using the ReLU function.

For a given feasible first-stage decision px P sX, its local recourse function value can be obtained

by solving

Qsppxq “ min
xPĎX

tQsppxq : pxi ´ pxiq
` “ 0, pxi ´ pxiq

´ “ 0,@i P rnsu , (6)
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where we define two ReLU functions as pxi ´pxiq
` “ maxtxi ´pxi,0u and pxi ´pxiq

´ “ maxtpxi ´xi,0u.

Taking the dual of this problem with respect to the nonanticipativity constraints, we have

Q
s
pxq “ sup

π`,π´PRn

Lspπ
`,π´; pxq, (7)

where
Lspx,π

`,π´; pxq :“ inf
xPĎX

Qspxq ´
ÿ

iPrns

π`
i pxi ´ pxiq

` ´
ÿ

iPrns

π´
i pxi ´ pxiq

´. (8)

The difference between this ReLU Lagrangian dual (6) and the ordinary Lagrangian dual (3b) lies in

the ReLU functions, which are nonlinear and can be either linearized or represented by introducing

extra binary variables. We can prove that the strong duality holds for the ReLU Lagrangian dual

(6), i.e., Qsppxq “ Q
s
ppxq. As a side product, we can derive optimal dual multipliers in closed form.

Theorem 1. Under Assumptions 1, 2 and 3, Q
s
ppxq “ Qsppxq. Moreover, when

ρ˚ ě
Qsppxq ´L

d
, (9)

p´1ρ˚,´1ρ˚q is optimal to (7), where d “ min
␣

||xk ´ px||1 : k PK,xk ‰ px
(

, and tpxk,yk, ωkqukPK

are extreme points of the set convtpx,y, ωq : T sx`W syěhs,x P sX,y P Zm1 ˆRm2 , ||x´ px||1 ď ωu.

Proof. See Appendix A.2. ˝

The above theorem shows that for any feasible first-stage decision, strong duality must hold.

Besides, there also exists a finite dual optimal solution that attains the dual optimality. This ensures

that tight cuts can be generated at any feasible point, a fundamental difference between the ReLU

Lagrangian and the ordinary Lagrangian cuts. Before formally defining the ReLU Lagrangian cuts,

we present the following corollaries, which are useful in subsequent discussions.

Corollary 4. For any bounded set S such that S Ě sX, if pπ`˚
,π´˚

q is optimal to

supπ`,π´PRn infxPS Lspx,π
`,π´; pxq, then it is also optimal to supπ`,π´PRn infxPĎX Lspx,π

`,π´; pxq,

where

Lspx,π
`,π´; pxq :“ Qspxq ´

ÿ

iPrns

π`
i pxi ´ pxiq

` ´
ÿ

iPrns

π´
i pxi ´ pxiq

´.

Proof. See Appendix A.3

The following corollary provides an optimality condition for a dual optimal solution.

Corollary 5. For a given feasible first-stage decision px P sX, ppπ`, pπ´q is optimal to (7) if and

only if

Qsppxq ď Qspxq ´
ÿ

iPrns

pπ`
i pxi ´ pxiq

` ´
ÿ

iPrns

pπ´
i pxi ´ pxiq

´, (10)

for all x P sX, or equivalently,

θě Qspxq ě Qsppxq `
ÿ

iPrns

pπ`
i pxi ´ pxiq

` `
ÿ

iPrns

pπ´
i pxi ´ pxiq

´,

for all px, θq in the epigraph of Qs.
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Proof. See Appendix A.4. ˝

Now we are ready to formally define the ReLU Lagrangian cuts.

Definition 3 (ReLU Lagrangian Cuts). For a given feasible first-stage decision px P sX, let

ppπ`, pπ´q be an optimal solution to the dual problem (7). The following cut is valid for the epigraph

of Qs:

θě Qsppxq `
ÿ

iPrns

pπ`
i pxi ´ pxiq

` `
ÿ

iPrns

pπ´
i pxi ´ pxiq

´. (11)

When the first-stage decision is purely binary, that is, when sX “X, we have xi ´ pxi ě 0 when

pxi “ 0 and xi ´ pxi ď 0 when pxi “ 1. In this case, given a binary px PX, the ReLU Lagrangian cut

simplifies to the following linear inequality:

θě Qsppxq `
ÿ

iRI
px

pπ`
i pxi ´ pxiq ´

ÿ

iPI
px

pπ´
i pxi ´ pxiq, (12)

where I
px :“ ti P rns : pxi “ 1u. However, when the first-stage decision is mixed integer, cut (11) is

generally nonlinear. To incorporate this nonlinear cut effectively into the master problem when

using the cutting plane method, we add the following constraints:

θě Qsppxq `
ÿ

iPrns

pπ`
i ω

`
i `

ÿ

iPrns

pπ´
i ω

´
i , (13a)

ω`
i ´ω´

i “ xi ´ pxi,0 ď ω`
i ď pBi ´ pxiqzi,0 ď ω´

i ď pxip1´ ziq,@i P rns, (13b)

z P t0,1un. (13c)

The system of inequalities in (13) is tight in the sense that its continuous relaxation recov-

ers the convex hull of a relaxed local epigraphical set. To be specific, let us define sB “

ˆiPrnsr0,Bis
Ş

Zn1 ˆ Rn2 as a relaxed domain of the first stage decision and a mixed integer set

S1 “
␣

px, θq P sBˆR : (12)
(

that consists of the relaxed domain set and a ReLU Lagrangian cut.

The following proposition summarizes this result.

Proposition 3. Given a first-stage decision px P sX, we have

convpS1q “
␣

px, θq P ˆiPrnsr0,Bis ˆR : Dpω`,ω´,zq P Rn ˆRn ˆ r0,1sn, (13a), (13b)
(

. (14)

Proof. See Appendix A.5. ˝

To obtain a dual optimal solution and derive a ReLU Lagrangian cut, ?? suggests selecting a

sufficiently large ρ. However, it also indicates that as ρ approaches infinity, the resulting cut may

become arbitrarily weak. In the following sections, we will show how to appropriately select ρ by

leveraging existing families of cuts that, while tight, may be weak, and how to strengthen these

cuts. Additionally, Corollary 4 presents an alternative approach: rather than solving (7) directly,

we may solve the dual problem with an expanded first-stage feasible region. To verify whether an

inequality qualifies as a ReLU Lagrangian cut, Corollary 5 provides a criterion: any inequality valid

for the epigraph of a local recourse function in the form (11) is a ReLU Lagrangian cut at px.
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2.3. Related cut families

In this subsection, we establish that ReLU Lagrangian cuts include all tight Lagrangian cuts,

therefore retaining their effectiveness in describing the local convex hull. Moreover, we show that

certain nonlinear cuts–such as reverse norm cuts and augmented Lagrangian cuts (Ahmed et al.

2022), as well as integer L-shaped cuts (Laporte and Louveaux 1993)–are special cases of ReLU

Lagrangian cuts. We extend the concept of L-shaped cuts to derive new cuts for purely integer

first-stage decisions, termed “Λ-shaped cuts.” A comparison of ReLU Lagrangian cuts with existing

cut families demonstrates their advantages and necessity in accurately describing both local convex

hulls and local epigraphs.

We define the set of admissible ReLU Lagrangian cut coefficients.

Definition 4 (Admissible ReLU Lagrangian Cut Coefficients). For a given px P sX, let

set Πs
px :“ tpπ`,π´q P R2n : pπ`,π´q is optimal to (7)u denote all optimal solutions to the ReLU

Lagrangian dual problem (7).

Our first result shows that

Proposition 4. Any tight Lagrangian cut is a ReLU Lagrangian cut.

Proof. See Appendix A.6. ˝

As shown in Corollary 3, the local convex hull can be recovered using Lagrangian cuts that are

tight at its extreme points. By this proposition, these cuts are also ReLU Lagrangian cuts.

Corollary 6. For a given px P sX, the following result must hold: tpx, θq P convp sXq ˆ R : θ ě

Qsppxq ´
ř

iPrns
π`
i pxi ´ pxiq

` ´
ř

iPrns
π´
i pxi ´ pxiq

´,@px P sX, pπ`,π´q P Πs
pxu Ď convpepiQsq.

This local convex hull description property demonstrates the strength of the ReLU Lagrangian

cuts, distinguishing them from two other cuts: reverse norm cuts and the integer L-shaped cuts.

Definition 5 (Reverse norm cuts, Ahmed et al. 2022). If the local recourse function Qs

is Lipschitz continuous with Lipschitz constant ρ under the L1-norm, i.e., |Qspxq ´ Qspx
1q| ď

ρ||x´x1||1, for all x,x
1 P sX, then given px P sX, we can derive a cut:

θě Qsppxq ´ ρ||x´ px||1.

Proposition 5. Reverse norm cuts are ReLU Lagrangian cuts.

Although reverse norm cuts can be applied to general mixed integer first-stage decisions, they

are restricted by the requirement that local recourse functions must be Lipschitz continuous–a

condition that is often difficult to satisfy when part of second-stage decision variables is discrete.

The following integer L-shaped cuts can be derived using only the current recourse function value

and a lower bound of the recourse function. It is applicable when the first-stage variables are binary.
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Definition 6 (Integer L-shaped cuts, Laporte and Louveaux 1993). Let L be a valid

lower bound of the local recourse function Qs defined in (1b). Given a feasible first-stage decision

px PX, an integer L-shaped cut generated at px admits the form

θě pQsppxq ´Lq

˜

ÿ

iPI
px

xi ´
ÿ

iRI
px

xi

¸

´ pQsppxq ´Lq p|I| ´ 1q `L,

where I
px :“ ti P rns : pxi “ 1u.

We can equivalently write this cut as θ ě Qsppxq ´ pQsppxq ´Lq||x´ px||1. Note that in the closed-

form expression for the optimal dual solution (9), the distance d under L1-norm is at least one for

integer first-stage decisions. This coincides with the coefficients of L-shaped cuts. Similarly, when

the first-stage feasible region is purely integer, we generalize the idea of L-shaped cuts to derive

the Λ-shaped cuts.

Definition 7 (Λ-shaped cuts). When the first-stage feasible region sX Ď Zn, given px P sX and a

lower bound L of the recourse function, we can derive a cut

θě Qsppxq ´ pQsppxq ´Lq||x´ px||1. (15)

Proposition 6. L-shaped cuts and Λ-shaped cuts are ReLU Lagrangian cuts.

The cuts discussed above either cannot be applied to general SMIPs or impose specific require-

ments on local recourse functions. Due to the symmetry of the ℓ1-norm, these cuts fail to recover

local convex hulls, resulting in weaker cuts that may not effectively enhance the outer approxima-

tion of the expected epigraph during the solution procedure. The following example demonstrates

the insufficiency of reverse norm cuts and Λ-shaped cuts in describing the local convex hull.

Example 2. Given set sX “ tp0,0qJ, p0,1qJ, p2,1qJ, p0,3qJ, p2,3qJ, p1,4qJ, p1,2qJu, consider a local

recourse function given by Qsp0,0q “ 0,Qsp0,1q “ Qsp2,1q “ 1,Qsp0,3q “ Qsp2,3q “ 3,Qsp1,4q “ 4

and Qsp1,2q “ ´10. It is clear that the Lipschitz constant ρě 3
10
. The strongest reverse norm cut

we can derive is θě Qsppxq ´ 3
10

||x´ px||1 for all px P sX.

Similarly, to derive Λ-shaped cuts, we note that L “ ´10 is the best lower bound of the local

recourse function Qs. Then, we can derive cuts θě Qsppxq ´ pQsppxq ` 10q||x´ px||1 for all px P sX.

It is easy to check that x1 “ 1.5, x2 “ 0.5, θ “ 0 is valid for all reverse norm cuts and Λ-shaped

cuts. However, it is not in convpepipQsqq since copQsqp1.5,0.5q “ 0.5. ˛

The following family of cuts subsumes all previously discussed types and provides a stronger

outer approximation of local convex hulls, which is also a special case of ReLU Lagrangian cut.
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Definition 8 (Augmented Lagrangian cut Ahmed et al. 2022). Given px P sX, π P Rn,

ρ ě 0, let Ls
Apπ, ρ; pxq “ minx

␣

Qspxq `πJppx´xq ` ρ||px´x||1 :x P sX
(

. The following augmented

Lagrangian cut is valid for the epigraph of Qs:

θěLs
Apπ, ρ; pxq `πJpx´ pxq ´ ρ||x´ px||1.

Given a tight augmented Lagrangian cut

θě Qsppxq `πJpx´ pxq ´ ρ||x´ px||1, (16)

(π“ 0 when it is a reverse norm cut), we can equivalently write it as

θě Qsppxq `
ÿ

iPrns

pπi ´ ρqpxi ´ pxiq
` `

ÿ

iPrns

p´πi ´ ρqpxi ´ pxiq
´. (17)

Then, according to Corollary 5, we have

Proposition 7. Tight augmented Lagrangian cuts are ReLU Lagrangian cuts.

Augmented Lagrangian cuts are sufficient to describe local convex hulls, as they reduce to ordi-

nary Lagrangian cuts when penalty terms are omitted. However, ReLU Lagrangian cuts generally

provide stronger approximations of local epigraphs, allowing for fewer cuts in the solution proce-

dure. This phenomenon is illustrated in the following example.

