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We study stochastic mixed integer programs where both first-stage and recourse decisions can be mixed
integers. A new family of Lagrangian cuts, termed “ReLU Lagrangian cuts,” is introduced by reformulating
the nonanticipativity constraints using ReLU functions. These cuts can be integrated into scenario decom-
position algorithms. Unlike the ordinary Lagrangian cuts, we prove that the inclusion of ReLLU Lagrangian
cuts is sufficient to solve the original stochastic mixed integer programs to optimality. Without solving the
Lagrangian dual problems, we derive closed-form expressions for these cuts. Furthermore, to speed up the
cut-generating procedures, we introduce linear programming-based techniques to enhance the cut coeffi-

cients. Numerical studies demonstrate the effectiveness of the proposed cuts compared to existing methods.
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1. Introduction

Consider a two-stage Stochastic Mixed Integer Program (SMIP) with finite support of the form:

min c'x+ Z psQs(x): Az =b (1a)

xeZ™1 xR™2
sE[N]

where the local recourse function is defined as

Q)= min {(@)'y:Wyzh'-Tz}. (1b)
Here, we let « and y represent the decisions in the first and second stages, respectively. In the objec-
tive function of the first-stage problem (la), ¢" denotes the first-stage cost, and 3.y, psQs()
is the expected recourse function that takes the expectation of the second-stage cost (i.e., local
recourse function) over finite support. Given a first-stage decision, the local recourse function in
scenario s, denoted by Q,(x), is determined by a mixed integer program (1b). In this second-stage
problem, q°, W*, T h® are the realizations of random parameters in scenario s, which are assumed
to be rational (Louveaux and Schultz 2003). For notational convenience, we let n = n; + n, and

m =my + ms. In addition, we make the following assumptions throughout the paper:
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ASSUMPTION 1. The SMIP (1a) has a relatively complete recourse, that is, for every feasible first-

stage decision x in (la), the second-stage problem (1b) is feasible.
ASSUMPTION 2. There exists a universal lower bound L for local recourse functions.
ASSUMPTION 3. The feasible region of the first-stage problem is nonempty and bounded.

Assumption 1 ensures that the conditions of the fundamental theorem of integer programming
Schrijver (1998) hold. Assumptions 1 - 3 are standard in an SMIP setting Louveaux and Schultz
(2003), which together imply that the SMIP (1a) is always feasible, and its optimal value is bounded
from below. According to Assumption 3, we can shift the feasible region such that all variables are

nonnegative, i.e., X € Z" x R"2 ([0, B1] x --- x [0, B,.]).

1.1. Related literature

A SMIP is a widely used modeling paradigm for sequential decision-making under uncertainty,
where decisions are made as uncertain parameters are revealed over time. However, solving the
SMIP is usually computationally challenging. A common approach to addressing this challenge
involves decomposing an SMIP into smaller scenario-based subproblems, which can be optimized
independently and subsequently provide valid inequalities to the master problem. To accelerate
this decomposition method, valid inequalities for the epigraph of the expected recourse function
are iteratively added to enhance the solution quality of the master problem. These inequalities are
commonly referred to as “cuts” in the literature.

Benders decomposition (Benders 1962, Van Slyke and Wets 1969) is one of the most classical
methods, where the linear programming (LP) relaxation of subproblems is solved to generate cuts.
This approach is only guaranteed to solve SMIP models with continuous second-stage decisions
to optimality. Therefore, Benders cuts can only recover the epigraph of LP relaxation of a given
local recourse function, since there exists an integrality gap between a local recourse problem and
its LP relaxation in each scenario. To resolve this issue and improve the performance of Benders
decomposition, one earlier effort is to obtain integer L-shaped cuts (Laporte and Louveaux 1993)
for purely binary first-stage decisions. Angulo et al. (2016) improve this method by introducing an
alternative cut-generating strategy and deriving new L-shaped cuts based on the explored recourse
function values. In addition, disjunctive cuts (Sen and Higle 2005, Sen and Sherali 2006), Fenchel
cuts (Gade et al. 2014), and Gomory cuts (Gade et al. 2014) have also been studied to solve an
SMIP with purely binary first-stage variables. However, these methods struggle to handle problems
with general mixed integer first-stage variables, even when the underlying distribution contains

only one scenario.
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Building on Benders decomposition, Zou et al. (2019) propose Lagrangian cuts and strengthened
Benders cuts, which can be viewed as special cases of the Benders dual decomposition (BDD)
framework later introduced by Rahmaniani et al. (2020). Unlike traditional Benders decomposition,
which takes the duals of the LP relaxations of the local recourse functions, the BDD method
introduces a copy of the first-stage variables in each subproblem, and enforces nonanticipativity
constraints to ensure these copies are equal, similar to the dual decomposition method (Carge and
Schultz 1999). The key difference from Benders decomposition is that the BDD method retains
the integrality of second-stage variables when taking the Lagrangian dual with respect to the
nonanticipativity constraints. Strengthened Benders cuts are derived by optimizing Lagrangian
functions, with Lagrangian dual multipliers equal to the Bender cuts coefficients. These cuts are
parallel to the original Benders cuts but are shifted upward to have higher vertical intercepts
by enforcing the integrality constraints in the inner minimization subproblems of the Lagrangian
duals. For the Lagrangian cuts, the cut coeflicients are optimal dual multipliers. This family of cuts
is exact for binary first-stage variables, which guarantees convergence of the cutting plane method
to solve the SMIP problem to optimality. It has also been shown to be sufficient to recover the
convex hulls of epigraphs of local recourse functions (Chen and Luedtke 2022). However, generating
such cuts can be computationally demanding. Existing methods rely on first-order approaches and
require solving multiple MIPs that correspond to the inner minimization subproblems. Moreover,
the Lagrangian dual problem may have multiple optimal solutions, though not all are effective
Lagrangian cuts. For instance, Bansal and Kiiciikkyavuz (2024) demonstrate that the integer L-
shaped cut— known for its weak global approximation and resulting slow convergence— is, in fact, a
Lagrangian cut. The existing literature improves the implementation of Lagrangian cuts primarily
in three areas: accelerating the solution procedure of Lagrangian dual problems, selecting cuts with
specific desirable properties, and improving the decomposition and cutting plane framework by
incorporating additional cut families.

Rahmaniani et al. (2020) propose a three-phase implementation strategy in which Lagrangian
cuts are generated at the final stage by heuristically solving Lagrangian duals using an inner approx-
imation. They also suggest partially relaxing integrality constraints or fixing certain variables in
subproblems and solving the Lagrangian dual to e-optimality. Chen and Luedtke (2022) provide
a new formulation that can be used to derive both optimality and feasibility cuts, with the cut
coefficients restricted to the span of previous Benders cuts’ coefficients under certain normalization.
Recently, in the context of multistage SIMPs, Bansal and Kiigiikyavuz (2024) conduct computa-
tional studies on the alternating cut procedure for Lagrangian cuts and other valid cut families to
improve overall performance on multistage SMIP problems. Fiillner et al. (2024b) generate tight

Lagrangian cuts with bounded coefficients using regularized local recourse problems, and Fiillner
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et al. (2024a) extend existing concepts in Benders decomposition literature to derive facet-defining,
Pareto-optimal, or deep cuts using proper normalization techniques.

However, linear cuts, such as Lagrangian cuts, can at most recover the convex envelopes of
local recourse functions. In addition, the expectation of the convex envelopes of the local recourse
functions is not greater than, and can be strictly less than, the convex envelope of the expected
recourse function in certain first-stage decisions (van der Laan and Romeijnders 2023). To address
this issue, Zou et al. (2019) propose to approximate SMIP problems by stochastic integer programs
with purely binary first-stage decisions and prove that under some assumptions, such as Lipschitz
continuity, the number of binary variables required can be bounded based on the desired precision
of the optimal solution. Other methods directly solve the SMIP problems. For example, Ahmed
et al. (2022) introduce reverse norm cuts, which leverage the Lipschitz continuity of local recourse
functions, and augmented Lagrangian cuts. The tightness of the reverse norm cuts is ensured by
the strong duality of the augmented Lagrangian duals, as shown in Feizollahi et al. (2017). van der
Laan and Romeijnders (2023) derive scale cuts for the expected recourse function and recently

extend them on multistage SMIP problems Romeijnders and van der Laan (2024).

1.2. Summary of contributions

The main contributions of this work are summarized below.

1) We introduce a new family of nonlinear cuts, referred to as “ReLU Lagrangian cuts.” These cuts
are effective for solving a two-stage SMIP that involve general mixed integer decisions in the
first stage. Through establishing a strong duality theory, we show that the ReLU Lagrangian
cuts are tight, enabling the recovery of the epigraphs for both the local recourse functions and
the expected recourse function.

2) We compare ReLLU Lagrangian cuts with existing cut families from two perspectives: (i) ReLU
Lagrangian cuts provide outer approximations of local recourse epigraphs and their convex hulls
that are at least as strong as those from existing methods, requiring fewer iterations before the
cutting plane method terminates, and (ii) since existing cuts are special ReLU Lagrangian cuts,
they can serve as starting points for generating the strong ReLU Lagrangian cuts.

3) We show the equivalence between traditional Lagrangian cuts and ReLU Lagrangian cuts for
purely binary first-stage decisions. We propose a cut generation scheme that begins with integer
L-shaped cuts and strengthens them by solving LPs. This approach overcomes a limitation
in the existing literature, where obtaining ideal coefficients for Lagrangian cuts often requires
solving multiple MILPs within an iterative procedure.

4) For pure integer first-stage decisions, we theoretically compare two alternative approaches for

generating initial ReLU Lagrangian cuts: (i) focusing on the original space to generalize integer
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L-shaped cuts, and (ii) using the binary expansion technique from Zou et al. (2019). For mixed-

integer first-stage decisions, we propose both binary search and closed-form methods to derive

the initial ReLU Lagrangian cuts. In both cases, the cuts are further strengthened using an

LP-based approach.

Organization. In Section 2, we review the ordinary Lagrangian cuts and introduce the ReLLU
Lagrangian cuts. In Section 3 and Section 4, we study the properties of ReLU Lagrangian cuts
for SMIPs with purely binary and general mixed integer first-stage decisions, respectively. Section
5 shows the numerical evidence of the effectiveness of the proposed ReLLU Lagrangian cuts, and
Section 6 concludes the paper.

Notation. For a given function f defined with domain S, let epig(f):={(z,0)e SxR:0> f(x)}
denote its epigraph and conv(epig(f)) denote the convex hull of its epigraph. Let us define the sets
X={xeZ" xR : Az >b}, X ={xec{0,1}": Az > b}, and X-¥ = {x€[0,1]" : Az > b}. Given a
positive integer 7 and a nonnegative integer £ < 7, we let [7] ={1,...,7} and [{,7]| ={(, £+ 1,...,7}.

A variable is bold when it is a vector.

2. RelLU Lagrangian Cuts

In this section, we introduce a new family of cuts, termed ReLLU Lagrangian cuts, which generalize
the ordinary Lagrangian cuts (Zou et al. 2019). Throughout this paper, unless otherwise specified,

each cut is a local cut, that is, it is derived based on a given scenario s € [N].

2.1. Preliminary: ordinary Lagrangian cuts

Lagrangian cuts, as introduced in Zou et al. (2019), are derived by dualizing the nonanticipativity
constraints. Namely, for a given feasible first-stage decision Z € X and a scenario s € [N], we have
Q,(Z) =inf{Q,(x):x =2, xe X} =inf{0: (x,0) cepix(Q,), © =27}, (2)
where the epigraphical set
epiy(Q;) = {(CL‘,@) :0>min{(¢°)'y: T°x + Wy >h*,yeZ™ xR™} xe )_(}
Yy
={(z,0): yeZ™ xR™ 0> (¢°) 'y, T’z + W'y>h*,zec X}.
We observe that set epiyx(Qs) can be described by linear inequalities and integrality constraints.
Therefore, its convex hull conv(epix(Q;)) is a polyhedron. Following theorem 1 from Geoffrion
(1974), We further obtain that
Q. () =min{0: (x,0) € conv(epix(Q;)),x =T} (3a)

:mgx{mgn{Qs(a:)—FTrT(ﬁ—m):meX}}, (3b)
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where the equality follows from the strong duality of linear programming and the fact that mini-
mizing a linear function over a set is equivalent to minimizing over its convex hull. Here, problem
(3b) is a Lagrangian dual of the equivalent formulation (2) for a given first-stage decision. The LP
(3a) is the primal characterization of the Lagrangian dual. This LP is feasible and bounded since
ze X and Q,(x) = L for all z € X. Thus, there always exists an optimal dual multiplier 7 to (3b).
Zou et al. (2019) further prove that the inequality of (3a) holds at equality when the first-stage

variables are binary and introduce the following Lagrangian cuts.

DEFINITION 1 (LAGRANGIAN CUTS). Given a feasible first-stage decision Z € X, let 7 be optimal

to the outer maximization problem of (3b). A Lagrangian cut takes the form
0=>L(7;2)+7 (x—2), (4)

where £,(m; &) := min, {Qy(x) + 7 (& —x) :we X}.

By preserving the integrality constraints in each local recourse problem, the Lagrangian dual
(3b) yields a stronger lower bound for the local recourse function value compared to the bound
obtained from the LP relaxation used to derive a Benders cut. Under certain conditions, this lower

bound is exact, and the resulting cut is referred to as a tight cut.

DEFINITION 2 (TicHT CUTS). A cut generated for a function f at the incumbent solution Z is

tight if the cut’s corresponding hyperplane passes through the point (Z, f(Z)).

It is known (Zou et al. 2019) that when the first-stage decision variables are binary, the Lagrangian
cuts are tight. However, this property does not extend to general mixed integer first-stage stochastic
programs. In fact, the primal characterizations (3a) of the Lagrangian dual also define the convex
envelopes of the local recourse functions, as formally proved in Fiillner et al. (2024b). Furthermore,
Chen and Luedtke (2022) showed that Lagrangian cuts are sufficient to describe the convex hulls

of epigraphs of the local recourse functions, which we refer to as the “local convex hulls.”

PROPOSITION 1. [Theorem 3.9, Fillner et al. 2024b] The primal characterization

irwlf {0: (x,0) € conv(epix(Qy)),x =&} = co(Q4(T)),

where the convexr envelope of Q, denoted by co(Q,) : conv(X) — R, is defined as co(Q,)(x) =
sup{g(x) : g is convex and g(z) < Q,(z),Vze X}.

