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Abstract

Bilevel optimization has garnered growing interest over the past decade.
However, little attention has been paid to detecting and dealing with un-
boundedness in these problems, with most research assuming a bounded
high-point relaxation. In this paper, we address unboundedness in bilevel
optimization by studying its computational complexity and developing
algorithmic approaches to detect it. We show that deciding whether an
optimistic linear bilevel problem is unbounded is strongly NP-complete.
Furthermore, we extend the theoretical intractability result to the multi-
level case, by showing that for each extra level added, the decision problem
of checking unboundedness moves up a level in the polynomial hierarchy.
Finally, we introduce two algorithmic approaches to determine whether a
linear bilevel problem is unbounded and, if so, return a certificate of un-
boundedness. This certificate consists of a direction of unboundedness and
corresponding bilevel feasible point. We present a short proof of concept
of these algorithmic approaches on some relevant examples.

Keywords: Computational Complexity, Unbounded, Bilevel Optimization,
Multilevel Optimization.

1 Introduction
Bilevel optimization is a modelling framework for hierarchical interactions be-
tween non-cooperative decision makers. This framework models a Stackelberg
game [16, 19, 17] with at least two players: a leader and a follower. First,
the leader makes its decision. Then, given the leader’s decision, the follower
reacts optimally according to its own possibly-conflicting objective. In turn,
the reaction of the follower influences the objective that the leader can realise.
Hence, the leader must anticipate the follower’s behaviour in order to accurately

∗University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
†CIRRELT & Université de Montréal, Quebec, H3T 1J4, Canada
‡University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom, and GERAD, Polytech-

nique Montreal, Montreal, Quebec, H3T 2A7, Canada

1



optimize its objective. Mathematically, a bilevel problem is an optimization
model where some of the variables, corresponding to the follower’s decisions,
are constrained to be optimal for another optimization problem. This type of
mathematical models with optimization problems in the constraints were first
formulated in [5].

Background. Bilevel problems are known to be challenging to solve. For
instance, mixed-integer bilevel problems are shown to be Σp

2-hard in [12]. In
fact, even in their simplest form with linear objective functions and constraints,
bilevel problems are strongly NP-hard [10]. In this paper, we focus on this linear
case of bilevel problems, whose optimistic formulation is expressed in (B):

min
x,y

c⊤x+ d⊤y (B.1)

s.t. Ax+By ≤ a (B.2)

y ∈ argmin
ỹ

f⊤ỹ (B.3)

s.t. Cx+Dỹ ≤ b, (B.4)

where A, B, C, D, a, b, c, d, f are matrices and vectors of rational numbers of
appropriate dimension. The decision problem of the leader (B.1)-(B.2) is called
the upper-level, and that of the follower (B.3)-(B.4) is the lower-level problem.
The upper- and lower-level decision variables are denoted x and y, respectively,
and the feasible region (B.2)-(B.4) is often referred to as inducible region.

The links between linear bilevel and mixed-integer optimization have long
been the topic of research. In fact, Audet et al. [2] showed in 1997 that a binary
variable x ∈ {0, 1} can be modeled by the constraints y = 0, 0 ≤ x ≤ 1, and the
linear continuous problem:

y ∈ argmax
ỹ

{ỹ : ỹ ≤ x, ỹ ≤ 1− x}.

Thus showing that 0-1 linear optimization problems are a special case of linear
bilevel problems. Given this connection, it should come as no surprise that
the inducible region is, in general, non-convex [3], and it might even be dis-
connected [1, 7] in the presence of linking constraints (also known as coupling
constraints), this is if B ̸= 0⃗.

Due to the inherent complexity of bilevel models, many bilevel solution ap-
proaches start by solving a simpler single-level relaxation. The most common
relaxation is the high-point relaxation (HPR) which is obtained by simply op-
timizing the upper-level objective over the shared constraint set of upper- and
lower-level constraints (FHPR):

min
x,y

{
c⊤x+ d⊤y : (B.2), (B.4)

}
. (HPR)

It is known that, if an optimal solution of the bilevel exists, it can be found
at a vertex of this relaxation’s feasible set [3], which hints at the relevance of
the HPR in bilevel optimization. Nevertheless, if this relaxation is unbounded,
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nothing can be concluded about the optimality status of the corresponding
bilevel. The examples in [13] show that when the HPR model is unbounded,
the corresponding bilevel can be finite optimal, unbounded, or infeasible. Due to
this inconclusiveness, most bilevel solution approaches assume that the feasible
set of the HPR is bounded. Consequently, there is little existing research on
how to handle bilevel problems when this relaxation is unbounded.

Unboundedness. The majority of progress in the study of unbounded
HPR models is made under the assumption that this unboundedness originates
in the lower-level problem alone. In fact, if there is a feasible upper-level solution
such that the corresponding lower-level problem is unbounded, then the bilevel
problem is infeasible [22]. This key theorem has driven most of the results in this
field. Note that this result is derived for mixed-integer linear bilevel problems,
but it can be easily adapted to linear bilevel problems. The same holds true for
the following surveyed results.

In [22], a mixed-integer linear problem is designed to track the reason for
the unboundedness of the HPR, under the assumption that upper-level variables
are bounded. Depending on the optimal objective value of this mixed-integer
problem, we can conclude whether the bilevel is infeasible, unbounded, or finite
optimal [22] (see Example 2 for an unbounded bilevel model with bounded
upper-level variables). Furthermore, it is shown in [8] that, when the HPR is
unbounded, one can detect whether the lower-level problem is unbounded by
solving a linear problem. Depending on the optimal value of this model, we
can conclude that either the bilevel is infeasible or the lower-level problem is
well-defined for every feasible point of the HPR. Nevertheless, when the HPR
is unbounded, but the lower-level problem is not unbounded, solving this linear
model will not allow us to determine the status of the original bilevel.

Contributions. To sum up, studying the conclusions that can be drawn
about the bilevel problem when its relaxation is unbounded is a relevant but
often overlooked topic. In this paper, we present results aimed at closing this
gap. In Section 2, we show that the decision problem of whether a linear bilevel
problem is unbounded is strongly NP-complete, and make some parallels to the
pessimistic bilevel formulation. More generally, we also show that checking un-
boundedness of a multilevel problem with k levels is Σp

k−1-hard in Section 2.3.
In Section 3, we detail two possible algorithmic approaches for checking whether
a bilevel problem is unbounded and, if so, computing a certificate of unbounded-
ness. We also depict the potential of these algorithms for some example instances
of interest. Finally, in Section 4 we propose directions for future research.
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2 Computational Complexity of Checking Unbound-
edness

2.1 Decision Problem
The decision problem of deciding whether a linear model (LP) is unbounded

min
x

{
c⊤x : Ax ≤ b

}
(LP)

can be formulated as

∃x,∆x ∈ Qn, ∀k ≥ 0 : A(x+ k∆x) ≤ b ∧ c⊤∆x < 0 ?

This problem has an existential quantifier, followed by a universal quantifier,
and a property that can be verified in polynomial time. Consequently, it belongs
to the class Σp

2 [20]. However, this question can be simplified into one with only
an existential quantifier as:

∃x,∆x ∈ Qn : Ax ≤ b ∧ A∆x ≤ 0 ∧ c⊤∆x < 0 ?

Therefore, this allow us to say that the problem is in NP⊆ Σp
2. Furthermore, we

know that we can solve a linear model in polynomial-time by applying an interior
point method [23], and that such algorithm also identifies unboundedness. Thus,
we can further write the question without an existential quantifier, allowing us to
conclude that the problem is in P⊆ NP. It is exactly this type of reasoning that
will guide our contributions when proving that the decision problem of checking
unboundedness of a linear bilevel problem is in NP. But first, we formally define
this decision problem.

In general, we know that an optimization problem is unbounded if it admits
a feasible point, and a direction of unboundedness at that point. In turn, a
direction of unboundedness must be a direction along which feasibility is pre-
served and the objective value improved. Therefore, we say that a direction
(∆x,∆y) is a direction of unboundedness at a feasible point (x, y), if it verifies:

(x, y) + k(∆x,∆y) ∈ FB ∀k ≥ 0 (2)

c⊤∆x+ d⊤∆y < 0 (3)

where FB denotes the inducible region. Consequently, we define the decision
problem for whether the optimistic linear bilevel problem (B) is unbounded as
Unbounded-BLP.