Example 3. Consider a local recourse function given by Qsp0,1q “ 3,Qsp0,2q “ 2,Qsp0,3q “

1,Qsp1,0q “ 5,Qsp1,1q “ 15
2
,Qsp1,2q “ 10,Qsp1,3q “ 11

2
,Qsp1,4q “ 1,Qsp2,1q “ 5,Qsp2,2q “

4,Qsp2,3q “ 3. At px“ p1,2qJ, we can derive a ReLU Lagrangian cut

θě 10´ 6px´ 1q` ´ 8px´ 1q´ ´
9

2
px´ 2q` ´

5

2
px´ 2q´. (18)

As shown in Figure 2(a), this cut is tight at points p0,2,Qsp0,2qqJ, p1,0,Qsp1,0qqJ, p1,1,Qsp1,1qqJ,

p1,2,Qsp1,2qqJ, p1,3,Qsp1,3qqJ, p1,4,Qsp1,4qqJ and p2,2,Qsp2,2qq of the epigraph. To describe

the epigraph, we need add one more cut θ ě 3 ` px1 ´ 0q` ´ px2 ´ 1q` ` px2 ´ 1q´ generated at

px“ p0,1qJ.

To describe the local epigraph with augmented Lagrangian cuts, one can check by enumeration

that at least three cuts are required. At x“ p1,2qJ, cut (18) cannot be expressed as an augmented

Lagrangian cut since the system of linear equations π1 ` ρ“ ´6,´π1 ` ρ“ ´8, π2 ` ρ“ ´ 9
2
,´π2 `

ρ“ ´ 5
2
has no solution. In fact, at least two augmented Lagrangian cuts, for example, the following

two cuts

θě 10` px1 ´ 1q `
5

2
px2 ´ 2q ´ 7||x´ px||1, (19a)

θě 10` px1 ´ 1q ´
9

2
px2 ´ 2q ´ 7||x´ px||1, (19b)

are required to separate p1,0,Qsp1,0qqJp1,1,Qsp1,1qqJ, p1,2,Qsp1,2qqJ, p1,3,Qsp1,3qqJ and

p1,4,Qsp1,4qqJ from the epigraph, as shown in Figure 2(b). ˛
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Cut (18)

x1

x2

Qspxq

(a) A ReLU Lagrangian cut

Cut (19a)

Cut (19b)

x1

x2

Qspxq

(b) Two augmented

Lagrangian cuts

Figure 2 The illustration of Example 3.

We will further explain in Section 4.2 that the cut (18) is the strongest possible ReLU Lagrangian

cut generated at px“ p1,2qJ by analyzing the structure of the set Πs
px. Intuitively, from (17), a ReLU

Lagrangian cut reduces to an augmented Lagrangian cut if and only if π`
i “ πi ´ ρ,π´

i “ ´πi ´ ρ

for all i P rns and ρ ě 0, which is equivalent to say π`
i ` π´

i “ π`
j ` π´

j ď 0 for all i, j P rns. This

requirement restricts our choice of cut coefficients in Πs
px.

It is also worth noting that although both augmented Lagrangian cuts and ReLU Lagrangian

cuts can describe the local convex hulls, they fail to describe the convex hull of the epigraph of the

expected recourse function, as demonstrated in the following example:

Example 4. Let X “ t0,1,2,3u and define the local recourse functions as Q1pxq “ 0 if x P t0,3u,

Q1pxq “ 1 if x P t1,2u, and Q2pxq “ 4 if x P t0,3u, Q2pxq “ 1 if x P t1,2u. The expected recourse

function is then given by Qpxq “ 2 if x P t0,3u, and Qpxq “ 1 if x P t1,2u. For scenario 1, the

strongest ReLU Lagrangian cut we can derive are θ ě 0 at x “ 0 and x “ 3, θ ě 1 ´ px´ 1q´ ´

1
2
px ´ 1q` at x “ 1, and θ ě 1 ´ 1

2
px ´ 2q´ ´ px ´ 2q` at x “ 2. For scenario 2, the strongest

ReLU Lagrangian cuts we can derive are θ ě 4 ´ 3px´ 0q` at x “ 0, θ ě 1 ` 3px´ 1q´ at x “ 1,

θ ě 1` 3px´ 2q` at x“ 2, and θ ě 4´ 3px´ 3q´ at x“ 3. Combining the two scenarios, we have

θ ě 2 ´ 3
2
px´ 0q` at x“ 0, θ ě 1 ` px´ 1q´ ´ 1

4
px´ 1q` at x“ 1, θ ě 1 ´ 1

4
px´ 2q´ ` px´ 2q` at

x“ 2, and θě 2´ 3
2
px´ 3q´ at x“ 3. In Figure 3, the black dots represent the local and expected

recourse functions, while the dash lines represent ReLU Lagrangian cuts. The gray areas depict

the convex hulls of the epigraphs, and the shadowed areas are outer approximations derived by

ReLU Lagrangian cuts. We can observe that for the expected recourse function, the point p 3
2
, 7
8
qJ

is contained in the outer approximation shaped by ReLU Lagrangian cuts, while it is not in the

convex hull of the epigraph. ˛
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Figure 3 The illustration of Example 4.

This example also demonstrates that by adding the ReLU Lagrangian cuts, the outer approxi-

mation eventually converges to the epigraph of the expected recourse function when restricting the

first-stage variables to their feasible region. That is, we have the following equalities:

v˚ “ mintcJx` θ : px, θq P epi
ĎXpQqu “ min

x
tcJx` θ :x P sX, px, θq PERu,

where ER “ tpx, θq P Rn ˆ R : θ ě Qppxq ´
ř

iPrNs
π`
i pxi ´ pxiq

` ´
ř

iPrns
π´
i pxi ´ pxiq

´,@px P

sX, pπ`,π´q P
ř

sPrNs
psΠ

s
pxu. This is different from Lagrangian cuts, where the outer approximation

only provides a lower bound on the optimal value.

The integrality constraints in the first stage of Example 4 are essential to obtain the optimal

solution. It is insufficient to recover the convex hull of the epigraph by extending the feasible first-

stage region to its convex hull and adding all ReLU Lagrangian cuts generated at feasible decisions.

Specifically, since convtpx, θq P convp sXq ˆR : px, θq PERu Ě convpepi
ĎXQq, we must have

v˚ “ min
x

tcJx` θ :x P sX, px, θq PERu ě min
x

tcJx` θ :x P convp sXq, px, θq PERu

ě min
x

tcJx` θ :x P sXLP , px, θq PERu.

Therefore, when implementing these cuts, maintaining the integrality constraints in the first stage

ensures that we achieve the optimal value v˚.

Finally, we note that there is a more straightforward way to obtain a ReLU Lagrangian cut in

practice than by directly solving the Lagrangian dual (7). This observation motivates our strat-

egy of initially generating a valid, albeit potentially weak, cut at a low computational cost and

subsequently refining it into a stronger cut. The methodology and implementation details will be

elaborated upon in the following two sections.

3. Purely Binary First-Stage Decisions

Existing literature generates Lagrangian cuts by solving a sequence of optimization problems (see,

e.g., Zou et al. 2019, Chen and Luedtke 2022), which can be computationally demanding. In this
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section, we propose a simple and effective method for generating ReLU Lagrangian cuts when the

first-stage decision variables are purely binary.

3.1. Dual optimal solution set Πs
px

We first analyze the structure of Πs
px, the set of all optimal solutions to the Lagrangian dual (7).

Proposition 8. Given scenario s P rN s, the set Πs
px is a polyhedron.

Proof. See Appendix A.7. ˝

This result holds for general mixed integer first-stage decisions. However, when the first-stage

decision variables are purely binary, the set Πs
px is a non-pointed polyhedron. Intuitively, we observe

that for any pπ`,π´q P Πs
px, a ReLU Lagrangian cut (11) is equivalent to a linear cut (12). This

linear cut is uniquely determined by the entries π`
i for i R I

px and π´
i for i P I

px, while the remaining

entries in the ReLU Lagrangian cut can take arbitrary values.

Lemma 1. Given scenario s P rN s, when the first-stage feasible decision is purely binary, the reces-

sion cone of Πs
px contains lintpei,0quiPI

px
` lintp0,eiquiRI

px
.

Proof. See Appendix A.8. ˝

Given this lemma, we focus on the restriction of Πs
px to the orthogonal complement of the linear

subspace lintpei,0quiPI
px

` lintp0,eiquiRI
px
. Projecting out the entries that are fixed to be zero, we

consider the set

ProjprnszI
px,I

pxqΠ
s
px

ˇ

ˇ

ˇlintpei,0quiPI
px

`lintp0,eiquiRI
px

:“ tπ P Rn : Dpπ`,π´q P Πs
px : πi “ π`

i ,@i R I
px, πi “ π´

i ,@i P I
pxu “ diagpχqDs

px,

where we let χi “ 2pxi ´ 1 for each i P rns and diagpχq is the diagonalization of the vector χ. Note

that the diagonal matrix diagpχq is symmetric and orthonormal. In Proposition 2, we define Ds
px

as the set of all optimal solutions to the Lagrangian dual (3b) for the ordinary Lagrangian cuts.

Thus, ReLU Lagrangian cuts coincide with ordinary Lagrangian cuts for purely binary variables.

The orthonormal transformation diagpχq preserves the polyhedral structure– for example, the

extreme points and the extreme rays– of a polyhedron. Although Lagrangian cuts are sufficient to

characterize the epigraphs of local recourse functions, many alternative Lagrangian cuts exist since

the set Ds
px may not be a singleton. Our goal is to identify the strongest cuts that can reconstruct

local convex hulls. This motivates us to seek facet-defining cuts of the local convex hulls.

Definition 9. A cut of the form θě v`πJx is facet-defining for convpepi
ĎXpQsqq if it is valid for

convpepi
ĎXpQsqq and the corresponding hyperplane θ“ v`πJx defines a facet of convpepi

ĎXpQsqq.
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The following theorem demonstrates that the optimal solutions to the outer supremum of (3b)

form a polyhedron, with facet-defining cuts corresponding to its extreme points.

Theorem 2. The following properties hold for the set Ds
px of dual optimal solutions and Lagrangian

cuts generated at px P sX: (i) The set Ds
px is a polyhedron; (ii) A Lagrangian cut θ ě copQsqppxq `

πJpx´ pxq is facet-defining if and only if π is an extreme point of Ds
px; (iii) The recession cone

of Ds
px is the normal cone of sX at px; and (iv) The local convex hull can be described using the

facet-defining Lagrangian cuts:

convpepi
ĎXpQsqq “

␣

px, θq P convp sXq ˆR : θě copQsqppxq `πJpx´ pxq,@px P sX,π P extpDs
pxq
(

.

Proof. See Appendix A.9. ˝

This result also suggests that as the cut coefficients shift in the direction of the recession cone of

set Ds
px, the resulting Lagrangian cuts may serve as valid inequalities only for convp sXq. However,

these cuts do not contribute to the outer approximations of local epigraphs and should be avoided.

3.2. Cut strengthening: theoretical foundation

According to Proposition 6, we know that any integer L-shaped cut is a special ReLU Lagrangian

cut, which is known to be weak (Zou et al. 2019). In this subsection, we present a method for

deriving a stronger ReLU Lagrangian cut by strengthening the integer L-shaped cut coefficients.

Let us define pπ“ pL´Qsppxqqχ. We aim to find a proper η such that the strengthened cut:

θě Qsppxq ` ppπ`ηq
J

px´ pxq, (20)

can be close to a non-trivial facet of convpepiXpQsqq. By Theorem 2, we know that (20) is a valid

ReLU Lagrangian cut if and only if pπ`η P Ds
px. Therefore, it suffices to find η such that pπ`η is

an extreme point of Ds
px. To identify an extreme point of a polyhedron, a natural approach is to

solve a linear program:

min
␣

aJη : pπ`η P Ds
px

(

. (Stren)

Note that the feasible region of this problem, denoted by Ds
px ´ pπ :“ tη :Qsppxq ď Qspxq ` ppπ`

ηqJppx´xq,@x PXu “ tη : ppx´xqJηě Qsppxq` pπJppx´xq´Qspxq,@x PXu is unbounded according

to Theorem 2. We illustrate this with the following example:

Example 5. Consider the recourse function Qpx1, x2q “ mint2y1 ` 2y2 : 0.2y1 ` y2 ` x1 ` 0.5x2 ě

2.4,y P t0,1,2u2u, where x P t0,1u2. This function takes the values Qp0,0q “ 8, Qp1,0q “

4, Qp0,1q “ 4 and Qp1,1q “ 2. Let px “ p1,0qJ and L “ 0 be a lower bound of Q. We can derive

an L-shaped cut θ ě 4 ` 4px1 ´ 1q ´ 4x2. To enhance this cut, we consider the feasible region of
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the strengthening problem (Stren), given by Ds
px ´ pπ “ tη : η1 ě ´8, η1 ´ η2 ě ´8, η2 ď 2u (see Fig-

ure 4(a)). It has two extreme points p´8,0qJ and p´6,2qJ, corresponding to two facet-defining

cuts:

θě 4´ 4px1 ´ 1q ´ 4x2, (21a)

passing through p0,0,8qJ, p1,0,4qJ and p0,1,4qJ, and

θě 4´ 2px1 ´ 1q ´ 2x2, (21b)

passing through p1,0,4qJ, p0,1,4qJ and p1,1,2qJ. Meanwhile, Ds
px ´ pπ is unbounded with extreme

rays p1,0qJ and p0,´1qJ. The strengthened cut θ ě 4 ` p4 ` η1qpx1 ´ 1q ` p´4 ` η2qpx2 ´ 0q

approaches x1 ď 1 as η1 Ñ 8 and x2 ě 0 as η2 Ñ ´8. ˛

´8 ´6

2

8

η1

η2

(a) Ds
px ´ pπ when L “ 0

´8 ´6

2

8

η1

η2

(b) Ds
px ´ pπ with con-

straints (22)

´6 ´4
´2

η1

η2

(c) Ds
px ´ pπ when L “ 2

´6 ´4
´2

η1

η2

(d) Ds
px ´ pπ with con-

straints (22)

Figure 4 The illustration of Examples 5 and 6

We propose two strategies to prevent the unboundedness of the strengthening problem (Stren).