PROPOSITION 2. [Proposition 2, Theorem 3, Chen and Luedtke 2022] Let us define D =
{m: 7 is optimal to (3b)} for any feasible first-stage decision & € X. Then, the local convex hull

conv(epix(Q,)) = {(z,0) econv(X) xR: 0> L,(m;2) + 7' (x — 2),YVZ e X, me DL}
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The following corollaries provide insights into the properties of Lagrangian cuts.

COROLLARY 1. Given a first-stage solution T € X, a dual multiplier 7 € D%, if and only if it satisfies

the optimality condition:
L, (m:2) =min{Q,(x)+ 7" (Z —x):xe X} >co(Q,)(Z). (5)

The result in Corollary 1 follows directly from Proposition 1 and the strong duality between (3a)
and (3b).

COROLLARY 2. A Lagrangian cut generated at @ € X is tight if and only if there exists o € R”,
a#0, such that '@ + 0> o' & + Q,(Z) for all (x,0) € conv(epix(Qs)).

Proof. See Appendix A.1. o
When (z, Q,(Z)) is an extreme point of conv(epig(Qy)), such a supporting hyperplane always
exists, and a Lagrangian cut derived at this point is tight. The following corollary shows that a
local convex hull can be characterized using tight Lagrangian cuts generated at its extreme points.

Since the set conv(epix(Q,)) is a polyhedron and X is nonempty and bounded, we have that

COROLLARY 3. Set conv(epix(Q,)) = conv{(z*, Q,(x*)) : k¥ € K} + cone{(0,1)}, where
{(x*, Q. (")) }rex are the extreme points of conv (eplx( s)). In addition, the local convex hull can be

represented as conv(epix(Q;)) = {(x,0) € conv(X) xR:0> Q,(z*) + w"(x —a*),Vke K, we D3, }.

The above results show that by generating facet-defining Lagrangian cuts, we can efficiently
recover the local convex hulls. Taking the average of the Lagrangian cuts over all scenarios, we
obtain a cut that is valid for the expected recourse function. This cut is tight for the expected
recourse function if and only if the cut for each individual scenario is tight. However, due to the
linearity of a Lagrangian cut, tightness is achieved only if the incumbent solution used to construct
the Lagrangian cut is separable from the local convex hull conv(epix(Q,)) for each s€[N]. Thus,
this approach may yield only a lower estimate of the expected recourse function rather than an

exact characterization, resulting in only a lower bound of (1a) (see the example below).

ExAMPLE 1. Consider a two stage problem min{—x + Q(x) : z € {0,1,2}}, where Q(z) = 19, (2) +
29Q,(x) and local recourse functions are given by Q;(z) =min{y:y >tz +1,y€Z"} and Qy(z) =
min{y : y = 2z — 1,y € Z*}. The values of the local recourse functions are Q;(0) =1,9;(1) =
2,9:(2) = 2 (see Figure 1(a)) and Q,(0) = 0, Qz(l) =1 92(2) = 3 (see Figure 1(b)). Thus,
the expected recourse function values are Q(0) = 1,9(1) = 2,Q(2) = 3. At 2 = 1, the optimal
Lagrangian dual values yield co(Q;)(1) = 2 and CO(QQ)(l) =1, resultlng in an outer approxima-
tion of the expected recourse function: }} 1 psco(Q,)(1) = 2. However, as depicted in Figure 1(c),

co(Q)(1) = Q(1) = 2. In fact, solving the problem solely using Lagrangian cuts provides only a
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Figure 1 The illustration of Example 1

lower bound of i with the solution x = 1. However, the optimal value of this two-stage problem is

%, achieved at points z =0, 1, 2. o

This example indicates that, for a general mixed integer stochastic program, the convex envelope
of the expected recourse function may be strictly greater than the expected convex envelope of the
local recourse functions. However, to solve (1a) to optimality, we need an approximation that is at
least as strong as the convex envelope of the expected recourse function. Unfortunately, Lagrangian
cuts are often insufficient for general mixed integer first-stage decisions.

To address this issue, one approach is to derive linear cuts directly for the expected recourse
function, such as the scaled cuts proposed in van der Laan and Romeijnders (2023), which cannot
be computed using scenario decomposition algorithms. Another approach is to develop nonlinear
cuts that recover the epigraphs of local recourse functions directly instead of their convex hulls,
such as the reverse norm cuts and augmented Lagrangian cuts introduced in Ahmed et al. (2022).
We will derive stronger cuts that remain tight for general mixed-integer first-stage decisions while

preserving the effectiveness of Lagrangian cuts in representing local convex hulls.

2.2. RelU Lagrangian cuts

In this section, we introduce the ReLLU Lagrangian cuts. Using strong duality, we prove that
the cut generated at any feasible first-stage decision is tight, directly recovering the epigraphs
of both the local recourse function and its expectation. Unlike ordinary Lagrangian cuts, where
nonanticipativity constraints are linear and only linear cuts are produced that are valid for the
local convex hull, we study new nonanticipativity constraints using the ReLLU function.
For a given feasible first-stage decision Z € X, its local recourse function value can be obtained
by solving
Q(x) = ril)%l{Qg(i) (i —2)" =0, (x; — ;)" =0,Vie[n]}, (6)
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where we define two ReLLU functions as (z; —Z;) " = max{z; —Z;,0} and (x; —&;)” = max{Z; —x;,0}.

Taking the dual of this problem with respect to the nonanticipativity constraints, we have

Q. (x)= sup L(n",77;2), (7)
ot w—eR"
where
Lz, mt,7w7;2):=inf Q. (x) — Z mh(z, —2)" — Z m (z —T) . (8)
xeX
ie[n) i€[n]

The difference between this ReLU Lagrangian dual (6) and the ordinary Lagrangian dual (3b) lies in
the ReLU functions, which are nonlinear and can be either linearized or represented by introducing
extra binary variables. We can prove that the strong duality holds for the ReLU Lagrangian dual

(6), ie., Qi(x) = Q_ (&). As a side product, we can derive optimal dual multipliers in closed form.

THEOREM 1. Under Assumptions 1, 2 and 3, Q (&) = Q.(x). Moreover, when

pr> 2EL )
(—1p*,—1p*) is optimal to (7), where d = min{||x* —Z||; : ke K,x* # &}, and {(", y" wi)}rex

are extreme points of the set conv{(x,y,w) : T°x+W?y>h* xec X,yeZ™ xR™, ||z —z||; <w}.

Proof. See Appendix A.2. o
The above theorem shows that for any feasible first-stage decision, strong duality must hold.
Besides, there also exists a finite dual optimal solution that attains the dual optimality. This ensures
that tight cuts can be generated at any feasible point, a fundamental difference between the ReLU
Lagrangian and the ordinary Lagrangian cuts. Before formally defining the ReLLU Lagrangian cuts,

we present the following corollaries, which are useful in subsequent discussions.

COROLLARY 4. For any bounded set S such that S 2 X, if (w**,m=™) is optimal to
SUD+ —cpn iNfges Ls(x, ®, w5 &), then it is also optimal to SUp,+ ,—cgn inf ey Lo(x, 7", 77 2),
where

L@, n" 7 8):=Qu(x) — > mf(w—2)" = > my (i —2).
i€[n] i€[n]

Proof. See Appendix A.3
The following corollary provides an optimality condition for a dual optimal solution.
COROLLARY 5. For a given feasible first-stage decision € X, (®*,7~) is optimal to (7) if and
only if
Qu(@) < Qu(a) = D) A (wi=B)" = Y Ay (e —2) 7, (10)

for all x€ X, or equivalently,

0> Q.(x) > Q@)+ ) Af (wi— )"+ Y Ay (wi— 1),

i€[n] i€[n]

for all (x,0) in the epigraph of Q.
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Proof. See Appendix A 4. o

Now we are ready to formally define the ReLLU Lagrangian cuts.

DEFINITION 3 (RELU LAGRANGIAN CuUTS). For a given feasible first-stage decision Z € X, let
(7", 7~) be an optimal solution to the dual problem (7). The following cut is valid for the epigraph
of Q,:

0> Q.(2)+ > & (x; — 1) +Z T — 1) (11)
i€[n] i€
When the first-stage decision is purely binary, that is, When X = X, we have z; — Z; > 0 when

7, =0 and z; — 7; <0 when Z; = 1. In this case, given a binary Z € X, the ReLU Lagrangian cut
simplifies to the following linear inequality:
0= Q. (x)+ Z 7 (2 — ) — Z 7 (w—7), (12)
iglg i€ly
where I; := {i€[n]:Z; = 1}. However, when the first-stage decision is mixed integer, cut (11) is
generally nonlinear. To incorporate this nonlinear cut effectively into the master problem when

using the cutting plane method, we add the following constraints:

6= Q. Zﬂ+w++27rw, (13a)
i€[n] i€[n]

wh—wy =2, —7;,0<w; <(B; —7)z;,0 <w; <7;(1 — z),Vie[n], (13b)

ze{0,1}". (13c)

The system of inequalities in (13) is tight in the sense that its continuous relaxation recov-
ers the convex hull of a relaxed local epigraphical set. To be specific, let us define B =
X ie[n] [0, B;][1Z™ x R"2 as a relaxed domain of the first stage decision and a mixed integer set
Sy ={(x,0) € BxR:(12)} that consists of the relaxed domain set and a ReLU Lagrangian cut.

The following proposition summarizes this result.

PROPOSITION 3. Given a first-stage decision T € X, we have
conv(Sy) = {(,0) € Xie[y[0, B] x R: I(w™,w™,2) eR" x R" x [0,1]", (13a), (13b)} . (14)

Proof. See Appendix A.5. =

To obtain a dual optimal solution and derive a ReLU Lagrangian cut, ?? suggests selecting a
sufficiently large p. However, it also indicates that as p approaches infinity, the resulting cut may
become arbitrarily weak. In the following sections, we will show how to appropriately select p by
leveraging existing families of cuts that, while tight, may be weak, and how to strengthen these
cuts. Additionally, Corollary 4 presents an alternative approach: rather than solving (7) directly,
we may solve the dual problem with an expanded first-stage feasible region. To verify whether an
inequality qualifies as a ReLU Lagrangian cut, Corollary 5 provides a criterion: any inequality valid

for the epigraph of a local recourse function in the form (11) is a ReLU Lagrangian cut at .
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2.3. Related cut families

In this subsection, we establish that ReLU Lagrangian cuts include all tight Lagrangian cuts,
therefore retaining their effectiveness in describing the local convex hull. Moreover, we show that
certain nonlinear cuts—such as reverse norm cuts and augmented Lagrangian cuts (Ahmed et al.
2022), as well as integer L-shaped cuts (Laporte and Louveaux 1993)-are special cases of ReL.U
Lagrangian cuts. We extend the concept of L-shaped cuts to derive new cuts for purely integer
first-stage decisions, termed “A-shaped cuts.” A comparison of ReLU Lagrangian cuts with existing
cut families demonstrates their advantages and necessity in accurately describing both local convex
hulls and local epigraphs.
We define the set of admissible ReLLU Lagrangian cut coefficients.

DEFINITION 4 (ADMISSIBLE RELU LAGRANGIAN CUT COEFFICIENTS). For a given Z € X, let
set II5 := {(w*,77) e R*" : (w*,7~) is optimal to (7)} denote all optimal solutions to the ReLU
Lagrangian dual problem (7).

Our first result shows that
PROPOSITION 4. Any tight Lagrangian cut is a ReLU Lagrangian cut.

Proof. See Appendix A.6. o
As shown in Corollary 3, the local convex hull can be recovered using Lagrangian cuts that are

tight at its extreme points. By this proposition, these cuts are also ReLU Lagrangian cuts.

COROLLARY 6. For a given & € X, the following result must hold: {(x,0) € conv(X) x R: 6 >
Qu(®) = Yiepn i (i = Ti)" = X mi (w5 —2:) 7, V&8 X, (m*, 77) € I3} < conv(epi Q).
This local convex hull description property demonstrates the strength of the ReLLU Lagrangian

cuts, distinguishing them from two other cuts: reverse norm cuts and the integer L-shaped cuts.

DEFINITION 5 (REVERSE NORM CUTS, AHMED ET AL. 2022). If the local recourse function Q,
is Lipschitz continuous with Lipschitz constant p under the L;-norm, i.e., |Q:(x) — Qs(x)| <

pllx — 2'||1, for all ¢, 2’ € X, then given Z € X, we can derive a cut:
0> Q,(x) — pllx — ||

PROPOSITION 5. Reverse norm cuts are ReLU Lagrangian cuts.

Although reverse norm cuts can be applied to general mixed integer first-stage decisions, they
are restricted by the requirement that local recourse functions must be Lipschitz continuous—a
condition that is often difficult to satisfy when part of second-stage decision variables is discrete.
The following integer L-shaped cuts can be derived using only the current recourse function value

and a lower bound of the recourse function. It is applicable when the first-stage variables are binary.
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DEFINITION 6 (INTEGER L-SHAPED CUTS, LAPORTE AND LOUVEAUX 1993). Let L be a valid
lower bound of the local recourse function Q, defined in (1b). Given a feasible first-stage decision

z € X, an integer L-shaped cut generated at  admits the form

0= (Q.(2)—L) (Z zi— ) w) —(Q@)-L)(I| -1+ L,

i€lg iglg
where I :={ie[n]:2; =1}.

We can equivalently write this cut as 0 > Q,(Z) — (Qs(&) — L)||x — Z||;. Note that in the closed-
form expression for the optimal dual solution (9), the distance d under L;-norm is at least one for
integer first-stage decisions. This coincides with the coefficients of L-shaped cuts. Similarly, when
the first-stage feasible region is purely integer, we generalize the idea of L-shaped cuts to derive

the A-shaped cuts.

DEFINITION 7 (A-SHAPED CcUTS). When the first-stage feasible region X < Z", given € X and a

lower bound L of the recourse function, we can derive a cut

0> Q.(x) — (Qu(2) — L)||lz — ||, (15)

PROPOSITION 6. L-shaped cuts and A-shaped cuts are ReLU Lagrangian cuts.

The cuts discussed above either cannot be applied to general SMIPs or impose specific require-
ments on local recourse functions. Due to the symmetry of the £;-norm, these cuts fail to recover
local convex hulls, resulting in weaker cuts that may not effectively enhance the outer approxima-
tion of the expected epigraph during the solution procedure. The following example demonstrates

the insufficiency of reverse norm cuts and A-shaped cuts in describing the local convex hull.