Unbounded-BLP:
instance: A, B, C, D, a, b, c, d, f matrices and vectors of rational numbers
and of appropriate dimension.
question: Is the bilevel problem (B) unbounded? Equivalently, are there
a feasible solution (x, y) ∈ FB and a direction (∆x,∆y) at that point that
verify (2)-(3)?

In the following section, we show that this decision problem is strongly NP-
complete, by showing that it is both in NP and strongly NP-hard.
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2.2 NP-completeness of Bilevel Case
2.2.1 Inclusion in NP.

In this section, we prove that Unbounded-BLP belongs to the complexity
class NP. First, we present two auxiliary results that allow us to formulate
the problem’s question as one involving a single existential quantifier. This
formulation is based on the reformulation of the inducible region as a finite
union of polyhedra from [4]. For detailed proofs of these results, Lemma 1 and
Theorem 1, see Appendix A.

Lemma 1. The bilevel problem (B) is unbounded if and only if the finite-union-
of-polyhedra reformulation (P) is unbounded.

min
x,y,λ

c⊤x+ d⊤y (P.1)

s.t. (x, y, λ) ∈
⋃

ω∈{1,2}n2

Pω (P.2)

where λ are the dual variables of the lower-level problem, n2 is the number of
lower-level constraints, and the polyhedra Pω are defined as:

Pω = {(x, y, λ) ∈ F : (Cx+Dy − b)i = 0 ∀i : ωi = 1;

λi = 0 ∀i : ωi = 2}

where F consists of the upper- and lower-level constraints ((B.2), (B.4)), plus
the lower-level dual constraints (D⊤λ = −f⊤;λ ≥ 0).

Theorem 1. The finite-union-of-polyhedra reformulation (P) is unbounded if
and only if ∃ω ∈ {1, 2}n2 such that the linear problem (Pω) is unbounded.

min
x,y,λ

c⊤x+ d⊤y (Pω)

s.t. (x, y, λ) ∈ Pω

Given Lemma 1 and Theorem 1, we conclude that Unbounded-BLP can
be equivalently formulated as:

∃ ω ∈ {1, 2}n2 : (Pω) is unbounded?

This is a formulation with a single existential quantifier, followed by the property
of whether a linear problem is unbounded, which can be verified in polynomial
time [23]. Therefore, this problem belongs to the complexity class NP [20].
Note that the cardinality of the set {1, 2}n2 is exponential in the instance size,
therefore we cannot trivially say that the problem is polynomially solvable.

2.2.2 Strong NP-hardness.

We now conclude that Unbounded-BLP is strongly NP-complete in Theo-
rem 2, by proving that it is also strongly NP-hard.
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Theorem 2. Unbounded-BLP is strongly NP-complete.

In order to prove this result, we derived a reduction from the decision version
of the 3-SAT problem known to be NP-complete [9]. For a proof see Appendix A.

Remark 1 (Linking constraints). Note that while the presence of linking con-
straints (this is B ̸= 0⃗) plays an important role in the proof of strong NP-
hardness, the inclusion of Unbounded-BLP in NP is valid even for bilevel
problems without linking constraints. Although it is desirable to obtain a stronger
proof of NP-hardness that uses a bilevel without linking constraints in the re-
duction, this remains an open question. While existing work demonstrates the
reformulation of bilevel problems with linking constraints into those without,
these approaches rely on the assumption that the bilevel problem has a finite
optimal solution [11]. Notably, one of the crucial steps in [11] is related to re-
formulating complementarity constraints using big-M constants by following the
procedure in [6] based on the analysis of lower-level basic solutions. However, it
is not clear that this can be adapted when there is a direction of unboundeness.
Therefore, these ideas are not applicable to our context.

Remark 2 (Pessimistic Formulation). So far we have considered the optimistic
formulation of a linear bilevel problem. In other words, we assumed that when
there are multiple optimal solutions of the lower-level problem, the follower
chooses the optimal solution that benefits the leader the most. Another com-
mon formulation is the pessimistic one [14] where the opposite is assumed. In
this formulation, if there are multiple lower-level optimal solutions, the worst
solution with respect to the upper-level will be selected. Hence, the optimization
of the upper-level objective in (B.1) is replaced with:

min
x

max
ỹ

c⊤x+ d⊤ỹ

In general, unboundedness of the optimistic formulation of a bilevel problem does
not imply that of its pessimistic formulation (see Appendix B). Nevertheless, the
NP-hardness part of Theorem 2 still holds if we consider a pessimistic formu-
lation, because the lower-level variables in the reduction are uniquely defined by
the upper-level variables. In other words, the pessimistic and optimistic formu-
lations are equivalent for the bilevel problem used in the reduction. Therefore,
the decision problem of whether a pessimistic linear bilevel model is unbounded
is also strongly NP-hard.

2.3 Extension to Multilevel Case
In this section, we extend our results to multilevel optimization by showing that
deciding whether a k-level optimization problem is unbounded is Σp

k−1-hard. We
have seen that for k = 2, checking if a bilevel problem is unbounded is NP-hard,
or equivalently Σp

1-hard. So this extension shows that for each level added to a
multilevel problem, the complexity of deciding unboundedness moves up a level
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in the polynomial hierarchy. First, we introduce an optimistic k-level problem
(KLP):

min
x

c⊤k x

s.t. x ∈ Sk

x(k−1) ∈ argmin
x(k−1)

c⊤k−1x
(k−1)

s.t. x(k−1) ∈ Sk−1

x(k−2) ∈ argmin
x(k−2)

(. . . )

...
x(2) ∈ argmin

x(2)

c⊤2 x
(2)

s.t. x(2) ∈ S2

x(1) ∈ argmin
x(1)

c⊤1 x
(1)

s.t. x1 ∈ S1

(KLP)

where x = (x1, . . . , xk) are the decision variables, and Si is the linear feasible
region of level i; note the slight abuse of notation on the use of the same variable
notation over different levels. The set Si is parameterized by the variables of
all the levels above i, so the notation Si is an abbreviation for Si(xi+1, . . . , xk).
The subset of decision variables of level i is x(i) = (x1, . . . , xi), and ci the
corresponding objective coefficients.

The decision problem of deciding whether the linear k-level problem (KLP)
is unbounded can be stated as:

Unbounded-KLP:
instance: ck, . . . , c1 rational vectors of appropriate dimension and
Sk, . . . , S1 linear polyhedra (defined by rational coefficients).
question: Is the corresponding k-level model unbounded?

In Theorem 3, we show that Unbounded-KLP (with linking constraints
only in its level k) is strongly Σp

k−1-hard.

Theorem 3. Unbounded-KLP is Σp
k−1-hard.

In order to prove this result, we derived a reduction from the decision version
of the (k − 1)-Alternating Quantified Satisfiability problem known to be Σp

k−1-
complete [21]. For a proof see Appendix C.

3 Algorithmic Approaches
Despite the theoretical intractability of deciding whether (B) is unbounded,
this section explores methods for addressing it. We present two algorithmic
approaches to check whether a bilevel problem is unbounded when its HPR is.
The first, a natural method leveraging on previously presented results, reduces
to solving a hard problem. The second is more intricate and it is designed so
that each step solves easier problems.
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3.1 LPCC Reformulation
The first approach consists in reformulating our decision problem as a linear
problem with complementarity constraints (LPCC). Such problems can be fed
into mixed-integer linear solvers like Gurobi, where complementarity constraints
are handled using SOS constraints of type 1. As shown in Theorem 4, the objec-
tive value of this LPCC allow us to conclude whether the corresponding bilevel
problem is unbounded. For a complete proof of Theorem 4 see Appendix D.