• Strategy 1: Introduce additional constraints to bound the feasible region Fη

When set X is full-dimensional1, we can restrict η to lie in the reverse direction of the normal

cone of X. Specifically, the constraints we add are

ppx´xqJηď 0, @x PX. (22)

In this way, the recession cone of the feasible region becomes td : ppx´xqJdě 0, ppx´xqJdď 0,@x P

Xu “ td : ppx´xqJd“ 0,@x PXu “ t0u, where the last equality follows from the full dimensionality

of X. However, this approach may eliminate extreme points that satisfy ppx´ xqJη ą 0 for some

x PX. In general, we can add box constraints:

M i ď ηi ďM i, i P rns. (23)

One possibility is to ensure that diagpχq´1η ě 0 and diagpχq´1η ď pQsppxq ´ Lq1, which implies

that the absolute values of the entries of η are in the range r0,Qsppxq ´Ls. When |M i| and |M i|

are large enough, we can retain all extreme points of the original set Ds
px ´ pπ. A drawback of this

strategy is that additional constraints can introduce extra extreme points.

1 If set X is not full-dimensional, we can choose η to be in the null space of affine hull of set X.
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Example 6. In Example 5, at px“ p1,0qJ, adding constraints (22) to Ds
px ´ pπ, the feasible region

of (Stren) becomes tη : ´8 ď η1 ď 0,´8 ď η1 ´η2 ď 0,0 ď η2 ď 2u. It has the original extreme points

and includes two new extreme points p0,0qJ and p0,2qJ (see Figure 4(b)). When adding constraints

η1 ď 0, η2 ě 0 to bound the entries of η, we get the same result.

If we take L “ 2 as the lower bound of the recourse function Q, the L-shaped cut becomes

θ ě 4 ` 2px1 ´ 1q ´ 2x2, and Ds
px ´ pπ “ tη : η1 ě ´6, η1 ´ η2 ě ´4, η2 ď 0u. It has extreme points

p´6,´2qJ and p´4,0qJ (see Figure 4(c)). By adding constraints (22), the feasible region of (Stren)

becomes tη : ´4 ď η1 ď 0, η2 “ 0u, which excludes the extreme point p´6,´2qJ (see Figure 4(d)).

If we bound the entries of η by adding upper bounds and lower bounds with sufficiently large

absolute values, for example, |η1| ď 6, |η2| ď 6, the feasible region of (Stren) becomes F 1
η “ t´6 ď

η1 ď 6,´6 ď η2 ď 0, η1 ´η2 ě 4u. In this case, we have both extreme points but also introduce three

new extreme points p6,0qJ, p6,´6qJ and p´6,´6qJ. They correspond to cuts θě 4`8px1 ´1q´2x2,

θě 4` 8px1 ´ 1q ´ 8x2, and θě 4´ 4px1 ´ 1q ´ 8x2, which are dominated by cuts (21a), (21b). ˛

• Strategy 2: Choose an appropriate coefficient a of the objective function

We restrict the objective coefficient to lie in a reverse direction of the tangent cone of convpXq at

px, i.e., ´a P TconvpXqppxq :“ conetx´ px :x PXu.

Proposition 9. The strengthening problem (Stren) is bounded if and only if ´a P TconvpXqppxq.

Proof. See Appendix A.10. ˝

A practical choice is to let a“
ř

iPIppx´xiq, where pxiq’s are all explored first-stage decisions.

Example 7. In Example 5, since px1 “ 1 and px2 “ 0, we let a1 “ ´1 and a2 “ 1. The strengthening

problem (Stren) then becomes mintη1 ´ η2 : η1 ě ´8, η1 ´ η2 ě ´8, η2 ď 2u. Both extreme points

p´8,0qJ and p´6,2qJ and their convex combinations are optimal. ˛

3.3. Cut strengthening – practical implementations based on LP relaxation

In this subsection, we integrate Strategies 1 and 2 within a practical framework to efficiently

strengthen the ReLU Lagrangian cuts based on L-shaped ones. Although the feasible region of

(Stren) is a polyhedron, it is generally NP-hard to separate from it. As an alternative, we replace

the setX with its LP relaxation,XLP . Thus, rather than solving the original strengthening problem

min
η

!

aJη : min
x

␣

Qspxq ` ppπ`ηqJppx´xq :x PX
(

ě Qsppxq

)

,

we consider

min
η

!

aJη : min
x

␣

QLP
s pxq ` ppπ`ηqJppx´xq :x PXLP

(

ě Qsppxq

)

, (24)

where QLP
s is defined by solving the LP relaxation of the local recourse problem (1b).
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Proposition 10. Any feasible solution of (24) is also feasible for (Stren).

Proof. See Appendix A.11. ˝

This proposition shows that by relaxing the inner minimization problem, we can tighten the feasible

region of the strengthening problem. When QLP
s ppxq ă Qsppxq, we have minxPXLP QLP

s pxq ` ppπ `

ηqJppx´xq ď QLP
s ppxq ă Qsppxq for any η P Rn. Hence, it is possible that the resulting formulation

(24) is infeasible. In this case, we will improve the formulation (24).

Example 8. Consider the local recourse function Q1pxq “ minty1 ` y2 : 2y1 ` y2 ě 3x ` 2,0 ď

y1 ď 2,0 ď y2 ď 3,y P Z2u. It is easy to check that Q1p1q “ QLP
1 p1q “ 3. Therefore, when px “ 1,

the relaxed strengthening problem (24) is feasible. However, consider another recourse function:

Q2pxq “ minty1 ` y2 : 2y1 ` y2 ě 3x,0 ď y1 ď 2,0 ď y2 ď 3,y P Z2u. In this case Q2p1q “ 2 while

QLP
2 p1q “ 3

2
. Thus, the relaxed strengthening problem (24) becomes infeasible. ˛

To address the feasibility issue, we incorporate the following no-good cut into the inner minimiza-

tion problem of the formulation (24):

χJppx´xq ě 1,

where we recall that χi “ 2pxi ´ 1 for each i P rns. Next, we show that the strengthening problem

(24) is always feasible after incorporating the no-good cut.

Proposition 11. The set

FLP
s :“

!

η : min
x

!

QLP
s pxq ` ppπ`ηqJppx´xq :x P rX

)

ě Qsppxq

)

(25)

is always nonempty, where rX :“ tx PXLP :χJppx´xq ě 1u.

Proof. See Appendix A.12. ˝

The relaxed strengthening problem is then given by

min
η

"

aJη :Qsppxq ď min
x,y

␣

qJy` ppπ`ηqJppx´xq :Axě b,T sx`W syěhs,χJppx´xq ě 1,0 ďxď 1
(

*

.

Taking the dual of the minimization problem on the right-hand side of the constraint, we have

min
η

"

aJη :Qsppxq ď ppπ`ηqJ
px` max

τ ,σ,ρ,ω

"

bJτ ` phsqJσ` p1´
ÿ

iPrns

pxiqρ`1Jω :

AJτ ` pT sqJσ´χρ`ωď ´ppπ`ηq, pW sqJσď q,τ ,σ, ρě 0,ωď 0

**

.

Replacing the maximization operator with existence one, we obtain an equivalent strengthening

linear program:

min
η,τ ,σ,ρ,ω

"

aJη : pxJη` bJτ ` phsqJσ` p1´
ÿ

iPrns

pxiqρ`1Jωě Qsppxq ` pxJ
pπ,

AJτ ` pT sqJσ`χρ`ω`ηď ´pπ, pW sqJσď q,τ ,σ, ρě 0,ωď 0

*

.

(Stren LP)
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This LP-based formulation can also be unbounded. Similar to the analysis of (Stren), the feasible

region for η is unbounded, with its recession cone being the normal cone of convp rXq at point

px. As stated in Proposition 10, the feasible region of the LP-based formulation is a subset of

that of the original strengthening problem. Therefore, the two strategies introduced in Section 3.2

can effectively address the unboundedness issue here. Specifically, in Strategy 1, the additional

constraints that ensure the boundedness of the feasible region in (Stren) are also sufficient to

guarantee that the feasible region of (Stren LP) is bounded. When restricting η in the reverse

direction of the recession cone, we add the following constraint to (Stren LP):

min
x

␣

xJη :Axě b,χJppx´xq ě 1,0 ďxď 1
(

ě pxJη,

which is different from (22) since we replace set XLP by a smaller set rX. Similarly, we can take the

dual of the minimization problem on the left-hand side to make it compatible with the LP. Then,

it is equivalent to adding the following constraints to (Stren LP):

bJτ1 ` p1´
ÿ

iPrns

pxiqρ1 `1Jω1 ´ pxJηě 0,AJτ1 `χρ1 `ω1 ´ηď 0,τ1, ρ1 ě 0,ωď 0.

In Strategy 2, for any objective coefficient a such that ´a P TconvpXqppxq, we have ´a P TconvpĂXq
ppxq

as Xztpxu Ď rX. Thus, the LP-based formulation (Stren) is bounded according to Proposition 9.

The next example illustrates the importance of the no-good cuts.

Example 9. Recall in Example 5, Qpx1, x2q “ minyt2y1 ` 2y2 : 0.2y1 ` y2 ` x1 ` 0.5x2 ě 2.4,y P

t0,1,2u2u, x P t0,1u2. At px“ p1,1q, we can generate an L-shaped cut θě 2` 2px1 ´ 1q ` 2px2 ´ 1q.

To strengthen this cut, we solve the following problem using Strategy 2 to avoid unboundedness:

min
η

"

η1 ` η2 : min
xPr0,1s2

␣

QLP pxq ` p2` η1qp1´x1q ` p2` η2qp1´x2q
(

ě 2

*

, (26)

which is equivalent to

min
η

tη1 ` η2 : 4` η1 ` η2 ` 2.4α` 2β1 ` 2β2 ` γ1 ` γ2 ě 2,0.2α`β1 ď 2, α`β2 ď 2,

α` γ1 ď ´p2` η1q,0.5α` γ2 ď ´p2` η2q, αě 0,βď 0,γ ď 0u.

This problem is infeasible. However, if we add a constraint p1´x1q`p1´x2q ě 1 to the minimization

problem in (26) the problem becomes feasible with optimal solution p´3.8,´2.8q. In this way, we

obtain a stronger Lagrangian cut θě 2´ 1.8px1 ´ 1q ´ 0.8px2 ´ 1q. ˛

To further enhance the relaxed strengthening problem (24), we can incorporate additional valid

inequalities of convtpx, θq P epiXpQsq : x‰ pxu into the inner minimization problem, similar to the

no-good cuts. For example, we can add the following objective cuts.



Haoyun Deng and Weijun Xie: On the ReLU Lagrangian Cuts for Stochastic Mixed Integer Programming
22

Definition 10 (Objective cuts). Given scenario s P rN s, let Ls be a lower bound of Qs. Then,

we can introduce the following objective cuts to the inner minimization problem of (Stren LP):

pqsqJy ěLs,

where we assume that Ls ěL. In fact, this lower bound Ls can be obtained by solving the scenario

problem Ls :“ minxPX Qspxq.

3.4. Implementation details

This subsection details the implementations of the strengthened Lagrangian cut for stochastic

integer programs with purely binary first-stage decisions within the framework of the basic cutting

plane method (see Algorithm 1). This procedure is also suitable for the branch-and-cut algorithm.

Algorithm 1 ReLU Lagrangian cuts for binary first-stage decisions

1: Input: Master problem: v˚ “ mintcJx` θ :Axě b,x P sXu and subproblems (1b)

2: Output: Optimal solution x˚

3: Initialize: lbÐ ´8, ubÐ `8, iÐ 0

4: Analyze the master problem and its LP relaxation to select an appropriate strategy for avoiding

unboundedness

5: while stopping criterion not met do

6: Solve the master problem, obtain an optimal solution px, and set lbÐ v˚

7: for s P rN s do

8: Solve the subproblem to get Qsppxq, and generate the L-shaped coefficients πi
s

9: Update the strengthening problem (Stren LP) and solve it

10: if (Stren LP) is optimal then

11: Let pηi
s be an optimal solution, and πi

s Ðπi
s ` pηi

s

12: Add the Lagrangian cut θě pspQsppxq ` pπi
sq

Jxq to the master problem

13: ubÐ mintub,cJ
px`

ř

sPrNs
psQsppxqu and iÐ i` 1

Given that the feasible region is unbounded for any binary px, it is important to ensure that the

strengthening problem (Stren LP) is bounded prior to the cut-strengthening procedure. We seek

an approach, potentially combining both strategies introduced in Section 3.2, that preserves as

many extreme points of the original feasible region as possible, as they correspond to cuts that are

closer to being facet-defining. Since both strategies rely on an incumbent solution to determine the

additional constraints and the objective function, we also aim to minimize the necessary updates
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to the strengthening problem in each iteration. First, we try to select appropriate objective coeffi-

cients following Strategy 2 without adjusting the feasible region. However, in practice, tracking the

tangent cone at the incumbent solution can be challenging. It is desirable to add constraints and

choose the objective coefficients to guarantee that the strengthening problem is bounded while its

optimal solution effectively improves the cut. One approach is to set the objective coefficients a“χ

and enforce diagpχq´1ηě 0. In this way, we have ηJpx´ pxq “ pdiagpχq´1ηqJdiagpχqpx´ pxq ě 0. If

the strengthening problem is optimal, the resulting cut (20), though not necessarily facet-defining,

will dominate the original L-shaped cut. If the problem remains unbounded, we add constraints

diagpχq´1ηď pQsppxq ´Lq1 to it and solve the problem again, as described in Strategy 1.