EXAMPLE 2. Given set X = {(0,0)",(0,1)",(2,1)7,(0,3)7,(2,3)7,(1,4)",(1,2) "}, consider a local
recourse function given by Q4(0,0) =0, Q,(0,1) = Q,(2,1) =1, 94(0,3) = Q4(2,3) =3,9,(1,4) =4
and Q,(1,2) = —10. It is clear that the Lipschitz constant p > . The strongest reverse norm cut
we can derive is 6 > Q,(Z) — 3||x — Z||; for all Te X.
Similarly, to derive A-shaped cuts, we note that L = —10 is the best lower bound of the local
recourse function Q,. Then, we can derive cuts 0 > Q. (%) — (Q,(Z) + 10)||z — Z||, for all € X.
It is easy to check that x; = 1.5,25 = 0.5,6 = 0 is valid for all reverse norm cuts and A-shaped

cuts. However, it is not in conv(epi(Q;)) since co(Q;)(1.5,0.5) = 0.5. o

The following family of cuts subsumes all previously discussed types and provides a stronger

outer approximation of local convex hulls, which is also a special case of ReLU Lagrangian cut.
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DEFINITION 8 (AUGMENTED LAGRANGIAN CUT AHMED ET AL. 2022). Given Z € X, w € R”,
p=0,let L% (m, p; &) = min, {Q(x) + m"(Z — x) + p||Z — @||; : @ € X} . The following augmented
Lagrangian cut is valid for the epigraph of Q,:

0> Ly (m,p32) + 7" (@ — &) — plle — 2.
Given a tight augmented Lagrangian cut
0> Q,(@)+n(x—2)—pllz—2|, (16)
(=0 when it is a reverse norm cut), we can equivalently write it as
0> Q@)+ Y (mi—p)(wi—2)" + ) (—mi—p)(w:i —2) " (17)

i€[n] i€[n]

Then, according to Corollary 5, we have
PROPOSITION 7. Tight augmented Lagrangian cuts are ReLU Lagrangian cuts.

Augmented Lagrangian cuts are sufficient to describe local convex hulls, as they reduce to ordi-
nary Lagrangian cuts when penalty terms are omitted. However, ReLU Lagrangian cuts generally
provide stronger approximations of local epigraphs, allowing for fewer cuts in the solution proce-

dure. This phenomenon is illustrated in the following example.

ExAMPLE 3. Consider a local recourse function given by Q.(0,1) = 3,9,(0,2) = 2,9,(0,3) =
1,9.(1,0) = 5,9,(1,1) = 1—;,QS(I,Q) = 10,09,(1,3) = %,Qs(l,ll) = 1,0,(2,1) = 5,0,(2,2) =
4,0.(2,3)=3. At £=(1,2)", we can derive a ReLU Lagrangian cut
9 5
9210—6(30—1)*—8@—1)*—i(x—2)+—§(m—2)*. (18)
As shown in Figure 2(a), this cut is tight at points (0,2, Q,(0,2))", (1,0, 9.(1,0))7, (1,1, Q.(1,1)) T,
(1,2,9,(1,2))7, (1,3,9.(1,3))7, (1,4,9.(1,4))" and (2,2,09,(2,2)) of the epigraph. To describe
the epigraph, we need add one more cut 6 >3+ (z; —0)" — (22 — 1) + (22 — 1)~ generated at
z=(0,1)7.

To describe the local epigraph with augmented Lagrangian cuts, one can check by enumeration

that at least three cuts are required. At & = (1,2)7, cut (18) cannot be expressed as an augmented

Lagrangian cut since the system of linear equations 7, + p=—6,—7m, + p=—-8, M+ p= —%, —my +
p= —g has no solution. In fact, at least two augmented Lagrangian cuts, for example, the following
two cuts
5 ~
0210+(:c1—1)+§(x2—2)—7Hcc—mH1, (19a)
9 ~
0>1()+(m1—1)—§(x2—2)—7||a:—m||1, (19Db)

are tequired to separate (1,0,Q,(1,0))7(1,1,Q,(1,1))7,(1,2,9.(1,2))7,(1,3,9,(1,3))" and
(1,4,9,(1,4))" from the epigraph, as shown in Figure 2(b). o
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X1

a) A ReLU Lagrangian cut b Two augmented
grang g
Lagrangian cuts

Figure 2 The illustration of Example 3.

We will further explain in Section 4.2 that the cut (18) is the strongest possible ReLU Lagrangian
cut generated at & = (1,2)" by analyzing the structure of the set II§. Intuitively, from (17), a ReLU
Lagrangian cut reduces to an augmented Lagrangian cut if and only if ;) =7, —p, 7, = —m;, — p
for all i € [n] and p >0, which is equivalent to say 7;" + m; = n; +m; <0 for all 4,5 € [n]. This
requirement restricts our choice of cut coefficients in IIZ.

It is also worth noting that although both augmented Lagrangian cuts and ReLLU Lagrangian
cuts can describe the local convex hulls, they fail to describe the convex hull of the epigraph of the

expected recourse function, as demonstrated in the following example:

EXAMPLE 4. Let X ={0,1,2,3} and define the local recourse functions as Q;(x) =0 if = € {0,3},
Qi(z) =11if xe{1,2}, and Qs(x) =4 if 2 €{0,3}, Qz(x) =1 if z € {1,2}. The expected recourse
function is then given by O(x) =2 if z € {0,3}, and Q(x) =1 if = € {1,2}. For scenario 1, the
strongest ReLLU Lagrangian cut we can derive are # >0 at z=0and =3, 0>1—(z—1)" —
fe—1*Tatz=1and 0 >1—L(x —2)” — (# —2)" at & = 2. For scenario 2, the strongest
ReLU Lagrangian cuts we can derive are # >4 —3(x —0)" at t=0,0>1+3(zx—1)" at z =1,
0=>1+3(x—2)" at =2, and # >4 —3(x —3)~ at x = 3. Combining the two scenarios, we have
0=2—-3(z—-0)Tatz=0,0=>214+(z—1)" —(z—1)Tatz=1,0>1—-1(z—2)" +(z—2)" at
r=2,and 0>2— %(x —3)” at z = 3. In Figure 3, the black dots represent the local and expected
recourse functions, while the dash lines represent ReLU Lagrangian cuts. The gray areas depict

the convex hulls of the epigraphs, and the shadowed areas are outer approximations derived by

3 Z)T

ReLU Lagrangian cuts. We can observe that for the expected recourse function, the point (3, §

is contained in the outer approximation shaped by ReLU Lagrangian cuts, while it is not in the

convex hull of the epigraph. o
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Figure 3 The illustration of Example 4.
This example also demonstrates that by adding the ReLLU Lagrangian cuts, the outer approxi-
mation eventually converges to the epigraph of the expected recourse function when restricting the

first-stage variables to their feasible region. That is, we have the following equalities:
v* =min{c'x +0: (x,0) cepix(Q)} =min{c 'z +0:xe X, (x,0) € Er},

where Ep = {(z,0) e R" x R: 0 > Q(Z) — Xy (T — Z)" = D m (20 — 5)7, V@ €
X, (mt,m)e 2eerny Ps115}- This is different from Lagrangian cuts, where the outer approximation
only provides a lower bound on the optimal value.

The integrality constraints in the first stage of Example 4 are essential to obtain the optimal
solution. It is insufficient to recover the convex hull of the epigraph by extending the feasible first-
stage region to its convex hull and adding all ReLLU Lagrangian cuts generated at feasible decisions.
Specifically, since conv{(z,6) € conv(X) x R: (x,0) € Er} 2 conv(epixQ), we must have

v¥ = mmin{cTzc +0:xeX,(x,0)eEg}> rlgn{cTw +0:xeconv(X),(x,0) e Er}

>min{c'z+0:xe X" (x,0) e Eg}.

Therefore, when implementing these cuts, maintaining the integrality constraints in the first stage
ensures that we achieve the optimal value v*.

Finally, we note that there is a more straightforward way to obtain a ReLLU Lagrangian cut in
practice than by directly solving the Lagrangian dual (7). This observation motivates our strat-
egy of initially generating a valid, albeit potentially weak, cut at a low computational cost and
subsequently refining it into a stronger cut. The methodology and implementation details will be

elaborated upon in the following two sections.

3. Purely Binary First-Stage Decisions

Existing literature generates Lagrangian cuts by solving a sequence of optimization problems (see,

e.g., Zou et al. 2019, Chen and Luedtke 2022), which can be computationally demanding. In this
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section, we propose a simple and effective method for generating ReL U Lagrangian cuts when the

first-stage decision variables are purely binary.

3.1. Dual optimal solution set II:

We first analyze the structure of II%, the set of all optimal solutions to the Lagrangian dual (7).
PROPOSITION 8. Given scenario s € [N], the set II is a polyhedron.

Proof. See Appendix A.7. o
This result holds for general mixed integer first-stage decisions. However, when the first-stage
decision variables are purely binary, the set I is a non-pointed polyhedron. Intuitively, we observe

that for any (w*,7) eI}

x’

a ReLU Lagrangian cut (11) is equivalent to a linear cut (12). This
linear cut is uniquely determined by the entries ;" for i ¢ Iz and 7; for i € Iz, while the remaining

entries in the ReLU Lagrangian cut can take arbitrary values.

LEMMA 1. Given scenario s € [N], when the first-stage feasible decision is purely binary, the reces-

sion cone of I3 contains lin{(e;,0)}er, +1in{(0, €;)} i1, .

Proof. See Appendix A.8. o
Given this lemma, we focus on the restriction of IIZ to the orthogonal complement of the linear
subspace lin{(e;, 0)}icz, + 1in{(0, e;)}is, . Projecting out the entries that are fixed to be zero, we

consider the set

Pr0j () 15,1113 [lin{(e:.0)}ic1, +1in{(0.0)} g,

={meR":I(r", 7 )ell}:m=mn; Vi¢ I;,m =7, ,Vie I;} = diag(x) D%,

where we let x; = 2Z; — 1 for each i € [n] and diag(x) is the diagonalization of the vector x. Note
that the diagonal matrix diag(x) is symmetric and orthonormal. In Proposition 2, we define D
as the set of all optimal solutions to the Lagrangian dual (3b) for the ordinary Lagrangian cuts.
Thus, ReLU Lagrangian cuts coincide with ordinary Lagrangian cuts for purely binary variables.
The orthonormal transformation diag(x) preserves the polyhedral structure— for example, the
extreme points and the extreme rays— of a polyhedron. Although Lagrangian cuts are sufficient to
characterize the epigraphs of local recourse functions, many alternative Lagrangian cuts exist since
the set D2 may not be a singleton. Our goal is to identify the strongest cuts that can reconstruct

local convex hulls. This motivates us to seek facet-defining cuts of the local convex hulls.

DEFINITION 9. A cut of the form § > v+« " @ is facet-defining for conv(epix(Q*)) if it is valid for

conv(epix(Q®)) and the corresponding hyperplane 6 = v + 72 defines a facet of conv(epix(Q*)).
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The following theorem demonstrates that the optimal solutions to the outer supremum of (3b)

form a polyhedron, with facet-defining cuts corresponding to its extreme points.

THEOREM 2. The following properties hold for the set D of dual optimal solutions and Lagrangian
cuts generated at € X: (i) The set D5 is a polyhedron; (ii) A Lagrangian cut § > co(Q,)(Z) +
7' (x — &) is facet-defining if and only if 7 is an extreme point of Dg; (iii) The recession cone
of D is the normal cone of X at Z; and (i) The local convex hull can be described using the

facet-defining Lagrangian cuts:
conv(epix(Qs)) = {(x,0) € conv(X) x R: 0 > co(Q,)(Z) + 7 (x — Z),VE e X, mweext(D)}.

Proof. See Appendix A.9. o
This result also suggests that as the cut coefficients shift in the direction of the recession cone of

set Dg, the resulting Lagrangian cuts may serve as valid inequalities only for conv(X). However,

these cuts do not contribute to the outer approximations of local epigraphs and should be avoided.

3.2. Cut strengthening: theoretical foundation

According to Proposition 6, we know that any integer L-shaped cut is a special ReLLU Lagrangian
cut, which is known to be weak (Zou et al. 2019). In this subsection, we present a method for
deriving a stronger RelLU Lagrangian cut by strengthening the integer L-shaped cut coefficients.

Let us define 7w = (L — Q4(&))x. We aim to find a proper n such that the strengthened cut:
02 Q,(@)+ (7 +m) (x-2), (20)

can be close to a non-trivial facet of conv(epiy(Q;)). By Theorem 2, we know that (20) is a valid
ReLU Lagrangian cut if and only if 7 + n € D%. Therefore, it suffices to find n such that 7+ n is
an extreme point of Dj. To identify an extreme point of a polyhedron, a natural approach is to
solve a linear program:

min{a'n: 7 +neDL}. (Stren)

~

Note that the feasible region of this problem, denoted by Di — 7 := {n: Q,(Z) < Q.(x) + (7 +
n) (Z—z)VeeX}={n:(Z—xz) n=>0,(x)+7" (x—x)— Q.(x),Vx € X} is unbounded according
to Theorem 2. We illustrate this with the following example:

EXAMPLE 5. Consider the recourse function Q(z, ;) = min{2y; + 2y, : 0.2y, + yo + 21 + 0.529 =
2.4,y € {0,1,2}?}, where x € {0,1}?. This function takes the values Q(0,0) =8, Q(1,0) =
4, Q(0,1) =4 and Q(1,1) =2. Let & = (1,0)" and L =0 be a lower bound of Q. We can derive

an L-shaped cut 6 >4 + 4(x; — 1) — 42,. To enhance this cut, we consider the feasible region of
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the strengthening problem (Stren), given by D — 7 ={n:n = —8,m — 12 = —8,m2 < 2} (see Fig-
ure 4(a)). It has two extreme points (—8,0)" and (—6,2)", corresponding to two facet-defining
cuts:

0=>4—4(x; —1) —4da,, (21a)
passing through (0,0,8)", (1,0,4)" and (0,1,4)", and
0>4— 2z, —1)— 215, (21b)

passing through (1,0,4)", (0,1,4)" and (1,1,2)". Meanwhile, D — & is unbounded with extreme
rays (1,0)" and (0,—1)". The strengthened cut 6 >4 + (4 + n1)(z1 — 1) + (=4 + n2)(z2 — 0)

approaches x; <1 as 7y — o and x5 >0 as ny — —o0. o
VI/)" E 7!)" E 72 E 2
'"‘:-'7}11/1/1/7/‘27'///1/1/7, "":"3)’7’77777772”--;'-’----

///////////////////////////////////

7300000 0%, A n m

2 AR AR, S 7571
v ' R -2
v :
v
2 :
(a) Dy —# when L=0 (b) Dy — # with con- (c) DL —# when L=2 (d) Dy — # with con-
straints (22) straints (22)

Figure 4 The illustration of Examples 5 and 6

We propose two strategies to prevent the unboundedness of the strengthening problem (Stren).
e Strategy 1: Introduce additional constraints to bound the feasible region F,
When set X is full-dimensional', we can restrict i to lie in the reverse direction of the normal

cone of X. Specifically, the constraints we add are
(z—x)'n<0, VreX. (22)

In this way, the recession cone of the feasible region becomes {d: (z—xz)'d >0, (Z —x)'d <0,V €
X}={d:(z—x)"d=0,Yze X} = {0}, where the last equality follows from the full dimensionality
of X. However, this approach may eliminate extreme points that satisfy (Z —x)"n > 0 for some

x € X. In general, we can add box constraints:

T

One possibility is to ensure that diag(x) 'n >0 and diag(x) 'n < (Q,(Z) — L)1, which implies
that the absolute values of the entries of 1 are in the range [0, Q,(Z) — L]. When |M,| and [M,]
are large enough, we can retain all extreme points of the original set D — 7. A drawback of this

strategy is that additional constraints can introduce extra extreme points.