Theorem 4. The bilevel problem (B) is unbounded if and only if the LPCC (U)
has strictly negative optimal value.

min
x,y,λ,∆x,∆y

c⊤∆x+ d⊤∆y (U.1)

s.t. (x, y, λ) ∈ F (U.2)
(Cx+Dy − b)λ = 0 (U.3)
A∆x+B∆y ≤ 0 (U.4)
C∆x+D∆y ≤ 0 (U.5)
(C∆x+D∆y)λ = 0 (U.6)
− 1 ≤ ∆x,∆y ≤ 1 (U.7)

where once again F =
{
(x, y, λ) : (B.2); (B.4); D⊤λ = −f⊤; λ ≥ 0

}
. More-

over, when an optimal solution exists, its component (x, y) provides a feasible
point and its component (∆x,∆y) a direction of unboundedness at (x, y).

Note that, from the optimization status and optimal value of the problem
(U), we can extract further conclusions about the corresponding bilevel problem
(B). The problem (U) cannot be unbounded, because of constraint (U.7). When
(U) is infeasible, so is the bilevel problem (B). We know this because (∆x,∆y) =
(⃗0, 0⃗) is always feasible for (U), so infeasibility of this model reveals that there
is no bilevel feasible point (x, y, λ). When (U) is finite optimal, we know that
its optimal value is non-positive. On the one hand, if the optimal value is
strictly negative, Theorem 4 allows us to conclude that the bilevel problem is
unbounded. On the other hand, if the optimal value is zero, then we know that
the bilevel problem (B) is finite optimal, since it is feasible and not unbounded.

Remark 3 (Dual Component of Direction of Unboundedness). Note that the
model (U) does not consider the component of the direction in the lower-level
dual space (∆λ). In fact, as evidenced in the proof of Theorem 4, if (∆x,∆y) is
a direction of unboundedness for the bilevel, we can always trivially extend it to
the lower-level dual space with ∆λ=0. Indeed, in case of unboundedness, under
the optimal solution (x⋆, y⋆, λ⋆,∆x⋆,∆y⋆) of (U), for all k ≥ 0, y⋆ + k∆y⋆ is
an optimal solution of the lower-level problem at x = x⋆ + k∆x⋆, where the
basis (for the lower-level problem) is always the same. Hence, the associated
dual optimal solution does not change.
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3.2 Vertex-Enumeration Algorithm
The second approach is a vertex-enumeration algorithm detailed in Algorithm 1.
The idea behind this algorithm is that given a bilevel feasible point, we can
check all directions of unboundedness of the HPR at this point (step 5) for
whether they are also directions of unboundedness of the bilevel problem (B) by
solving a linear problem. In fact, we verify whether a given direction generates
unboundedness for the bilevel problem, by determining whether it has associated
dual values, hence ensuring it belongs to a polyhedron Pω (steps 7 and 8).

Algorithm 1: Vertex-Enumerating Algorithm
1 for B set of basic indexes of FHPR do
2 if B yields a basic feasible solution (vx, vy) of FHPR then
3 if (vx, vy) is bilevel feasible then
4 Compute the reduced costs c̄ and constraint matrix

coefficients Ā in the simplex tableau of (HPR) at (vx, vy);
5 for i variable index with c̄i < 0 and Ā·,i ≤ 0 and Ā·,i ̸= 0 do
6 Set (∆vx,∆vy) equal to −Ā·,i for basic variables in B, 1

for variable i, and 0 for non-basic variables;
7 With (x, y,∆x,∆y) = (vx, vy,∆vx,∆vy) fixed, solve

(U’) : min
λ≥0

{
0 : D⊤λ = −f⊤; (U.3); (U.6)

}
;

8 if (U’) is feasible then
9 return (vx, vy,∆vx,∆vy)

10 return ({}, {}, {}, {}) // (B) is bounded (optimal or infeasible)

In order to ensure the correctness of this algorithmic approach, we show two
results. First, Lemma 2 establishes that it is enough to search for directions of
unboundedness of (B) at the basic feasible solutions (i.e. vertices) of the HPR’s
feasible set. For this result to hold, we assume that the HPR’s feasible set has
at least one vertex. This can be verified through checking that:

span
{
[Ai|Bi]i∈{1,...,n1}, [Cj |Dj ]j∈{1,...,n2}

}
= Rn1+n2

where n1 and n2 are the number of upper- and lower-level constraints, respec-
tively. Note also that this property holds valid for any problem in standard
form (i.e. with non-negativity constraints).

Lemma 2. The bilevel problem (B) is unbounded if and only if there exists a
feasible point (x′, y′) ∈ FB and a direction of unboundedness (∆x′,∆y′) of (B)
such that (x′, y′) is a vertex of the HPR’s feasible set.

Proof. The statements about the existence of a feasible point and direction of
unboundedness follow naturally from the definition of an unbounded bilevel
problem (recall (2)-(3)). Therefore, the indirect implication follows naturally.

For the direct implication, we show that at least one bilevel feasible point
where there is a direction of unboundedness is a vertex of the HPR’s feasible
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set. Assume the bilevel problem (B) is unbounded. From Lemma 1 and Theo-
rem 1, we have that there exists ω ∈ {1, 2}n2 such that (Pω) is unbounded. Let
(∆x′,∆y′,∆λ′) be a direction of unboundedness of that linear problem. Then
(∆x′,∆y′) is a direction of unboundedness of the bilevel problem (B) (see proofs
of Lemma 1 and Theorem 1 for further details).

Furthermore, we know that the feasible region of (Pω) has a vertex, because
by assumption the FHPR has a vertex and the extra variables λ are non-negative.
Let (x′, y′, λ′) be that vertex, at which we know the direction (∆x′,∆y′,∆λ′)
holds because (Pω) is a linear problem. By construction, if (x′, y′, λ′) is a vertex
of (Pω), then (x′, y′) is a vertex of the HPR’s feasible set (see Appendix E for
a proof). Therefore, there is a bilevel feasible point (x′, y′) which is a vertex
of the HPR’s feasible set, and for which there is a direction of unboundedness
(∆x′,∆y′) for the bilevel problem.

The next Lemma 3 shows that we can restrict the search for a direction of
unboundedness for (B) to extreme rays of the HPR.

Lemma 3. In step 7 of Algorithm 1, there exists vλ feasible to (U’) if and only
if (∆vx,∆vy) is a direction of unboundedness of the bilevel at (vx, vy).

Proof. It is possible to observe that, given (vx, vy) a bilevel feasible point and
(∆vx,∆vy) a direction of unboundedness of the HPR at (vx, vy), vλ is a solution
of (U’) if and only if (vx, vy, vλ,∆vx,∆vy) is a solution of (U). Moreover, since
(∆vx,∆vy) is a direction of unboundedness of the HPR, then c⊤∆vx+d⊤∆vy <
0. Thus, from Theorem 4, we have that there is a feasible solution of (U’) if and
only if (∆vx,∆vy) is a direction of unboundedness of the bilevel at (vx, vy).

The preceding Lemmas 2 and 3 along with the fact that the HPR has a finite
number of bases and that step 5 involves a finite number of possible rays for
the HPR, lead us to the conclusion that:

Theorem 5. Algorithm 1 determines in a finite number of steps whether (B) is
unbounded, and if so, it returns a certificate of unboundedness. This certificate
consists of a bilevel feasible point and a direction of boundedness at that point.

3.3 Insights from Illustrative Examples
We illustrate the behavior of these two algorithmic approaches, the LPCC re-
formulation and the vertex-enumeration Algorithm 1, on two examples of un-
bounded bilevel problems. An example of a bounded bilevel with an unbounded
HPR can be found in Appendix F.

Example 1 (Book Spine). Consider the unbounded bilevel model below and the
corresponding graph, where the bilevel feasible region is colored green, and the
direction is that of improving lower-level objective.
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max
x≥0,y1,y2

y2

s.t. (y1, y2) ∈ argmin
ỹ1,ỹ2≥0

{ỹ2 :

x+ ỹ1 − ỹ2 ≤ 2
x− ỹ1 − ỹ2 ≤ 0}.

y1

y2

x

Lower-level Obj.

In this example the sequence of points leading to unboundedness of the bilevel
lays on the intersection of two lower-level facets, this is along the “book spine”.
There is not a single lower-level facet that is unbounded (and bilevel feasible),
but rather the intersection of two facets. In addition, for x ∈ [0, 1[, there are
multiple lower-level optimal solutions (green area where y2 = 0).

