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Abstract

In this paper, we revisit the convergence theory of the inexact restoration paradigm for non-
linear optimization. The paper first identifies the basic elements of a globally convergent method
based on merit functions. Then, the inexact restoration method that employs a two-phase itera-
tion is introduced as a special case. A specific implementation is presented that is supported in
the solution of regularized subproblems. The proposed inexact restoration method includes more
freedom in the computation of iterates and a novel procedure that integrates the computation of
the penalty parameter with the optimization phase. Additionally, a way to speed up the proposed
method by solving a quadratic programming subproblem is proposed. An alternative interpreta-
tion of the presented method would be to say that the method consists of a globally convergent
sequential quadratic programming method that divides the iteration into two phases (feasibility
and optimality) when the quadratic subproblem is infeasible. Theoretical results include asymp-
totic convergence theory as well as a worst-case iteration and evaluation complexity analysis of the
introduced methods. The paper concludes by presenting numerical experiments that illustrate the
practical application of the proposed methods.

Key words: Inexact Restoration, Sequential Quadratic Programming, algorithms, global conver-
gence, complexity, numerical experiments.

1 Introduction

A wide range of applications can be modeled as optimization problems, where the goal is to minimize
or maximize a specific objective while adhering to certain constraints. Properly formulating a situ-
ation as an optimization problem enables decision-makers to make more informed choices, which is
why this approach is increasingly utilized across various fields. The theoretical framework surrounding
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optimization is extensive, with new results emerging regularly. Much of the research focuses on the
mathematical properties of optimization problems, while others concentrate on developing compu-
tational methods to find solutions. Despite the depth of study in this area, there is no universally
accepted best technique for solving optimization problems, regardless of their formulation. Most algo-
rithms are iterative, beginning with one or more initial estimates and generating new approximations
that ideally improve upon previous ones.

Many solution-finding methods are tailored to specific problems, while others can be applied more
broadly but are generally less efficient than specialized approaches. Conversely, general algorithms are
often more accessible to researchers who need to tackle various optimization problems without being
experts in the field. We can categorize the literature on solution methods into two groups: those with
solid convergence theories and those that rely primarily on empirical strategies for approximating
solutions. Interestingly, algorithms lacking theoretical guarantees can sometimes outperform more
rigorously grounded options for specific problems. However, methods without theoretical backing
typically suffer from reduced robustness and may fail in a broader range of scenarios. For methods
with stronger theoretical foundations, the analysis of algorithms may depend on the initial point
chosen; if success hinges on a starting point close to the solution, we refer to this as local convergence,
while methods that guarantee convergence regardless of starting points exhibit global convergence.

This work aims to identify fundamental elements that ensure global convergence for algorithms
addressing general smooth continuous optimization problems. We believe this contribution will en-
hance the abstract understanding of convergence theory in nonlinear programming methods. Such
progress is crucial for analyzing how various specific proposals might fit within a unified theoretical
framework that guarantees strong convergence properties. This integration would not only facilitate
the development of a cohesive convergence theory for various general optimization methods but also
allow for the incorporation of specialized strategies tailored to particular problems that may lack a
well-established theoretical basis.

The development of methods that necessitate full restoration of infeasibility traces back to Rosen’s
gradient projection method, proposed in [50], which extends his earlier work [49] on linear constraints.
The restoration process in [50] occurs in a direction orthogonal to the tangent approximation of
the constraints used during the minimization phase. In a similar vein, Miele and his collaborators
have proposed additional approaches, such as [46], where restoration occurs through a sequence of
steps, each orthogonal to the linearization of constraints at intermediate points. The generalized
reduced gradient (GRG) method offers another option, projecting the gradient onto a space tangent
to the constraints. However, GRG employs the Implicit Function Theorem to differentiate between
dependent and independent variables, as described in [54] for linear constraints. Restoration is achieved
by determining the values of dependent variables based on the others derived during the optimization
phase. A more detailed convergence analysis of Miele’s work is presented by Rom and Avriel in [47]
and [48], along with a discussion of the distinctions among the methods mentioned.

Several other methods utilizing constraint linearizations adopt a two-phase optimization process:
one focused on optimality and the other on feasibility. The steps in these methods are often labeled
as tangent (for optimality) and normal (for feasibility), with some literature referring to them as
horizontal and vertical. This approach is exemplified in Sequential Linear Programming (SLP) meth-
ods [38], Sequential Quadratic Programming (SQP) [34, 33], Interior Point methods [52], and Cylindric
Dynamic Control of Infeasibility [14], among others. Unlike GRG-type methods, some algorithms for
minimizing nonlinear constraints do not require exact feasibility restoration at each iteration. This can
be advantageous when dealing with feasible sets exhibiting large curvature, which would necessitate
substantial effort to restore feasibility even when far from the solution.

The philosophy of addressing feasibility and optimality in distinct phases during each iteration
characterizes an important class of methods known as Inexact Restoration (IR), which is of particular
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interest here. These concepts are rooted in [46, 50], and the initial studies using the IR terminology
include [45] and [44]. The most recent IR methods base their convergence theory on the techniques
presented in [32] and the complexity theory of [29]. In these methods, a point undergoes a partial
restoration of feasibility in the first phase, termed the restoration phase. In the second phase, optimal-
ity is enhanced relative to the restored point, typically by remaining within the tangent space of the
constraints to manage feasibility deterioration. This approach allows for the generation of a superior
point compared to the initial one. Such methods have been successfully applied to numerous significant
applications, including problems associated with molecular studies in computational physical chem-
istry [35, 36, 37], demand adjustment problems [53], hard sphere problems [39, 41], and optimal control
problems [10, 11, 42]. The IR paradigm has also been used recently in problems whose functions are
subject to inaccurate evaluations [18, 19, 28, 43, 12, 13]. Other classes of problems tackled with IR
methods include derivative-free optimization [9, 25, 31] and bilevel optimization [3, 7, 27]. In addi-
tion, some articles report on the reliability of IR methods for solving general nonlinear programming
problems, as in [15, 22].

When the iterates produced by an algorithm may be infeasible, a mechanism beyond just the
objective function is required to determine the relative merit of different points. One alternative for
ensuring global convergence in IR methods is the use of filter techniques, see [51]. Another common
strategy involves reducing a merit function that combines the objective function with the constraints.
In [45], the merit function is a direct combination of the objective function and the measure of infeasi-
bility. Meanwhile, [44] explores the use of Lagrange multipliers, employing the Sharp Lagrangian— a
convex combination of the Lagrangian and the norm of the constraints—as the merit function. That
paper argues that this method can expedite algorithm convergence by permitting larger steps, since
second-order optimality conditions engage the Lagrangian in the tangent space of the constraints
rather than the original function. A more recent work that also follows this line is [26]. Our approach
aligns with this perspective, also utilizing the Sharp Lagrangian as a merit function.

In summary, our contributions are organized as follows: In Section 2, we identify key elements that
ensure the global convergence of optimization methods utilizing the Sharp Lagrangian as a merit func-
tion. In Section 3, we demonstrate how general IR strategies can be incorporated into the overarching
globalization framework. In Section 4, we propose a specific alternative to meet the IR steps along
with an acceleration procedure, using quadratic models with regularization and presenting complexity
results for the algorithm. The acceleration is based on a sequential quadratic programming strategy
and preserves the convergence properties of the method. In Section 5, we illustrate through numerical
experiments how the acceleration procedure can speed up the resolution of some problems. The final
considerations of this work are presented in Section 6.

Notation. Given a symmetric matrix H ∈ Rn×n, λmin(H) denotes its smaller eigenvalue.

2 Globally convergent model algorithm

In this work we consider the optimization problem

Minimize f(x) subject to h(x) = 0 and x ∈ Ω, (1)

where f : Rn → R and h : Rn → Rm are twice continuously differentiable and Ω is a non-empty
compact convex polytope. In this section, we present the key elements that we have identified for the
globalization of a variety of methods that can be applied to the solution of problem (1). The analysis
is driven by the convergence theory of IR methods, but it does not use conditions based on the so
called “restored point”, which means that the theory can be used for other types of method, including
those that do not use iterations with two phases.
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The analysis begins with the definition of a minimalist model algorithm. The description of the
algorithm requires the definition of the Lagrangian function given by

L(x, λ) = f(x) + h(x)Tλ,

where λ ∈ Rm represents the Lagrange multipliers associated with the constraints h, and the definition
of the merit function

Φ(x, λ, θ) = θL(x, λ) + (1− θ)∥h(x)∥, (2)

where θ ∈ (0, 1) plays the role of a penalty parameter. For further reference, we also define

c(x) =
1

2
∥h(x)∥22.

Only two conditions are required for the general convergence analysis. The first requires that the
merit function decreases by at least an amount proportional to the infeasibility measure at the current
iterate. The second requires that the value of the Lagrangian in the new iterate be no greater than
the current value plus an increment also proportional to the infeasibility minus an amount of the order
of the square of the step. Below we formally state the model algorithm. In the sequel, we show that
the first condition guarantees asymptotic feasibility and the second, when combined with the first,
ensures that the step size between iterates tends to zero.

Algorithm 2.1. Let Λ ⊂ Rm be a given non-empty compact set. Let θ̄ > 0, αL > 0, αΦ > 0, α̃ > 0,
x0 ∈ Ω, λ0 ∈ Λ, and θ0 ∈ (0, 1) be given. Set k ← 0.

Step 1. Compute xk+1 ∈ Ω, λk+1 ∈ Λ, and θk+1 satisfying

θ̄ ≤ θk+1 ≤ θk, (3)

Φ(xk+1, λk+1, θk+1) ≤ Φ(xk, λk, θk+1)− αΦ∥h(xk)∥, (4)

and
L(xk+1, λk+1) ≤ L(xk, λk)− αL∥xk+1 − xk∥2 + α̃∥h(xk)∥. (5)

Step 2. Set k ← k + 1 and go to Step 1.