L1f set X is not full-dimensional, we can choose 17 to be in the null space of affine hull of set X.
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ExXAMPLE 6. In Example 5, at = (1,0)", adding constraints (22) to Di — 7, the feasible region
of (Stren) becomes {n: —8 <n; <0,—8 < — 1y < 0,0 <1, <2}. It has the original extreme points
and includes two new extreme points (0,0)" and (0,2)" (see Figure 4(b)). When adding constraints
71 < 0,72 = 0 to bound the entries of 1, we get the same result.

If we take L = 2 as the lower bound of the recourse function @, the L-shaped cut becomes
>4+ 2(xy —1) — 229, and DE — 7 = {n:m; = —6,1m; — 12 = —4,12 < 0}. It has extreme points
(—6,—2)T and (—4,0)" (see Figure 4(c)). By adding constraints (22), the feasible region of (Stren)
becomes {n: —4 <n, <0,7, = 0}, which excludes the extreme point (—6,—2)" (see Figure 4(d)).
If we bound the entries of n by adding upper bounds and lower bounds with sufficiently large
absolute values, for example, || <6, || <6, the feasible region of (Stren) becomes F; = {—6 <
m <6,—6 <1, <0, —ny =>4}. In this case, we have both extreme points but also introduce three
new extreme points (6,0)7, (6,—6)" and (—6,—6)". They correspond to cuts 6 >4+ 8(z; —1) — 2z,
0>4+8(xy —1)—8xy, and 0 >4 — 4(x; — 1) — 8x,, which are dominated by cuts (21a), (21b). o

e Strategy 2: Choose an appropriate coefficient a of the objective function
We restrict the objective coefficient to lie in a reverse direction of the tangent cone of conv(X) at

Z,ie, —a€ Toon(x)(Z) :=cone{fx —Z:xe X}
PROPOSITION 9. The strengthening problem (Stren) is bounded if and only if —a € Teonv(x)(Z).

Proof. See Appendix A.10. O

A practical choice is to let a=>._,(Z — ), where (x')’s are all explored first-stage decisions.

iel
ExAMPLE 7. In Example 5, since Z; = 1 and 5 =0, we let a; = —1 and a, = 1. The strengthening
problem (Stren) then becomes min{n; — 7y : n; = —8,1m; — 12 = —8, 12 < 2}. Both extreme points

(—8,0)" and (—6,2)" and their convex combinations are optimal. o

3.3. Cut strengthening — practical implementations based on LP relaxation

In this subsection, we integrate Strategies 1 and 2 within a practical framework to efficiently
strengthen the ReLU Lagrangian cuts based on L-shaped ones. Although the feasible region of
(Stren) is a polyhedron, it is generally NP-hard to separate from it. As an alternative, we replace

the set X with its LP relaxation, X *¥. Thus, rather than solving the original strengthening problem
min{aTn ‘min {Q () + (F+n) (T —=x):xec X} > Qs(ﬁ)} )
n x

we consider

mJn{aTn:H%cin{QfP(m) +(@+n) (@—x):xe X} > Qs@)}, (24)

where QLT is defined by solving the LP relaxation of the local recourse problem (1b).
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PROPOSITION 10. Any feasible solution of (24) is also feasible for (Stren).

Proof. See Appendix A.11. o
This proposition shows that by relaxing the inner minimization problem, we can tighten the feasible
region of the strengthening problem. When QM (Z) < Q,(Z), we have min,,yrr QX () + (7 +
)" (z —x) < QP (Z) < Q.(Z) for any m € R". Hence, it is possible that the resulting formulation
(24) is infeasible. In this case, we will improve the formulation (24).

ExAMPLE 8. Consider the local recourse function Q;(x) = min{y; + y2 : 2y; + y2 = 3z + 2,0 <
y1 < 2,0 <y, <3,yeZ?. It is easy to check that Q;(1) = Q" (1) = 3. Therefore, when 7 = 1,
the relaxed strengthening problem (24) is feasible. However, consider another recourse function:
Qo(z) =min{y; + y2 : 2y1 + ¥o = 32,0 < y; < 2,0 < yp < 3,y € Z?}. In this case Qy(1) =2 while
Q4P (1) = 2. Thus, the relaxed strengthening problem (24) becomes infeasible. o

To address the feasibility issue, we incorporate the following no-good cut into the inner minimiza-

tion problem of the formulation (24):
XT(£ - $) = 17

where we recall that x; = 2Z; — 1 for each i € [n]. Next, we show that the strengthening problem

(24) is always feasible after incorporating the no-good cut.

PROPOSITION 11. The set

~

FE2 = {nimin {QF (@) + (7 +m) (& —2) :we X} > 0.(3)} (25)

~

is always nonempty, where X = {xe X P . xT (& —x) > 1}.

Proof. See Appendix A.12. o
The relaxed strengthening problem is then given by

mgn{aTn 10, (2) < I:Icliyn {a'y+(@+n) (@ —x): Az >b, Tz +Wy=h*x (Z—x)>1,0<x < 1}} :

Taking the dual of the minimization problem on the right-hand side of the constraint, we have

min {aTn :Q.(2) < (m+mn)'Z+ max {bTT +(h*)To+(1— Z Z)p+1Tw:
n T,0,pw
i€[n]

ATt +(T) o —xp+w<—(7+n), W) o <q,7,0,p>0,w <0}}.

Replacing the maximization operator with existence one, we obtain an equivalent strengthening

linear program:

min {aTn 2 n+b' T+ () o+ (1— 2 T)p+1w= 0, (z)+z'n,
’I],T,UQP,LU .

eln] (Stren LP)
AT+ (T*) o+ xp+w+n<—7,(W*) o<qT1,0,p>0w <0}.
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This LP-based formulation can also be unbounded. Similar to the analysis of (Stren), the feasible
region for m is unbounded, with its recession cone being the normal cone of conv()z' ) at point
. As stated in Proposition 10, the feasible region of the LP-based formulation is a subset of
that of the original strengthening problem. Therefore, the two strategies introduced in Section 3.2
can effectively address the unboundedness issue here. Specifically, in Strategy 1, the additional
constraints that ensure the boundedness of the feasible region in (Stren) are also sufficient to

guarantee that the feasible region of (Stren LP) is bounded. When restricting n in the reverse

direction of the recession cone, we add the following constraint to (Stren LP):
min{z'n: Az >b,x'(Z-x)>1,0<z <1} >z,

which is different from (22) since we replace set X *” by a smaller set X. Similarly, we can take the
dual of the minimization problem on the left-hand side to make it compatible with the LP. Then,
it is equivalent to adding the following constraints to (Stren LP):
b'r +(1- Z T)p+1"wi —2'n=0,ATm +xp1 + w1 —n<0,71,p1 >0,w<0.
i€[n]
In Strategy 2, for any objective coefficient a such that —a € Teonv(x)(Z), we have —a € 7::onv(3?) (z)
as X\{Z} < X. Thus, the LP-based formulation (Stren) is bounded according to Proposition 9.

The next example illustrates the importance of the no-good cuts.

EXAMPLE 9. Recall in Example 5, Q(z1,x2) = min,{2y; + 2y, : 0.2y1 + yo + 1 + 0.522 =24,y €
{0,1,2}%}, € {0,1}>. At & =(1,1), we can generate an L-shaped cut 6 =2+ 2(x; — 1) + 2(z2 — 1).

To strengthen this cut, we solve the following problem using Strategy 2 to avoid unboundedness:

win o+ min, (O (&) + (24 ) (1= 1) + (24 m)(L- a2)} 221 (26)

which is equivalent to

min{n; +ne:4+m + 1m0+ 24+ 261 + 282 + 71 +72 = 2,020+ f; <2, + [y < 2,
n

a+y <—(24m),05a+7<—(2+n),0a=>0,8<0,v<0}.

This problem is infeasible. However, if we add a constraint (1 —x;)+ (1 —x3) = 1 to the minimization
problem in (26) the problem becomes feasible with optimal solution (—3.8,—2.8). In this way, we
obtain a stronger Lagrangian cut 6 >2 —1.8(z; — 1) —0.8(zy — 1). o

To further enhance the relaxed strengthening problem (24), we can incorporate additional valid
inequalities of conv{(x,0) € epiy(Q,): x # T} into the inner minimization problem, similar to the

no-good cuts. For example, we can add the following objective cuts.



Haoyun Deng and Weijun Xie: On the ReLU Lagrangian Cuts for Stochastic Mized Integer Programming

22

DEFINITION 10 (OBJECTIVE CUTS). Given scenario s € [N], let L, be a lower bound of Q. Then,

we can introduce the following objective cuts to the inner minimization problem of (Stren LP):
(¢°)'y>L,,

where we assume that L, > L. In fact, this lower bound L, can be obtained by solving the scenario

problem L, := mingcx Q,(x).

3.4. Implementation details

This subsection details the implementations of the strengthened Lagrangian cut for stochastic
integer programs with purely binary first-stage decisions within the framework of the basic cutting

plane method (see Algorithm 1). This procedure is also suitable for the branch-and-cut algorithm.

Algorithm 1 ReLLU Lagrangian cuts for binary first-stage decisions
1: Input: Master problem: v* = min{c"x +60: Az >b,x € X} and subproblems (1b)

2: Output: Optimal solution z*

3: Initialize: [b — —o0, ub<«— +00, i <0

4: Analyze the master problem and its LP relaxation to select an appropriate strategy for avoiding
unboundedness

5: while stopping criterion not met do

6: Solve the master problem, obtain an optimal solution Z, and set Ib < v*

7 for se [N] do

8: Solve the subproblem to get Q,(Z), and generate the L-shaped coefficients 7’
9: Update the strengthening problem (Stren LP) and solve it

10 if (Stren LP) is optimal then

11: Let )’ be an optimal solution, and w! « &’ + 1’

12: Add the Lagrangian cut 6 > p,(Q.(Z) + (7!)"x) to the master problem

S

13 ub<min{ub, ¢’ T+ P Qs(@)} and i i+ 1

Given that the feasible region is unbounded for any binary &, it is important to ensure that the
strengthening problem (Stren LP) is bounded prior to the cut-strengthening procedure. We seek
an approach, potentially combining both strategies introduced in Section 3.2, that preserves as
many extreme points of the original feasible region as possible, as they correspond to cuts that are
closer to being facet-defining. Since both strategies rely on an incumbent solution to determine the

additional constraints and the objective function, we also aim to minimize the necessary updates



Haoyun Deng and Weijun Xie: On the ReLU Lagrangian Cuts for Stochastic Mized Integer Programming

23

to the strengthening problem in each iteration. First, we try to select appropriate objective coeffi-
cients following Strategy 2 without adjusting the feasible region. However, in practice, tracking the
tangent cone at the incumbent solution can be challenging. It is desirable to add constraints and
choose the objective coefficients to guarantee that the strengthening problem is bounded while its
optimal solution effectively improves the cut. One approach is to set the objective coefficients a = x
and enforce diag(x)~'n = 0. In this way, we have ' (x — &) = (diag(x) 'n) "diag(x)(x — ) = 0. If
the strengthening problem is optimal, the resulting cut (20), though not necessarily facet-defining,
will dominate the original L-shaped cut. If the problem remains unbounded, we add constraints
diag(x) ' < (Q.«(Z) — L)1 to it and solve the problem again, as described in Strategy 1.

At each iteration, we need to update the optimality condition in the strengthening problem
based on the current first-stage decision & and its local recourse function value Q,(Z). In addition,
depending on which strategy is used to avoid unboundedness, we may need to adjust the objective
coefficients according to & or random coefficients and set limits for the entries of 1 according to
the L-shaped cuts’ coefficients. Although we address the infeasibility of the strengthening problem
caused by the integrality gap by adding a no-good cut to the inner minimization problem, the
additional constraints introduced in Strategy 1 to prevent unboundedness may still render the
problem infeasible. In this case, the L-shaped cuts serve as alternative ReLU Lagrangian cuts.

We can also combine them with other cuts that help accelerate the algorithm. For example, in
Zou et al. (2019), the Lagrangian cuts can be implemented together with the Benders cuts and the
strengthened Benders cuts. These cuts may not be tight but can improve the outer approximation

of the expected epigraph.

4. General Mixed Integer First-Stage Decisions

In this section, we study ReLU Lagrangian cuts within the mixed-integer first-stage decision setting.
Following the strategy outlined in Section 3, we begin with an easily obtainable valid cut. For
stochastic programs with purely integer first-stage decisions, we convert them into models with
binary first-stage variables and then apply the methods from Section 3. For programs with mixed-
integer first-stage decisions, we derive cuts analogous to the reverse norm cuts. In both cases, as

in Section 3, the cuts can be strengthened based on dual optimality conditions.