Both the LPCC (U) and the vertex-enumeration Algorithm 1 reveal the di-
rection of unboundedness (∆x,∆y1,∆y2) = (1, 0, 1) at the bilevel feasible point
(x, y1, y2) = (1, 1, 0). In our implementation, the vertex-enumeration algo-
rithm performed 8 iterations, exploring 8 possible bases of the HPR. In the
last iteration, it found the basic feasible solution associated with the vertex
(x, y1, y2) = (1, 1, 0), where the basic variables are x and y1. In its simplex
tableaux, the non-basic variable y2 has a negative reduced cost of c̄i = −1, and a
non-positive nonzero column Ā·,i = [−1 0]⊤. According to step 6, the direction
of unboundedness for the HPR is built as (∆x,∆y1,∆y2) = (1, 0, 1). The model
(U’) is solved for this direction and for (x, y1, y2) = (1, 1, 0) fixed, and a lower-
level dual solution (λ1, λ2) = (12 ,

1
2 ) is found. Thus, the algorithm concludes

correctly that the bilevel problem is unbounded.
An example of a basis which yields a basic feasible solution where there is

a direction of unboundedness for the HPR, but not for the bilevel is the one
containing both lower-level slack variables. This basis yields the HPR basic
feasible solution associated with the vertex (x, y1, y2) = (0, 0, 0) which is also
bilevel optimal. According to step 6, a direction of unboundedness for the HPR
can be built as (∆x,∆y1,∆y2) = (0, 0, 1). However, in this case the model (U’)
is infeasible. From constraints (U.6), we have that both dual variables λ1 and λ2

are forced to be 0. However, the dual constraint associated with y2, states that
−λ1−λ2 = −1. These simultaneous restrictions on λ1 and λ2 deem the problem
(U’) infeasible. Thus, Algorithm 1 discards this basis, and keeps searching.

Example 2 (Bounded Upper-level Variables). Consider the unbounded bilevel
model below and the corresponding graph, where the bilevel feasible region is
colored green, and the direction is that of improving lower-level objective.

min
x≥0,y1,y2

x− y1

s.t. x ≤ 2
(y1, y2) ∈ argmin

ỹ1,ỹ2≥0
{ỹ1 − ỹ2 :

−y1 + y2 ≤ 2
x− y1 − y2 ≤ −1}. y1

y2

x

Lower-level obj.
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This example is relevant because even though the upper-level variables x are
bounded, and the lower-level problem is finite optimal for each feasible value
of x, the bilevel is unbounded. This is possible, because for fixed variables x,
the lower-level is bounded (with respect to the lower-level objective), but has an
infinite number of optimal solutions that form a sequence which is unbounded
with respect to the upper-level objective.

Both the LPCC (U) and the vertex-enumeration Algorithm 1 confirm that
(∆x,∆y1,∆y2) = (0, 1, 1) is a direction of unboundedness at the bilevel feasible
point (x, y1, y2) = (0, 0, 2). In our implementation, the vertex-enumeration al-
gorithm performed 26 iterations, by exploring 26 possible bases of the HPR. In
the last iteration, it found the basic feasible solution associated with the vertex
(x, y1, y2) = (0, 0, 2), where the basic variables are y2 and the slack variables of
the constraints (x ≤ 2) and (x − y1 − y2 ≤ −1). In its simplex tableaux, the
non-basic variable y1 has a negative reduced cost of c̄i = −1, and a non-positive
nonzero column Ā·,i = [−1 0 −2]⊤. According to step 6, we build a direction of
unboundedness for the HPR as (∆x,∆y1,∆y2) = (0, 1, 1) (and (0, 0, 2) for the
three slack variables). Finally, the model (U’) is solved for this direction and
for (x, y1, y2) = (1, 1, 0) fixed, and a lower-level dual solution (λ1, λ2) = (1, 0)
is found. Thus, the algorithm concludes correctly that the bilevel problem is un-
bounded, and (∆x,∆y1,∆y2) = (0, 1, 1) is a direction of unboundedness at the
bilevel feasible point (x, y1, y2) = (0, 0, 2).

4 Future Work
We presented results aimed at dealing with the often-overlook topic of unbound-
edness in bilevel optimization. Future research could focus on deriving the com-
putational complexity of deciding whether an optimistic linear bilevel problem
without linking constraints is unbounded. Additionally, the complexity results
could also be further extended to mixed-integer or multi-follower bilevel prob-
lems. A more exhaustive computational experience comparing the performance
of the two algorithmic approaches proposed is also warranted. While the LPCC
approach requires solving an NP-hard problem, Algorithm 1 solves a series of
systems of linear constraints. However, if the bilevel problem (B) is bounded
(and its HPR unbounded), we must enumerate all basic feasible solutions of
the HPR. Thus, in this case, it would be worth saving the best bilevel feasi-
ble solution along Algorithm 1, so that we are also able to return the optimal
solution. Furthermore, developing heuristics to prioritize the enumeration of
vertices of the HPR that lay on lower-level faces which are unbounded for this
relaxation may enhance the algorithm’s efficiency in proving unboundedness.
Finally, designing a diverse bilevel dataset would be desirable, as existent ones
mostly have instances with a bounded HPR [18].
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A Auxiliary Results for NP-Completeness
In this appendix, we present the detailed proofs of Lemma 1 and Theorems 1
and 2. First, Lemma 1 states that the bilevel problem (B) is unbounded if and
only if the finite-union-of-polyhedra reformulation (P) is unbounded. Its proof
follows.

Lemma 1. From [4, Theorem 8], we know that the set of linear bilevel repre-
sentable feasible regions is equivalent to a set of finite unions of polyhedra. In
particular, the proof of this result is constructive, showing that by applying the
KKT conditions to the lower level of (B), we obtain the equivalent set (P). In
other words, there is a linear transformation between the points in the feasible
sets of problems (B) and (P).

If the bilevel problem (B) is unbounded, then there exists a sequence of fea-
sible points {(xi, yi)}i∈Z+ with decreasing upper-level objective value. Applying
the linear transformation between (B) and (P), which we know exists from [4],
we obtain a sequence of points {(xi, yi, λi)}i∈Z+ feasible for problem (P) with
decreasing (upper-level) objective value. Therefore, we conclude that the prob-
lem (P) is unbounded. A similar argument can be used to show the opposite
implication, hence proving that the problem (B) is unbounded if and only if the
reformulation (P) is unbounded.

Second, we present the proof of Theorem 1 which states that the finite-
union-of-polyhedra reformulation (P) is unbounded if and only if there exists
an ω ∈ {1, 2}n2 such that the linear problem (Pω) is unbounded.

Theorem 1. If ∃ω ∈ {1, 2}n2 such that (Pω) is unbounded, then (P) is also
unbounded, because (P) is a relaxation of (Pω).

To prove the opposite implication, we assume that (P) is unbounded and, by
contradiction, that for all ω ∈ {1, 2}n2 (Pω) is not unbounded (i.e., it is either
infeasible or finite optimal). Consequently, we have that ∀ω ∈ {1, 2}n2 ∃Lω ∈
R ∪ {+∞} such that:

∀(x, y, λ) ∈ Pω : c⊤x+ d⊤y ≥ Lω.

where the convention is that Lω = +∞ corresponds to an infeasible problem.
Note that since (P) is feasible, we know that at least one of these bounds Lω ∈ R
is finite. Therefore, we know that:

∀(x, y, λ) ∈
⋃

ω∈{1,2}n2

Pω : c⊤x+ d⊤y ≥ min
ω∈{1,2}n2

{Lω} ∈ R

which contradicts the assumption that (P) is unbounded. Hence, if (P) is un-
bounded, then ∃ω ∈ {1, 2}n2 such that (Pω) is unbounded. We have proved
both implications as required.

Lastly, we present the proof of Theorem 2 which states that the decision
problem Unbounded-BLP is strongly NP-complete.
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First, we present the decision version of the 3-SAT problem known to be
NP-complete [9] which we use in the reduction proof.

3-Satisfiability (3-SAT):
instance: S set of m clauses on the boolean variables {ai}i∈{1,...,n}, each
clause with at most 3 literals
question: Is there a true/false assignment of the boolean variables ai such
that S is satisfied?