Remark. In the sections that follow, we will show specific ways of computing xk+1 ∈ Ω, λk+1 ∈ Λ,
and θk+1. For that choices, we will show that there exist parameters θ̄ > 0 and α̃ > 0 for which (3)
and (5) hold. In other words, these two parameters will cease to be parameters of the algorithm to be
theoretical constants that are guaranteed to exist.

The result below (Lemma 2.1) shows that the infeasibility of a sequence generated by Algorithm 2.1
is summable. This type of result is usual in many IR algorithms and the proof we present is essentially
the one given in [26]. We have chosen to keep it here to emphasize that only conditions (3) and (4)
are necessary, disconnecting them from the algorithm presented in [26]. In addition, we have more
freedom of choice in the parameter αΦ than in [26] and we present a bound on the computational effort
to achieve a certain degree of feasibility, as done in [29], but without relying on Lagrange multipliers.

Assumption A1 The set Ω ⊂ Rn is convex and compact. The set Λ ⊂ Rm is compact. Functions f
and h are Lf - and Lh-continuously differentiable, respectively. That is, there exist constants Lf > 0
and Lh > 0 such that, for all x, y ∈ Ω,

∥∇f(y)−∇f(x)∥ ≤ Lf∥y − x∥ (6)

4



and
∥Jh(y)− Jh(x)∥ ≤ Lh∥y − x∥, (7)

where Jh : Rn → Rm×n represents the Jacobian of h.

For future reference, we mention here the existence of some constants guaranteed by Assump-
tion A1. By the continuity of f , h, and Jh plus the compacity of Ω, there exist constants Cf , Ch,
and DΩ such that for all x, y ∈ Ω,

max{|f(x)|, ∥∇f(x)∥} ≤ Cf , (8)

max{∥h(x)∥, ∥Jh(x)∥} ≤ Ch, (9)

and
∥y − x∥ ≤ DΩ. (10)

Moreover, since f is continuously differentiable, by the convexity and compacity of Ω, we can apply
the Mean Value Theorem to obtain that, for all x, y ∈ Ω,

|f(y)− f(x)| ≤ Cf∥y − x∥. (11)

In addition, using the Fundamental Theorem of Calculus, constant Lh from Assumption A1 is such
that, for all x, y ∈ Ω,

∥h(y)− h(x)∥ ≤ ∥Jh(x)(y − x)∥+ Lh∥y − x∥2 (12)

and
∥h(y)∥ ≤ ∥h(x) + Jh(x)(y − x)∥+ Lh∥y − x∥2. (13)

Using that Λ is a compact set and combing (6), (7), (8), (9), (10), (11) and (12), there exist constants
λ̄, CL, and LL such that, for all x, y ∈ Ω and all λ, µ ∈ Λ,

∥λ∥ ≤ λ̄, (14)

|L(x, λ)| ≤ CL, (15)

|L(y, λ)− L(x, λ)| ≤ LL∥y − x∥, (16)

∥∇L(y, λ)−∇L(x, λ)∥ ≤ LL∥y − x∥, (17)

and, by (17),
L(y, λ) ≤ L(x, λ) +∇L(x, λ)T (y − x) + LL∥y − x∥2, (18)

where ∇L(x, λ) is the gradient of L(x, λ) with respect to x. Moreover, there exists Lc such that for
all x, y ∈ Ω,

∥∇c(x)−∇c(y)∥ ≤ Lc∥x− y∥ (19)

and
c(y) ≤ c(x) +∇c(x)T (y − x) + Lc∥y − x∥2. (20)

Lemma 2.1 Suppose that Assumption A1 holds. Let {xk} be a sequence generated by Algorithm 2.1.
Then, there exists h̄ > 0 such that for all k ∈ N

k∑
j=0

∥h(xj)∥ ≤ h̄. (21)

In addition, given εfeas > 0, the number of iterations k such that ∥h(xk)∥ > εfeas is limited by h̄/εfeas
and limk→∞ h(xk) = 0.
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Proof: By (3), we have that 1 > θj ≥ θj+1 ≥ θ̄ > 0 for all j. Therefore, by defining ηj = (1− θj)/θj =
1/θj − 1, we have that

0 < ηj ≤ ηj+1 ≤ 1/θ̄ − 1 < 1/θ̄

for all j. Thus,
k−1∑
j=0

(ηj+1 − ηj) = ηk − η0 < ηk < 1/θ̄. (22)

By the definition (2) of Φ, conditions (3) and (4), the fact that θj ∈ (0, 1) for all j and the definition
of ηj , we have that, for all j,

L(xj+1, λj+1) + ηj+1∥h(xj+1)∥ ≤ L(xj , λj) + ηj+1∥h(xj)∥ − αΦ∥h(xj)∥.

Adding and subtracting ηj∥h(xj)∥ to the second term and doing a telescoping sum we get

L(xk, λk) + ηk∥h(xk)∥ ≤ L(x0, λ0) + η0∥h(x0)∥+
k−1∑
j=0

(ηj+1 − ηj)∥h(xj)∥ − αΦ

k−1∑
j=0

∥h(xj)∥.

Thus, by (9), (15), (22), and the positivity of ηj for all j, we get

k∑
j=0

∥h(xj)∥ ≤ 1

αΦ

(
2CL + η0Ch +

Ch

θ̄
+ αΦCh

)
≡ h̄. (23)

The limit on the number of iterations k such that ∥h(xk)∥ > εfeas follows from (23), and limk→∞ h(xk) =
0 follows from the fact that εfeas > 0 is arbitrary. □

The following lemma shows that the step size tends to zero. This result is different from the typical
results in IR methods because it does not use the restored point, as is usually done.

Lemma 2.2 Suppose that Assumption A1 holds. Let {xk} be a sequence generated by Algorithm 2.1.
Then, for all k,

k∑
j=0

∥xj+1 − xj∥2 ≤ 2CL + α̃h̄

αL
, (24)

where h̄ is such that (21) holds and CL satisfies (15). Additionally, given εopt > 0, the number
of iterations k such that ∥xk+1 − xk∥ > εopt is bounded by ((2CL + α̃h̄)/αL)ε

−2
opt and, consequently,

limk→∞ ∥xk+1 − xk∥ = 0.

Proof: Since (5) holds for all k, we have that

L(xk+1, λk+1)− L(x0, λ0) ≤ −αL

k∑
j=0

∥xj+1 − xj∥2 + α̃

k∑
j=0

∥h(xj)∥.

Therefore, (24) follows from Lemma 2.1 and (15). The bound on the number of iterations such that
∥xk+1 − xk∥ > εopt and limk→∞ ∥xk+1 − xk∥ = 0 follows trivially from this result. □
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3 Inexact Restoration as a particular case

In this section we present a particular case of Algorithm 2.1 that computes xk+1, λk+1 and θk+1 with
a two-phase strategy. In the first phase, an intermediate point yk is computed, partially restoring
the feasibility with respect to xk. This mechanism captures the essential elements of an iteration of
Inexact Restoration methods.

Algorithm 3.1. Let Λ ⊂ Rm be a given non-empty compact set. Let θ̄ > 0, αL > 0, αΦ > 0, βf > 0,
r ∈ (0, 1), x0 ∈ Ω, λ0 ∈ Λ, and θ0 ∈ (0, 1) be given. Set k ← 0.

Step 1. Two-phase iteration.

Step 1.1. Phase I: Restoration phase.

Compute yk ∈ Ω satisfying
∥h(yk)∥ ≤ r∥h(xk)∥ (25)

and
f(yk) ≤ f(xk) + βf∥h(xk)∥. (26)

Step 1.2. Phase II: Optimization phase integrated with penalty parameter update.

Compute xk+1 ∈ Ω, λk+1 ∈ Λ, and θk+1 satisfying (3), (4), and

L(xk+1, λk+1) ≤ L(yk, λk+1)− αL∥xk+1 − yk∥2. (27)

Step 2. Set k ← k + 1 and go to Step 1.

The following three lemmas show that Algorithm 3.1 is a particular case of Algorithm 2.1. Specifi-
cally, they show that, for every iteration k, xk+1 and λk+1 generated by Algorithm 3.1 satisfy (5) with
a particular choice of ᾱ, since (3) and (4) hold by the definition of the algorithm.

Lemma 3.1 Suppose that Assumption A1 holds. Let xk, yk ∈ Ω be such that (25) and (26) hold.
Then, for every λk, λ ∈ Λ,

L(yk, λ) ≤ L(xk, λk) + β̄∥h(xk)∥ (28)

with β̄ = βf + (r + 1)λ̄, where λ̄ satisfies (14).

Proof: By the definition of the Lagrangian, (25), (26), and (14), we have that

L(yk, λ)− L(xk, λk) = f(yk)− f(xk) + h(yk)Tλ− h(xk)Tλk

≤ βf∥h(xk)∥+ ∥λ∥∥h(yk)∥+ ∥λk∥∥h(xk)∥

≤ βf∥h(xk)∥+ λ̄r∥h(xk)∥+ λ̄∥h(xk)∥.

Therefore, (28) holds with the aforementioned β̄. □

Lemma 3.2 Suppose that Assumption A1 holds. Let {xk}, {yk}, and {λk} be generated by Algo-
rithm 3.1. Then, for all k ∈ N,

L(xk+1, λk+1) ≤ L(xk, λk)− αL∥xk+1 − yk∥2 + β̄∥h(xk)∥, (29)

where β̄ = βf + (r + 1)λ̄ and λ̄ satisfies (14).