4.1. General integer first-stage decisions: binarization vs. non-binarization

According to Zou et al. (2019), Lagrangian cuts can be applied to general integer first-stage deci-
sions by binarizing integer variables. In this subsection, we show that while the ReLLU Lagrangian

cuts can effectively solve the problem without reformulating the original problem, binarization
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provides additional benefits. Specifically, it not only reduces the number of variables required to lin-
earize the cuts but also achieves stronger outer approximations of the local epigraphs. Throughout
this subsection, we assume that X < Z".

For any given integer Z € X, we can construct a A-shaped cut (15) as an initial ReLU Lagrangian
cut. Alternatively, we can first binarize the entries of . Let N; = |log, B;| and represent z; as
Ti = Yo, 2705 with 87 € {0,1}Vi*! for each i € [n]. In the binarized space, we can then derive an

L-shaped cut as an initial cut:
0> Q&) — (Qu(@) — L) ), [16'=0"|1. (27)
i€[n]

We compare cuts (15) and (27) from two perspectives. First, considering the additional variables
introduced: in (15), for each i € [n] and Z; € [1,B; — 1], as |z; — ;| = (x; — Z;)" + (x; — Z;)~, we
need a binary variable to linearize the terms (z; — z;)* and (x; — Z;)~ as shown in the constraint
system (13). This results in up to >},.,;(B; — 1) additional binary variables. In contrast, it takes
2uicin) (1 + |log, B;]) binary variables to represent the first-stage decisions.

More importantly, we show that the L-shaped cuts derived in the binarized space perform better
by proving the inclusion of the convex hulls of the subsystems described by two types of initial

cuts.

PROPOSITION 12. Given T € X, let us define E§ = {(x,0)e BxR:(15)} and

EZz{(w,&)eBxR:Hde{O,l}M“x---x{O,l}N"H,xi: Z 2j5;i,v¢e[n],(27)},

j€[07Ni]
where B := Xe[n[0, B;]. If B; >3 for all i€ [n], then conv(E}) 2 conv(E}).
Proof. See Appendix A.13. D

When B; <2, the inclusion of the two sets may not hold, as shown in the following example.

EXAMPLE 10. Consider the local recourse function Q. (z) = min{y :y = =,y € Z} for = € {0,1,2}.
Let L =0. When z =1, we can derive a A-shaped cut § =1+ (0 —1)|z — Zz|. For this cut, we have

conv(ER)={(z,0):0>21—(wr+w ), wr—w =2—-72,0<w" <(2-1)2,0<w <1-—2,2€[0,1]}.

It is easy to check that § > 1 — max{Z, B —Z} = 0 when z = 2. Meanwhile, binarizing = as = =
do + 201, we can derive a cut 0 =14 (0—1)(|6o — 1| +|d1 — 0]). When = =2, we have § > —1. There

exists a point (2, —1) € conv(E%) that is not in conv(EY). o

This example indicates that binarization generally provides stronger initial cuts prior to the cut-
strengthening procedure. It is more effective as fewer additional binary variables are required. In
addition, the strengthening strategy introduced in the previous section can be applied directly after
binarization.

We close this subsection by providing the convex hull of the set E7.
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PROPOSITION 13. Suppose that integer B; = 291 + - - + 29ti 4 2Ni and set J; = {j1i, ..., Jei, Ni} for
each i€ [n]. Then,
35[0, 1]V x -+ x [0, 1]V (27),

zi= Y, 26i<B;Vien],
conv(E}) =< (x,0) € Xe[n1[0, B;] x R

je[0,N;] ,
S+ > 0L |yl ¥re{0,1,..., NiJ\J;, Vi€ [n]
TEJiT
where we let J;, ={le€ J;: {>r}.
Proof. See Appendix A.14. o

4.2. Mixed integer first-stage decisions

For mixed integer first-stage decisions, according to Zou et al. (2019), binarization may still remain
an option and the number of binary variables required can be bounded in terms of the desired
approximation accuracy. However, this approach may introduce an excessive number of additional
binary variables and potentially fail to achieve an exact optimal solution due to binarization. Given
these issues, we propose solving the problem directly using ReLLU Lagrangian cuts.

Similar to the L-shaped and A-shaped cuts used for purely binary and integer variables, we
develop an initial cut to begin with. According to Theorem 1, for any feasible first-stage decisions
&, there exists a p* >0 such that (—p*1,—p*1) is optimal for the dual problem. This allows us to
derive a cut of the form 6 > Q. (&) — p*||x — &||,. If the recourse function is Lipschitz continuous,
we use the Lipschitz constant as p* and derive a reverse norm cut. Otherwise, p* may need to be
adjusted based on the given Z, which can be determined using binary search.

When the second-stage feasible region has a special structure, such as a knapsack-constrained
set, we can determine a valid p* by following the procedure described in the proof of Theorem 1.
First, we relax the first-stage feasible region to a larger set S with fewer constraints, facilitating
the identification of extreme points {(z*, y*,wi) }rer of conv(F), where F = {(z,y,w) e R" x Z™1 x
R™ x R:T*x + W*y > h* x e S}. We then compute the distance d < min{||z* — Z||, : ke K, z" #
x} and let

(@)~ L
pr=—"- (28)
Letting 7" = w1~ = —p*1, we find an optimal solution to sup,+ —cgninfees Ly(z, 7%, 775 2).

According to Corollary 4, it is also optimal for the original dual problem (7). In this way, we can

derive an initial ReLU Lagrangian cut:

0> 0,(2) - p* (Z (@i =2+ D (2 —ﬂ)) = Q.(2) —p*[|lz — |- (29)

i€[n] i€[n]

The following example illustrates how to find such p* using this approach.
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EXAMPLE 11. Let Q(x) = min{y : y > 7, + x5,y € Z}, where the domain X = {x€Z xR:0< z; <
2,0<2,<2},2=(1,1)" and L =0. We relax X to S = {x e R?: ||z — Z||; <2}. Then, we have

={(z,y,w) ER* X ZxR: ||z — 2| <2,||lx —Z|) Sw,y =21+ 22} = {(x,y,w) ER? x Z x R :
T4+ T —2<w, T — Ty W, Ty — 2] W, —T —Ta+2<w,0<w<2,y>x; +x,}. This is an integral
polyhedron, i.e., conv(F) = {(z,y,w) : 1 + T2 — 2 < w,x; — Ta S W, Ty — T} S W, —T] — Tg + 2 <
w,0 < w <2,y >z + x5} with extreme points (—1,1,0,2)7,(1,-1,0,2)",(1,3,4,2)",(3,1,4,2)" and
(1,1,2,0)7. Then d = min{||z" — Z||, : ke K,z* # 2} = 2. We let p= 222 = 2. The initial ReLU

Lagrangian cut we derive is 0 > 2 —2||z — Z||;. o

To strengthen this initial ReLU cut, we lift the first-stage feasible region X to a higher-
dimensional space by considering the set (23 := {(w*,w™) : (13b),(13c),z € X}. Then, we rede-
fine the recourse function Qy(w™,w™) := Q4 (& + w™ — w™). With this transformation, the ReLU
Lagrangian cuts generated at & become Lagrangian cuts generated at (0,0) for the lifted epigraph-
ical set epi%(Qs). Therefore, the properties of the Lagrangian cuts discussed in Section 2 can be
directly applied to the transformed problem.

Based on Theorem 2, we can define a “facet-defining” cut generated at  whose coefficients
correspond to an extreme point of the set II§ (recall that set II is defined in Definition 4). It
also implies that in the lifted space, the number of affinely independent points at which a ReLLU
Lagrangian cut is tight is bounded by the dimension of the lifted feasible region €);. This further
explains why certain ReLU Lagrangian cuts can be stronger than augmented Lagrangian cuts,
where the latter, due to the symmetry of the ¢;-norm, may fail to be “facet-defining” in the lifted

space.

ExAMPLE 12. In Example 3, let = (1,2)". We have (1,2)" =2z + (0,0)" — (0,0)", (1,0)" =
z+(0,0)"—(0,2)",(0,1)T =2 +(0,0)" —(1,1)", (0,2)T =z +(0,0)" —(1,0)7, (0,3)T =2+ (0,1)" —
(1,0)", (LT =2+ (0,2)" = (0,0)", (2,3)" =2+ (1,1)" —(0,0)7, (2,2)" =2+ (1,0)" — (0,0)",
(2, ) = + (1,0)T — (0,1)7. The first-stage feasible region can transformed to the set Qz =
{(0,0,0,0)7,(0,0,0,2)T,(0,0,1,1)T,(0,0,1,0)T,(0,1,1,0)T,(0,2,0,0)7, (1,1,0,0)T, (1,0,0,0),
(1,0,0, 1) } in the lifted space. The cut (18) is facet-defining as it passes through five points
(0,0,0,0,10)",(0,0,0,2,5)",(0,0,1,0,2)",(0,2,0,0,1)7,(1,0,0,0,4) " that are affinely independent
in the convex hull of the epigraph that is 5-dimensional. Meanwhile, 1§ = {(7{, 75,7, 75 ) :
o+, < —=7,m < -8,7f +m <921, <-5,m < -2, 75 <-%2n7 <-9,—7m <57 <
—6,m + 715 < =T} ={(nf, 73,717,715 ) m < 6,75 < —2,m <—8,m <2}. The vector of the
coefficients of (18) is the only extreme point of II%.

For augmented Lagrangian cuts, the cut coefficients are selected from a more restricted set

I N {(n], 7,7y, 7y ) my + 7 =75 +m, <0}. It can be shown that the extreme points of set
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IT; are eliminated by the extra constraints, and the restricted set contains two new extreme points
that correspond to the coefficients of cuts (19a) and (19b). These new extreme points satisfy three
linearly independent constraints in II$ with equality, and the corresponding cuts are tight at four

affinely independent points in the convex hull of the epigraph. o

This example suggests that the cut coefficients (7", 7w~) of one of the strongest augmented
Lagrangian cuts have n — 1 linearly independent equality constraints from the set {(w*,7~):
m + 7w, =m +m; <0,Vi,j€[n]} and require n + 1 linearly independent inequalities from II
that can be active for the cut coefficients (7", 7w ™). Therefore, the number of linearly independent
points in the epigraph at which this augmented Lagrangian cut is tight is at most n + 1, which is
clearly not facet-defining. Hence, more augmented Lagrangian cuts may be needed to fully recover
the epigraph, compared to ReLU Lagrangian cuts.

Similar to the approach applied to purely binary first-stage decisions, we can enhance the initial
cuts (29) using the following strengthening problem in the lifted space:

max{<a+>w++<a>n 0@ <min Q@)+ Y (0 1) —5) + Y (0" — ) >},

+.n- ex
nen ® i€[n] i€[n]

which is equivalent to

wax { (@) 0"+ (@) Q@) < min {(@ Tyt S0t + 3 (0 -
(7]

+n— z,y,wt w
ntvn Y ;W ie[n]

Az >b T’z + Wy > h' v/ —w;, =x;,—7;,Vie[n ],O<wv+<(Bi*xi)zi,Vle[ ],

K3

O0<w; <Z;(1—2z),Yie[n],zeZ™ xR"? yeZ™ x R™, z e {0, 1}"}}
Relaxing the integrality constraints and taking the dual of the inner minimization problem yields

max {(aJ’)TnJr +(@ ) n b’ r+h) o—z2"y+z2 Y +1Tk = Q,(Z),
nt.mn-

AT+ (T) o —v=0,W*) o =¢ v+o+n" <p*lLiy++n <p*l, (30)

(Zi — Bi)¢i + Zinhs + £, <0, Vie [n],T,U20,¢,¢,l@<O}.

If this problem has an optimal solution with n* =n* and n~ =7, we can derive a stronger cut
0> Qu&)+ Y (0 —p*)wi=2)" + Y (0 —p*) (@i — 7).
i€[n] i
The strategies described in Section 3.2 can be used to address the unboundedness. Other tech-

niques, such as objective cuts, can also be used to improve the LP-based strengthening problem.

Below is an illustrative example.
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ExXAMPLE 13. We use the strengthening problem to improve the ReLU Lagrangian cuts derived

in Example 11. We solve the following relaxed strengthening problem:

mln{Znﬂan 2<mm{y+22 ;) '—fl?\i)++Z(Q—Ui_)(a?i—fﬁi)_:nyl—ka,

i€[2] i€[2] i€[2]

0<x1,\20<x2 2}}
which is equivalent to

min { an+ Z777;_:27'1+27’2—71—72+1/)1+¢2+f11+/€222,Ti—a—’yi<0,\1ie[2],

LA sy ic[2]

U=1,71+¢1+77;<2,v7,€[2],—’}/1+¢1+T]; <2,VZE[2],—¢1+1/11+/€1<0,VZE[2],

U>O7T7¢7¢a’<’<0}'

The optimal solution is * = (3,3)" and n~ = (1,1)7, which corresponds to the cut 6 > 2 +

Diern) (i — @i)T — Xy (wi —2:) 7. This, in fact, is a facet-defining cut in the lifted space. o

5. Numerical Experiments

In this section, we compare the performance of ReLU Lagrangian cuts and other existing cut fam-
ilies in the literature through numerical studies on two-stage and multistage models. All numerical
experiments are conducted in Python using Gurobi version 11.0.1 on virtualized Intel Xeon Cascade

Lake CPUs running at 2.9 GHz, with 61 GB RAM, under a Linux operating system.

5.1. Two-stage models

We test the performance of four cut combinations for solving two-stage SMIPs with purely binary
first-stage decisions and mixed integer second-stage decisions. The four cut combinations are the
integer L-shaped cut (L), the Benders cut combined with the integer L-shaped cut (B), the strength-
ened Benders cut combined with the integer L-shaped cut (SB), and the ReLU Lagrangian cut
(R), generated following the procedure described in Section 3.

When implementing the cuts, we begin by adding Benders cuts to solve the LP relaxation to
optimality at the root node. Next, we use Gurobi’s lazy callback function to solve the problem
through a combination of cuts within the branch-and-cut framework.