At each iteration, we need to update the optimality condition in the strengthening problem

based on the current first-stage decision px and its local recourse function value Qsppxq. In addition,

depending on which strategy is used to avoid unboundedness, we may need to adjust the objective

coefficients according to px or random coefficients and set limits for the entries of η according to

the L-shaped cuts’ coefficients. Although we address the infeasibility of the strengthening problem

caused by the integrality gap by adding a no-good cut to the inner minimization problem, the

additional constraints introduced in Strategy 1 to prevent unboundedness may still render the

problem infeasible. In this case, the L-shaped cuts serve as alternative ReLU Lagrangian cuts.

We can also combine them with other cuts that help accelerate the algorithm. For example, in

Zou et al. (2019), the Lagrangian cuts can be implemented together with the Benders cuts and the

strengthened Benders cuts. These cuts may not be tight but can improve the outer approximation

of the expected epigraph.

4. General Mixed Integer First-Stage Decisions

In this section, we study ReLU Lagrangian cuts within the mixed-integer first-stage decision setting.

Following the strategy outlined in Section 3, we begin with an easily obtainable valid cut. For

stochastic programs with purely integer first-stage decisions, we convert them into models with

binary first-stage variables and then apply the methods from Section 3. For programs with mixed-

integer first-stage decisions, we derive cuts analogous to the reverse norm cuts. In both cases, as

in Section 3, the cuts can be strengthened based on dual optimality conditions.

4.1. General integer first-stage decisions: binarization vs. non-binarization

According to Zou et al. (2019), Lagrangian cuts can be applied to general integer first-stage deci-

sions by binarizing integer variables. In this subsection, we show that while the ReLU Lagrangian

cuts can effectively solve the problem without reformulating the original problem, binarization
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provides additional benefits. Specifically, it not only reduces the number of variables required to lin-

earize the cuts but also achieves stronger outer approximations of the local epigraphs. Throughout

this subsection, we assume that sX Ď Zn.

For any given integer px P sX, we can construct a Λ-shaped cut (15) as an initial ReLU Lagrangian

cut. Alternatively, we can first binarize the entries of x. Let Ni “ tlog2Biu and represent xi as

xi “
ř

jPr0,Nis
2jδij with δ

i P t0,1uNi`1 for each i P rns. In the binarized space, we can then derive an

L-shaped cut as an initial cut:

θě Qsppxq ´ pQsppxq ´Lq
ÿ

iPrns

||δi ´ pδi||1. (27)

We compare cuts (15) and (27) from two perspectives. First, considering the additional variables

introduced: in (15), for each i P rns and pxi P r1,Bi ´ 1s, as |xi ´ pxi| “ pxi ´ pxiq
` ` pxi ´ pxiq

´, we

need a binary variable to linearize the terms pxi ´ pxiq
` and pxi ´ pxiq

´ as shown in the constraint

system (13). This results in up to
ř

iPrns
pBi ´ 1q additional binary variables. In contrast, it takes

ř

iPrns
p1` tlog2Biuq binary variables to represent the first-stage decisions.

More importantly, we show that the L-shaped cuts derived in the binarized space perform better

by proving the inclusion of the convex hulls of the subsystems described by two types of initial

cuts.

Proposition 12. Given px P sX, let us define Es
Λ “ tpx, θq P B ˆR : (15)u and

Es
L “

#

px, θq P B ˆR : Dδ P t0,1uN1`1 ˆ ¨ ¨ ¨ ˆ t0,1uNn`1, xi “
ÿ

jPr0,Nis

2jδij,@i P rns, (27)

+

,

where B :“ ˆiPrnsr0,Bis. If Bi ě 3 for all i P rns, then convpEs
Λq Ě convpEs

Lq.

Proof. See Appendix A.13. ˝

When Bi ď 2, the inclusion of the two sets may not hold, as shown in the following example.

Example 10. Consider the local recourse function Qspxq “ minty : y ě x, y P Zu for x P t0,1,2u.

Let L“ 0. When px“ 1, we can derive a Λ-shaped cut θě 1` p0´ 1q|x´ px|. For this cut, we have

convpEs
Λq “ tpx, θq : θě 1´ pω` `ω´q, ω` ´ω´ “ x´ px,0 ď ω` ď p2´ 1qz,0 ď ω´ ď 1´ z, z P r0,1su.

It is easy to check that θ ě 1 ´ maxtpx,B ´ pxu “ 0 when x “ 2. Meanwhile, binarizing x as x “

δ0 ` 2δ1, we can derive a cut θě 1` p0´ 1qp|δ0 ´ 1| ` |δ1 ´ 0|q. When x“ 2, we have θě ´1. There

exists a point p2,´1q P convpEs
Lq that is not in convpEs

Λq. ˛

This example indicates that binarization generally provides stronger initial cuts prior to the cut-

strengthening procedure. It is more effective as fewer additional binary variables are required. In

addition, the strengthening strategy introduced in the previous section can be applied directly after

binarization.

We close this subsection by providing the convex hull of the set Es
L.
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Proposition 13. Suppose that integer Bi “ 2j1i ` ¨ ¨ ¨ ` 2jℓi ` 2Ni, and set Ji “ tj1i, . . . , jℓi,Niu for

each i P rns. Then,

convpEs
Lq “

$

’

’

’

’

’

&

’

’

’

’

’

%

px, θq P ˆiPrnsr0,Bis ˆR :

Dδ P r0,1sN1`1 ˆ ¨ ¨ ¨ ˆ r0,1sNn`1, (27),

xi “
ÿ

jPr0,Nis

2jδij ďBi,@i P rns,

δir `
ÿ

τPJir

δiτ ď |Jir|,@r P t0,1, . . . ,NiuzJi,@i P rns

,

/

/

/

/

/

.

/

/

/

/

/

-

,

where we let Jir “ tℓ P Ji : ℓą ru.

Proof. See Appendix A.14. ˝

4.2. Mixed integer first-stage decisions

For mixed integer first-stage decisions, according to Zou et al. (2019), binarization may still remain

an option and the number of binary variables required can be bounded in terms of the desired

approximation accuracy. However, this approach may introduce an excessive number of additional

binary variables and potentially fail to achieve an exact optimal solution due to binarization. Given

these issues, we propose solving the problem directly using ReLU Lagrangian cuts.

Similar to the L-shaped and Λ-shaped cuts used for purely binary and integer variables, we

develop an initial cut to begin with. According to Theorem 1, for any feasible first-stage decisions

px, there exists a ρ˚ ą 0 such that p´ρ˚1,´ρ˚1q is optimal for the dual problem. This allows us to

derive a cut of the form θ ě Qsppxq ´ ρ˚||x´ px||1. If the recourse function is Lipschitz continuous,

we use the Lipschitz constant as ρ˚ and derive a reverse norm cut. Otherwise, ρ˚ may need to be

adjusted based on the given px, which can be determined using binary search.

When the second-stage feasible region has a special structure, such as a knapsack-constrained

set, we can determine a valid ρ˚ by following the procedure described in the proof of Theorem 1.

First, we relax the first-stage feasible region to a larger set S with fewer constraints, facilitating

the identification of extreme points tpxk,yk, ωkqukPK of convpF q, where F “ tpx,y, ωq P Rn ˆZm1 ˆ

Rm2 ˆR : T sx`W syěhs,x P Su. We then compute the distance dď mint||xk ´ px||1 : k PK,xk ‰

pxu and let

ρ˚ “
Qsppxq ´L

d
. (28)

Letting π` “ π´ “ ´ρ˚1, we find an optimal solution to supπ`,π´PRn infxPS Lspx,π
`,π´; pxq.

According to Corollary 4, it is also optimal for the original dual problem (7). In this way, we can

derive an initial ReLU Lagrangian cut:

θě Qsppxq ´ ρ˚

˜

ÿ

iPrns

pxi ´ pxiq
` `

ÿ

iPrns

pxi ´ pxiq
´

¸

“ Qsppxq ´ ρ˚||x´ px||1. (29)

The following example illustrates how to find such ρ˚ using this approach.
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Example 11. Let Qpxq “ minty : y ě x1 ` x2, y P Zu, where the domain sX “ tx P ZˆR : 0 ď x1 ď

2,0 ď x2 ď 2u, px “ p1,1qJ and L “ 0. We relax sX to S “ tx P R2 : ||x´ px||1 ď 2u. Then, we have

F “ tpx, y,ωq P R2 ˆ Z ˆ R : ||x´ px||1 ď 2, ||x´ px||1 ď ω,y ě x1 ` x2u “ tpx, y,ωq P R2 ˆ Z ˆ R :

x1 `x2 ´2 ď ω,x1 ´x2 ď ω,x2 ´x1 ď ω,´x1 ´x2 `2 ď ω,0 ď ω ď 2, y ě x1 `x2u. This is an integral

polyhedron, i.e., convpF q “ tpx, y,ωq : x1 ` x2 ´ 2 ď ω,x1 ´ x2 ď ω,x2 ´ x1 ď ω,´x1 ´ x2 ` 2 ď

ω,0 ď ω ď 2, y ě x1 `x2u with extreme points p´1,1,0,2qJ, p1,´1,0,2qJ, p1,3,4,2qJ, p3,1,4,2qJ and

p1,1,2,0qJ. Then d“ mint||xk ´ px||1 : k PK,xk ‰ pxu “ 2. We let ρ“
2p2´0q

2
“ 2. The initial ReLU

Lagrangian cut we derive is θě 2´ 2||x´ px||1. ˛

To strengthen this initial ReLU cut, we lift the first-stage feasible region sX to a higher-

dimensional space by considering the set Ω
px :“ tpω`,ω´q : (13b), (13c),x P sXu. Then, we rede-

fine the recourse function Qspω
`,ω´q :“ Qsppx`ω` ´ω´q. With this transformation, the ReLU

Lagrangian cuts generated at px become Lagrangian cuts generated at p0,0q for the lifted epigraph-

ical set epiΩ
px
pQsq. Therefore, the properties of the Lagrangian cuts discussed in Section 2 can be

directly applied to the transformed problem.

Based on Theorem 2, we can define a “facet-defining” cut generated at px whose coefficients

correspond to an extreme point of the set Πs
px (recall that set Πs

px is defined in Definition 4). It

also implies that in the lifted space, the number of affinely independent points at which a ReLU

Lagrangian cut is tight is bounded by the dimension of the lifted feasible region Ω
px. This further

explains why certain ReLU Lagrangian cuts can be stronger than augmented Lagrangian cuts,

where the latter, due to the symmetry of the ℓ1-norm, may fail to be “facet-defining” in the lifted

space.

Example 12. In Example 3, let px “ p1,2qJ. We have p1,2qJ “ px ` p0,0qJ ´ p0,0qJ, p1,0qJ “

px`p0,0qJ ´p0,2qJ, p0,1qJ “ px`p0,0qJ ´p1,1qJ, p0,2qJ “ px`p0,0qJ ´p1,0qJ, p0,3qJ “ px`p0,1qJ ´

p1,0qJ, p1,4qJ “ px` p0,2qJ ´ p0,0qJ, p2,3qJ “ px` p1,1qJ ´ p0,0qJ, p2,2qJ “ px` p1,0qJ ´ p0,0qJ,

p2,1qJ “ px ` p1,0qJ ´ p0,1qJ. The first-stage feasible region can transformed to the set Ω
px “

tp0,0,0,0qJ, p0,0,0,2qJ, p0,0,1,1qJ, p0,0,1,0qJ, p0,1,1,0qJ, p0,2,0,0qJ, p1,1,0,0qJ, p1,0,0,0qJ,

p1,0,0,1qJu in the lifted space. The cut (18) is facet-defining as it passes through five points

p0,0,0,0,10qJ, p0,0,0,2,5qJ, p0,0,1,0,2qJ, p0,2,0,0,1qJ, p1,0,0,0,4qJ that are affinely independent

in the convex hull of the epigraph that is 5-dimensional. Meanwhile, Πs
px “ tpπ`

1 , π
`
2 , π

´
1 , π

´
2 q :

π´
1 ` π´

2 ď ´7, π´
1 ď ´8, π`

2 ` π´
1 ď ´9,2π´

2 ď ´5, π´
2 ď ´ 5

2
, π`

2 ď ´ 9
2
,2π`

2 ď ´9,´π´
2 ď ´5, π`

1 ď

´6, π`
1 ` π`

2 ď ´7u “ tpπ`
1 , π

`
2 , π

´
1 , π

´
2 q : π`

1 ď ´6, π`
2 ď ´ 9

2
, π´

1 ď ´8, π´
2 ď 5

2
u. The vector of the

coefficients of (18) is the only extreme point of Πs
px.

For augmented Lagrangian cuts, the cut coefficients are selected from a more restricted set

Πs
px X tpπ`

1 , π
`
2 , π

´
1 , π

´
2 q : π`

1 ` π´
1 “ π`

2 ` π´
2 ď 0u. It can be shown that the extreme points of set
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Πs
px are eliminated by the extra constraints, and the restricted set contains two new extreme points

that correspond to the coefficients of cuts (19a) and (19b). These new extreme points satisfy three

linearly independent constraints in Πs
px with equality, and the corresponding cuts are tight at four

affinely independent points in the convex hull of the epigraph. ˛

This example suggests that the cut coefficients pπ`,π´q of one of the strongest augmented

Lagrangian cuts have n ´ 1 linearly independent equality constraints from the set tpπ`,π´q :

π`
i ` π´

i “ π`
j ` π´

j ď 0,@i, j P rnsu and require n ` 1 linearly independent inequalities from Πs
px

that can be active for the cut coefficients pπ`,π´q. Therefore, the number of linearly independent

points in the epigraph at which this augmented Lagrangian cut is tight is at most n` 1, which is

clearly not facet-defining. Hence, more augmented Lagrangian cuts may be needed to fully recover

the epigraph, compared to ReLU Lagrangian cuts.