Following the notation used in [15], S is satisfiable if an only if there exists
a ∈ {0, 1}n such that ASa ≥ 1 + cS, where AS ∈ {−1, 0, 1}m×n and cS ∈
{−3,−2,−1, 0}m. Based on this rewriting of 3-SAT, we prove Theorem 2 which
states that Unbounded-BLP is a strongly NP-complete problem.

Theorem 2. From Lemma 1 and Theorem 1, we concluded that Unbounded-
BLP is in NP. It remains to show that it is (strongly) NP-hard. We achieve
this by showing that (3-SAT) is a YES instance if and only if the bilevel model
(B’) is unbounded.

max
x,y,z

{
y : ASx ≥ (1 + cS)y; 0 ≤ xi ≤ y ∀i ∈ {1, . . . , n}; (B’)

y ≥ 1; z = 0⃗; z ∈ ϕ(x, y)
}
,

where ϕ(x, y) = argmax
z̄≥0

{
n∑

i=1

z̄i : z̄i ≤ xi; z̄i ≤ y − xi ∀i ∈ {1, . . . , n}

}
.

Proof of if. If (3-SAT) is a YES instance, then ∃a ∈ {0, 1}n : ASa ≥ (1+cS).
Consequently, we build a bilevel feasible solution of (B’) with (x∗, y∗, z∗) =
(a, 1, 0⃗), and a direction of unboundedness with (∆x,∆y,∆z) = (a, 1, 0⃗). Hence,
(B’) is unbounded.

Proof of only if. If 3-SAT is a NO instance, then there is no a ∈ {0, 1}n
such that ASa ≥ 1 + cS. Thus, any feasible a ∈ [0, 1]n for ASa ≥ 1 + cS implies
that ∃i : ai ∈]0, 1[.

We remark that due to the linking constraint zi = 0, any bilevel feasible
solution must have x ∈ {0, y}n. Moreover, since y ≥ 1, we can write:

ASx ≥ (1 + cS)y ⇔ AS

x

y
≥ 1 + cS.

This makes it clear that (i) any upper-level feasible (x, y) can be map onto
a = x

y ∈ [0, 1]n such that ASa ≥ 1 + cS and (ii) any a ∈ [0, 1]n such that
ASa ≥ 1+ cS can be mapped onto an infinite set of upper-level feasible solutions
of the form (x, y) = (a · y, y) ∀y ≥ 1. Given that S is a NO instance, this
reasoning implies that any upper-level feasible solution has some xi ∈]0, y[.
However, this results in z̄i = min{xi, y − xi} > 0 which is infeasible for the
upper-level linking constraint z = 0⃗. Hence, (B’) is not unbounded.
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B Unboundedness in Optimistic vs. Pessimistic
Bilevel Optimization

In this section, we show an example illustrating why unboundedness of the
optimistic formulation does not imply that of the pessimistic formulation.

Consider the following bilevel problem:

min
”x”

−x+ y1 − y2

s.t. (y1, y2) ∈ argmin
ỹ1,ỹ2

−ỹ1 − ỹ2

s.t. −x+ ỹ1 + ỹ2 ≤ 1
ỹ1, ỹ2 ≥ 0 ,

where the upper-level is purposefully ill-defined, because we will consider both
the optimistic and the pessimistic versions of the problem in this section.

The lower-level constraints imply that any feasible x must be in the interval
[−1,+∞[. For any feasible x̄ ∈ [−1,+∞[, the set of lower-level optimal solutions
is given by:

ϕ(x̄) =
{
(y1, y2) ∈ R2 : y1 + y2 = 1 + x̄; y1, y2 ≥ 0

}
.

Given the upper-level objective, we can compute the optimistic yO and pes-
simistic yP solutions as:

yO = (yO1 , yO2 ) = (0, 1 + x̄)

yP = (yP1 , y
P
2 ) = (1 + x̄, 0).

By replacing these lower-level solutions into the upper-level objective, we obtain
−2x− 1 in the optimistic version, and 1 in the pessimistic formulation. Conse-
quently, for the optimistic formulation, we can build a direction of unbounded-
ness (∆x,∆y1,∆y1) = (1, 0, 1) valid for the feasible point (x, y1, y2) = (−1, 0, 0).

Therefore, the optimistic formulation of the bilevel problem is unbounded.
However, the pessimistic formulation has a constant upper-level objective value
for all feasible solutions. Therefore, the pessimistic formulation of the bilevel
problem is bounded. In conclusion, unboundedness of the optimistic formulation
of a bilevel problem does not imply that of its pessimistic formulation.

C Checking Unboundedness in Multilevel Opti-
mization

In this section, we prove Theorem 3 showing that Unbounded-KLP is strongly
Σp

k−1-hard. We have divided the proof into smaller proofs showing that checking
unboundedness of a linear trilevel model and a k-level problem for k ≥ 4 are
Σp

2-hard and Σp
k−1-hard, respectively. We have further divided the proof for the

k-level problem into cases where k is odd and even. The decision problem that
we use in all these smaller proofs is the (k − 1)-Alternating Quantified
Satisfiability with k adjusted as suited:
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(k − 1)-Alternating Quantified Satisfiability:
instance: Disjoint non-empty sets of variables X1, . . . , Xk−1, a boolean
expression E over

⋃k−1
l=1 Xl in a conjunctive normal form with at most 3

literals in each clause c ∈ C.
question:

• When k odd, (Bk−1 ∩ 3CNF): Is there a truth assignment ak−1 of
the variables in Xk−1 such that for all truth assignments ak−2 of the
variables in Xk−2, ..., such that for all truth assignments a1 of the
variables in X1 the expression E is not satisfied?

• When k even, (Bk−1 ∪ 3CNF): Is there a truth assignment ak−1 of
the variables in Xk−1 such that for all truth assignments ak−2 of the
variables in Xk−2, ..., such that there is a truth assignment a1 of the
variables in X1 such that the expression E is satisfied?

C.1 Trilevel Unboundedness Problem is Σp
2-hard

Based on the 2-Alternating Quantified Satisfiability (B2∩3CNF) prob-
lem, we show that deciding whether a linear trilevel problem is unbounded is a
Σp

2-hard problem in Theorem 6.

Theorem 6. Unbounded-KLP for k = 3 is Σp
2-hard.

Proof. Let k = 3. We show that an instance of Unbounded-KLP reduces
to an instance of B2 ∩ 3CNF. Given as instance of B2 ∩ 3CNF, we build the
following Unbounded-KLP instance:

max
y,x2,

x1,z1,z2

n1∑
i=1

(z1)i

s.t. y ≥ 1
0 ≤ x2 ≤ y
z2 = 0

(x1, z1, z2) ∈ argmin
x1,z1,z2

n1∑
i=1

(z1)i

s.t. 0 ≤ x1 ≤ y
2∑

i=1

Aixi ≥ (1 + b)y

(z1, z2) ∈ argmax
z1,z2

n1∑
i=1

(z1)i +
n2∑
i=1

(z2)i

s.t. z1 ≤ x1

z1 ≤ y − x1

z2 ≤ x2

z2 ≤ y − x2.
(3LP)

Note that the only linking constraint is z2 = 0 at level 3 which enforces that
x2 ∈ {0, y}. In addition, optimality of level 1 implies that at any feasible
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solution we have that (z1)i = min{(x1)i, y− (x1)i} ∀i ∈ {1, . . . , n1} and (z2)i =
min{(x2)i, y − (x2)i} ∀i ∈ {1, . . . , n2}. Optimality of level 2 implies that given
(y, x2), if a ‘discrete’ x1 ∈ {0, y}n1 exists, it will be selected over any feasible x1

where ∃i : (x1)i ∈]0, y[.
We show that B2∩3CNF is a YES instance if and only if (3LP) is unbounded.

Proof of if. Assume that B2 ∩ 3CNF is a YES instance, this is that ∃a2 ∈
{0, 1}, ∀a1 ∈ {0, 1} : A1a1 +A2a2 < 1 + b. Equivalently, we can write:

∃a2 ∈ {0, 1}, ∀a1 ∈ [0, 1] : A1a1 +A2a2 ≥ 1 + b ⇒ ∃i : (a1)i ∈]0, 1[.