Experiment 1. In this experiment, we consider the stochastic server location problem (SSLP)

(Ntaimo and Sen 2005) formulated as:

mmin{chwJ Z ON{ ij v,x;€{0,1}, V]GJ}

JjeJ se [N] jedJ
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Algorithm 2 ReLU Lagrangian cuts for two-stage SMIP

1: Input: Master problem: v* = min, g{c'® + 60 : Az > b,z € X} and subproblems (1b)

2: Output: Optimal solution z*

3: Initialize: [b «— —o0,ub «— 400, iter < 0

4: if X <{0,1}" then

5: Solve it using Algorithm 1

6: else if X € Z" then

7 Binarize the first-stage variables and solve it using Algorithm 1

8: else

9: while stopping criterion not met do

10: Solve the master problem, obtain an optimal solution Z, and set [b « v*

11: for se [N] do

12: Solve the subproblem to get Q.(Z), compute p* using binary search or the closed

form (28), and update the strengthening problem (30) and solve it

13: if (Stren LP) is optimal then

14: Let (n7,n;) be an optimal solution. (7w])%" « nF — p*1, (w] )" —n; —p*1
15: else

16: ()" — —p*1, (7))« —p*1

17; Giter = Diepn) (@), ()T = 3 (7)1, (7)1 = 3oy ()7

18: Add the following constraints to the master problem

0> urer + . (1) "W (Z) + ) (7)) "y (B),wit (B1) — wy () = @ — B,
i€[n] ie[n]

19: ub < min {ub, ¢" T + Giser) }, iter «—iter + 1

where for each scenario s € [N], the local recourse function is defined as

Qu(x):= myin Z do;jYoj — Z Z 4ijYij

jedJ el jed
s.t. Zdwyw — y()j < ’LLIL'j, Z yij = hf,y” € {0, 1}7y0j = 0, Vie I,] eJ.
el jedJ

The model parameters are generated as follows: For the first stage, the upper bound v on the total
number of servers is set to [|.J|/3], the cost ¢; of locating a server at the location j follows a discrete
uniform distribution U[40,80]. For the second stage, the demand d;; of client i € I from the server
located at j € J and the revenue g;; from client ¢ served by the server at location j, both are drawn

from a discrete uniform distribution U[0,25]. The server capacity u is 50. The overflow rate go; for
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server j € J is 1000. Client availability A; is stochastic and follows a Bernoulli distribution with a
success rate 0.7.

We perform numerical studies on SSLP with 20 and 30 locations and clients, considering 10, 50,
100, and 200 scenarios. The results are displayed in Table 1. The algorithm terminates when the
gap, defined as the difference between the best upper and lower bounds divided by absolute value
of the best lower bound, is less than 0.01% within a time limit of 1 hour.

Columns 1 and 2 of Table 1 represent the total number of locations and clients, respectively.
Column 3 shows the number of scenarios, N. Columns 4 and 5 are the best lower and upper bounds
obtained from Gurobi. Column 6 reports the gap. Columns 7 and 8 contain the solution time and
the number of nodes explored during the branch-and-cut procedure, respectively.

Our results show that all four methods solve all the instances within the time limit. The ReLLU
Lagrangian cuts achieve the shortest solution time. Additionally, this method significantly reduces
the number of nodes explored. For the other methods, the number of nodes explored is similar.
This can be because methods L, B, and SB rely heavily on the integer L-shaped cuts, which are
naive ReLU Lagrangian cuts. This implies that properly strengthening ReLLU Lagrangian cuts can

be beneficial in solving two-stage stochastic integer programs.

Table 1 Numerical results for SSLP instances
Gap time Gap  time
J| |I| N cut Ib ub node |J| |I| N cut lb ub node
| ‘ | | (%) (s) | | | | (%) (s)
L -254 -254 0.0 126 26 L -262 -26.2 0.0 221.3 76
B -254 -254 0.0 16.1 52 B -26.2 -26.2 0.0 243.8 75
2020 10 R -25.4 -25.4 0.0 2.8 7 2020 100 R -26.2 -26.2 0.0 143.5 48
SB -254 -254 00 164 52 SB -26.2 -26.2 0.0 260.2 75
L -344 -34.4 0.0 408 67 L -36.0 -36.0 0.0 1280.7 116
B -344 -344 0.0 31.3 63 B -36.0 -36.0 0.0 839.9 93
30 30 10 R -34.4 -34.4 0.0 13.3 14 3030 100 R -36.0 -36.0 0.0 328.6 27
SB -344 -344 00 31.7 63 SB -36.0 -36.0 0.0 805.3 93
L -264 -26.4 0.0 1225 80 L -26.0 -26.0 0.0 308.8 79
B -264 -26.4 0.0 1252 125 B -26.0 -26.0 0.0 499.3 93
2020 50 R -26.4 -26.4 0.0 73.2 65 2020 200 R -26.0 -26.0 0.0 239.3 63
SB -264 -264 0.0 158.8 125 SB -26.0 -26.0 0.0 497.7 93
L -356 -35.6 0.0 325.1 124 L -36.1 -36.1 0.0 17176 156
B -35.6 -35.6 0.0 416.5 122 B -36.1 -36.1 0.0 2086.4 126
3030 50 R -35.6 -35.6 0.0 217.6 37 3030 200 R -36.1 -36.1 0.0 591.1 24
SB -35.6 -35.6 0.0 433.3 122 SB -36.1 -36.1 0.0 2252.1 126

Experiment 2. To further evaluate the ReLU Lagrangian cuts, we consider the following stochastic

multiple-resource-constrained scheduling problem (SMRCSP) (Keller and Bayraksan 2009):

wn Y Y
T,z

s.t.

JjeJ te[T—pj;+1]

2

te[T—p;+1]

Tt = 1,

Cit T jt +
k

VjedJ,

MPITEEDY

€[K] te[To]

se[N

Q.(x)
1
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Z 2 Tjkxjs_Mthtkng; vtE[TO],k‘E[K],
jeJ reS(j.t)
z;;€{0,1}, Vjedte[T—p;+1], =zu€{0,1}, Vte|ly],ke[K],
where for each scenario s € [IN], the local recourse function is
T+Ty—p;+1 T+Ty
Q,(x) := min Z Z cjtYjt + Z Z iU
YU ielp  t=To+1 ke[ K] t=To+1
T+T0—pj+1
st. > yp=al, VjeJp,
t=Tp+1
Z Z Tjkyj‘r_Mtkutkng_Z Z TikZLjr, VtE[T0+1,T+T0],kE[K],
jeJg TeSp(it) jeJ reS(j.t)

yir€{0,1}, VjelJp,te[Ty+1,T+To—p;+1],
uy €4{0,1}, Vie|To+1,T+ 1], ke[K],

and S(j,t) = [max{l,t —p; + 1}, min{t,T — p; + 1}], Sp(j,t) = [max{To + 1,t — p; + 1}, min{t, T +
To—p; +1}]. In SMRCS, we impose a fixed cost for expansions when the required resources exceed
the amount available in a given time period, i.e., zy, and wu;, are binary variables. Compared
with SSLP with continuous penalties, the integrality gap of SMRCSP is often large due to big M
coefficients.

The parameters are generated as follows. The time period T, at which we learn the accepted
job bids, is set to [0.25T}]|, the processing time p; of job j is generated from a discrete uniform
distribution U[1,T"], and the cost ¢;j; of starting job j in period ¢ is set to completion time ¢ +
p; — 1. For each period, the cost by, of temporary expansion follows a discrete uniform distribution
U[10,20], the amount of resource from class k consumed by job j (i.e., ;) follows a discrete uniform

PrE|J|+0.75ppT gk | B

distribution U[1,5]. The resource capacity Ry = T1Tos , where p = ﬁzjerj, Pp =

\T;I ZjEJB Dy, T = ﬁ ZjeJ Tjks TBE = ﬁ ZjEJB 7k, and p follows a continuous uniform distribution
U[0.5,1.2]. The big Ms are set to (|.J| + |Jg|)T. The indicator a; of whether the bid on job j is
accepted or not is stochastic and follows a Bernoulli distribution with a success rate 0.75. In our
numerical study, we set the number of known jobs |J| to 5 and 7, and the number of jobs available
for bidding |J,| to 5 and 10. The number of time intervals T is set to 10, and we consider N = 10 and
N =100 scenarios for the second stage. The results are shown in Table 2. The stopping criterion
and the meanings of the other columns are consistent with those presented in Table 1.

In Table 2, we see that only ReLU Lagrangian cuts can solve all instances within the time limit.
In general, they close the optimality gap more quickly, and require fewer nodes to reach an optimal
solution compared to integer L-shaped cuts and Benders cuts. While strengthened Benders cuts

outperform standard Benders cuts and require fewer nodes to explore than ReLLU Lagrangian cuts
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Table 2 Numerical results for SMRCSP instances

Gap time Gap time

|[J| |Jo] T N cut Ib ub %) (s) node |J| |Jo] T N cut Ib ub (%) ) node
L 2431 2431 0.0 5.7 1570 L 2881 288.1 0.0 859.0 181689
B 2431 2431 0.0 7.0 1794 B 2881 2881 0.0 1064.5 186444
5 5 1010 R 243.1 243.1 0.0 3.7 428 TS 1010 R 288.1 288.1 0.0 542.1 51487
SB 243.1 243.1 0.0 8.4 422 SB 288.1 288.1 0.0 1281.0 45846
L 256.1 256.1 0.0 47.7 1574 L 130.2 285.0 118.9 3600.0 96382
B 2561 256.1 0.0 56.3 1717 B 1253 285.0 127.4 3600.0 78561
505 10100 R 256.1 256.1 0.0 30.7 392 TS 10100 R 285.0 285.0 0.0 3099.8 35840
SB 256.1 256.1 0.0 70.3 390 SB 277.6 285.0 2.7 3600.0 11761
L 1356 1356 0.0 36.8 1215 L 1154 143.1 24.0 3600.0 30361
B 1356 1356 0.0 38.7 1349 B 1172 143.1 22.1 3600.0 30260
5 101010 R 135.6 135.6 0.0 0.4 1 7101010 R 1431 143.1 0.0 48.1 737
SB 135.6 135.6 0.0 2.2 23 SB 143.1 143.1 0.0 40.5 276
L 1399 1399 0.0 321.3 1248 L 1123 157.2 40.0 3600.0 1936
B 1399 1399 0.0 332.1 1337 B 1127 1572 39.4 3600.0 2336
5 1010100 R 1399 139.9 0.0 3.7 1 71010 100 R 157.2 157.2 0.0 240.6 293
SB 1399 1399 0.0 16.6 11 SB 157.2 157.2 0.0 644.1 224

in most instances, they still underperform relative to ReLU Lagrangian cuts. This may be due to
the need to solve an MIP to obtain a strengthened Benders cut.
Experiment 3. Finally, we consider the following dynamic capacity acquisition and allocation

problem (DCAP) adapted from Ahmed and Garcia (2003) with mixed integer first-stage decisions:

teT i€l

1
T:Icllgl ZZ(OMQ% + Birtir) + N Z Qu(@) 1w < by, xi € [0,b;],u;, €{0,1},Vie [, teT },
’ s€[N]

where the local recourse functions

Qu(@)i=min ;> > chiuyise + ), ) puty

teT iel jeJ teT iel
s.t. Zd;tyljt_y?t < Z Tir, ViEI,tET,
jeJ Te(t]
i =14 =0,y €{0,1}, Viel,jeJteT.
el

In this experiment, the parameters are generated as follows. In the first stage, the capacity
expansion cost of acquiring resource ¢ in period ¢ consists of two parts, where the variable cost
a;; and the fixed cost f§;; are drawn from discrete uniform distributions U[20,40] and U[50, 70],
respectively. The maximum number of units of resource i that can be required at time ¢, denoted
as by, is set to 50. In the second stage, the cost ¢;;; of processing task j using resource ¢ in period ¢,
as well as the processing requirement ij for task j in period ¢, are stochastic. They follow discrete
uniform distributions U[40,80] and U[1,10], respectively. To ensure relatively complete recourse,
we add a penalty term for overflow, where the penalty rate p;; is set to 1000.

We compare the performance of Augmented Lagrangian cuts (AL) given by (16) with w =0
and ReLLU Lagrangian cuts (R) obtained by improving these augmented Lagrangian cuts through
the cut-strengthening procedure described in Section 4. When solving the instances, we first add

Benders cuts to solve the LP relaxation to optimality. Then, we maintain the integrality constraints
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in the first stage while taking the LP relaxation of the second stage and solve this relaxed problem
to optimality using Benders cuts. At each iteration, we add a strengthened Benders cut with a
nonlinear cut (AL or R) until the gap falls below 0.1%? or the time limit of one hour is reached.

The results are shown in Table 3. Columns 1, 2, and 3 represent the total number of resource
types, tasks, and periods, respectively. Column 4 shows the number of scenarios. The iteration
column lists the number of iterations used to add nonlinear cuts, excluding those for solving the
relaxed problem with Benders cuts. As shown by the results, our cut-strengthening procedure
leads to significant improvements over augmented Lagrangian cuts. For the instances in the first
two rows, it significantly reduces the number of cuts required to solve the problem and shortens
the solution time. For the larger instances, although both methods reach the time limit, ReLLU
Lagrangian cuts still achieve much smaller gaps.

Table 3 Numerical results for DCAP instances

Gap iter- time Gap iter- time

[I| |J| |T| N cut b ub (%) ation (s) Il |J| |T| N cut b ub (%) ation (s)
2 2 4 10 AL 1014.2 1015.2 <0.1 998 3478.8 9 2 4 100 AL 1047.0 1048.0 <0.1 629 1000.3
R 1014.9 1015.4 <O0.1 41 6.7 R 1047.4 1048.4 <O0.1 22 24.6
9 3 4 10 AL 2134.0 2280.7 6.9 521 3600.0 9 3 4 100 AL 1976.1 2092.5 5.9 438 3600.0
R 2257.5 2259.3 <0.1 89 35.1 R 2067.3 2069.3 <0.1 381 3289.8
3 4 5 10 AL 2189.1 2366.1 8.1 324 3600.0 3 4 5 100 AL 2307.6 2469.6 7.0 260 3600.0
R 2218.6 2247.9 1.3 361 3600.0 R 2340.6 2388.6 2.1 291 3600.0
4 5 6 10 AL 2994.7 3192.0 6.6 509 3600.0 4 5 6 100 AL 3005.0 3170.8 5.5 307 3600.0
R 3009.7 3192.0 6.1 393 3600.0 R 3020.3 3113.6 3.1 255 3600.0

Based on the numerical experiments above, we conclude the advantages of ReLU Lagrangian
cuts in solving two-stage SMIPs as follows: (i) For binary first-stage decisions, they can replace
the combination of Benders and integer L-shaped cuts. By improving the integer L-shaped cuts
through LP-based strengthening problems, RelLU Lagrangian cuts inherit the strength of Benders
cuts with the tightness of integer L-shaped cuts into a single cut, making the master problem easier
to solve compared to adding both Benders and integer L-shaped cuts simultaneously. (ii) Similar
to strengthened Benders cuts, they provide a stronger outer approximation than the epigraph of
the continuous relaxation of local recourse functions. The efficiency of the ReLLU Lagrangian cuts is
possibly due to incorporating valid inequalities of local convex hulls, including no-good and objec-
tive cuts, to the LP-based strengthening problems. (iii) For mixed integer first-stage decisions, they
improve augmented Lagrangian cuts at a low computational cost and achieve better performance.
And (iv) by implementing an appropriate strategy to prevent unboundedness in the strengthening
problems, the resulting cuts accelerate the master problem and mitigate potential numerical issues
arising from large coefficients in the integer L-shaped cuts or augmented Lagrangian cuts.