Proof: Condition (29) follows from applying (28) with λ = λk+1 in the right-hand side of (27). □
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Corollary 3.1 Suppose that Assumption A1 holds. Let {xk} and {yk} be sequences generated by
Algorithm 3.1. Then, there exists h̄ > 0 such that, for all k ∈ N, (21) holds and

k∑
j=1

∥xj+1 − yj∥2 ≤ 2CL + β̄h̄

αL
. (30)

In addition, given εfeas > 0 and εopt > 0, the number of iterations k such that ∥h(xk)∥ > εfeas or
∥xk+1 − yk∥ > εopt is limited by

h̄

εfeas
+

2CL + β̄h̄

αLε2opt
+ 1 = O(ε−1

feas + ε−2
opt)

and, consequently, limk→∞ h(xk) = 0 and limk→∞ ∥xk+1 − yk∥ = 0.

Proof: Note that Lemma 2.1 also holds for the sequence {xk} generated by Algorithm 3.1, since it
only requires the conditions (3) and (4) to hold. On the other hand, (30) can be obtained exactly
like (24) in Lemma 2.2, substituting ∥xj+1 − xj∥ with ∥xj+1 − yj∥, α̃ with β̄, and applying (29) from
Lemma 3.2. The limit on the number of iterations is an immediate consequence of the maximum
number of iterations in which each condition applies separately. □

Up to this point, the fact of Algorithm 3.1 being a particular case of Algorithm 2,1 was not yet
established. This will be done in Lemma 3.3 below, with the additional hypothesis (31). However,
Lemma 3.2 and Corollary 3.1 summarize the properties of Algorithm 3.1 without the need of this
additional hypothesis.

Lemma 3.3 Suppose that Assumption A1 holds. Let {xk} and {yk} be generated by Algorithm 3.1.
Assume that there exists β > 0 such that, for all k, yk computed at Step 1.1 is such that

∥xk − yk∥ ≤ β∥h(xk)∥. (31)

Then, for all k, (5) holds with α̃ = β̄ + 3αLDΩβ, where DΩ satisfies (10).

Proof: By Cauchy-Schwarz, we have that

∥xk+1 − xk∥2 = ∥xk+1 − yk∥2 + ∥yk − xk∥2 + 2⟨xk+1 − yk, yk − xk⟩

≤ ∥xk+1 − yk∥2 + ∥yk − xk∥2 + 2∥xk+1 − yk∥∥yk − xk∥.

Therefore, by (31) and (10),

−∥xk+1 − yk∥2 ≤ −∥xk+1 − xk∥2 + ∥yk − xk∥2 + 2∥xk+1 − yk∥∥yk − xk∥

≤ −∥xk+1 − xk∥2 + 3DΩβ∥h(xk)∥.

Thus, (5) follows from (29) with α̃ = β̄ + 3αLDΩβ. □

We end this section by showing that (31) implies (26). With that, we could have defined Algo-
rithm 3.1 with (31) in place of (26). This algorithm would be a less flexible algorithm for which the
same results that were given in this section for Algorithm 3.1 would apply.

Lemma 3.4 Suppose that Assumption A1 holds. Let {xk} and {yk} be sequences such that (31) holds
for some β > 0. Then (26) holds with βf = Cfβ, where Cf satisfies (8).

Proof: By (11) and (31), we have that

f(yk) ≤ f(xk) + |f(yk)− f(xk)| ≤ f(xk) + Cf∥yk − xk∥ ≤ f(xk) + Cfβ∥h(xk)∥.

□
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4 Practical Inexact Restoration alternative

In this section we present a particular case of Algorithm 3.1. Specifically, we present a practical two-
phase alternative to compute xk+1, λk+1 and θk+1 that satisfy (3), (4), and (27). As the suggested
alternative satisfies the hypothesis (31) of Lemma 3.3, the algorithm presented is in turn a particular
case of Algorithm 2.1. The procedures we use are essentially those used in [29], but with a little more
freedom in the algorithmic choices, some of which have already been considered in [28] for problems
with inaccurate evaluations of the functions. The novelty lies in an innovative way of estimating the
Lagrange multipliers, resulting from the integration of the optimization phase and the calculation of
the penalty parameter.

The algorithm will be built using three modules. An additional module suggests a possible accel-
eration procedure. Each module is presented first and the algorithm as a whole is presented at the
end of the section.

4.1 Restoration phase module

Algorithm 4.1 presented below is a practical approach to computing, in Step 1.1 of Algorithm 3.1,
yk ∈ Ω that satisfies (25) and (26). To do this, the algorithm minimizes c(x) in Ω using a regularization
technique. The algorithm ends when it either obtains a restored point yk that satisfies (25) or finds an
infeasible point yk that is approximately stationary of infeasibility, with some established tolerance. In
the latter case, we declare that the restoration phase failed and we interrupt the search for a solution
of problem (1) by declaring that the problem may be infeasible. In the former case, Lemma 4.4 shows
that yk satisfies (31) for a certain value of β, which in turn implies, by Lemma 3.4, that (26) holds
for a certain value of βf . This proves that Algorithm 4.1 is indeed a way to implement Step 1.1 of
Algorithm 3.1.

Algorithm 4.1. Let xk ∈ Ω , r ∈ (0, 1), 0 < rfeas ≪ r, 0 < σmin ≤ σmax, M > 0, βc ≥ 0, κR > 0,
αR > 0, κφ > 1, and 1 < τ1 ≤ τ2 be given.

Step 1. Compute

ctarget =
1

2
r2∥h(xk)∥2 and ϵc = rfeas∥h(xk)∥.

Step 2. Initialize ℓ← 0 and choose z0 ∈ Ω such that ∥h(z0)∥ ≤ ∥h(xk)∥ and ∥z0 − xk∥ ≤ βc∥h(xk)∥.

Step 3. If c(zℓ) ≤ ctarget or ∥PΩ(z
ℓ −∇c(zℓ))− zℓ∥ ≤ ϵc, then stop returning yk ≡ zℓ.

Step 4. Initialize j ← 0, choose σℓj ∈ [0, σmax] and Bℓ ∈ Rn×n symmetric such that ∥Bℓ∥ ≤ M and
λmin(Bℓ + σℓjI) ≥ 1/M .

Step 5. By approximately solving the problem

Minimize ∇c(zℓ)T (z − zℓ) +
1

2
(z − zℓ)TBℓ(z − zℓ) +

σℓj
2
∥z − zℓ∥2 subject to z ∈ Ω, (32)

find zℓj ∈ Ω satisfying

∇c(zℓ)T (zℓj − zℓ) +

(
1 +

1

κφ

)
1

2
(zℓj − zℓ)T (Bℓ + σℓjI)(z

ℓj − zℓ) ≤ 0 (33)

and ∥∥∥PΩ

(
zℓj −

[
∇c(zℓ) + (Bℓ + σℓjI)(z

ℓj − zℓ)
])
− zℓj

∥∥∥ ≤ κR∥zℓj − zℓ∥. (34)
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Step 6. Consider the condition
c(zℓj) ≤ c(zℓ)− αR∥zℓj − zℓ∥2. (35)

If (35) does not hold, then compute σℓ,j+1 = max{σmin, τσℓj} for some τ ∈ [τ1, τ2], set j ← j+1,
and go to Step 5.

Step 7. Define zℓ+1 = zℓj , set ℓ← ℓ+ 1, and go to Step 3.

Remark. In Step 2, z0 = xk is a natural choice. However, other problem-dependent choices are
possible provided they satisfy the required conditions.

The next result shows that the loop in Steps 5 and 6 ends in finite time.

Lemma 4.1 Suppose that Assumption A1 holds. Then, for every ℓ ≥ 0 and j ≥ 0, if zℓj is computed
at Step 5 of Algorithm 4.1 with σℓj ≥ 2(Lc + ∥Bℓ∥/2 + αR), where Lc satisfies (20), then (35) holds.
Moreover, for every ℓ ≥ 0 and j ≥ 0,

σℓj ≤ max

{
2τ2

(
Lc +

∥Bℓ∥
2

+ αR

)
, σmax

}
. (36)

Proof: By (20) and the fact that condition (33) implies that ∇c(zℓ)T (zℓj − zℓ) + 1
2(z

ℓj − zℓ)T (Bℓ +
σℓjI)(z

ℓj − zℓ) ≤ 0, we have that

c(zℓj)− c(zℓ) ≤ ∇c(zℓ)T (zℓj − zℓ) + Lc∥zℓj − zℓ∥2

= ∇c(zℓ)T (zℓj − zℓ) + 1
2(z

ℓj − zℓ)T (Bℓ + σℓjI)(z
ℓj − zℓ)

−1
2(z

ℓj − zℓ)T (Bℓ + σℓjI)(z
ℓj − zℓ) + Lc∥zℓj − zℓ∥2

≤ (Lc + ∥Bℓ∥/2− σℓj/2) ∥zℓj − zℓ∥2.

Therefore, (35) holds whenever σℓj ≥ 2(Lc + ∥Bℓ∥/2 + αR), and (36) follows from the way of choos-
ing σℓ0 and σℓj for j ≥ 1. □

Lemma 4.1, the initialization of σℓ0 and the way of computing σℓ,j+1 for j ≥ 0 imply that, at each
iteration ℓ of Algorithm 4.1, the loop of Steps 5 and 6 is executed a maximum of logτ1(2(Lc+∥Bℓ∥/2+
αR)/σmin) + 2 ≤ logτ1(2(Lc +M/2 + αR)/σmin) + 2 = O(1) times. Each execution of the loop does
exactly one evaluation of h (needed to evaluate c). Lemma 4.3, which uses the result of Lemma 4.2,
gives an upper bound on the number of iterations needed for Algorithm 4.1 to find an iterate zℓ that
satisfies the stopping condition of Step 3. The bound on the number of iterations implies also a bound
on the number of evaluations of h and of the Jacobian of h.