Similar to the approach applied to purely binary first-stage decisions, we can enhance the initial

cuts (29) using the following strengthening problem in the lifted space:

max
η`,η´

"

pa`qJη` ` pa´qJη´ :Qsppxq ď min
xPĎX

Qspxq `
ÿ

iPrns

pρ˚ ´ η`
i qpxi ´ pxiq

` `
ÿ

iPrns

pρ˚ ´ η´
i qpxi ´ pxiq

´

*

,

which is equivalent to

max
η`,η´

"

pa`qJη` ` pa´qJη´ :Qsppxq ď min
x,y,ω`,ω´,z

"

pqsqJy`
ÿ

iPrns

pρ˚ ´ η`
i qω`

i `
ÿ

iPrns

pρ˚ ´ η´
i qω´

i :

Axě b,T sx`W syěhs, ω`
i ´ω´

i “ xi ´ pxi,@i P rns,0 ď ω`
i ď pBi ´ pxiqzi,@i P rns,

0 ď ω´
i ď pxip1´ ziq,@i P rns,x P Zn1 ˆRn2 ,y P Zm1 ˆRm2 ,z P t0,1un

**

.

Relaxing the integrality constraints and taking the dual of the inner minimization problem yields

max
η`,η´

"

pa`qJη` ` pa´qJη´ : bJτ ` phsqJσ´ pxJγ` pxJψ`1Jκě Qsppxq,

AJτ ` pT sqJσ´γ “ 0, pW sqJσ“ qs,γ`ϕ`η` ď ρ˚1,γ`ψ`η´ ď ρ˚1,

ppxi ´Biqϕi ` pxiψi `κi ď 0,@i P rns,τ ,σě 0,ϕ,ψ,κď 0

*

.

(30)

If this problem has an optimal solution with η` “ pη` and η´ “ pη´, we can derive a stronger cut

θě Qsppxq `
ÿ

iPrns

ppη`
i ´ ρ˚qpxi ´ pxiq

` `
ÿ

iPrns

ppη´
i ´ ρ˚qpxi ´ pxiq

´.

The strategies described in Section 3.2 can be used to address the unboundedness. Other tech-

niques, such as objective cuts, can also be used to improve the LP-based strengthening problem.

Below is an illustrative example.
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Example 13. We use the strengthening problem to improve the ReLU Lagrangian cuts derived

in Example 11. We solve the following relaxed strengthening problem:

min
η`,η´

"

ÿ

iPr2s

η`
i `

ÿ

iPr2s

η´
i : 2 ď min

x,y
ty`

ÿ

iPr2s

p2´ η`
i qpxi ´ pxiq

` `
ÿ

iPr2s

p2´ η´
i qpxi ´ pxiq

´ : y ě x1 `x2,

0 ď x1,ď 2,0 ď x2 ď 2u

*

,

which is equivalent to

min
η`,η´

"

ÿ

iPr2s

η`
i `

ÿ

iPr2s

η´
i : 2τ1 ` 2τ2 ´ γ1 ´ γ2 `ψ1 `ψ2 `κ1 `κ2 ě 2, τi ´σ´ γi ď 0,@i P r2s,

σ “ 1, γi `ϕi ` η´
i ď 2,@i P r2s,´γi `ψi ` η´

i ď 2,@i P r2s,´ϕi `ψi `κi ď 0,@i P r2s,

σ ě 0,τ ,ϕ,ψ,κď 0

*

.

The optimal solution is pη` “ p3,3qJ and pη´ “ p1,1qJ, which corresponds to the cut θ ě 2 `
ř

iPrns
pxi ´ pxiq

` ´
ř

iPrns
pxi ´ pxiq

´. This, in fact, is a facet-defining cut in the lifted space. ˛

5. Numerical Experiments

In this section, we compare the performance of ReLU Lagrangian cuts and other existing cut fam-

ilies in the literature through numerical studies on two-stage and multistage models. All numerical

experiments are conducted in Python using Gurobi version 11.0.1 on virtualized Intel Xeon Cascade

Lake CPUs running at 2.9 GHz, with 61 GB RAM, under a Linux operating system.

5.1. Two-stage models

We test the performance of four cut combinations for solving two-stage SMIPs with purely binary

first-stage decisions and mixed integer second-stage decisions. The four cut combinations are the

integer L-shaped cut (L), the Benders cut combined with the integer L-shaped cut (B), the strength-

ened Benders cut combined with the integer L-shaped cut (SB), and the ReLU Lagrangian cut

(R), generated following the procedure described in Section 3.

When implementing the cuts, we begin by adding Benders cuts to solve the LP relaxation to

optimality at the root node. Next, we use Gurobi’s lazy callback function to solve the problem

through a combination of cuts within the branch-and-cut framework.

Experiment 1. In this experiment, we consider the stochastic server location problem (SSLP)

(Ntaimo and Sen 2005) formulated as:

min
x

#

ÿ

jPJ

cjxj `
1

N

ÿ

sPrNs

Qspxq :
ÿ

jPJ

xj ď v,xj P t0,1u,@j P J

+
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Algorithm 2 ReLU Lagrangian cuts for two-stage SMIP

1: Input: Master problem: v˚ “ minx,θtcJx` θ :Axě b,x P sXu and subproblems (1b)

2: Output: Optimal solution x˚

3: Initialize: lbÐ ´8, ubÐ `8, iterÐ 0

4: if sX Ď t0,1un then

5: Solve it using Algorithm 1

6: else if sX Ď Zn then

7: Binarize the first-stage variables and solve it using Algorithm 1

8: else

9: while stopping criterion not met do

10: Solve the master problem, obtain an optimal solution px, and set lbÐ v˚

11: for s P rN s do

12: Solve the subproblem to get Qsppxq, compute ρ˚ using binary search or the closed

form (28), and update the strengthening problem (30) and solve it

13: if (Stren LP) is optimal then

14: Let ppη`
s , pη

´
s q be an optimal solution. pπ`

s qiter Ð pη`
s ´ ρ˚1, pπ´

s qiter Ð pη´
s ´ ρ˚1

15: else

16: pπ`
s qiter Ð ´ρ˚1, pπ´

s qiter Ð ´ρ˚1

17: qiter Ð
ř

sPrNs
Qsppxq, pπ`qiter Ð

ř

sPrNs
pπ`

s qiter, pπ´qiter Ð
ř

sPrNs
pπ´

s qiter

18: Add the following constraints to the master problem

θě qiter `
ÿ

iPrns

pπ`
i qiterω`

i ppxiq `
ÿ

iPrns

pπ´
i qiterω´

i ppxiq, ω
`
i ppxiq ´ω´

i ppxiq “ xi ´ pxi,

0 ď ω`
i ppxiq ď pBi ´ pxiqzippxiq,0 ď ω´

i ppxiq ď pxip1´ zippxiqq, zippxiq P t0,1u,@i P rns.

19: ubÐ min tub,cJ
px` qiterqu, iterÐ iter` 1

where for each scenario s P rN s, the local recourse function is defined as

Qspxq :“ min
y

ÿ

jPJ

q0jy0j ´
ÿ

iPI

ÿ

jPJ

qijyij

s.t.
ÿ

iPI

dijyij ´ y0j ď uxj,
ÿ

jPJ

yij “ hs
i , yij P t0,1u, y0j ě 0, @i P I, j P J.

The model parameters are generated as follows: For the first stage, the upper bound v on the total

number of servers is set to r|J |{3s, the cost ci of locating a server at the location j follows a discrete

uniform distribution U r40,80s. For the second stage, the demand dij of client i P I from the server

located at j P J and the revenue qij from client i served by the server at location j, both are drawn

from a discrete uniform distribution U r0,25s. The server capacity u is 50. The overflow rate q0j for
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server j P J is 1000. Client availability h̃i is stochastic and follows a Bernoulli distribution with a

success rate 0.7.

We perform numerical studies on SSLP with 20 and 30 locations and clients, considering 10, 50,

100, and 200 scenarios. The results are displayed in Table 1. The algorithm terminates when the

gap, defined as the difference between the best upper and lower bounds divided by absolute value

of the best lower bound, is less than 0.01% within a time limit of 1 hour.

Columns 1 and 2 of Table 1 represent the total number of locations and clients, respectively.

Column 3 shows the number of scenarios, N . Columns 4 and 5 are the best lower and upper bounds

obtained from Gurobi. Column 6 reports the gap. Columns 7 and 8 contain the solution time and

the number of nodes explored during the branch-and-cut procedure, respectively.

Our results show that all four methods solve all the instances within the time limit. The ReLU

Lagrangian cuts achieve the shortest solution time. Additionally, this method significantly reduces

the number of nodes explored. For the other methods, the number of nodes explored is similar.

This can be because methods L, B, and SB rely heavily on the integer L-shaped cuts, which are

naive ReLU Lagrangian cuts. This implies that properly strengthening ReLU Lagrangian cuts can

be beneficial in solving two-stage stochastic integer programs.

Table 1 Numerical results for SSLP instances

|J | |I| N cut lb ub
Gap
(%)

time
(s)

node

20 20 10

L -25.4 -25.4 0.0 12.6 26
B -25.4 -25.4 0.0 16.1 52
R -25.4 -25.4 0.0 2.8 7
SB -25.4 -25.4 0.0 16.4 52

30 30 10

L -34.4 -34.4 0.0 40.8 67
B -34.4 -34.4 0.0 31.3 63
R -34.4 -34.4 0.0 13.3 14
SB -34.4 -34.4 0.0 31.7 63

20 20 50

L -26.4 -26.4 0.0 122.5 80
B -26.4 -26.4 0.0 125.2 125
R -26.4 -26.4 0.0 73.2 65
SB -26.4 -26.4 0.0 158.8 125

30 30 50

L -35.6 -35.6 0.0 325.1 124
B -35.6 -35.6 0.0 416.5 122
R -35.6 -35.6 0.0 217.6 37
SB -35.6 -35.6 0.0 433.3 122

|J | |I| N cut lb ub
Gap
(%)

time
(s)

node

20 20 100

L -26.2 -26.2 0.0 221.3 76
B -26.2 -26.2 0.0 243.8 75
R -26.2 -26.2 0.0 143.5 48
SB -26.2 -26.2 0.0 260.2 75

30 30 100

L -36.0 -36.0 0.0 1280.7 116
B -36.0 -36.0 0.0 839.9 93
R -36.0 -36.0 0.0 328.6 27
SB -36.0 -36.0 0.0 805.3 93

20 20 200

L -26.0 -26.0 0.0 308.8 79
B -26.0 -26.0 0.0 499.3 93
R -26.0 -26.0 0.0 239.3 63
SB -26.0 -26.0 0.0 497.7 93

30 30 200

L -36.1 -36.1 0.0 1717.6 156
B -36.1 -36.1 0.0 2086.4 126
R -36.1 -36.1 0.0 591.1 24
SB -36.1 -36.1 0.0 2252.1 126

Experiment 2. To further evaluate the ReLU Lagrangian cuts, we consider the following stochastic

multiple-resource-constrained scheduling problem (SMRCSP) (Keller and Bayraksan 2009):

min
x,z

ÿ

jPJ

ÿ

tPrT´pj`1s

cjtxjt `
ÿ

kPrKs

ÿ

tPrT0s

bkztk `
1

N

ÿ

sPrNs

Qspxq

s.t.
ÿ

tPrT´pj`1s

xjt “ 1, @j P J,
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ÿ

jPJ

ÿ

τPSpj,tq

rjkxjs ´Mtkztk ďRk, @t P rT0s, k P rKs,

xjt P t0,1u, @j P J, t P rT ´ pj ` 1s, ztk P t0,1u, @t P rT0s, k P rKs,

where for each scenario s P rN s, the local recourse function is

Qspxq :“ min
y,u

ÿ

jPJB

T`T0´pj`1
ÿ

t“T0`1

cjtyjt `
ÿ

kPrKs

T`T0
ÿ

t“T0`1

bkutk

s.t.

T`T0´pj`1
ÿ

t“T0`1

yjt “ asj , @j P JB,

ÿ

jPJB

ÿ

τPSBpj,tq

rjkyjτ ´Mtkutk ďRk ´
ÿ

jPJ

ÿ

τPSpj,tq

rjkxjτ , @t P rT0 ` 1, T `T0s, k P rKs,

yjt P t0,1u, @j P JB, t P rT0 ` 1, T `T0 ´ pj ` 1s,

utk P t0,1u, @t P rT0 ` 1, T `T0s, k P rKs,

and Spj, tq “ rmaxt1, t´ pj ` 1u,mintt, T ´ pj ` 1us, SBpj, tq “ rmaxtT0 ` 1, t´ pj ` 1u,mintt, T `

T0 ´pj `1us. In SMRCS, we impose a fixed cost for expansions when the required resources exceed

the amount available in a given time period, i.e., ztk and utk are binary variables. Compared

with SSLP with continuous penalties, the integrality gap of SMRCSP is often large due to big M

coefficients.

The parameters are generated as follows. The time period T0, at which we learn the accepted

job bids, is set to r0.25T0s, the processing time pj of job j is generated from a discrete uniform

distribution U r1, T s, and the cost cjt of starting job j in period t is set to completion time t`

pj ´ 1. For each period, the cost bk of temporary expansion follows a discrete uniform distribution

U r10,20s, the amount of resource from class k consumed by job j (i.e., rjk) follows a discrete uniform

distribution U r1,5s. The resource capacity Rk “
spsrk|J|`0.75spB srBk|JB |

pT`T0qρ
, where sp “ 1

|J|

ř

jPJ pj, spB “

1
|JB |

ř

jPJB
pj, srk “ 1

|J|

ř

jPJ rjk, srBk “ 1
|JB |

ř

jPJB
rjk, and ρ follows a continuous uniform distribution

Ur0.5,1.2s. The big Ms are set to p|J | ` |JB|qT . The indicator aj of whether the bid on job j is

accepted or not is stochastic and follows a Bernoulli distribution with a success rate 0.75. In our

numerical study, we set the number of known jobs |J | to 5 and 7, and the number of jobs available

for bidding |Jb| to 5 and 10. The number of time intervals T is set to 10, and we consider N “ 10 and

N “ 100 scenarios for the second stage. The results are shown in Table 2. The stopping criterion

and the meanings of the other columns are consistent with those presented in Table 1.