2 Since this is an iterative solution procedure, we choose a slightly worse stopping criterion for the gap. If we choose

the gap to be 0.01%, in most cases, the solution time will exceed an hour, but ReLU Lagrangian cuts still perform
better than augmented Lagrangian cuts.
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5.2. A mutistage model

As ReLU Lagrangian cuts can be integrated into the SDDiP framework, we evaluate their perfor-
mance on a multistage model from Zou et al. (2019)— the airline revenue management problem. In
this numerical experiment, we compare different combinations of nontight and tight cuts. Nontight
cuts include Benders cuts (B), strengthened Benders cuts (SB), and improved Benders cuts (IB),
obtained by applying our cut-strengthening procedure to Benders cuts. Tight cuts are selected
from either integer L-shaped cuts (L) or ReLU Lagrangian cuts (R).

Experiment 4. Let us consider the following airline revenue management problem (ARM):

max Z [(fb)Tbt - (fc)TCt)]

te[T]

s.t. Bt = Bt—l + bt, Ct = Ct—l + ¢4, Ct = lFBt + OSJ, bt < dt7 A(Bt - Ct) < R, Vte [T],
B, = B,,C, =Cy, B;,C,,b,,c,e 7", Vte[T).

The parameters are primarily based on the descriptions in Zou et al. (2019) and Moller et al. (2008)
with slightly different origin-destination (OD) pairs and fair classes. Specifically, we suppose that
there are 4 OD pairs, each having 2 classes, and each class offers 2 fare prices. Therefore, the total
number of classes n is 8, and the total number of ticket types m is 12. The vector f° representing
the ticket prices is (500,340,200, 100,500, 340,200, 100, 800, 540, 320, 160, 800, 540, 320, 160) ", and
the vector f¢ representing the refund amount for cancellations is set as 0.8 f°. The matrix T is a
diagonal matrix, where the diagonal entries represent the cancellation rates. The cancellation rate
for the first four types of tickets is 0.15, for the next eight types, it is 0.1, and for the last four
types, it is 0.05. The matrix A is an n x m indicator matrix, where A;; = 1 if ticket type ¢ belongs
to class j, and 0 otherwise. The seating capacity for the first class is 24, and for the economy class,
it is 120. Thus, the vector R representing seat capacities is set to (24,120, ...,24,120)". Both the
initial bookings vector By and the initial cancellations vector C, are zero vectors.

The demand vector d; at stage t is stochastic. For each ticket type ¢, the total number
of bookings follows a gamma distribution G(p;,g;). These bookings are distributed over 60
days according to a beta distribution B(«;,3;), and the bookings for the 60 days are then
assigned to the stages T. We repeat the sampling procedure 50 times and for each stage
t € [T], the demand vector d, is drawn from these samples independently. Note that we
suppose that p = (3.0,3.0,70.0/3,52.0,2.0,2.0,35.0/3,26.0,2.0,2.0,17.5,39.0, 3.0, 3.0,35.0,78.0) T,
g=(15151210,...,1.5151.2,1.0)7, a = (12.0,8.0,6.0,2.0,...,12.0,8.0,6.0,2.0)T, and 8 =
(1.5,2.0,2.0,4.0,...,1.5,2.0,2.0,4.0).

When implementing the SDDiP algorithm, during the forward step, we sample five paths and

use the results from all five paths to generate cuts in the backward step. The statistical lower
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Table 4 Numerical results for the multistage ARM instances
stage saczr(l)— cut (stat) Ib (best) ub %;{S ;E(;é;l stage S;fir;_ cut (stat) Ib (best) ub Eg;}; ;?;1
B+L 64925.9 66524.6 2.46 249 B+L 65276.6  66737.9 2.24 211
B+R 64887.9 66407.6 2.34 298 B+R 65172.6 66705.1 2.35 253
4 3 SB+L  65318.6 66530.5 1.86 174 4 5 SB+L  65278.0 66809.0 2.35 135
SB+R 65319.8 66494.1 1.80 184 SB+R 65516.9 66798.3 1.96 144
IB+L 65041.2 66591.0 2.38 197 IB+L 65125.8 66796.8 2.57 170
IB+ R 649427 665774 2.52 215 IB+R  65193.0 66782.5 2.44 183
B+L 60744.3 62603.0 3.06 188 B+L 64148.0 65722.4 2.45 144
B+R 60745.6  62564.9 3.00 225 B+R 64162.7 65721.6 2.43 157
6 3 SB+L  60914.9 62670.7 2.88 127 6 5 SB+L  64216.3 65770.9 2.42 88
SB+R 61083.7 62648.7 2.56 140 SB+R 64224.7 65763.3 2.40 97
IB+L 60685.0 62629.7 3.20 161 IB+L 64171.8 65753.3 2.46 120
IB+R  60731.7 626524 3.16 173 IB+R  64208.4 65746.0 2.39 130
B+L 63582.7 65131.5 2.44 155 B+L 66238.6 68181.7 2.93 125
B+R 63593.9 65120.8 2.40 176 B+R 66224.2 68173.5 2.94 140
8 3 SB+L  63949.0 65165.7 1.90 96 8 5 SB+L  66165.9 68090.1 2.91 73
SB+R 63943.6 65156.2 1.90 108 SB+R 66251.7 68086.7 2.77 82
IB+L 63667.2 65154.9 2.34 132 IB+L 66182.9 68191.5 3.03 107
IB+R  63859.5 65140.2 2.01 144 IB+R  66199.0 68166.6 2.97 120
B+L 63615.3 65037.2 2.24 136 B+L 66954.7 68544.1 2.37 111
B+R 63607.9 65027.4 2.23 149 B+R 66928.5 68518.2 2.38 124
10 3 SB+L  63652.5 65070.0 2.23 84 10 5 SB+L  66860.0 68576.4 2.57 64
SB+R  63643.1 65065.9 2.24 92 SB+R  66788.5 68555.4 2.65 69
IB+L 63618.5 65052.0 2.25 117 IB+L 66919.6 68531.1 2.41 94
IB+R  63617.5 65043.1 2.24 130 IB+R  66729.2 685279 2.70 101

bounds are obtained by computing a 95% confidence value using 1,500 sampled paths after the
algorithm terminates. As shown by the results in Table 4, any cut combination involving ReLU
Lagrangian cuts generally outperforms its counterpart with integer L-shaped cuts. As indicated
in the iteration column, RelLU Lagrangian cuts also enable more iterations to be solved within
the same time frame. This may be because by using Strategy 1 to avoid unboundedness, many
cut coefficients are improved to smaller absolute values or even zero, making the master problem
easier to solve compared to the original L-shaped cuts. Among all combinations, SB+R performs
the best in most instances. Although the improved Benders cuts benefit from the LP-based cut-
strengthening procedure, their performance remains less efficient than that of the strengthened
Benders cuts. Moreover, the advantage of ReLLU Lagrangian cuts becomes less significant as the
number of stages increases.

This numerical example shows that for purely binary state variables, ReLLU Lagrangian cuts,
which are equivalent to Lagrangian cuts, can be alternatives to integer L-shaped cuts, which is
quite different from existing literature (Zou et al. 2019). While previous studies have focused
on improving Lagrangian cuts to achieve certain properties by solving Lagrangian duals with
integrality constraints, the resulting Lagrangian cuts are still not as effective as strengthened
Benders cuts. As a result, it may be more efficient to use the combination of strengthened Benders
and integer L-shaped cuts. This is mainly due to two factors: obtaining the Lagrangian cuts requires

solving multiple MIPs, whereas strengthened Benders only solves one. Second, Lagrangian cuts
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may compromise the strength of the overall outer approximation to guarantee its tightness. As
this effect accumulates across stages, it results in slower recovery of the epigraphs of cost-to-go
functions compared to strengthened Benders cuts. Nevertheless, in our method, the combination
of strengthened Benders cuts and RelLU Lagrangian cuts often outperforms that of strengthened

Benders and integer L-shaped cuts, especially in providing better upper bounds.

6. Conclusion

This paper introduced a new family of nonlinear cuts, termed “ReL.U Lagrangian cuts,” for solving
stochastic integer programs. These cuts improve traditional methods by addressing nonanticipativ-
ity constraints through ReLLU functions, enabling both local and expected recourse epigraphs to be
tightly and efficiently recovered. The tightness of these cuts was established through strong duality.
We also proved that ReLLU Lagrangian cuts are a generalization of existing cut families, including
integer L-shaped cuts, ordinary Lagrangian cuts, reversed norm cuts, and augmented Lagrangian
cuts. Therefore, existing cuts can serve as a foundation for initiating the ReLLU Lagrangian cuts.
We also proposed efficient cut generation schemes that enhance cut coefficients while eliminating
the need to solve multiple mixed integer programs at each iteration. Our numerical studies demon-
strated the superior performance of ReLU Lagrangian cuts, particularly in reducing the number

of iterations required for the cutting-plane method to converge, compared to existing approaches.
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Appendix A. Proofs
A.1. Proof of Corollary 2
COROLLARY 2. A Lagrangian cut generated at & € X is tight if and only if there exists o € R”,

a+#0, such that a'x+ 60> 'z + Q. (Z) for all (x,0) € conv(epix(Qs)).

Proof. 1t is equivalent to show that any cut coefficient 7 € D satisfies L4(m;Z) = Qs(Z). Given
m € D, from the primal characterization we have L4 (7;Z) = min,{0: (x,0) € conv(epix(Qs)),x =

T} >min0:0>a’ (z—x)+ Q,(Z),x =z} = Q,(x). Combined with (3a) completes the proof. o

A.2. Proof of Theorem 1
THEOREM 1. Under Assumptions 1, 2 and 8, Q (&)= Q,(x). Moreover, when

* QS(ﬁ) —L

(—1p*,—1p*) is optimal to (7), where d = min {||x* —Z||, : ke K,z* # 2}, and {(z*,y*,wi)}rex
are extreme points of the set conv{(xz,y,w): Tz +W?y>=h* xe X,yeZ™ xR™ ||z —z||; <w}.

Proof. By weak duality, we have Q (Z) < Q,(Z). To show that Q (Z)> Q,(Z), we note

Q ()= sup L, (w77 ;&)=supLy(—pl,—pl;Z),

—S
7wt w—eR™ p>0

where

Li(=p1,—pl;@) =inf{Q,(x) + plle — 2|1 @ e X} =inf{(¢") 'y + pllz — 2], : (2, y) e Y}

— inf {(@")Ty +pw (2,9) € Vs lo — 3l <o, (31)

and Y, := {(z,y) : Z" xR"2 x Z™ xR™2 : Ax > b, T*x + Wy > h*}. Since formulation (31) is MIP
with rational data and inf,, ,{(q°)Ty + pw: (z,y) € Y, ||z — Z||, < w} = infey{(q®) Ty : (z,y) €
Y.} = L by Assumption 2, the infimum of formulation (31) is attained at some (x,,y,,w,). From

the weak duality, we have
Ly(=p1,—pL;2) = (q°) "y, + pw, = Qu(x,) + pw, < Q(2), (32)

for all p > 0 and any optimal solution (x,,y,,w,) of problem (31). This implies that w, <

Qs(@)=Qs(®p)  Qs(®)-L
P I

. Letting p — o0, we have w, — 0. Hence, we must have lim, ,,, ¢, = Z, since
llx, — Z||s <w, for any p > 0. Notice that Q,(x) is the value function of a rational MIP and is,
therefore, lower semicontinuous with respect to @ (Meyer 1975). Thus, liminf, ., Q,(x,) = Q4(Z).
For any p > 0, we have L,(—pl,—pl;Z) = Qs(x,) + pw, = Qs(x,). Taking the liminf on both

sides, we obtain liminf, ,,, £,(—pl,—pl;&) = Q,(Z). Meanwhile, taking the limsup on both sides
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of (32) and using the fact that lim,_,,, w, = &, we have limsup,_, , £,(—p1, —p1;Z) < Q,(Z). Thus,

<
lim, ., £s(—p1,—pl;Z) = Qs(Z). Together with the weak duality, this shows that Q () = Q,(Z).

S

Next, we prove the supremum can be attained at some finite p*. Define a set
Fi={(z,y.w): (z,y) €Y, ||z - 2| <w}. (33)
When p > 0, we have

L(=p1,—pL;2) = inf {(¢°) 'y +pw:(z,y,w)e F} = inf {(¢°) y+pw: (z,y,w)econv (F)}
T,Y,w T,Y,w

—mi S\T , k > mi k
min{(q®) ' y" + pwi} = min{Q, () + pwi},

where {(x",y*, wp.) }rex S F are all extreme points of conv (F). The third equality holds since p > 0
ensures that £,(—pl,—pl;Z) > L, and the infimum is attained at some extreme point of conv (F').
The inequality follows because, for any feasible solution (x,y) € Y;, we have (¢°) "y = Q.(x) by the
definition of the local recourse function. If ¥ = Z for all k€ K, then we have £,(—pl,—pl;Z) >
Qs(@)—L

Q, (&) for any positive p*. If not, let d = min{||x* —Z||, : ke K,x" # &} and let p* = === Then,

for any optimal w,*, we have w,+ < % < d, according to (32). Therefore, we have

L,(—p*1,—p*1;&) =min {(¢°) "y" + p*wy : wp < d} = min{(q®) "Y* + p*wy :wr €{0,d}} = O, (&),
keK keK
where the first equality follows since restricting w;, < d preserves all optimal solutions, and the
last inequality follows since when w; = 0, we have (¢°)Ty* + p*wr = Q.(Z), and when w;, = d,
(@°)Ty* + p*wy, = L+ 2E=L4 = 9 (2). Therefore, the optimal value of (7) is Q,() with an

optimal solution w+* =7~ " = —p*1. o

A.3. Proof of Corollary 4

COROLLARY 4. For any bounded set S such that S 2 X, if (w**,@=") is optimal to

SUDP+ e iNfges Ls(x, 7,75 &), then it is also optimal to sup,+ —cpn inf e Lo(x, 7", 775 2),

where
Lz, mt mn18):= Q@) — Y mf(wi— &) — Yy (w — &)
ien] ien]
Proof. Since (w**,7w~") is optimal to sup.: . cgninfees Ly(z,mt, w7 &), we have
infees Ly(x, 7", 7w ;2) = Q,(Z). Taking the infimum over a subset X < S, we have
infex Ly(x, 74,7 ;2) > infyes Lo(x,w,w ;&) = Q. (&). At the same time, we have

~

L (Z,7" 7 ;%)= Q,(Z) and £ € X. Thus, we can conclude that inf .y L,(x, 7+, 77;2) = Q,(Z).