Lemma 4.2 Suppose that Assumption A1 holds. For every ℓ ≥ 0,∥∥∥PΩ

(
zℓ+1 −∇c(zℓ+1)

)
− zℓ+1

∥∥∥ ≤ [3τ2 (Lc +M + κR + αR) + σmax] ∥zℓ+1 − zℓ∥, (37)

where Lc satisfies (19).

Proof: Let v = zℓj −∇c(zℓj) and u = zℓj − [∇c(zℓ) +Bℓ(z
ℓj − zℓ) + σℓj(z

ℓj − zℓ)]. Then,

∥v − u∥ =
∥∥∇c(zℓ)−∇c(zℓj) +Bℓ(z

ℓj − zℓ) + σℓj(z
ℓj − zℓ)

∥∥
≤ ∥∇c(zℓ)−∇c(zℓj)∥+ ∥Bℓ∥∥zℓj − zℓ∥+ σℓj∥zℓj − zℓ∥

≤ (Lc +M + σℓj)∥zℓj − zℓ∥.
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Therefore, using the non-expansivity of projections and (34), we obtain∥∥PΩ(z
ℓj −∇c(zℓj))− zℓj

∥∥ = ∥PΩ(v)− PΩ(u) + PΩ(u)− zℓj∥

≤ ∥v − u∥+ κR∥zℓj − zℓ∥

≤ (Lc +M + σℓj + κR)∥zℓj − zℓ∥.

Thus, by (36), since zℓ+1 = zℓj for some j, we obtain (37). □

Lemma 4.3 Suppose that Assumption A1 holds. Then, the number of iterations required by Algo-
rithm 4.1 to compute zℓ that satisfies the stopping criterion in Step 3 is no greater than

NR =
(3τ2(Lc +M + αR + κR) + σmax)

2

2αR r2feas
= O(1),

where Lc satisfies (19). Since the Jacobian of h, needed to evaluate ∇c, is evaluated once per iteration,
the same limit applies to the number of evaluations of the Jacobian of h. In addition, the number of
evaluations of h (needed to evaluate c) is limited by

Nh
R = NR

[
logτ1

(
2(Lc +M/2 + αR)

σmin

)
+ 2

]
= O(1). (38)

Proof: Assume that
∥PΩ(z

s −∇c(zs)− zs∥ > ϵc (39)

for all s ∈ {1, . . . , ℓ}. By (37) and (39), we have that

ℓ ϵ2c ≤
ℓ∑

s=1

∥PΩ(z
s −∇c(zs))− zs∥2 ≤ (3τ2 (Lc +M + κR + αR) + σmax)

2
ℓ∑

s=1

∥zs − zs−1∥2.

Therefore, by (35),

c(zℓ)− c(z0) =
ℓ∑

s=1

[
c(zs)− c(zs−1)

]
≤ −αR

ℓ∑
s=1

∥zs − zs−1∥2 ≤ − αR ℓ ϵ2c

(3τ2 (Lc +M + κR + αR) + σmax)
2 .

Thus, since z0 is such that c(z0) ≤ c(xk) and ϵ2c = 2r2feasc(x
k), we have that

c(zℓ) ≤ c(xk)− ℓ

{
2αR r2feasc(x

k)

(3τ2 (Lc +M + κR + αR) + σmax)
2

}
. (40)

If ℓ ≥ NR, then the right-hand side of (40) is non-positive and, consequently, c(zℓ) ≤ ctarget. This
means that in at most NR iterations at least one of the two conditions in Step 3 is met. □

We end this section by showing that, if Algorithm 4.1 ends with success, then the computed
restored point yk ≡ zℓ satisfies (31) for a certain value of β.

Lemma 4.4 Suppose that Assumption A1 holds. For all ℓ ≥ 0 and j ≥ 0, (31) holds with yk ≡ zℓj

and
β = βc +NRMκφCh, (41)

where Ch satisfies (9).

11



Proof: Let φ(t) be the univariate function defined as the objective function of (32) evaluated at
zℓ + t(zℓj − zℓ), i.e.,

φ(t) = t∇c(zℓ)T (zℓj − zℓ) +
t2

2
(zℓj − zℓ)T (Bℓ + σℓjI)(z

ℓj − zℓ).

By the definition of the algorithm, zℓj satisfies (33), that can be rewritten as φ(1) ≤ φ(1/κφ). If
zℓj ̸= zℓ, since φ(t) is convex and 1/κφ < 1, then the minimizer t⋆ of φ, given by

t⋆ = − ∇c(zℓ)T (zℓj − zℓ)

(zℓj − zℓ)T (Bℓ + σℓjI)(zℓj − zℓ)
,

satisfies t⋆ ≥ 1/κφ. Therefore, by Cauchy-Schwarz and λmin(Bℓ + σℓjI) ≥ 1/M , we have that

1

κφ
≤ t∗ = − ∇c(zℓ)T (zℓj − zℓ)

(zℓj − zℓ)T (Bℓ + σℓjI)(zℓj − zℓ)
≤ M

∥zℓj − zℓ∥
∥∇c(zℓ)∥.

In consequence, by (9) and (35),

∥zℓj − zℓ∥ ≤ κφM∥∇c(zℓ)∥ ≤ κφM∥Jh(zℓ)Th(zℓ)∥ ≤ κφMCh∥h(zℓ)∥ ≤ κφMCh∥h(xk)∥.

Therefore, since, by definition, zℓ+1 = zℓj for some j, we have that, for all ℓ ≥ 0,

∥zℓ+1 − zℓ∥ ≤ κφMCh∥h(xk)∥. (42)

(Note that (42) holds trivially whenever zℓ+1 = zℓ.) By Lemma 4.3, the number of iterations performed
by Algorithm 4.1 is bounded by NR. Then, using (42),

∥zℓ − xk∥ ≤ ∥z0 − xk∥+
ℓ∑

s=1

∥zs − zs−1∥ ≤ βc∥h(xk)∥+NRκφMCh∥h(xk)∥,

which implies the desired result. □

Right after Algorithm 4.1, Lemma 4.1 showed that the loop containing Steps 5 and 6 stops in
a finite number of iterations. This result is related to the complexity of the algorithm, but also to
its well-definiteness. However, a small detail regarding its well-definiteness was left out. We did not
show that an approximate solution to problem (32) exists that satisfies (33). This detail can now be
explained using the notation introduced in the proof of Lemma 4.4. If z is an exact solution of (32)
then t⋆(z) = 1 is an exact solution of minimizing φ(t) subject to zℓ + t(z − zℓ) ∈ Ω. Therefore,
φ(1) ≤ φ(1/κφ) holds. When z tends to the solution of (32), the solution t⋆(z) of minimizing φ(t)
subject to zℓ + t(z − zℓ) ∈ Ω is such that t⋆(z)→ 1. Therefore, for z sufficiently close to the solution
of (32), it must hold that φ(t⋆(z)) ≤ φ(1/κφ).

4.2 Module combining the penalty parameter update and the optimization phase

In this section we describe an algorithm for the optimization phase that integrates a way of determining
the penalty parameter of the merit function. Regarding the computation of the penalty parameter,
we emphasize here that the process presented can be repeated within the same iteration, whenever
convenient, with updated estimates of the Lagrange multipliers. This feature is a special feature
because it allows the use of more precise updates of the Lagrange multipliers compared to earlier
Inexact Restoration methods that update the penalty parameter with an estimate of the Lagrange
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multipliers computed prior to the optimization phase. Regarding the optimization phase, the novelty
compared to the procedures in previous works is that we allow the Lagrange multipliers used to solve
the subproblem (43) not to be the same as those used in the descent condition (46). This allows
the update of these multipliers (see Step 3) to take into account the information from the current
optimization process, which is an improvement on previous results from the literature.

Algorithm 4.2 below is intended to be used in Step 1.2 of Algorithm 3.1 to compute xk+1, λk+1,
and θk+1 satisfying (3), (4), and (27). By the definition of the algorithm, θk+1 = θ for some θ computed
at Step 5. Lemma 4.5 shows that every θ computed at Step 5 is such that (3) holds, for a certain value
of θ̄. By the definition of the algorithm, xk+1 = zj and λk+1 = λ for some zj computed at Step 2
and λ chosen at Step 3 that satisfy (46) and (49). Then xk+1 = zj and λk+1 = λ satisfy (4) and (27).

Algorithm 4.2. Let xk, yk ∈ Ω, λk ∈ Λ, θk ∈ (0, 1) r ∈ (0, 1), αΦ ∈ (0, 1 − r), 0 < σmin ≤ σmax,
M > 0, κT > 0, κP > 0, αL > 0, and 1 < τ1 ≤ τ2 be given.

Step 1. Initialize j ← 0, choose σj ∈ [0, σmax], λ
′ ∈ Λ, and H ∈ Rn×n symmetric such that ∥H∥ ≤M .

Step 2. By approximately solving

Minimize
x∈Ω

∇L(yk, λ′)T (x−yk)+ 1

2
(x−yk)TH(x−yk)+σj

2
∥x−yk∥2 subject to Jh(y

k)(x−yk) = 0,

(43)
find zj ∈ Ω satisfying

∇L(yk, λ′)T (zj − yk) +
1

2
(zj − yk)T (H + σjI)(z

j − yk) ≤ 0 (44)

and
∥Jh(yk)(zj − yk)∥ ≤ κT ∥zj − yk∥2. (45)

Step 3. Choose λ ∈ Λ.