In Table 2, we see that only ReLU Lagrangian cuts can solve all instances within the time limit.

In general, they close the optimality gap more quickly, and require fewer nodes to reach an optimal

solution compared to integer L-shaped cuts and Benders cuts. While strengthened Benders cuts

outperform standard Benders cuts and require fewer nodes to explore than ReLU Lagrangian cuts
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Table 2 Numerical results for SMRCSP instances

|J | |Jb| T N cut lb ub
Gap
(%)

time
(s)

node

5 5 10 10

L 243.1 243.1 0.0 5.7 1570
B 243.1 243.1 0.0 7.0 1794
R 243.1 243.1 0.0 3.7 428
SB 243.1 243.1 0.0 8.4 422

5 5 10 100

L 256.1 256.1 0.0 47.7 1574
B 256.1 256.1 0.0 56.3 1717
R 256.1 256.1 0.0 30.7 392
SB 256.1 256.1 0.0 70.3 390

5 10 10 10

L 135.6 135.6 0.0 36.8 1215
B 135.6 135.6 0.0 38.7 1349
R 135.6 135.6 0.0 0.4 1
SB 135.6 135.6 0.0 2.2 23

5 10 10 100

L 139.9 139.9 0.0 321.3 1248
B 139.9 139.9 0.0 332.1 1337
R 139.9 139.9 0.0 3.7 1
SB 139.9 139.9 0.0 16.6 11

|J | |Jb| T N cut lb ub
Gap
(%)

time
(s)

node

7 5 10 10

L 288.1 288.1 0.0 859.0 181689
B 288.1 288.1 0.0 1064.5 186444
R 288.1 288.1 0.0 542.1 51487
SB 288.1 288.1 0.0 1281.0 45846

7 5 10 100

L 130.2 285.0 118.9 3600.0 96382
B 125.3 285.0 127.4 3600.0 78561
R 285.0 285.0 0.0 3099.8 35840
SB 277.6 285.0 2.7 3600.0 11761

7 10 10 10

L 115.4 143.1 24.0 3600.0 30361
B 117.2 143.1 22.1 3600.0 30260
R 143.1 143.1 0.0 48.1 737
SB 143.1 143.1 0.0 40.5 276

7 10 10 100

L 112.3 157.2 40.0 3600.0 1936
B 112.7 157.2 39.4 3600.0 2336
R 157.2 157.2 0.0 240.6 293
SB 157.2 157.2 0.0 644.1 224

in most instances, they still underperform relative to ReLU Lagrangian cuts. This may be due to

the need to solve an MIP to obtain a strengthened Benders cut.

Experiment 3. Finally, we consider the following dynamic capacity acquisition and allocation

problem (DCAP) adapted from Ahmed and Garcia (2003) with mixed integer first-stage decisions:

min
x,u

#

ÿ

tPT

ÿ

iPI

pαitxit `βituitq `
1

N

ÿ

sPrNs

Qspxq : xit ď bituit, xit P r0, bits, uit P t0,1u,@i P I, t P T

+

,

where the local recourse functions

Qspxq :“ min
y

ÿ

tPT

ÿ

iPI

ÿ

jPJ

csijtyijt `
ÿ

tPT

ÿ

iPI

pity
0
it

s.t.
ÿ

jPJ

dsjtyijt ´ y0it ď
ÿ

τPrts

xiτ , @i P I, t P T,

ÿ

iPI

yijt “ 1, y0it ě 0, yijt P t0,1u, @i P I, j P J, t P T.

In this experiment, the parameters are generated as follows. In the first stage, the capacity

expansion cost of acquiring resource i in period t consists of two parts, where the variable cost

αit and the fixed cost βit are drawn from discrete uniform distributions U r20,40s and U r50,70s,

respectively. The maximum number of units of resource i that can be required at time t, denoted

as bit, is set to 50. In the second stage, the cost c̃ijt of processing task j using resource i in period t,

as well as the processing requirement d̃jk for task j in period t, are stochastic. They follow discrete

uniform distributions U r40,80s and U r1,10s, respectively. To ensure relatively complete recourse,

we add a penalty term for overflow, where the penalty rate pit is set to 1000.

We compare the performance of Augmented Lagrangian cuts (AL) given by (16) with π “ 0

and ReLU Lagrangian cuts (R) obtained by improving these augmented Lagrangian cuts through

the cut-strengthening procedure described in Section 4. When solving the instances, we first add

Benders cuts to solve the LP relaxation to optimality. Then, we maintain the integrality constraints
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in the first stage while taking the LP relaxation of the second stage and solve this relaxed problem

to optimality using Benders cuts. At each iteration, we add a strengthened Benders cut with a

nonlinear cut (AL or R) until the gap falls below 0.1%2 or the time limit of one hour is reached.

The results are shown in Table 3. Columns 1, 2, and 3 represent the total number of resource

types, tasks, and periods, respectively. Column 4 shows the number of scenarios. The iteration

column lists the number of iterations used to add nonlinear cuts, excluding those for solving the

relaxed problem with Benders cuts. As shown by the results, our cut-strengthening procedure

leads to significant improvements over augmented Lagrangian cuts. For the instances in the first

two rows, it significantly reduces the number of cuts required to solve the problem and shortens

the solution time. For the larger instances, although both methods reach the time limit, ReLU

Lagrangian cuts still achieve much smaller gaps.

Table 3 Numerical results for DCAP instances

|I| |J | |T | N cut lb ub
Gap
(%)

iter-
ation

time
(s)

2 2 4 10
AL 1014.2 1015.2 ă0.1 998 3478.8
R 1014.9 1015.4 ă0.1 41 6.7

2 3 4 10
AL 2134.0 2280.7 6.9 521 3600.0
R 2257.5 2259.3 ă0.1 89 35.1

3 4 5 10
AL 2189.1 2366.1 8.1 324 3600.0
R 2218.6 2247.9 1.3 361 3600.0

4 5 6 10
AL 2994.7 3192.0 6.6 509 3600.0
R 3009.7 3192.0 6.1 393 3600.0

|I| |J | |T | N cut lb ub
Gap
(%)

iter-
ation

time
(s)

2 2 4 100
AL 1047.0 1048.0 ă0.1 629 1000.3
R 1047.4 1048.4 ă0.1 22 24.6

2 3 4 100
AL 1976.1 2092.5 5.9 438 3600.0
R 2067.3 2069.3 ă0.1 381 3289.8

3 4 5 100
AL 2307.6 2469.6 7.0 260 3600.0
R 2340.6 2388.6 2.1 291 3600.0

4 5 6 100
AL 3005.0 3170.8 5.5 307 3600.0
R 3020.3 3113.6 3.1 255 3600.0

Based on the numerical experiments above, we conclude the advantages of ReLU Lagrangian

cuts in solving two-stage SMIPs as follows: (i) For binary first-stage decisions, they can replace

the combination of Benders and integer L-shaped cuts. By improving the integer L-shaped cuts

through LP-based strengthening problems, ReLU Lagrangian cuts inherit the strength of Benders

cuts with the tightness of integer L-shaped cuts into a single cut, making the master problem easier

to solve compared to adding both Benders and integer L-shaped cuts simultaneously. (ii) Similar

to strengthened Benders cuts, they provide a stronger outer approximation than the epigraph of

the continuous relaxation of local recourse functions. The efficiency of the ReLU Lagrangian cuts is

possibly due to incorporating valid inequalities of local convex hulls, including no-good and objec-

tive cuts, to the LP-based strengthening problems. (iii) For mixed integer first-stage decisions, they

improve augmented Lagrangian cuts at a low computational cost and achieve better performance.

And (iv) by implementing an appropriate strategy to prevent unboundedness in the strengthening

problems, the resulting cuts accelerate the master problem and mitigate potential numerical issues

arising from large coefficients in the integer L-shaped cuts or augmented Lagrangian cuts.

2 Since this is an iterative solution procedure, we choose a slightly worse stopping criterion for the gap. If we choose
the gap to be 0.01%, in most cases, the solution time will exceed an hour, but ReLU Lagrangian cuts still perform
better than augmented Lagrangian cuts.
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5.2. A mutistage model

As ReLU Lagrangian cuts can be integrated into the SDDiP framework, we evaluate their perfor-

mance on a multistage model from Zou et al. (2019)– the airline revenue management problem. In

this numerical experiment, we compare different combinations of nontight and tight cuts. Nontight

cuts include Benders cuts (B), strengthened Benders cuts (SB), and improved Benders cuts (IB),

obtained by applying our cut-strengthening procedure to Benders cuts. Tight cuts are selected

from either integer L-shaped cuts (L) or ReLU Lagrangian cuts (R).

Experiment 4. Let us consider the following airline revenue management problem (ARM):

max
ÿ

tPrT s

“

pf bqJbt ´ pf cqJctq
‰

s.t. Bt “Bt´1 ` bt,Ct “Ct´1 ` ct,Ct “ tΓBt ` 0.5u,bt ď dt,ApBt ´Ctq ďR, @t P rT s,

B0 “ sB0,C0 “ sC0,Bt,Ct,bt,ct P Zm
` , @t P rT s.

The parameters are primarily based on the descriptions in Zou et al. (2019) and Möller et al. (2008)

with slightly different origin-destination (OD) pairs and fair classes. Specifically, we suppose that

there are 4 OD pairs, each having 2 classes, and each class offers 2 fare prices. Therefore, the total

number of classes n is 8, and the total number of ticket types m is 12. The vector f b representing

the ticket prices is p500,340,200,100,500,340,200,100,800,540,320,160,800,540,320,160qJ, and

the vector f c representing the refund amount for cancellations is set as 0.8f b. The matrix Γ is a

diagonal matrix, where the diagonal entries represent the cancellation rates. The cancellation rate

for the first four types of tickets is 0.15, for the next eight types, it is 0.1, and for the last four

types, it is 0.05. The matrix A is an nˆm indicator matrix, where Aij “ 1 if ticket type i belongs

to class j, and 0 otherwise. The seating capacity for the first class is 24, and for the economy class,

it is 120. Thus, the vector R representing seat capacities is set to p24,120, . . . ,24,120qJ. Both the

initial bookings vector sB0 and the initial cancellations vector sC0 are zero vectors.

The demand vector dt at stage t is stochastic. For each ticket type i, the total number

of bookings follows a gamma distribution Gppi, giq. These bookings are distributed over 60

days according to a beta distribution Bpαi, βiq, and the bookings for the 60 days are then

assigned to the stages T . We repeat the sampling procedure 50 times and for each stage

t P rT s, the demand vector dt is drawn from these samples independently. Note that we

suppose that p “ p3.0,3.0,70.0{3,52.0,2.0,2.0,35.0{3,26.0,2.0,2.0,17.5,39.0,3.0,3.0,35.0,78.0qJ,

g “ p1.5,1.5,1.2,1.0, . . . ,1.5,1.5,1.2,1.0qJ, α “ p12.0,8.0,6.0,2.0, . . . ,12.0,8.0,6.0,2.0qJ, and β “

p1.5,2.0,2.0,4.0, . . . ,1.5,2.0,2.0,4.0q.

When implementing the SDDiP algorithm, during the forward step, we sample five paths and

use the results from all five paths to generate cuts in the backward step. The statistical lower
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Table 4 Numerical results for the multistage ARM instances

stage
scen-
ario

cut (stat) lb (best) ub
gap
(%)

iter-
ation

4 3

B+L 64925.9 66524.6 2.46 249
B+R 64887.9 66407.6 2.34 298
SB+L 65318.6 66530.5 1.86 174
SB+R 65319.8 66494.1 1.80 184
IB+L 65041.2 66591.0 2.38 197
IB+ R 64942.7 66577.4 2.52 215

6 3

B+L 60744.3 62603.0 3.06 188
B+R 60745.6 62564.9 3.00 225
SB+L 60914.9 62670.7 2.88 127
SB+R 61083.7 62648.7 2.56 140
IB+L 60685.0 62629.7 3.20 161
IB+R 60731.7 62652.4 3.16 173

8 3

B+L 63582.7 65131.5 2.44 155
B+R 63593.9 65120.8 2.40 176
SB+L 63949.0 65165.7 1.90 96
SB+R 63943.6 65156.2 1.90 108
IB+L 63667.2 65154.9 2.34 132
IB+R 63859.5 65140.2 2.01 144

10 3

B+L 63615.3 65037.2 2.24 136
B+R 63607.9 65027.4 2.23 149
SB+L 63652.5 65070.0 2.23 84
SB+R 63643.1 65065.9 2.24 92
IB+L 63618.5 65052.0 2.25 117
IB+R 63617.5 65043.1 2.24 130

stage
scen-
ario

cut (stat) lb (best) ub
gap
(%)

iter-
ation

4 5

B+L 65276.6 66737.9 2.24 211
B+R 65172.6 66705.1 2.35 253
SB+L 65278.0 66809.0 2.35 135
SB+R 65516.9 66798.3 1.96 144
IB+L 65125.8 66796.8 2.57 170
IB+R 65193.0 66782.5 2.44 183

6 5

B+L 64148.0 65722.4 2.45 144
B+R 64162.7 65721.6 2.43 157
SB+L 64216.3 65770.9 2.42 88
SB+R 64224.7 65763.3 2.40 97
IB+L 64171.8 65753.3 2.46 120
IB+R 64208.4 65746.0 2.39 130

8 5

B+L 66238.6 68181.7 2.93 125
B+R 66224.2 68173.5 2.94 140
SB+L 66165.9 68090.1 2.91 73
SB+R 66251.7 68086.7 2.77 82
IB+L 66182.9 68191.5 3.03 107
IB+R 66199.0 68166.6 2.97 120

10 5

B+L 66954.7 68544.1 2.37 111
B+R 66928.5 68518.2 2.38 124
SB+L 66860.0 68576.4 2.57 64
SB+R 66788.5 68555.4 2.65 69
IB+L 66919.6 68531.1 2.41 94
IB+R 66729.2 68527.9 2.70 101

bounds are obtained by computing a 95% confidence value using 1,500 sampled paths after the

algorithm terminates. As shown by the results in Table 4, any cut combination involving ReLU

Lagrangian cuts generally outperforms its counterpart with integer L-shaped cuts. As indicated

in the iteration column, ReLU Lagrangian cuts also enable more iterations to be solved within

the same time frame. This may be because by using Strategy 1 to avoid unboundedness, many

cut coefficients are improved to smaller absolute values or even zero, making the master problem

easier to solve compared to the original L-shaped cuts. Among all combinations, SB+R performs

the best in most instances. Although the improved Benders cuts benefit from the LP-based cut-

strengthening procedure, their performance remains less efficient than that of the strengthened

Benders cuts. Moreover, the advantage of ReLU Lagrangian cuts becomes less significant as the

number of stages increases.