Let x2 = a2, y = 1, z2 = min{(a2)i, 1 − (a2)i} = 0. Pick x1 ∈ [0, y]
such that A1x1 + A2a2 ≥ (1 + b)y and that minimizes the sum of ‘discrete’
violations

∑n1

i=1(z1)i =
∑n1

i=1 min{(x1)i, y − (x1)i}. By assumption, we have
that ∃j : (x1)j ∈]0, y[. Consequently, we know that (z1)j > 0. This solution is
feasible for (3LP), because it verifies all constraints as well as optimality of level
1 and 2.

Moreover, ∆y = 1, ∆x2 = ∆yx2, ∆z2 = 0, ∆x1 = ∆yx1, ∆z1 = ∆yz1 is a di-
rection of unboundedness for (3LP). It is possible to verify that (y, x2, x1, z2, z1)+
k(∆y,∆x2,∆x1,∆z2,∆z1) is a feasible point for any k ≥ 0, and we also have
that

∑n1

i=1(∆z1)i ≥ (z1)j > 0. Therefore, the trilevel problem (3LP) is un-
bounded.

Proof of only if. Assume that B2 ∩ 3CNF is a NO instance, this is that
¬(∃a2 ∈ {0, 1}, ∀a1 ∈ {0, 1} : A1a1+A2a2 < 1+ b). Equivalently, we can write:

∀a2 ∈ {0, 1}, ∃a1 ∈ [0, 1] : A1a1 +A2a2 ≥ 1 + b.

This implies that for all x2 ∈ [0, y] such that z2 = 0, this is x2 ∈ {0, y},
there exists x1 ∈ {0, y}n1 such that A1x1 + A2a2 ≥ (1 + b)y. Note that the
objective of level 2 is to minimise

∑n1

i=1(z1)i which is minimised at 0 when
x1 ∈ {0, y}. Consequently, for any x2 selected, optimality of level 2 will imply
that x1 ∈ {0, y} (which we know exists by assumption).

In turn, this implies that any feasible solution (y, x2, x1, z2, z1) has z1 = 0.
Consequently, the objective of level 3 is bounded above by 0 (

∑n1

i=1(z1)i ≤ 0).
Therefore, the 3-level problem (3LP) is not unbounded.

C.2 Unbounded-KLP with Odd k is Σp
k−1-hard

Throughout this section, we assume k ≥ 4 is an odd number. Based on the
(k − 1)-Alternating Quantified Satisfiability (Bk−1 ∩ 3CNF) problem,
we show that Unbounded-KLP where k is odd is a Σp

k−1-hard problem in
Theorem 7.

Theorem 7. Unbounded-KLP for k odd is Σp
k−1-hard.
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Proof. We show that an instance of Unbounded-KLP reduces to an instance
of Bk−1 ∩ 3CNF. Given as instance of Bk−1 ∩ 3CNF, we build the following
Unbounded-KLP instance:

max
y,x,z

n1∑
i=1

(z1)i

s.t. y ≥ 1
0 ≤ xk−1 ≤ y
zl = 0 ∀l ≥ 2

...

l odd: (x(l), z) ∈ argmin
x(l),z

{
n1∑
i=1

(z1)i : 0 ≤ xl ≤ y; (x(l−1), z) ∈ Φl−1

}
l even: (x(l), z) ∈ argmax

x(l),z

{
n1∑
i=1

(z1)i : 0 ≤ xl ≤ y; (x(l−1), z) ∈ Φl−1

}
...

(x1, z) ∈ argmin
x1,z

n1∑
i=1

(z1)i

s.t. 0 ≤ x1 ≤ y
k−1∑
i=1

Aixi ≥ (1 + b)y

(z) ∈ argmax
z

k−1∑
l=1

nl∑
i=1

(zl)i

s.t. (zl)i ≤ (xl)i ∀l, ∀i
(zl)i ≤ y − (xl)i ∀l, ∀i

(Odd-KLP)
where z = (z1, . . . , zk−1), x(i) = (x1, . . . , xi), x = (x1, . . . , xk−1), and Φi is the
problem at level i parameterised by the variables (y, xk−1, . . . , xi+1) of the levels
above.

Note that the only linking constraints are zl = 0 ∀l ∈ {2, . . . , k − 1} at
level k which enforces that for l ∈ {2, . . . , k − 1} : xl ∈ {0, y}nl . In addition,
optimality of level 1 implies that at any feasible solution we have that (zl)i =
min{(xl)i, y − (xl)i} ∀i ∈ {1, . . . , nl},∀i ∈ {1, . . . , n1}. Optimality of level 2
implies that given (y, xk−1, ..., x2), if a feasible ‘integer’ x1 ∈ {0, y}n1 exists, it
will be selected over any feasible x1 where ∃i : (x1)i ∈]0, y[.

We show that Bk−1 ∩ 3CNF is a YES instance if and only if (Odd-KLP) is
unbounded.

Proof of if. Assume that Bk−1∩3CNF is a YES instance, this is that ∃ak−1 ∈
{0, 1}nk−1 , . . . , ∃a2 ∈ {0, 1}n2 , ∀a1 ∈ {0, 1}n1 :

∑k−1
l=1 Alal < 1 + b. Equiva-

lently, we can write ∃ak−1 ∈ {0, 1}nk−1 , . . . , ∃a2 ∈ {0, 1}n2 such that

∀a1 ∈ [0, 1]n1 :

k−1∑
l=1

Alal ≥ 1 + b ⇒ ∃j : (a1)j ∈]0, 1[.

Let l ∈ {3, . . . , k − 1}.
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1. When l is odd:
Given a feasible (y, xk−1, . . . , xl), then we know by assumption that ∃xl−1 ∈
{0, y}nl−1 , . . . , ∃x2 ∈ {0, y}n2 such that

∀x1 ∈ [0, y]n1 :

k−1∑
l=1

Alxl ≥ (1 + b)y ⇒ ∃j : (x1)j ∈]0, y[.

Since a solution where x1 /∈ {0, y} results in a strictly positive value for∑n1

i=1(z1)i > 0 at level l whose goal is to maximize this sum, then an xl−1

that results in
∑n1

i=1(z1)i > 0 will always be selected.

2. When l is even:
Given a feasible (y, xk−1, . . . , xl), then we know by assumption that ∀xl−1 ∈
{0, y}nl−1 , . . . , ∃x2 ∈ {0, y}n2 such that

∀x1 ∈ [0, y]n1 :

k−1∑
l=1

Alxl ≥ (1 + b)y ⇒ ∃j : (x1)j ∈]0, y[.

Therefore, any solution to level i will have strictly positive objective value
(as

∑n1

i=1(z1)i ≥ (z1)j > 0).

Note that, when l ≤ k− 2, the problem at level l is not unbounded because y is
a decision of level k − 1 and hence a parameter for this level.

Nevertheless, the fact that an optimal solution of level l has a strictly positive
objective value

∑n1

i=1(z1)i > 0 allows us to build a direction of unboundedness
for the k-level problem as:

∆y = 1

∆z2 = · · · = ∆zk−1 = 0

∆z1 = ∆y · z1
∆xl = ∆y · xl ∀l{1, . . . , k − 1}

where y = 1, xl = al ∀l ∈ {2, . . . , k − 1}, (z1)i = min{(a1)i, 1 − (a1)i} ∀i ∈
{1, . . . , n1} and z2 = 0 ∀l ∈ {2, . . . , k − 1} is a feasible solution. So, at each
odd level l, al is selected to maximise

∑n1

i=1(z1)i and at each even level l, al is
selected to maximise

∑n1

i=1(z1)i. Therefore, (Odd-KLP) is unbounded.

Proof of only if. Assume that Bk−1 ∩ 3CNF is a NO instance, this is that
¬(∃ak−1 ∈ {0, 1}nk−1 , . . . , ∃a2 ∈ {0, 1}n2 , ∀a1 ∈ {0, 1}n1 :

∑k−1
l=1 Alal < 1+ b).

Equivalently, we can write:

∀ak−1 ∈ {0, 1}nk−1 , . . . , ∀a2 ∈ {0, 1}n2 , ∃a1 ∈ {0, 1}n1 :

k−1∑
l=1

Alal ≥ 1 + b.