Step 4. Consider the condition

L(zj , λ) ≤ L(yk, λ)− αL∥zj − yk∥22. (46)

If (46) does not hold, then compute σj+1 = max{σmin, τσj} for some τ ∈ [τ1, τ2], set j ← j + 1,
and go to Step 2.

Step 5. Consider condition
Φ(yk, λ, θk) ≤ Φ(xk, λk, θk)− αΦ∥h(xk)∥. (47)

If (47) holds, then set θ = θk. Otherwise, compute

θ =
(1− αΦ)∥h(xk)∥ − ∥h(yk)∥

L(yk, λ)− L(xk, λk) + ∥h(xk)∥ − ∥h(yk)∥
. (48)

Step 6. Consider condition
Φ(zj , λ, θ) ≤ Φ(xk, λk, θ)− αΦ∥h(xk)∥. (49)

If (49) does not hold, then compute σj+1 = max{σmin, τσj} for some τ ∈ [τ1, τ2], set j ← j + 1,
and go to Step 2.

Step 7. Stop returning xk+1 ≡ zj , λk+1 ≡ λ, and θk+1 ≡ θ.
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The following lemma shows the properties of the penalty parameter θ computed in Step 5.

Lemma 4.5 Suppose that Assumption A1 holds. Suppose also that the input parameters xk, yk, and r
and λ′ chosen at Step 1 are such that (25) and (28) with λ = λ′ hold for some β̄. Then, the value
of θ computed at Step 5 is such that

Φ(yk, λ′, θ) ≤ Φ(xk, λk, θ)− αΦ∥h(xk)∥ (50)

holds and
0 < θ̄ ≡ (1− r − αΦ)/(β̄ + 1) ≤ θ ≤ θk. (51)

Proof: If h(xk) = 0, then, by (25), we have that h(yk) = 0. Therefore, (28) reduces to L(yk, λ) ≤
L(xk, λk), (47) holds, θ = θk, and (50) holds by the definition of Φ. Assume now that ∥h(xk)∥ > 0
and consider the function Φ̂ : [0, 1]→ R given by

Φ̂(t) = Φ(yk, λ, t)− Φ(xk, λk, t) + αΦ∥h(xk)∥.

If Φ̂(θk) ≤ 0, then (47) holds, θ = θk, and, therefore, (50) holds as well. If Φ̂(θk) > 0, since Φ̂ is an
affine function such that Φ̂(θk) > 0 and

Φ̂(0) = ∥h(yk)∥ − (1− αΦ)∥h(xk)∥ ≤ (r − 1 + αΦ)∥h(xk)∥ < 0,

then there exists exactly one value t ∈ (0, θk) such that Φ̂(t) = 0. This value is the one given in (48);
and Φ̂(θ) = 0 implies that (50) holds.

In the case θ = θk, θ ∈ [θ̄, θk] obviously holds. When θ is computed by (48), θ < θk. Moreover,
by (25) and (28), we have that

1

θ
≤ L(yk, λ)− L(xk, λk) + ∥h(xk)∥

(1− αΦ)∥h(xk)∥ − r∥h(xk)∥
≤ (β̄ + 1)∥h(xk)∥

(1− αΦ − r)∥h(xk)∥
≤ β̄ + 1

1− αΦ − r

which implies θ ≥ θ̄. □

In the following lemma, we show that if the regularization parameter σj is large enough, then the
sufficient descent conditions (46) and (49) both hold. In the sequel, bounds are set on the number
of iterations and on the number of evaluations of the functions that define problem (1) and their
derivatives.

Lemma 4.6 Suppose that Assumption A1 holds. If σj ≥
(
LL + ∥H∥

2 + α̃
)
, where

α̃ = max

{
αL,

1− θ̄

θ̄
(κT + Lh)

}
+ 2λ̄(κT + Lh) (52)

and Lh, λ̄, LL satisfy (7), (14), (16), then the returned zj, λ, and θ satisfy (46) and (49).

Proof: By (18), (44), and the facts that ∥H∥ ≤M and σj ≥ 2(M + α̃+ LL), we have that

L(zj , λ′) ≤ L(yk, λ′) +∇L(yk, λ′)T (zj − yk) + LL∥zj − yk∥2

+1
2(z

j − yk)TH(zj − yk)− 1
2(z

j − yk)TH(zj − yk)

≤ ∇L(yk, λ′)T (zj − yk) + 1
2(z

j − yk)TH(zj − yk)

+L(yk, λ′) + (M + α̃+ LL)∥zj − yk∥2 − α̃∥zj − yk∥2

≤ ∇L(yk, λ′)T (zj − yk) + 1
2(z

j − yk)TH(zj − yk)

+
σj

2 ∥z
j − yk∥2 + L(yk, λ′)− α̃∥zj − yk∥2

≤ L(yk, λ′)− α̃∥zj − yk∥2.

(53)
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Therefore, by (53), the definition of the Lagrangian, and (14), we have that

L(zj , λ) = L(yk, λ) + [L(zj , λ)− L(zj , λ′)] + [L(zj , λ′)− L(yk, λ)]

≤ L(yk, λ) + (λ− λ′)Th(zj) + [L(yk, λ′)− α̃∥zj − yk∥2 − L(yk, λ)]

≤ L(yk, λ) + (λ− λ′)T (h(zj)− h(yk))− α̃∥zj − yk∥2

≤ L(yk, λ) + 2λ̄∥h(zj)− h(yk)∥ − α̃∥zj − yk∥2.

Thus, by (12) and (45),

L(zj , λ) ≤ L(yk, λ)− (α̃−2λ̄(κT +Lh))∥zj−yk∥2 ≤ L(yk, λ)−max

{
αL,

1− θ̄

θ̄
(κT + Lh)

}
∥zj−yk∥2,

i.e., (46) holds. In addition, we have that

L(zj , λ)− L(yk, λ) ≤ −1− θ̄

θ̄
(κT + Lh)∥zj − yk∥2. (54)

Let us now prove that (49) also holds. Note that, by (50),

Φ(zj , λ, θ)− Φ(xk, λk, θ) = [Φ(zj , λ, θ)− Φ(yk, λ, θ)] + [Φ(yk, λ, θ)− Φ(xk, λk, θ)]

≤ [Φ(zj , λ, θ)− Φ(yk, λ, θ)]− αΦ∥h(xk)∥2.
(55)

Define v = Φ(zj , λ, θ)− Φ(yk, λ, θ). By the definition of Φ and (54), we have that

v = θ[L(zj , λ)− L(yk, λ)] + (1− θ)
[
∥h(zj)∥ − ∥h(yk)∥

]
≤ θ

[
−1−θ̄

θ̄
(κT + Lh)∥zj − yk∥2

]
+ (1− θ)

[
∥h(zj)∥ − ∥h(yk)∥

]
.

(56)

By (13) and (45), we have that

∥h(zj)∥ − ∥h(yk)∥ ≤ ∥Jh(yk)(zj − yk)∥+ Lh∥zj − yk∥2 ≤ (κT + Lh)∥zj − yk∥2. (57)

Combining (57), (56), and (51), we have that

v ≤ θ
[
−1−θ̄

θ̄
(κT + Lh)∥zj − yk∥2

]
+ (1− θ)

[
(κT + Lh)∥zj − yk∥2

]
≤ θ̄

[
−1−θ̄

θ̄
(κT + Lh)∥zj − yk∥2

]
+ (1− θ̄)(κT + Lh)∥zj − yk∥2 = 0.

Then, by the definition of v and (55), we have that (49) holds. □

Lemma 4.7 Suppose that Assumption A1 holds. Then, for all j ≥ 0,

σj ≤ max

{
2τ2

(
LL +

M

2
+ α̃

)
, σmax

}
, (58)

where α̃ is as defined in (52). In addition, Algorithm 4.2 performs a single evaluation of ∇f and Jh
and the number of evaluations of f and h is bounded by

Nf,h
O = logτ1

(
2 (Lc +M/2 + α̃)

σmin

)
+ 2 = O(1). (59)

Proof: By Lemma 4.6, the fact that ∥H∥ ≤ M and the way of choosing σ0 and σj for j ≥ 1, we
obtain (58). Moreover, the updating rule of σj also implies that the loop of Steps 2 to 6 iterates a

maximum of Nf,h
O times. In each iteration j, f and h are evaluated at zj . By the definition of the

algorithm, ∇f and Jh are evaluated only once, at yk. □
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4.3 The overall strategy

In this section, we put together the two modules defined above to present a practical proposal for
Algorithm 3.1.

Algorithm 4.3. Let x0 ∈ Ω, λ0 ∈ Λ, θ0 ∈ (0, 1), r ∈ (0, 1), 0 < rfeas ≪ r, 0 < σmin ≤ σmax, M > 0,
βc ≥ 0, αR > 0, αL > 0, αΦ ∈ (0, 1− r), κR > 0, κT > 0, κP > 0, κφ > 1, and 1 < τ1 ≤ τ2 be given.
Set k ← 0.

Step 1. Use Algorithm 4.1 with parameters xk, r, rfeas, σmin, σmax, M , βc, κR, αR, κφ, τ1, and τ2 to
compute yk. If ∥h(yk)∥ ̸≤ r∥h(xk)∥, then stop by declaring failure of the restoration phase and
return yk as an approximate stationary point of minimizing ∥c(x)∥ subject to x ∈ Ω.

Step 2. Use Algorithm 4.2 with parameters xk, yk, λk, r, αΦ, σmin, σmax, M , κT , κP , αL, τ1, and τ2
to compute xk+1, λk+1, θk+1.

Step 3. Set k ← k + 1 and go to Step 1.

The next result shows that Algorithm 4.3 is a special case of Algorithms 2.1 and 3.1.