This implies that (7w+*,w~") is also optimal when restricting x € X. D
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A.4. Proof of Corollary 5
COROLLARY 5. For a given feasible first-stage decision T € X, (7%, 7~) is optimal to (7) if and

only if
Q,(x) < Qi(x) — Z (@ — ;)" — Z 7, (T — 7)), (10)

i€[n] i€[n]
for all ze X, or equivalently,
0> Qu(x) > Q@)+ ) Af(wi—2)" + Y Ay (wi— 1),
i€[n] i€[n]
for all (x,0) in the epigraph of Q.

~ ~

Proof. Given € X and (7+,7~) € R*", if the condition (10) is satisfied, we have L (7,77 ;Z) =
inf, {Qs(m) — Ve Ti (@i =TT = Xy T (T —3) " e X} > Q,(Z). Meanwhile, if (77, 77) is
+ R

optimal to (7), we have L (71,7~ ; &) = Q,(&) according to the strong duality shown in Theorem 1.

Therefore, we have

for all feasible x € X. o

A.5. Proof of Proposition 3

PROPOSITION 3. Given a first-stage decision & € X, we have
conv(Sy) = {(,0) € Xie[y[0, B)] x R: I(w™,w™,2) eR" x R" x [0,1]", (13a), (13b)} . (14)

Proof. Let us denote the right-hand side of (14) by S, which is a continuous relaxation of Sj.
Hence, we must have S; € S5.

To prove S; 2 S,, we first observe that conv(S;) = conv{(x,) : I(w',w™,2z) € R” x R™ x
{0,1}",(13a),(13b),0 < z; < B;,Vi € [n]}. For any (x,0) € S, there exists a solution (w,w™,2)
such that (14) holds. Without loss of generality, we assume zo:=1>2; > ... > z,. To show (z,0) €

conv(S;), we construct n+ 1 points (¥, 0y) }reo,n] as follows. For k€ [0,n], let Ay = 2;, — 2441, and

define 2% € {0,1}" as
1, i<k,
k-
"o, ik,

for all i € [n]. Define (w*)*, (w™)* e R™ as follows: If 2, =1, let

wi, i<k,
(wh)k = . and (w™)*=0.
0, 1>k,
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If0<2k<1, let

; <k

ik o‘jl7 ng, Ak O) B 1 Y
(Wi =1 2 and (w7); =4 w; ;

07 Z>k7 1—21" P>k

If z;, =0, let

0, i<k,
(whH¥=0and (w)F= {

w;, 1>k.
With z* defined as " = Z + (w")* — (w™)*, the above formulations ensure that constraints (13b)
are satisfied. To satisfy condition (13a), we let 0% =0 — 3, (7w + 7 w;) + X (7 (wh)F +
T (W7)§). Thus, we have 6 =37, (7" (W*)f + 77 (W7)f) =0 — Xy (M +77w;7) = Qu(2). Tt is
easy to verify that (z,0,w",w™,2) =3, 1 M@, Ok, (W), (w7)*, 2"). Thus, (z,0) € conv(S).

Consequently, we have conv(S;) = S,. o

A.6. Proof of Proposition 4

PROPOSITION 4. Any tight Lagrangian cut is a ReL U Lagrangian cut.

Proof. Given Z € X and 7€ R" such that £(m;Z) = Q,(Z), we can derive a tight Lagrangian cut
0> Q,(2)+m'(z—2). It is equivalent to 0 > Q (&) + X, mi(ws — T:)* — X, mi(ws — 73)~, which

is a ReLLU Lagrangian cut according to Corollary 5. o

A.7. Proof of Proposition 8

PROPOSITION 8. Given scenario s€ [N], the set I is a polyhedron.

Proof. According to Definition 4, from the optimality condition (10), we have

H(

S
xr

(m*, m7) e R min {Q, () — () (2= 2) " — () (2~ &) :we X} > Q(3) }

(rt,m7)eR*: min {Q,(x)— (") w’ — (7)) w :xe X, (13b),(13c)} = Q,(2 }

Twt,w 2

(mt,m)eR™: min {(¢°) y— (7)) w’ —(77) w : (x,y) €Y, (13b), (13¢)} = Q( )}

zwt w2y

I
A A —A— ——

(w7 ) e R (W) Tt + (w )T < (¢) Ty - Qu(@), Vhe K},

where {(zF,wt" w™" 2* y*)}icx are all extreme points of the polyhedron conv{(z,w ™, w™, z,y):
(z,y) € Ys, (13b), (13c)}. This implies that II$ is defined by finitely many linear inequalities and,

therefore, is a polyhedron. o
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A.8. Proof of Lemma 1

LEMMA 1. Given scenario s € [N], when the first-stage feasible decision is purely binary, the reces-
sion cone of I3 contains lin{(e;,0)}ier, +1in{(0, e;)}igr, -

Proof. Given Z € X, for any binary x, we have w;

(2, —2;)~ =0 for all i ¢ I. Thus, (W) Te; + (w")T0=0for all i€ I; and (w*"*)T0+ (w")Te; =0
for all i ¢ I. o

=(x; —7;)" =0 for all i€ Iz and w; =

A.9. Proof of Theorem 2

THEOREM 2. The following properties hold for the set D of dual optimal solutions and Lagrangian
cuts generated at T € X: (i) The set Di is a polyhedron; (i) A Lagrangian cut 6 > co(Q,)(Z) +
7' (x — &) is facet-defining if and only if 7 is an extreme point of Dg; (iii) The recession cone
of D is the normal cone of X at &; and (i) The local convex hull can be described using the

facet-defining Lagrangian cuts:
conv(epix(Qy)) = {(z,0) € conv(X) x R: 0 > co(Q,)(Z) + w' (x — Z),VZ € X, weext(D)}.
Proof. For a given 2 € X, from the optimality condition (5), we have
2 = {ﬂ' eR™: 121011 {0+7"(Z—x): (x,0)econv(epig(Q,))} > co(Qs)(i)} ,

where conv(epix(Q,)) = conv{(z*, Q(z*)) : k € K} + cone{(0,1)}, and K is finite since

conv(epix(Q;)) is a polyhedron. We further obtain that
Di={meR": Q,(z") + 7' (T —a") > co(Q,) (&), Vke K, 1—-mw'0>0}. (34)

which involves finitely many linear inequalities and, therefore, is a polyhedron.

Suppose that set conv (X) is full-dimensional. Then conv (epix(Q,)) has dimension n+ 1. A cut
0 = co(Q,)(x) + ' (x — ) is facet-defining if and only if it is tight at n + 1 extreme points of
conv (epigx(Q;)) that are affinely independent. That is, 7 satisfies n linearly independent inequali-
ties with equality in (34), meaning that it is an extreme point of IIz. When X is not full dimensional,

we can reduce it to a lower dimensional space where the same result holds.

From the optimality condition (5), we have
Dy ={meR": 7w (Z—x)>co(Q,) (&) — Qs(x),Vxe X}.

Thus, rc¢(Dy) = {weR":n'(Z—x)>0,Vee X} = {mreR":n'(Z—x)>0,YVzeconv(X)} =

Nconv()?) (i) o
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A.10. Proof of Proposition 9
PROPOSITION 9. The strengthening problem (Stren) is bounded if and only if —a € Teonv(x)(T).

Proof. Note that LP (Stren) is always feasible with 1 = 0 being a feasible solution. Hence, the
strengthening problem (Stren) is bounded if and only if its dual problem

keK

max { 2@ - Q@) -7 (@ —a"))y: ) (@ -2 )y =a,y > 0} :

where {x"},c = X, is feasible. Therefore, by definition, the strengthening problem (Stren) is

~

bounded if and only if —a € Teonv(x)(Z). o

A.11. Proof of Proposition 10
PROPOSITION 10. Any feasible solution of (24) is also feasible for (Stren).

Proof.  Since QXF(x) is obtained by solving the LP relaxation of the local recourse
problem, we have QLFf(x) < Q,(x) for all = € X. Thus, for any m feasible for (24),
we have ming {Q.(x)+ (w+n) (Z—x):xe X} > min, {Q(x)+ (w+n) (Z—x):xe X} >
min, { QL (z)+ (7 +m) " (Z —x): x € X'} > Q,(Z). Therefore, 1 is also feasible for (Stren). o
A.12. Proof of Proposition 11
PropoSITION 11. The set

FLP .= {77 : min{QSLP(ac) +(@F+n) (&) ;xef(} > Qs(:ﬁ)} (25)
is always nonempty, where X :={xe X :xT (& —x)>1}.
Proof. According to (25), we have

FE7—{n: QM (@) + (7 +m) (& - @) > Q,(&), Ve X |

—(7 + ~ ~ — (T + .
Note that
epix(QFF) = {(,0) e X'P x R: Iy e R™*™ .0 > (¢°) Ty, T°x + Wy = h*, X" (& —x) > 1}

is a polyhedron and, therefore, closed and convex. Since (Z', Q,(Z)) ¢ epix QLF, by the separa-
tion theorem, there exists a, 3,7 such that a'Z + 3Q,(Z) <~ and a'x + 36 > v for all (x,0) €
epix(QLF). If B+ 0, since (0,1) is an extreme ray of epiz(QXF), we have 8> 0. Then, —a/f —7 €
FLP If §=0, let

[\Y)
=
Qo
"
[ate)
=
O
—
—~—

z
Then we have a separation a'x + 0 > a'x + SL > v — 7*‘2"% _1ta’@ g oTF + B, (Z) <

2
TA T A _
TA L1 _ y+a & ~ LP
a'r+ =77 =122 Hence, —a/f —Te F".
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A.13. Proof of Proposition 12
PROPOSITION 12. Given Z € X, let us define E3 = {(x,0)e BxR:(15)} and
E; = {(:1:,9) eBxR:36€{0, 1} x ... x {0, 1}V H 2, = Z 2761, Vi e [n], (27)} :
J€[0,N4]
where B:= Xe(,1[0,B;]. If B; = 3 for all i € [n], then conv(E}) 2 conv(E3).
Proof. According to Proposition 3, we have
( Fwh,w,z)eR" xR" x [0,1]",
0> Q@)+ (L - Qu(@)) ), (w +wy),
conv(ER) = { (x,0) € Xe[n[0, B;] xR i€[n] >
U.);r _wz_ =XT; —Z/IT\Z‘,O < LL);F < (B,L —Z/E\i)ZZ'7
L 0<w; <Zi(1—2),Yie[n] )
it suffices to show that conv(E}) 2 E;. We observe that (z, Q,(Z) + (L — Qs(2)) Xcp,,; max{B; —

Z;,2;}) € conv(EY) for all « € B by letting z; =1 if B; — Z; > z; and 0, otherwise, for all i € [n]. It

remains to show that
Cramm 1. ||& —SZH <max{B; — T;,z;} for all xe B and i< [n].

According to Claim 1, for any (z,0) € E}, we have 0 > Q,(Z) + (L — Qu(&)) X, 10" — &1 =
Qu(Z) + (L — Qs(@)) Xiepny max{B; — 7;,7;}. Hence, (z,0) € conv(E3) and Ej < conv(Ej).

To prove Claim 1, notice that since B; is an integer and N; = |log, B;|, we have max{B; —Z;,Z;} >
[B;/2] =21, On the other hand, we observe that ||67 — %||; < N; + 1. There are three cases:
Case 1: B; =5 or B; =3. In this case, we have [B;/2] = N, + 1.

Case 2: B; =4, if 3, =0,1,3,4, we have ||6 — §'||; < 3 < max{B; — Z;,2;}.

Case 3: B; =4 and Z; = 2. In this case, we have max{B; — #;,7;} = 2, 6' = (0,1,0)7, and ||6' —
8[|, < 3. Note that ||§' — 8'||; = 3 if and only if 6 = (1,0,1)7, i.e., 2; = 5, contradicting
2; < B; = 4. Hence, we have ||6' — &°||; <2.

Therefore, we must have max{B; — 7;,%;} > ||8° — 8||, if B; >3 for any i€ [n]. o

A.14. Proof of Proposition 13
PROPOSITION 13. Suppose that integer B; = 291 + - - + 29ti 4 2Ni - and set J; = {j1i, ..., Jei, Ni} for
each i€ [n]. Then,

35[0, 1] x - x [0,1]V T (27),

T = Z 2/6: < By, Vie [n],
conv(E}) =< (x,0) € Xien1[0, B;] x R: Je[0,N;] ’

5;+ Z (S.Z,_ < |JW|,V7"E {OalaaNz}\Jﬂvze [n]

Te€Jip

where we let J;, ={fe J;: {>r}.
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Proof. Let D; = {6i e{0, 1M 3 o N 2705 < BZ-} for each i € [n]. Then, according to the decom-

position structure of set E;, we have
35[0, 1] x .-~ x [0,1]" T, (27),

conv(E7) =< (x,0) € Xien1[0, B;] x R:Ti = Z 276, Vi€ [n], ,

jE[O,N,L']
8" € conv(D;),Vie [n].
On the other hand, according to Laurent and Sassano (1992), Gupte et al. (2013), the convex hulls
of the D;’s can be described using their knapsack structure. Suppose that B; = 271 4 ... 4 27¢i 4 2Ni |
and let J; = {Jju,...,Ju, N;} for each i € [n]. Then, we have

conv(D;) = {5ie[o,1]Ni+1:5:;+ Z 6i<|Jir,Vre{O,l,...,Ni}\Ji},

T€J;p

where J;,. = {¢€ J;: £ >r}. This completes the proof. o
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