Let l ∈ {3, . . . , k − 1}.
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1. When l is odd:

Given a feasible (y, xk−1, . . . , xl), then we know by assumption that ∀xl−1 ∈
{0, y}nl−1 , . . . , ∀x2 ∈ {0, y}n2 , ∃x1 ∈ {0, y}n1 :

∑k−1
l=1 Alxl ≥ (1 + b)y.

Therefore, any feasible solution xl−1 selected at level l results in an ‘inte-
ger’ x1 ∈ {0, y} and consequently an objective value of

∑n1

i=1(z1)i = 0.

2. When l is even:

Given a feasible (y, xk−1, . . . , xl), then we know by assumption that ∃xl−1 ∈
{0, y}nl−1 , . . . , ∀x2 ∈ {0, y}n2 , ∃x1 ∈ {0, y}n1 :

∑k−1
l=1 Alxl ≥ (1 + b)y.

Given that such a decision xl−1 would result in an ‘integer’ x1 ∈ {0, y}n1

and hence minimise the objective function
∑n1

i=1(z1)i at 0, then that would
be the optimal solution of level l.

We conclude that any feasible solution of the (Odd-KLP) model has objective
value

∑n1

i=1(z1)i bounded above by 0. Therefore, (Odd-KLP) is not unbounded.

C.3 Unbounded-KLP with Even k is Σp
k−1-hard

Throughout this section, we assume k ≥ 4 is an even number. Based on the
(k−1)-Alternating Quantified Satisfiability (Bk−1∪3CNF) problem, we
show Unbounded-KLP where k is even is a Σp

k−1-hard problem in Theorem 8.

Theorem 8. Unbounded-KLP for k even is Σp
k−1-hard.

Proof. We show that an instance of Unbounded-KLP reduces to an instance
of Bk−1 ∪ 3CNF. Given as instance of Bk−1 ∪ 3CNF, we build the following
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Unbounded-KLP instance:

max
y,x,z

y

s.t. y ≥ 1
0 ≤ xk−1 ≤ y
zl = 0 ∀l ≥ 1

...

l even: (x(l), z) ∈ argmax
x(l),z

{
n1∑
i=1

(z1)i : 0 ≤ xl ≤ y; (x(l−1), z) ∈ Φl−1

}
l odd: (x(l), z) ∈ argmin

x(l),z

{
n1∑
i=1

(z1)i : 0 ≤ xl ≤ y; (x(l−1), z) ∈ Φl−1

}
...

(x1, z) ∈ argmin
x1,z

n1∑
i=1

(z1)i

s.t. 0 ≤ x1 ≤ y
k−1∑
i=1

Aixi ≥ (1 + b)y

(z) ∈ argmax
z

k−1∑
l=1

nl∑
i=1

(zl)i

s.t. (zl)i ≤ (xl)i ∀l, ∀i
(zl)i ≤ y − (xl)i ∀l, ∀i

(Even-KLP)
where z = (z1, . . . , zk−1), x(i) = (x1, . . . , xi), x = (x1, . . . , xk−1), and Φi is the
problem at level i parameterised by the variables (y, xk−1, . . . , xi+1) of the levels
above.

Note that the only linking constraints are zl = 0 ∀l ∈ {1, . . . , k − 1} at level
k. In addition, optimality of level 1 implies that at any feasible solution we
have that (zl)i = min{(xl)i, y− (xl)i} ∀i ∈ {1, . . . , nl},∀l ∈ {1, . . . , k− 1}. This
together with the linking constraints enforces that for l ∈ {1, . . . , k − 1} : xl ∈
{0, y}nl . Optimality of level 2 implies that given (y, xk−1, ..., x2), if a feasible
‘integer’ x1 ∈ {0, y}n1 exists, it will be selected over any feasible x1 where
∃i : (x1)i ∈]0, y[.

We show that Bk−1 ∪ 3CNF is a YES instance if and only if (Even-KLP) is
unbounded.

Proof of if. Assume that Bk−1∪3CNF is a YES instance, this is that ∃ak−1 ∈
{0, 1}nk−1 , ∀ak−2 ∈ {0, 1}nk−2 , . . . , ∀a2 ∈ {0, 1}n2 , ∃a1 ∈ {0, 1}n1 :

∑k−1
l=1 Alal ≥

1 + b.
Let xk−1 = ak−1 be one such assignment, and y = 1.
For odd l ∈ {k − 3, k − 5, . . . , 3}, the corresponding level whose goal is to

minimize
∑nl

i=1(zl)i will choose xl−1 = al−1 as the assignment that results in
x1 = a1 = 0 at the second level, which we know exists for whatever decision
the level above l + 1 took. For even l ∈ {k − 2, k − 4, . . . , 2}, no matter which
decision is taken, we know results in an objective value of 0, because the level
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that follows l+ 1 (is odd) will choose xl = al in order to enforce x1 ∈ {0, y}. A
solution build this way and with y = 1 and zl = 0 ∀l ∈ {1, . . . , k− 1} is feasible
for the model (Even-KLP), and has objective value 1.

Furthermore, ∆y = 1, ∆zl = 0 and ∆xl = ∆y · al for l ∈ {1, . . . , k − 1} is
a direction of unboundedness for the model (Even-KLP). Namely, ∆y = 1 > 0.
Therefore, the model (Even-KLP) is unbounded.

Proof of only if. Assume that Bk−1 ∪ 3CNF is a NO instance, this is that
∀ak−1 ∈ {0, 1}nk−1 , ∃ak−2 ∈ {0, 1}nk−2 , . . . , ∃a2 ∈ {0, 1}n2 , ∀a1 ∈ [0, 1]n1 such
that:

k−1∑
l=1

Alal ≥ 1 + b ⇒ ∃j : (x1)j ∈]0, 1[.

This implies that no matter which assignment the xl the odd levels l ∈
{k − 1, k − 3, . . . , 3} select, then even level will select xk−2, . . . , x2, which we
know exist by assumption, that result in a ‘non-integer’ assignment a1 at level
2. Consequently, no matter which assignment xk−1 is chosen at level k, we know
there exists j such that (x1)j ∈]0, y[. Consequently, (z1)j > 0 and the linking
constraint z1 = 0 is violated.

Therefore, there is no feasible solution to the model (Even-KLP). Hence,
this model is NOT unbounded.

D LPCC Reformulation Result
In this appendix, we present the detailed proof of Theorem 4, which states that
the bilevel problem (B) is unbounded if and only if the linear complementarity
problem (U) has strictly negative optimal value.

Proof. According to Lemma 1 and Theorem 1, we can prove this theorem by
showing the following equivalence instead: There exists ω ∈ {1, 2}n2 such that
(Pω) is unbounded if and only if (U) has strictly negative optimal value.

Proof of if. Assume that there exists ω ∈ {1, 2}n2 such that the linear prob-
lem (Pω) is unbounded. Then, we know that there exists a feasible point
(x⋆, y⋆, λ⋆) ∈ Pω and a corresponding direction of unboundedness (∆x⋆,∆y⋆,∆λ⋆).
Without loss of generality, we assume that this direction is normalised (∥∆x⋆,∆y⋆,∆λ⋆∥ =
1) such that constraint (U.7) holds. Note that, since there is the bilevel feasi-
ble solution (x⋆, y⋆, λ⋆), we know that problem (U) is finite optimal (because
(x⋆, y⋆, λ⋆, 0, 0) is a feasible solution and constraint (U.7) ensures boundedness).

We now show that there is a feasible solution for (U) with negative objective
value. Since (x⋆, y⋆, λ⋆) ∈ Pω, then (x⋆, y⋆, λ⋆) verifies constraints (U.2)-(U.3).
Furthermore since (∆x⋆,∆y⋆,∆λ⋆) is a direction of unboundedness for (Pω)
and (x⋆, y⋆, λ⋆) ∈ Pω, then we know that (∆x⋆,∆y⋆, λ⋆) verifies constraints
(U.4)-(U.6). Therefore, (x⋆, y⋆, λ⋆,∆x⋆,∆y⋆) is a feasible solution of problem
(U). Moreover, since (∆x⋆,∆y⋆,∆λ⋆) is a direction of unboundedness for (Pω),
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we have that c⊤∆x⋆+d⊤∆y⋆ < 0. Consequently, we can conclude that problem
(U) has strictly negative objective value.