Lemma 4.8 Suppose that Assumption A1 holds. If Algorithm 4.3 does not stop at Step 1 by declaring
failure of the restoration phase, then Algorithm 4.3 is a special case of Algorithms 2.1 and 3.1.

Proof: If Algorithm 4.1 does not stop by declaring a failure of the restoration phase, then (25)
holds by the definition of the algorithm. Furthermore, for all k, by Lemma 4.4, (31) holds with
β = βc +NRMκφCh. This ensures that the hypotheses of Lemma 3.4 are satisfied and therefore (26)
holds with βf = Cfβ. Since (25) and (31) hold for all k, the hypotheses of Lemma 3.1 are satisfied.
Therefore, (28) holds for λ = λ′, with β̄ = βf + (r + 1)λ̄. This gives the hypotheses of Lemma 4.5.
Therefore, the sequence of θk is non-increasing and, for all k, θk is bounded from below by θ̄ =
(1− r − αΦ)/(β̄ + 1), i.e. (3) holds. The conditions (4) and (27) hold because the values zj , λ, and θ
returned by Algorithm 4.2 satisfy (46) and (49) and xx+1 = zj , λk+1 = λ, and θk+1 = θ. Therefore,
Algorithm 4.3 is a special case of Algorithm 3.1. By Lemmas 4.4 and 3.3, it is also a special case of
Algorithm 2.1. □

4.4 Global convergence to stationary points

Up to this point, we have established that the infeasibility of the iterates of Algorithm 4.3 is summable
and that the squared norm of the difference of consecutive iterates is also summable. This means that
limit points are feasible and that the step taken in each iteration converges to zero. In this section we
show that the limit points of the sequence generated by Algorithm 4.3 satisfy an optimality condition.
To do this, we need to recall the concept of L-AGP introduced in [4]. From now on, we assume that Ω
is described as in the following assumption.

Assumption A2 The non-empty compact convex polytope Ω is given by

Ω = {x ∈ Rn | Ax = b, Cx ≤ d},

where A ∈ Rp×n, b ∈ Rp, C ∈ Rq×n, and d ∈ Rq.

Under Assumption A2, we say that a feasible point x⋆ satisfies the L-AGP condition for problem (1)
if there exists a sequence {xk} ⊂ Ω such that limk→∞ xk = x⋆ and limk→∞ PSk(xk−∇f(xk))−xk = 0,
where

Sk = {x ∈ Rn | x ∈ Ω, Jh(x
k)(x− xk) = 0}. (60)
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The L-AGP condition is a true optimality condition, i.e., it is satisfied by any minimizer, regardless of
whether a constraint qualification is satisfied. A point x⋆ that satisfies the L-AGP condition is KKT
if a weak constraint qualification holds at x⋆, see [5].

The following hypothesis establishes the optimality condition that must be satisfied by the ap-
proximate solution zj of the optimization phase subproblem (43) to be returned by the Algorithm 4.2.
Similar conditions have been used in [29] and [28].

Assumption A3 For all k, xk+1 ≡ zj, computed at Step 2 of Algorithm 4.3 by calling Algorithm 4.2,
satisfies ∥∥∥PSk

(
zj − (∇L(yk, λ′) + (H + σjI)(z

j − yk)
)
− zj

∥∥∥ ≤ κP ∥zj − yk∥, (61)

where Sk is as defined in (60).

The following lemma connects the step in the optimization phase with a measure of optimality.

Lemma 4.9 Suppose that Assumptions A1, A2, and A3 hold. Then, for all k,∥∥∥PSk

(
yk −∇L(yk, λ′)

)
− yk

∥∥∥ ≤ κ∥xk+1 − yk∥, (62)

where

κ = κP +M +max

{
2τ2

(
LL +

M

2
+ α̃

)
, σmax

}
+ 2 (63)

and α̃ is as defined in (52).

Proof: Let j be such that xk+1 = zj . Define u = ∇L(yk, λ′) + (H + σjI)(x
k+1 − yk)). By the

non-expansiveness of projections, (61), and the fact that ∥H∥ ≤M , we have that

∥PSk(yk −∇L(yk, λ′))− yk∥

≤ ∥PSk(yk −∇L(yk, λ′))− PSk(xk+1 − u)∥+ ∥PSk(xk+1 − u)− xk+1∥+ ∥(xk+1 − yk))∥

≤ ∥yk − xk+1 + (H + σjI)(x
k+1 − yk)∥+ (κP + 1)∥xk+1 − yk∥

≤ (M + σj + κP + 2)∥xk+1 − yk∥.

Therefore, (62) follows from (58). □

We are now ready to state an asymptotic optimality result for Algorithm 4.3 and, in the sequel, a
complexity result.

Theorem 4.1 Suppose that Assumptions A1, A2, and A3 hold. Assume that Algorithm 4.3 did not
stop by declaring a failure of the restoration phase and, therefore, it generated sequences {xk} and
{yk}. If x⋆ is a limit point of {xk} or {yk}, then x∗ satisfies the L-AGP condition.

Proof: By Lemmas 4.8 and 2.1, if x⋆ is an accumulation point of {xk}, then x⋆ is feasible. Therefore,
by (31), {xk} and {yk} have the same accumulation points. On the other hand, by [26, Corollary 3.1,
p. 202],

lim
k→∞

∥PSk(yk −∇f(yk))− yk∥ = lim
k→∞

∥PSk(yk −∇L(yk, λ′))− yk∥,

while, by(30) and (62),
lim
k→∞

∥PSk(yk −∇L(yk, λ′))− yk∥ = 0.

Thus, every accumulation point of {xk} and {yk} satisfies the L-AGP condition, as we wanted to
prove. □
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Corollary 4.1 Under the assumptions of Theorem 4.1, if x⋆ satisfies the L-AGP-regularity condi-
tion [5], then x∗ is a KKT point.

Theorem 4.2 Suppose that Assumptions A1, A2, and A3 hold. Given εfeas > 0 and εopt > 0, if
Algorithm 4.3 does not stop by declaring failure of the restoration phase, then it computes an iterate
yk ∈ Ω such that

∥h(yk)∥ ≤ εfeas

and
∥PSk(yk −∇f(yk))− yk∥ ≤ εopt.

To perform this task, the iteration k and the number of evaluations of f , ∇f , h, and Jh are bounded
above by NIR, NIR Nf,h

O , NIR, NIR(N
h
R +Nf,h

O ) + 1, and 2NIR + 1, respectively, where

NIR =
h̄

εfeas
+

κ2(2CL + β̄h̄)

αL ε2opt
+ 1 = O(ε−1

feas + ε−2
opt),

Nf,h
O = O(1) is as defined in (59), Nh

R = O(1) is as defined in (38), h̄ satisfies (21), κ is defined in (63),
CL satisfies (15), and β̄ is defined as in Lemma 3.2. In the case that Algorithm 4.3 stops declaring
failure of the restoration phase, with the same bounds on the number of iterations and evaluations, it
computes yk satisfying

∥PΩ(y
k −∇c(yk))− yk∥ ≤ rfeas

r
∥h(yk)∥.

Proof: By Corollary 3.1 we have that the maximum number of iterations until we get that ∥h(yk)∥ ≤
εfeas and ∥xk+1 − yk∥ ≤ εopt/κ is NIR, while by (62) we have that if ∥xk+1 − yk∥ ≤ εopt/κ then
∥PΩ(y

k − (∇f(yk) + Jh(y
k)Tµk)) − yk∥ ≤ εopt. The remaining results follow from the definition of

Algorithm 4.3 and Lemmas 4.3 and 4.7. □

Even in the case where Ω is an n-dimensional box, the presence of the tangent space with respect
to h makes the projection onto Sk a non-trivial task. For this reason, it doesn’t seem simple to
test (61) in practice. A sequential optimality condition that is weaker than the L-AGP condition is
AKKT [4]. We say that the AKKT condition holds in a feasible point x⋆ if there exist sequences
{xk} ⊂ Rn, {λk} ⊂ Rm, {µk} ⊂ Rp and {ωk} ⊂ Rq

+ such that limk→∞ xk = x⋆, limk→∞∇f(xk) +
Jh(x

k)Tλk + ATµk + CTωk = 0, and limk→∞min{d − Cxk, ωk} = 0. Associated with this condition
we have a stopping condition for the subproblem that is easier to test in practice, which is described
in the following hypothesis.

Assumption A4 For all k, there exist νk ∈ Rm, µk ∈ Rp, and ωk ∈ Rq
+ such that xk+1 ≡ zj,

computed at Step 2 of Algorithm 4.3 by calling Algorithm 4.2, satisfies

∥∇f(yk) + Jh(y
k)T νk + (H + σjI)(z

j − yk) +ATµk + CTωk∥ ≤ κP ∥zj − yk∥ (64)

and
∥min{d− Czj , ωk}∥ ≤ κP ∥zj − yk∥. (65)

The following lemma connects the step in the optimization phase with a measure of optimality.

Lemma 4.10 Suppose that Assumptions A1, A2, and A4 hold. Then, for all k,

∥∇f(yk) + Jh(y
k)T νk +ATµk + CTωk∥ ≤ κ̂∥xk+1 − yk∥ (66)
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and
∥min{d− Cyk, ωk}∥ ≤ κ̂∥xk+1 − yk∥, (67)

where

κ̂ = max

{
κP +M +max

{
2τ2

(
LL +

M

2
+ α̃

)
, σmax

}
,
√
n(κP + ∥C∥)

}
(68)

and α̃ is defined in (52).