This numerical example shows that for purely binary state variables, ReLU Lagrangian cuts,

which are equivalent to Lagrangian cuts, can be alternatives to integer L-shaped cuts, which is

quite different from existing literature (Zou et al. 2019). While previous studies have focused

on improving Lagrangian cuts to achieve certain properties by solving Lagrangian duals with

integrality constraints, the resulting Lagrangian cuts are still not as effective as strengthened

Benders cuts. As a result, it may be more efficient to use the combination of strengthened Benders

and integer L-shaped cuts. This is mainly due to two factors: obtaining the Lagrangian cuts requires

solving multiple MIPs, whereas strengthened Benders only solves one. Second, Lagrangian cuts
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may compromise the strength of the overall outer approximation to guarantee its tightness. As

this effect accumulates across stages, it results in slower recovery of the epigraphs of cost-to-go

functions compared to strengthened Benders cuts. Nevertheless, in our method, the combination

of strengthened Benders cuts and ReLU Lagrangian cuts often outperforms that of strengthened

Benders and integer L-shaped cuts, especially in providing better upper bounds.

6. Conclusion

This paper introduced a new family of nonlinear cuts, termed “ReLU Lagrangian cuts,” for solving

stochastic integer programs. These cuts improve traditional methods by addressing nonanticipativ-

ity constraints through ReLU functions, enabling both local and expected recourse epigraphs to be

tightly and efficiently recovered. The tightness of these cuts was established through strong duality.

We also proved that ReLU Lagrangian cuts are a generalization of existing cut families, including

integer L-shaped cuts, ordinary Lagrangian cuts, reversed norm cuts, and augmented Lagrangian

cuts. Therefore, existing cuts can serve as a foundation for initiating the ReLU Lagrangian cuts.

We also proposed efficient cut generation schemes that enhance cut coefficients while eliminating

the need to solve multiple mixed integer programs at each iteration. Our numerical studies demon-

strated the superior performance of ReLU Lagrangian cuts, particularly in reducing the number

of iterations required for the cutting-plane method to converge, compared to existing approaches.
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Appendix A. Proofs

A.1. Proof of Corollary 2

Corollary 2. A Lagrangian cut generated at px P sX is tight if and only if there exists α P Rn,

α‰ 0, such that αJx` θěαJ
px`Qsppxq for all px, θq P convpepi

ĎXpQsqq.

Proof. It is equivalent to show that any cut coefficient π P Ds
px satisfies Lspπ; pxq “ Qsppxq. Given

π P Ds
px, from the primal characterization we have Lspπ; pxq “ minxtθ : px, θq P convpepi

ĎXpQsqq,x“

pxu ě minxtθ : θěαJppx´xq `Qsppxq,x“ pxu “ Qsppxq. Combined with (3a) completes the proof. ˝

A.2. Proof of Theorem 1

Theorem 1. Under Assumptions 1, 2 and 3, Q
s
ppxq “ Qsppxq. Moreover, when

ρ˚ ě
Qsppxq ´L

d
, (9)

p´1ρ˚,´1ρ˚q is optimal to (7), where d “ min
␣

||xk ´ px||1 : k PK,xk ‰ px
(

, and tpxk,yk, ωkqukPK

are extreme points of the set convtpx,y, ωq : T sx`W syěhs,x P sX,y P Zm1 ˆRm2 , ||x´ px||1 ď ωu.

Proof. By weak duality, we have Q
s
ppxq ď Qsppxq. To show that Q

s
ppxq ě Qsppxq, we note

Q
s
ppxq “ sup

π`,π´PRn

Lspπ
`,π´; pxq ě sup

ρą0
Lsp´ρ1,´ρ1; pxq,

where

Lsp´ρ1,´ρ1; pxq “ inf
x

tQspxq ` ρ||x´ px||1 :x P sXu “ inf
x,y

tpqsqJy` ρ||x´ px||1 : px,yq P sYsu

“ inf
x,y,ω

tpqsqJy` ρω : px,yq P sYs, ||x´ px||1 ď ωu, (31)

and sYs :“ tpx,yq :Zn1 ˆRn2 ˆZm1 ˆRm2 :Axě b,T sx`W syěhsu. Since formulation (31) is MIP

with rational data and infx,y,ωtpqsqJy ` ρω : px,yq P sYs, ||x´ px||1 ď ωu ě infx,ytpqsqJy : px,yq P

sYsu ě L by Assumption 2, the infimum of formulation (31) is attained at some pxρ,yρ, ωρq. From

the weak duality, we have

Lsp´ρ1,´ρ1; pxq “ pqsqJyρ ` ρωρ “ Qspxρq ` ρωρ ď Qsppxq, (32)

for all ρ ą 0 and any optimal solution pxρ,yρ, ωρq of problem (31). This implies that ωρ ď

Qsppxq´Qspxρq

ρ
ď

Qsppxq´L

ρ
. Letting ρÑ 8, we have ωρ Ñ 0. Hence, we must have limρÑ8xρ “ px, since

||xρ ´ px||1 ď ωρ for any ρ ą 0. Notice that Qspxq is the value function of a rational MIP and is,

therefore, lower semicontinuous with respect to x (Meyer 1975). Thus, lim infρÑ8 Qspxρq ě Qsppxq.

For any ρ ą 0, we have Lsp´ρ1,´ρ1; pxq “ Qspxρq ` ρωρ ě Qspxρq. Taking the lim inf on both

sides, we obtain lim infρÑ8 Lsp´ρ1,´ρ1; pxq ě Qsppxq. Meanwhile, taking the limsup on both sides
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of (32) and using the fact that limρÑ8ωρ “ px, we have limsupρÑ8 Lsp´ρ1,´ρ1; pxq ď Qsppxq. Thus,

limρÑ8 Lsp´ρ1,´ρ1; pxq “ Qsppxq. Together with the weak duality, this shows that Q
s
ppxq “ Qsppxq.

Next, we prove the supremum can be attained at some finite ρ˚. Define a set

F :“ tpx,y, ωq : px,yq P sYs, ||x´ px||1 ď ωu. (33)

When ρą 0, we have

Lsp´ρ1,´ρ1; pxq “ inf
x,y,ω

␣

pqsqJy` ρω : px,y, ωq P F
(

“ inf
x,y,ω

␣

pqsqJy` ρω : px,y, ωq P conv pF q
(

“min
kPK

tpqsqJyk ` ρωku ě min
kPK

tQspx
kq ` ρωku,

where tpxk,yk, ωkqukPK Ď F are all extreme points of conv pF q. The third equality holds since ρą 0

ensures that Lsp´ρ1,´ρ1; pxq ěL, and the infimum is attained at some extreme point of conv pF q.

The inequality follows because, for any feasible solution px,yq P sYs, we have pqsqJyě Qspxq by the

definition of the local recourse function. If xk “ px for all k PK, then we have Lsp´ρ1,´ρ1; pxq ě

Qsppxq for any positive ρ˚. If not, let d“ mint||xk ´ px||1 : k PK,xk ‰ pxu and let ρ˚ “
Qsppxq´L

d
. Then,

for any optimal ωρ˚ , we have ωρ˚ ď
Qsppxq´L

ρ˚ ď d, according to (32). Therefore, we have

Lsp´ρ˚1,´ρ˚1; pxq “min
kPK

␣

pqsqJyk ` ρ˚ωk : ωk ď d
(

“ min
kPK

tpqsqJyk ` ρ˚ωk : ωk P t0, duu ě Qsppxq,

where the first equality follows since restricting ωk ď d preserves all optimal solutions, and the

last inequality follows since when ωk “ 0, we have pqsqJyk ` ρ˚ωk “ Qsppxq, and when ωk “ d,

pqsqJyk ` ρ˚ωk ě L `
Qsppxq´L

d
d “ Qsppxq. Therefore, the optimal value of (7) is Qsppxq with an

optimal solution π`˚
“π´˚

“ ´ρ˚1. ˝

A.3. Proof of Corollary 4

Corollary 4. For any bounded set S such that S Ě sX, if pπ`˚
,π´˚

q is optimal to

supπ`,π´PRn infxPS Lspx,π
`,π´; pxq, then it is also optimal to supπ`,π´PRn infxPĎX Lspx,π

`,π´; pxq,

where

Lspx,π
`,π´; pxq :“ Qspxq ´

ÿ

iPrns

π`
i pxi ´ pxiq

` ´
ÿ

iPrns

π´
i pxi ´ pxiq

´.

Proof. Since pπ`˚
,π´˚

q is optimal to supπ`,π´PRn infxPS Lspx,π
`,π´; pxq, we have

infxPS Lspx,π
`,π´; pxq “ Qsppxq. Taking the infimum over a subset sX Ď S, we have

infxPĎX Lspx,π
`,π´; pxq ě infxPS Lspx,π

`,π´; pxq “ Qsppxq. At the same time, we have

Lsppx,π
`,π´; pxq “ Qsppxq and px P sX. Thus, we can conclude that infxPĎX Lspx,π

`,π´; pxq “ Qsppxq.

This implies that pπ`˚
,π´˚

q is also optimal when restricting x P sX. ˝
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A.4. Proof of Corollary 5

Corollary 5. For a given feasible first-stage decision px P sX, ppπ`, pπ´q is optimal to (7) if and

only if

Qsppxq ď Qspxq ´
ÿ

iPrns

pπ`
i pxi ´ pxiq

` ´
ÿ

iPrns

pπ´
i pxi ´ pxiq

´, (10)

for all x P sX, or equivalently,

θě Qspxq ě Qsppxq `
ÿ

iPrns

pπ`
i pxi ´ pxiq

` `
ÿ

iPrns

pπ´
i pxi ´ pxiq

´,

for all px, θq in the epigraph of Qs.

Proof. Given px P sX and ppπ`, pπ´q P R2n, if the condition (10) is satisfied, we have Lsppπ
`, pπ´; pxq “

infx

!

Qspxq ´
ř

iPrns
pπ`
i pxi ´ pxiq

` ´
ř

iPrns
pπ´
i pxi ´ pxiq

´ :x P sX
)

ě Qsppxq. Meanwhile, if ppπ`, pπ´q is

optimal to (7), we have Lsppπ
`, pπ´; pxq “ Qsppxq according to the strong duality shown in Theorem 1.

Therefore, we have

Qsppxq “ Lsppπ
`, pπ´; pxq “ Lspπ

`,π´; pxq “ inf
x

#

Qspxq ´
ÿ

iPrns

pπ`
i pxi ´ pxiq

` ´
ÿ

iPrns

pπ´
i pxi ´ pxiq

´ :x P sX

+

ď Qspxq ´
ÿ

iPrns

pπ`
i pxi ´ pxiq

` ´
ÿ

iPrns

pπ´
i pxi ´ pxiq

´

for all feasible x P sX. ˝

A.5. Proof of Proposition 3

Proposition 3. Given a first-stage decision px P sX, we have

convpS1q “
␣

px, θq P ˆiPrnsr0,Bis ˆR : Dpω`,ω´,zq P Rn ˆRn ˆ r0,1sn, (13a), (13b)
(

. (14)

Proof. Let us denote the right-hand side of (14) by S2, which is a continuous relaxation of S1.

Hence, we must have S1 Ď S2.

To prove S1 Ě S2, we first observe that convpS1q “ convtpx, θq : Dpω`,ω´,zq P Rn ˆ Rn ˆ

t0,1un, (13a), (13b),0 ď xi ď Bi,@i P rnsu. For any px, θq P S2, there exists a solution pω`,ω´,zq

such that (14) holds. Without loss of generality, we assume z0 :“ 1 ě z1 ě . . .ě zn. To show px, θq P

convpS1q, we construct n` 1 points pxk, θkqukPr0,ns as follows. For k P r0, ns, let λk “ zk ´ zk`1, and

define zk P t0,1un as

zki “

#

1, iď k,

0, ią k,

for all i P rns. Define pω`qk, pω´qk P Rn as follows: If zk “ 1, let

pω`qki “

#

ω`
i , iď k,

0, ią k,
and pω´qk “ 0.
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If 0 ă zk ă 1, let

pω`qki “

$

&

%

ω`
i

zi
, iď k,

0, ią k,

and pω´qki “

$

&

%

0, iď k,

ω´
i

1´ zi
, ią k.