Proof of only if. Assume that the problem (U) has strictly negative optimal
objective value and (x⋆, y⋆, λ⋆,∆x⋆,∆y⋆) is one of its optimal solutions. Then,
we define ω⋆ such that ω⋆

i = 1 when λ⋆
i > 0 and ω⋆

i = 2 when λ⋆
i = 0. From

constraints (U.2)-(U.3), the point (x⋆, y⋆, λ⋆) is feasible for problem (Pω). Fur-
thermore, from constraints (U.4)-(U.6), we can ensure that along the direction
(∆x⋆,∆y⋆, 0⃗) there is a sequence {(x⋆, y⋆, λ⋆)+ k(∆x⋆,∆y⋆, 0⃗)}k∈Z+

0
of feasible

points for problem (Pω). Finally, from the fact that the optimal objective value
is strictly negative, we know that as k increases, the objective value of (Pω)
at the points in this sequence decreases. Hence, there exists ω ∈ {1, 2}n2 (as
defined from the optimal values of λ⋆) such that the linear problem (Pω) is
unbounded.

E Auxiliary Results for Lemma 2
In this section, we prove Lemma 4 which we have used to obtain Lemma 2.

Lemma 4. Let ω ∈ {1, 2}n2 . If (x̃, ỹ, λ̃) is a vertex of Pω, then (x̃, ỹ) is a vertex
of the HPR’s feasible set.

Proof. We show this result by showing two implications:

a) If (x̃, ỹ, λ̃) is a vertex of Pω, then (x̃, ỹ, λ̃) is a vertex of the feasible set F.

b) If (x̃, ỹ, λ̃) is a vertex of F, then (x̃, ỹ) is a vertex of the HPR’s feasible
set.

Proof of implication a) Note that, since Pω is a restriction of F where
some inequalities are enforced as equalities, the set of constraint coefficients
{Mi}i∈{1,...,n} is the same for both polyhedra, where n = n1 + n2 + 2ny is
the number of constraints. For illustration, the coefficients Mi are defined as
Mi = [Ai Bi 0⃗] for i ∈ {1, . . . , n1}, Mi = [Ci−n1 Di−n1 0⃗] for i ∈ {n1 +
1, . . . , n1 + n2}, Mi = [⃗0 0⃗ D⊤

i−n1−n2
] for i ∈ {n1 + n2 + 1, . . . , n1 + n2 + ny},

and Mi = [⃗0 0⃗ e⊤i−n1−n2−ny
] for i ∈ {n1 + n2 + ny, . . . , n1 + n2 + 2ny} where ei

is the ith unit vector. The same holds true for the right-hand-side coefficients
{ri}i∈{1,...,n} of both polyhedra.

Let ω ∈ {1, 2}n2 , and (x̃, ỹ, λ̃) a vertex of Pω. Then (x̃, ỹ, λ̃) is a basic feasible
solution of Pω which means that (x̃, ỹ, λ̃) ∈ Pω, and that the set of coefficients
of the active constraints at (x̃, ỹ, λ̃),

I(x̃, ỹ, λ̃) =
{
Mi : Mi(x̃, ỹ, λ̃) = ri ∀i ∈ {1, . . . , n}

}
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contains nx+ny+nλ linearly independent vectors, where nx+ny+nλ represents
the number of decision variables (x, y, λ).

Since Pω ⊆ F, then (x̃, ỹ, λ̃) ∈ F is a feasible solution. Moreover, since the
constraint coefficients Mi and right-hand-side coefficients ri are the same for
both Pω and F and since I(x̃, ỹ, λ̃) contains nx + ny + nλ linearly independent
vectors, then (x̃, ỹ, λ̃) is a basic solution of F. Thus, (x̃, ỹ, λ̃) is a basic feasible
solution of F, that is (x̃, ỹ, λ̃) is a vertex of F.

Proof of implication b) Let (x̃, ỹ, λ̃) a vertex of F. Then, there exists a
supporting hyperplane of F: H = {(x, y, λ) : a⊤x x+ a⊤y y + a⊤λ λ = α} such that

F ∩H = {(x̃, ỹ, λ̃)}
F ⊆ H+ = {(x, y, λ) : a⊤x x+ a⊤y y + a⊤λ λ ≥ α}.

We show that (x̃, ỹ) is a vertex of the HPR’s feasible set (FHPR) by showing
that Ĥ = {(x, y) : a⊤x x+a⊤y y = β} where β = α−a⊤λ λ̃ is a supporting hyperplane
of the HPR’s feasible set which intersects it at (x̃, ỹ).

First, we want to show that FHPR ∩Ĥ = {(x̃, ỹ)}. Assume, by contradiction,
that there exists (x′, y′) ̸= (x̃, ỹ) such that (x′, y′) ∈ FHPR∩Ĥ. By the definition
of Ĥ, we have that (x′, y′, λ̃) ∈ H. And since (x′, y′) ∈ FHPR, we also know that
(x′, y′, λ̃) ∈ F. Therefore, (x′, y′, λ̃) ∈ F ∩ H, which is a contradiction because
(x′, y′, λ̃) ̸= (x̃, ỹ, λ̃) and F ∩H = {(x̃, ỹ, λ̃)}. Hence, FHPR ∩ Ĥ = {(x̃, ỹ)}.

Second, we want to show that FHPR ⊆ Ĥ+ = {(x̃, ỹ) : a⊤x x + a⊤y y ≥ α}.
Let (x, y) ∈ FHPR. Then, we have that (x, y, λ̃) ∈ F and that F ⊆ H+. Thus,
(x, y, λ̃) ∈ H+. Given the definitions of H+ and Ĥ+, we conclude that (x, y) ∈
Ĥ+. Hence, FHPR ⊆ Ĥ+.

Finally, since Ĥ is a supporting hyperplane of FHPR which intersects it at
(x̃, ỹ), then (x̃, ỹ) is a vertex of FHPR.

F Insights from Example of Bounded Bilevel Prob-
lem with Unbounded HPR

Example 3 (Bounded Bilevel). Consider the unbounded bilevel model below
and the corresponding graph, where the bilevel feasible region is colored green,
and the direction is that of improving lower-level objective.
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min
x≥0,y

−x− y

s.t. x− y ≤ 3
y ∈ argmin

ỹ≥0
{ỹ : −x− 2ỹ ≤ −6

−x− ỹ ≤ −4},

x

y

Lower-level Obj.

In this example, the HPR is unbounded along the direction (∆x,∆y) = (1, 1).
However, the bilevel feasible region (in green) is bounded, and the bilevel problem
is finite optimal with optimal solution (x, y) = (4, 1).

Confirming this boundedness of the bilevel problem, the LPCC (U) has opti-
mal value 0, and the vertex-enumeration Algorithm 1 does not find any direction
of unboundedness of the bilevel.

In our implementation, the vertex-enumeration algorithm enumerates all
possible basis to get to this conclusion. For example, when it finds the basic fea-
sible solution associated with the vertex (x, y) = (4, 1), where the basic variables
are x, y and the slack of the second lower-level constraint, it detects unbound-
edness of the HPR. In fact, in its simplex tableaux, the non-basic slack variable
of the first lower-level constraint has a negative reduced cost of c̄i = − 2

3 , and
a non-positive nonzero column is Ā·,i = [− 1

3 − 1
3 − 2

3 ]
⊤. Therefore, following

step 6, we build a direction of unboundedness for the HPR as (∆x,∆y) = ( 13 ,
1
3 )

(and (0, 1, 2
3 ) for the three slack variables). In this case the model (U’) is infea-

sible. From constraints (U.6), we have that both dual variables, λ1 and λ2, are
forced to 0. However, the dual constraint states that −2λ1 − λ2 = −1. These
simultaneous restrictions on λ1 and λ2 deem the problem (U’) infeasible. Thus,
Algorithm 1 discards this basis, and keeps searching. As a matter of fact, since
the bilevel is bounded, all bases are discarded either because (a) they do not yield
a basic feasible solution of the HPR, (b) they do not yield a bilevel feasible solu-
tion, (c) there is no direction of unboundedness of the HPR at the solution, (d)
there are no feasible dual values from (U’) at the point and direction obtained.
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