Proof: Let j be such that xk+1 = zj . Then, by (64), the fact that ∥H∥ ≤M , and (58), we have that

∥∇f(yk) + Jh(y
k)T νk +ATµk + CTωk∥

≤ ∥∇f(yk) + Jh(y
k)T νk +ATµk + CTωk + (H + σjI)(z

j − yk)∥+ ∥(H + σjI)(z
j − yk)∥

≤ κP ∥xk+1 − yk∥+
(
M +max

{
2τ2

(
LL +

M

2
+ α̃

)
, σmax

})
∥xk+1 − yk∥.

Thus, we have (66). Note now that, since yk ∈ Ω and ωk ∈ Rq
+, then 0 ≤ min{d−Cyk, ωk}. Therefore,

by (65), for all i = 1, . . . , q, we have that

[min{d−Cyk, ωk}]i ≤ [min{d−Cxk+1, ωk}]i + |[C(xk+1 − yk)]i| ≤ κP ∥xk+1 − yk∥+ ∥C∥∥xk+1 − yk∥.

Thus, ∥min{d− Cyk, ωk}∥ ≤
√
n(κP + ∥C∥)∥xk+1 − yk∥, from which (67) follows. □

Theorem 4.3 Suppose that Assumptions A1, A2, and A4 hold. Assume that Algorithm 4.3 did not
stop by declaring a failure of the restoration phase and, therefore, it generated sequences {xk} and {yk}.
If x⋆ is a limit point of {xk} or {yk}, then x⋆ satisfies the AKKT condition. Moreover, if x⋆ satisfies
the AKKT-regularity condition [6], then x∗ is a KKT point. In addition, given εfeas > 0 and εopt > 0,
the algorithm computes an iterate yk ∈ Ω such that ∥h(yk)∥ ≤ εfeas and ∥∇f(yk) + Jh(y

k)T νk +
ATµk + CTωk∥ ≤ εopt, where νk, µk and ωk are defined as in Assumption A4. To perform this task,
all complexity bounds are as in Theorem 4.2, substituting κ from Lemma 4.9 with κ̂ from Lemma 4.10.

Proof: The proof is analogous to the proofs of Theorem 4.1 and 4.2. □

4.5 Acceleration procedure

We have seen so far that Algorithm 3.1 is a special case of Algorithm 2.1 and that, as done in
Algorithm 4.3, we can use Algorithms 4.1 and 4.2 to compute yk, xk+1, λk+1, and θk+1 at each two-
phase iteration k of Algorithm 3.1. However, Algorithm 2.1 is more general and allows alternative
procedures to these. One alternative would be to try an acceleration strategy which, if successful, would
return xk+1, λk+1, and θk+1. Otherwise, we could rely on the algorithm for which we have theoretical
guarantees that the iteration can be completed successfully. The following algorithm describes an
acceleration strategy based on the approximate solution of a quadratic programming subproblem.

Algorithm 4.4. Let xk ∈ Ω, λk ∈ Λ, θk ∈ (0, 1) 0 ≤ σmax, M > 0, and κP > 0 be given.

Step 1. Choose λ′ ∈ Λ, σ ∈ [0, σmax], and a symmetric matrix H ∈ Rn×n such that ∥H∥ ≤M .

Step 2. By approximately solving the problem

Minimize
z∈Ω

1

2
(z−xk)TH(z−xk)+∇L(xk, λ′)T (z−xk)+σ

2
∥z−xk∥2 subject to Jh(x

k)(z−xk) = −h(xk),
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try to compute z ∈ Ω, ν ∈ Rm, µ ∈ Rp, and ω ∈ Rq
+ satisfying

∥∇f(xk) + Jh(x
k)T ν + (H + σI)(z − xk) +ATµ+ CTω∥ ≤ κP ∥z − xk∥ (69)

and
∥min{d− Cz, ω}∥ ≤ κP ∥z − xk∥. (70)

The description of the accelerated algorithm follows.

Algorithm 4.5. The description of this algorithm is almost identical to the description of Algo-
rithm 4.3. The difference is that there is a Step 0 in which it tries, by using Algorithm 4.4 a finite
number of times limited by K, to compute z ∈ Ω, ν ∈ Rm, µ ∈ Rp, and ω ∈ Rq

+ that satisfy (69)
and (70) for some λ′ ∈ Λ, σ ∈ [0, σmax], and H ∈ Rn×n such that ∥H∥ ≤M . In case of success, if (4)
and (5) hold with xk+1 = z, λk+1 = PΛ(ν), and θk+1 = θk, then it defines xk+1 = z, λk+1 = PΛ(ν),
θk+1 = θk, ν

k = ν, µk = µ, and ωk = ω, and goes to Step 31. (In Step 3, the command “go to Step 1”
must be replaced with “go to Step 0”).

Theorem 4.4 Suppose that Assumptions A1 and A2 hold and that, every time xk+1 is computed by
Algorithm 4.2, Assumption A4 holds. Given εfeas > 0 and εopt > 0, if Algorithm 4.5 does not stop by
declaring failure of the restoration phase, then it computes an iterate such that either

xk ∈ Ω

∥h(xk)∥ ≤ εfeas

∥∇f(xk) + Jh(x
k)T νk +ATµk + CTωk∥ ≤ εopt

∥min{d− Cxk, ωk}∥ ≤ εopt

(71)

or 

yk ∈ Ω

∥h(yk)∥ ≤ εfeas

∥∇f(yk) + Jh(y
k)T νk +ATµk + CTωk∥ ≤ εopt

∥min{d− Cyk, ωk}∥ ≤ εopt.

(72)

To perform this task, the iteration k and the number of evaluations of f , ∇f , h, and Jh are bounded
above by NA, NA(N

f,h
O +K), 2NA, NA(N

h
R +Nf,h

O +K) + 1, and 2NA + 2, respectively, where

NA =
h̄

min{εfeas, εopt/(2κ̂β)}
+

4κ̂2(2CL + α̃h̄)

αLε2opt
+ 1 = O(ε−1

feas + ε−2
opt),

Nf,h
O = O(1) is as defined in (59), Nh

R = O(1) is as defined in (38), h̄ satisfies (21), κ̂ is defined
in (68), CL satisfies (15), and α̃ = Cfβ + (r + 1)λ̄ + 3αLDΩβ, Cf as in (8), DΩ as in (10), λ̄
as in (14) and β as in (41). Moreover, if x⋆ is a limit point of {xk} or {yk}, then x⋆ is AKKT.
Consequently, if x⋆ satisfies the AKKT-regularity condition, then x∗ is a KKT point.

Proof: Note that, regardless of whether xk+1, λk+1 and θk+1 calculated in iteration k of Algorithm 4.5
were obtained by the acceleration strategy (call to Algorithm 4.4 in Step 0) or by a two-phase iteration
(call to Algorithms 4.1 and 4.2 in Steps 1 and 2, respectively), the conditions (3), (4), and (5) hold.
Therefore, by Lemmas 2.1 and 2.2, we have that there exists an iterate xk+1 with k ≤ NA such that

1The definition of νk, µk, and ωk serves only to test the stopping criterion and for the theoretical analysis.
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∥xk+1 − xk∥ ≤ εopt/(2κ̂) and ∥h(xk)∥ ≤ εfeas or ∥h(yk)∥ ≤ ∥h(xk)∥ ≤ min{εfeas, εopt/(2κ̂β)} ≤ εfeas.
If this xk+1 is a result of the acceleration strategy, then analogously to the proof of Theorem 4.3
(replacing yk by xk), we get (71). On the other hand, if xk+1 is computed in a two-phase iteration,
we have that

∥xk+1 − yk∥ ≤ ∥xk+1 − xk∥+ ∥xk − yk∥ ≤ ∥xk+1 − xk∥+ β∥h(xk)∥ ≤ εopt/κ̂.

Thus, by Lemma 4.10, we obtain (72). The bounds on the number of evaluations follow trivially
from the definition of the algorithm. Since εfeas and εopt are arbitrary, we have that x⋆ is AKKT and
therefore, if the AKKT-regularity condition holds, it is KKT. □

5 Numerical experiments

In this section we present numerical results with Algorithm 4.5 for the case where Ω = {x ∈ Rn | ℓ ≤
x ≤ u} with ℓ, u ∈ Rn, ℓi < ui for i = 1, . . . , n. On the one hand, we intend to show that the algo-
rithm is implementable and can be used as a general-purpose tool for solving nonlinear programming
problems with equality constraints and bounds. On the other hand, we wish to evaluate whether the
optional SQP acceleration (Step 0) contributes to improve the performance of the method. In the
experiments, we considered all 376 nonlinear programming problems from the CUTEst collection [40]
(version 2.2.0) with only equality constraints and bounds. We considered the standard dimensions
of each problem (number of variables n and number of constraints m) and used the provided initial
estimates x0 and λ0.

We implemented Algorithm 4.5, which calls Algorithms 4.1, 4.2, and 4.4, and has Algorithm 4.3 as
a particular, in Fortran 90. In the numerical experiments we considered Λ = {λ ∈ Rm | ∥λ∥∞ ≤ 1016},
θ0 = 0.9, r = 0.3, rfeas = 10−12, σmin = 10−2, σmax = 1016, M = 1016, βc = 1, αR = αL = αΦ = 10−8,
κR = κT = κP = 10−4, κφ = 1016, and τ1 = τ2 = 10. All these values are rather standard in the
literature of inexact restoration methods [15] and regularized methods [16] and Algorithm 4.5 is not
very sensitive to small variations of these values.