If zk “ 0, let

pω`qk “ 0 and pω´qki “

#

0, iď k,

ω´
i , ią k.

With xk defined as xk “ px` pω`qk ´ pω´qk, the above formulations ensure that constraints (13b)

are satisfied. To satisfy condition (13a), we let θk “ θ´
ř

iPrns
pπ`

i ω
`
i ` π´

i ω
´
i q `

ř

iPrns
pπ`

i pω`qki `

π´
i pω´qki q. Thus, we have θk ´

ř

iPrns
pπ`

i pω`qki `π´
i pω´qki q “ θ´

ř

iPrns
pπ`

i ω
`
i `π´

i ω
´
i q ě Qsppxq. It is

easy to verify that px, θ,ω`,ω´,zq “
ř

kPr0,ns
λkpxk, θk, pω

`qk, pω´qk,zkq. Thus, px, θq P convpS1q.

Consequently, we have convpS1q “ S2. ˝

A.6. Proof of Proposition 4

Proposition 4. Any tight Lagrangian cut is a ReLU Lagrangian cut.

Proof. Given px P sX and π P Rn such that Lpπ; pxq “ Qsppxq, we can derive a tight Lagrangian cut

θě Qsppxq`πJpx´ pxq. It is equivalent to θě Qsppxq`
ř

iPrns
πipxi ´pxiq

` ´
ř

iPrns
πipxi ´pxiq

´, which

is a ReLU Lagrangian cut according to Corollary 5. ˝

A.7. Proof of Proposition 8

Proposition 8. Given scenario s P rN s, the set Πs
px is a polyhedron.

Proof. According to Definition 4, from the optimality condition (10), we have

Πs
px “

!

pπ`,π´q P R2n : min
x

␣

Qspxq ´ pπ`qJpx´ pxq` ´ pπ´qJpx´ pxq´ :x P sX
(

ě Qsppxq

)

“

"

pπ`,π´q P R2n : min
x,ω`,ω´,z

␣

Qspxq ´ pπ`qJω` ´ pπ´qJω´ :x P sX, (13b), (13c)
(

ě Qsppxq

*

“

"

pπ`,π´q P R2n : min
x,ω`,ω´,z,y

␣

pqsqJy´ pπ`qJω` ´ pπ´qJω´ : px,yq P sYs, (13b), (13c)
(

ě Qsppxq

*

“

!

pπ`,π´q P R2n : pω`k
qJπ` ` pω´k

qJπ´ ď pqsqJyk ´Qsppxq,@k PK
)

,

where tpxk,ω`k
,ω´k

,zk,ykqukPK are all extreme points of the polyhedron convtpx,ω`,ω´,z,yq :

px,yq P sYs, (13b), (13c)u. This implies that Πs
px is defined by finitely many linear inequalities and,

therefore, is a polyhedron. ˝
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A.8. Proof of Lemma 1

Lemma 1. Given scenario s P rN s, when the first-stage feasible decision is purely binary, the reces-

sion cone of Πs
px contains lintpei,0quiPI

px
` lintp0,eiquiRI

px
.

Proof. Given px P X, for any binary x, we have ω`
i “ pxi ´ pxiq

` “ 0 for all i P I
px and ω´

i “

pxi ´pxiq
´ “ 0 for all i R I

px. Thus, pω`k
qJei `pω´k

qJ0 “ 0 for all i P I
px and pω`k

qJ0`pω´k
qJei “ 0

for all i R I
px. ˝

A.9. Proof of Theorem 2

Theorem 2. The following properties hold for the set Ds
px of dual optimal solutions and Lagrangian

cuts generated at px P sX: (i) The set Ds
px is a polyhedron; (ii) A Lagrangian cut θ ě copQsqppxq `

πJpx´ pxq is facet-defining if and only if π is an extreme point of Ds
px; (iii) The recession cone

of Ds
px is the normal cone of sX at px; and (iv) The local convex hull can be described using the

facet-defining Lagrangian cuts:

convpepi
ĎXpQsqq “

␣

px, θq P convp sXq ˆR : θě copQsqppxq `πJpx´ pxq,@px P sX,π P extpDs
pxq
(

.

Proof. For a given px P sX, from the optimality condition (5), we have

Ds
px “

"

π P Rn : min
x,θ

␣

θ`πJppx´xq : px, θq P convpepi
ĎXpQsqq

(

ě copQsqppxq

*

,

where convpepi
ĎXpQsqq “ convtpxk,Qpxkqq : k P Ku ` conetp0,1qu, and K is finite since

convpepi
ĎXpQsqq is a polyhedron. We further obtain that

Ds
px “

␣

π P Rn :Qspx
kq `πJppx´xkq ě copQsqppxq, @k PK, 1´πJ0 ě 0

(

. (34)

which involves finitely many linear inequalities and, therefore, is a polyhedron.

Suppose that set conv p sXq is full-dimensional. Then conv pepi
ĎXpQsqq has dimension n` 1. A cut

θ ě copQsqppxq ` πJpx´ pxq is facet-defining if and only if it is tight at n ` 1 extreme points of

conv pepi
ĎXpQsqq that are affinely independent. That is, π satisfies n linearly independent inequali-

ties with equality in (34), meaning that it is an extreme point of Π
px. When sX is not full dimensional,

we can reduce it to a lower dimensional space where the same result holds.

From the optimality condition (5), we have

Ds
px “

␣

π P Rn :πJppx´xq ě copQsqppxq ´Qspxq,@x P sX
(

.

Thus, rcpDs
pxq “

␣

π P Rn :πJppx´xq ě 0,@x P sX
(

“
␣

π P Rn :πJppx´xq ě 0,@x P convp sXq
(

“

NconvpĎXqppxq. ˝
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A.10. Proof of Proposition 9

Proposition 9. The strengthening problem (Stren) is bounded if and only if ´a P TconvpXqppxq.

Proof. Note that LP (Stren) is always feasible with η “ 0 being a feasible solution. Hence, the

strengthening problem (Stren) is bounded if and only if its dual problem

max

#

ÿ

kPK

pQsppxq ´Qspx
kq ´ pπJppx´xkqqyk :

ÿ

kPK

ppx´xkqyk “ a,yě 0

+

,

where txkukPK “ X, is feasible. Therefore, by definition, the strengthening problem (Stren) is

bounded if and only if ´a P TconvpXqppxq. ˝

A.11. Proof of Proposition 10

Proposition 10. Any feasible solution of (24) is also feasible for (Stren).

Proof. Since QLP
s pxq is obtained by solving the LP relaxation of the local recourse

problem, we have QLP
s pxq ď Qspxq for all x P X. Thus, for any η feasible for (24),

we have minx tQspxq ` ppπ`ηqJppx´xq :x PXu ě minx tQLP
s pxq ` ppπ`ηqJppx´xq :x PXu ě

minx tQLP
s pxq ` ppπ`ηqJppx´xq :x PXLP u ě Qsppxq. Therefore, η is also feasible for (Stren). ˝

A.12. Proof of Proposition 11

Proposition 11. The set

FLP
s :“

!

η : min
x

!

QLP
s pxq ` ppπ`ηqJppx´xq :x P rX

)

ě Qsppxq

)

(25)

is always nonempty, where rX :“ tx PXLP :χJppx´xq ě 1u.

Proof. According to (25), we have

FLP
s “

!

η :QLP
s pxq ` ppπ`ηqJppx´xq ě Qsppxq,@x P rX

)

“

"

η :
`

xJ θ
˘

ˆ

´ppπ`ηq

1

˙

ě
`

pxJ Qsppxq
˘

ˆ

´ppπ`ηq

1

˙

,@px, θq P epi
ĂX QLP

s

*

.

Note that

epi
ĂXpQLP

s q “
␣

px, θq PXLP ˆR : Dy P Rm1`m2 : θě pqsqJy,T sx`W syěhs,χJppx´xq ě 1
(

is a polyhedron and, therefore, closed and convex. Since ppxJ,Qsppxqq R epi
ĂX QLP

s , by the separa-

tion theorem, there exists α, β, γ such that αJ
px` βQsppxq ă γ and αJx` βθ ě γ for all px, θq P

epi
ĂXpQLP

s q. If β ‰ 0, since p0,1q is an extreme ray of epi
ĂXpQLP

s q, we have β ą 0. Then, ´α{β´ pπ P

FLP
s . If β “ 0, let

sβ “
γ´αJ

px

2maxt|L|,Qsppxq,1u
ą 0.

Then we have a separation αJx ` sβθ ě αJx ` sβL ě γ ´
γ´αJ

px
2

“
γ`αJ

px
2

and αJ
px ` sβQsppxq ď

αJ
px`

γ´αJ
px

2
“

γ`αJ
px

2
. Hence, ´α{sβ´ pπ P FLP

s . ˝
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A.13. Proof of Proposition 12

Proposition 12. Given px P sX, let us define Es
Λ “ tpx, θq P B ˆR : (15)u and

Es
L “

#

px, θq P B ˆR : Dδ P t0,1uN1`1 ˆ ¨ ¨ ¨ ˆ t0,1uNn`1, xi “
ÿ

jPr0,Nis

2jδij,@i P rns, (27)

+

,

where B :“ ˆiPrnsr0,Bis. If Bi ě 3 for all i P rns, then convpEs
Λq Ě convpEs

Lq.

Proof. According to Proposition 3, we have

convpEs
Λq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

px, θq P ˆiPrnsr0,Bis ˆR :

Dpω`,ω´,zq P Rn ˆRn ˆ r0,1sn,

θě Qsppxq ` pL´Qsppxqq
ÿ

iPrns

pω`
i `ω´

i q,

ω`
i ´ω´

i “ xi ´ pxi,0 ď ω`
i ď pBi ´ pxiqzi,

0 ď ω´
i ď pxip1´ ziq,@i P rns

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

.

it suffices to show that convpEs
Λq ĚEs

L. We observe that px,Qsppxq ` pL´Qsppxqq
ř

iPrns
maxtBi ´

pxi, pxiuq P convpEs
Λq for all x P B by letting zi “ 1 if Bi ´ pxi ą pxi and 0, otherwise, for all i P rns. It

remains to show that

Claim 1. ||δi ´ pδi|| ď maxtBi ´ pxi, pxiu for all x P B and i P rns.

According to Claim 1, for any px, θq P Es
L, we have θ ě Qsppxq ` pL ´ Qsppxqq

ř

iPrns
||δi ´ pδi||1 ě

Qsppxq ` pL´Qsppxqq
ř

iPrns
maxtBi ´ pxi, pxiu. Hence, px, θq P convpEs

Λq and Es
L Ď convpEs

Λq.

To prove Claim 1, notice that since Bi is an integer and Ni “ tlog2Biu, we have maxtBi ´pxi, pxiu ě

rBi{2s ě 2Ni´1. On the other hand, we observe that ||δi ´ pδi||1 ďNi ` 1. There are three cases:

Case 1: Bi ě 5 or Bi “ 3. In this case, we have rBi{2s ěNi ` 1.

Case 2: Bi “ 4, if pxi “ 0,1,3,4, we have ||δi ´ pδi||1 ď 3 ď maxtBi ´ pxi, pxiu.

Case 3: Bi “ 4 and pxi “ 2. In this case, we have maxtBi ´ pxi, pxiu “ 2, pδi “ p0,1,0qJ, and ||δi ´

pδi||1 ď 3. Note that ||δi ´ pδi||1 “ 3 if and only if δi “ p1,0,1qJ, i.e., xi “ 5, contradicting

xi ďBi “ 4. Hence, we have ||δi ´ pδi||1 ď 2.

Therefore, we must have maxtBi ´ pxi, pxiu ě ||δi ´ pδi||1 if Bi ě 3 for any i P rns. ˝

A.14. Proof of Proposition 13

Proposition 13. Suppose that integer Bi “ 2j1i ` ¨ ¨ ¨ ` 2jℓi ` 2Ni, and set Ji “ tj1i, . . . , jℓi,Niu for

each i P rns. Then,

convpEs
Lq “

$

’

’

’

’

’

&

’

’

’

’

’

%

px, θq P ˆiPrnsr0,Bis ˆR :

Dδ P r0,1sN1`1 ˆ ¨ ¨ ¨ ˆ r0,1sNn`1, (27),

xi “
ÿ

jPr0,Nis

2jδij ďBi,@i P rns,

δir `
ÿ

τPJir

δiτ ď |Jir|,@r P t0,1, . . . ,NiuzJi,@i P rns

,

/

/

/

/

/

.

/

/

/

/

/

-

,

where we let Jir “ tℓ P Ji : ℓą ru.
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Proof. Let Di “

!

δi P t0,1uNi`1 :
ř

jPr0,Nis
2jδij ďBi

)

for each i P rns. Then, according to the decom-

position structure of set Es
L, we have

convpEs
Lq “

$

’

’

’

&

’

’

’

%

px, θq P ˆiPrnsr0,Bis ˆR :

Dδ P r0,1sN1`1 ˆ ¨ ¨ ¨ ˆ r0,1sNn`1, (27),

xi “
ÿ

jPr0,Nis

2jδij,@i P rns,

δi P convpDiq,@i P rns.

,

/

/

/

.

/

/

/

-

,

On the other hand, according to Laurent and Sassano (1992), Gupte et al. (2013), the convex hulls

of the Di’s can be described using their knapsack structure. Suppose that Bi “ 2j1i `¨ ¨ ¨`2jℓi `2Ni ,

and let Ji “ tj1i, . . . , jℓi,Niu for each i P rns. Then, we have

convpDiq “

#

δi P r0,1sNi`1 : δir `
ÿ

τPJir

δiτ ď |Jir|,@r P t0,1, . . . ,NiuzJi

+

,

where Jir “ tℓ P Ji : ℓą ru. This completes the proof. ˝
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