In Algorithm 4.1, we choose z0 = xk in Step 2 (and hence the parameter βc plays no role) and
Bℓ = J(zℓ)TJ(zℓ) and σℓ,0 = 10−8 ≈ √ϵmach in Step 4, where ϵmach ≈ 10−16 represents the machine
precision. Thus, by the way of updating the regularization parameter, λmin(Bℓ + σℓjI) ≥ 1/M is
satisfied, for all ℓ and j, for any M ≥ 108. The subproblem (32), that consists in minimizing a
quadratic function subject to bound constraints, is solved by using Gencan [8, 17, 20, 21, 23]. In
Algorithm 4.2, we choose σ0 = 0, λ′ = λk, and H = ∇2L(yk, λk) in Step 1. The subproblem in
Step 2, that consist in minimizing a quadratic function subject to linear equality constraints and
bound constraints, is solved using Algencan [1, 2, 23, 24]. The computed approximate solution zj

satisfies (44), (45), and the optimality conditions of Assumption A4, i.e., (64) and (65). This means
that, together with zj , we get νj and ωj such that

∥∇f(yk) + Jh(y
k)T νj + (H + σjI)(z

j − yk) + [−I | I]ωj∥ ≤ κP ∥zj − yk∥

and
∥min{−[−I | I]T zj , ωj}∥ ≤ κP ∥zj − yk∥.

All this to say that, in Step 3, we choose λ = PΛ(ν
j). In Algorithm 4.4, we only considered the

cases K = 0 and K = 1. This means that Algorithm 4.4 is called by Algorithm 4.5 at most once per
iteration. When called at iteration k, we choose λ′ = λk, σ = 0, and H = ∇2L(xk, λk) in Step 1.
The subproblem in Step 2, that consist in minimizing a quadratic function subject to linear equality
constraints and bound constraints, is solved using Algencan.
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Given tolerances εfeas > 0 and εopt > 0 (εfeas = εopt = 10−8 in the numerical experiments), the
stopping criterion

∥h(x)∥ ≤ εfeas (73)

and
∥PΩ(x−∇L(x, λ))− x∥ ≤ εopt, (74)

is tested before starting the algorithm with x ≡ x0 and λ ≡ λ0 and at the end of Steps 0 and 2 with
x ≡ xk+1 and λ ≡ λk+1. Note that the criterion chosen concerns the point xk+1 and not the points
xk or yk, as would be suggested by Theorem 4.4. This is because it is natural that the point reached
by the acceleration or optimization process is better than the point at which the iteration began.
Therefore, it is reasonable to assume that we have obtained the desired accuracy in such an iteration,
with the associated Lagrange multiplier.

Numerical experiments were conducted on a computer with an Apple M1 Max processor and a
64GB RAM memory, running Ventura 13.4.1. Codes were compiled by the GNU Fortran compiler of
GCC (version 14.1.0) with the -O3 optimization directive enabled. We set a limit of 10 minutes of
CPU time for each method/problem.

Hereafter, we will call IR to Algorithm 4.3 (or Algorithm 4.5 with K = 0) and accelerated IR to
Algorithm 4.5 with K = 1. Detailed tables with the results of each method can be found in http://

www.ime.usp.br/~egbirgin/. Regarding the stopping criterion, IR stopped satisfying (73,74) in 239
problems, while accelerated IR stopped satisfying (73,74) in 270 problems. In the remaining problems
the methods stopped by hitting the CPU time limit or by an alternative criterion associated with lack
of progress. Regardless of the stopping criterion, IR found a point satisfying (73) in 283 problems,
while accelerated IR did the same in 296 problems. So far we can say that accelerated IR wins from
IR if we use “finding KKT points” as a comparison criterion, since the former found nearly 10% more
KKT points than the latter. Accelerated IR is still better if the comparison criterion is to find feasible
points, but the advantage in that case drops to nearly 5%.

There are 277 problems for which both methods satisfied (73). Let’s call f1 and f2 the function
values found by the two methods in a given problem and say that f1 and f2 are equivalent if

fi ≤ fmin + ftolmax{1, |fmin|} for i = 1, 2,

where fmin = min{f1, f2} and ftol = 0.1. Among the 277 problems in which both methods found
feasible points, the function values found by the methods are equivalent in 273. (This result remains
virtually unchanged for different values of ftol ∈ {10−2, 10−3, . . . , 10−8}.) This shows that the methods
are tied if the criterion is to find a feasible point with the smallest possible objective function value,
unless by the fact of accelerated IR having found feasible points in cases where the IR method did
not, as described above.

It remains now to compare the efficiency of the methods in those nprob = 273 problems in which
they both found feasible points with equivalent objective function values. For this comparison we
use performance profiles [30]. We use CPU time as a performance measure. Figure 1 shows on the
abscissa κ ≥ 1 and on the ordinate, for each method i ∈ {IR, accelerated IR},

Γi(κ) =
|{j ∈ {1, . . . , nprob} | tij ≤ κminℓ∈M{tℓj}}|

nprob
,

where tij represents the CPU time used by method i in problem j. The figure shows that in 75% of
the problems the two methods behave very similarly. In about half of the problems, the acceleration
speeds up the satisfaction of the stopping criterion and, in the other half, either the acceleration ends
up not speeding up the method or unsuccessful attempts to accelerate slow down the convergence of
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the method slightly. But in all these cases, the slower method never takes more than twice as long as
the faster method. On the other hand, in the remaining 25% of the problems, the acceleration speeds
up the convergence of the non-accelerated method, which takes between 2 and 5,000 times longer than
the accelerated method.

0
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0.8

1

1 10 100 1000

IR (Γ(1) = 0.55)

IR with SQP acceleration (Γ(1) = 0.51)

Γ
(κ
)

κ (log scale)

CPU time

Figure 1: Performance profile using CPU time as the performance metric to compare the efficiency of
IR and accelerated IR on the 273 (out of 376) problems where both methods found a feasible point
with equivalent objective function value.

In the last decades several attempts were made to implement a general purpose inexact restoration
method, see [16]. If on the one hand it is true that there is no efficient implementation that competes
with efficient implementations of other paradigms such as interior points and augmented Lagrangian,
there are efficient implementations for specific problems in which efficient and ad-hoc algorithms exist
for the restoration phase. Regarding the implementation described in the present work, we can state
that the amount of KKT points (270 out of 364) and feasible points (296 out of the same 364)
found by accelerated IR are compatible with the proportions found by consolidated methods such as
Algencan [2] and Ipopt [52], see [24]. A more robust and efficient implementation of an IR method
should be based on the use of more specific algorithms for the resolution of each of the subproblems
of Algorithms 4.1, 4.2, and 4.4.

6 Final remarks

In this article we have identified the main elements for globalizing a basic nonlinear programming
framework using the sharp Lagrangian as a merit function. This analysis shows that the complexity
with respect to the number of iterations of the algorithm is independent of the way the iterates are
obtained, as long as the established descent conditions are satisfied. This analysis has been extended
to a general Inexact Restoration algorithm, which turns out to be a special case of the basic algorithm.
Using a quadratic regularization strategy, it was shown that the computational effort for evaluating
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functions and their derivatives at a single iteration depends only on the algorithmic parameters and
constants inherent to the problem, but not on the precision required as a stopping criterion. As a result,
it was shown that the complexity in terms of iterations and number of evaluations is O(ε−1

feas + ε−2
opt)

to obtain an εfeas-feasible point that satisfies an optimality measure with tolerance εopt. Furthermore,
the introduced framework could also be applied to alternatives using line search and trust regions. In
this sense, we hope that the results of this study will facilitate the analysis of several other similar
algorithms.

Another aspect to note is that the presented Inexact Restoration method allows greater flexibility in
terms of parameters, inaccuracy in solving subproblems, and choices for obtaining iterates, compared
to previous variants in the literature. In particular, we highlight the possibility to update the Lagrange
multiplier together with the generation of xk+1 and not with yk as in previous work. This is important
because it is usually in the process of computing xk+1 that optimality information becomes available.

Finally, we would like to emphasize that the general framework makes it possible to use acceleration
techniques while maintaining a well-established theory. In this paper, we have shown an alternative
way to globalize the SQP method using a two-phase technique that also exploits the use of quadratic
subproblems. With this strategy, it was possible to speed up convergence in some of the problems used
in our numerical tests. We believe that this general framework can efficiently incorporate speedups
developed for specific problems, many of which lack rigorous convergence theory. Exploring these
possibilities in topological optimization and data science problems is of particular interest to us for
future research.
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[36] J. B. Francisco, D. S. Gonçalves, F. S. V. Bazán, and L. L. T. Paredes. Nonmonotone inexact
restoration approach for minimization with orthogonality constraints. Numerical Algorithms,
86(4):1651–1684, 2020.

[37] J. B. Francisco, J. M. Mart́ınez, L. Mart́ınez, and F. Pisnitchenko. Inexact restoration method for
minimization problems arising in electronic structure calculations. Computational Optimization
and Applications, 50(3):555–590, 2010.

[38] F. A. M. Gomes and T. A. Senne. An SLP algorithm and its application to topology optimization.
Computational & Applied Mathematics, 30(1):53–89, 2011.

26



[39] M. A. Gomes-Ruggiero, J. M. Mart́ınez, and S. A. Santos. Spectral projected gradient method
with inexact restoration for minimization with nonconvex constraints. SIAM Journal on Scientific
Computing, 31(3):1628–1652, 2009.

[40] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained testing
environment with safe threads for mathematical optimization. Computational Optimization and
Applications, 60(3):545–557, 2014.

[41] E. W. Karas, E. A. Pilotta, and A. A. Ribeiro. Numerical comparison of merit function with
filter criterion in inexact restoration algorithms using hard-spheres problems. Computational
Optimization and Applications, 44(3):427–441, 2008.

[42] C. Y. Kaya and J. M. Mart́ınez. Euler discretization and inexact restoration for optimal control.
Journal of Optimization Theory and Applications, 134(2):191–206, 2007.
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