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Abstract

The traveling salesman problem is a widely studied classical combinatorial problem for which
there are several integer linear formulations. In this work, we consider the Miller-Tucker-Zemlin
(MTZ), Desrochers-Laporte (DL) and Single Commodity Flow (SCF) formulations. We argue that
the choice of some parameters of these formulations is arbitrary and, therefore, there are families
of formulations of which each of MTZ, DL, and SCF is a particular case. We analyze these families
for different choices of the parameters, noting that in general the formulations involved are not
comparable to each other and there is no one that dominates the rest. Then we define and study
the closure of each family, that is, the set obtained by considering all the associated formulations
simultaneously. In particular, we give an explicit integer linear formulation for the closure of each

of the families we have defined and then show how they compare to each other.

Keywords: integer programming; linear programming; extended formulations; traveling salesman

1 Introduction

Let G = (N, A) be a complete directed graph on n > 4 nodes, where N = {1,...,n} and A = {ij:i,j €
N, i # j}. A Hamiltonian cycle or tour is a directed cycle in G that begins and ends at the same
node and such that each node is visited exactly once. The Asymmetric Traveling Salesman Problem
(ATSP) seeks to find a Hamiltonian cycle of minimum cost with respect to a given vector ¢ € R4, Tt
finds a number or applications in logistics, sequencing, scheduling, among others. We refer the reader
to [1] for a thorough coverage of history, applications, and solution approaches.

A generic mixed-integer linear programming formulation for the ATSP using binary variables x;;
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for ij € A can be written as

min Z CijTij (1)

ijeA
s.t. Z z;; =1 forallie N (2)
ij€8t(3)
> wj=1 forallie N (3)
ji€d~ (i)
{ij € A:z;; =1} does not contain subtours (4)
xzi; € {0,1}  for all ij € A, (5)

where §7 (i) is the set arcs originating from node i, 6~ (i) is the set of arcs arriving to node i (see
below for a formal definition of these sets of arcs) and a subtour is a cycle in G that does not cover
all nodes in N. In the optimization problem above, the objective function to be minimized is given
by (1), constraints (2), (3) and (5) define an integer linear programming formulation for a restricted
version of the Assignment Problem (equivalent to the face of the assignment polytope given by the
equations x;; = 0 for all i € N), while requirement (4) ensures that any feasible solution represents a
single tour. Requirement (4) can be written using linear constraints on the x variables (a formulation
in the original space) or using additional variables and linear constraints (an extended formulation).
In this paper, we study properties of parametric integer programming formulations for the ATSP
that are based on three classic formulations from the literature: the Miller-Tucker-Zemlin (MTZ), the
Desrochers—Laporte (DL), and the Single-Commodity Flow (SCF) formulations. Before stating our
results, we give some notation, precisely describe the MTZ, DL, and SCF formulations, and introduce

the parametric formulations proposed in this paper: the d-MTZ, d-DL and b-SCF formulations.

Notation: For S C N,let §t(S)={ij€ A:i€ S, je N\ S}, 6 (S)={ije A:ie N\ S, j€ S},
and A(S) ={ij € A:i e S, j € S}. If S = {i}, we write §7(¢) and 6~ (i), respectively. Denote
Ny =N\{1} ={2,...,n} and A; = {ij:i,j € N1, i # j}. Let C; be the set of directed cycles with
arcs in Ay and let S; be the set of subsets of Ny of size at least 2. For a cycle C, its reversed cycle
will be denoted C® = {ji:ij € C}.

Given a set Q = {(x,u) € R™ x R : Az + Bu < b}, its projection onto the x variables is denoted
as proj,(Q) = {zr € R™ :Ju € R™ s.t. (z,u) € Q}.

The vector with all its components equal to one will be denoted 1; its dimension must be understood
by the context in which the notation is used. In addition, given a set of indices K, 1x denotes a
binary vector whose nonzero components are the ones indexed by K. Finally, R, and R4 stand for

the nonnegative and positive real numbers, respectively.

1.1 Classic integer programming formulations for the ATSP

Below we present some of the most commonly used integer programming formulations for the ATSP.

We refer the reader to [11] for a thorough survey on different formulations for the ATSP and relations



among them. In all formulations that follow, for modeling purposes and without loss of generality, we
consider node 1 as a special node.
The Dantzig-Fulkerson-Johnson (DFJ) formulation [5] writes (4) in terms of the variables z;; for
ij € A by using the exponentially many constraints known as Clique inequalities:
> i <|S|—1 forall S €S (6)
ijeA(S)
The above inequalities can be replaced by the Cut inequalities:
Z xz;; > 1 forall Sedy,
ijest(S)
obtaining an equivalent formulation.
The Miller-Tucker-Zemlin (MT7Z) formulation [10], a compact extended formulation, uses additional

continuous variables us, ..., u, € R and the quadratically many inequalities
w —uj; + (n—1)x;; <n—2 forall ij € A;. (7)

Variable u; for i € N7 can be understood as the relative position of node ¢ in the tour. Note that (7)
for ij € Ay implies that if z;; = 1, then u; +1 < u;.

The Desrochers-Laporte (DL) formulation [6] strengthens the MTZ formulation by lifting variable
xj; into (7), yielding

u;—uj+(n— 1Dz +(n—3)z; <n—2 forallij € A;. (8)

Note that (8) for ij and ji € A; imply that if ;; = 1, then u; +1 = u;.

In [9], the u variables in the MTZ and DL formulations are disaggregated in terms of binary
variables that indicate precedence relations of nodes in the tour. The new variables vy; for k,7 € Ny
can be understood as indicating whether node k precedes node i. The disaggregation of the MTZ
formulation, termed RMTZ in [9], is given by

xl-j+vkikaj§1 fOI‘a,HZ‘jEAl,kGNlik#Z‘,k#j (9)
Tij — Vij <0 for all 1j € Aq
Tij + 05 < 1 forall ij € A;.
Moreover, lifting constraint (9) to
Tij + Tji + Uk — Ug; <1

yields a disaggregation of the DL formulation, termed L1IRMTZ in [9].
The Single-Commodity Flow formulation (SCF) [8] includes additional flow variables f;; € Ry

along the constraints

n—1 1=1
SNoofi— Y fi= (10)
ijesT (i) ji€s—(4) -1 1€ Ny
fij < (n—1azy; for all ij € A. (11)



Similarly to the MTZ and DL formulations, the SCF formulation can be disaggregated. The Multi-
Commodity Flow formulation (MCF) [14] includes additional flow variables ff; € Ry for each k € Ny

and ij € A along the constraints

Z Z fi: -1 i=k for all k € Ny
ijEST () Ji€d— (i)
0 iGNl,i#k

fi <@y forallke Ny, ij e A

1.2 New parametric integer programming formulations for the ATSP

We define new formulations for the ATSP as follows: for each of the classic MTZ, DL, and SCF
formulations, we keep the assignment polytope constraints unchanged and we replace some of the
numbers appearing in the remaining constraints by appropriate parameters d € Rﬁﬁr or b € Rﬂr,
depending on the classic formulation being considered.

The d-MTZ formulation is defined by replacing constraints (7) in the MTZ formulation by
u—uj +diy <1 —wy; 45 € Ay (12)
The d-DL formulation is given by the replacing the constraints (8) in the DL formulation by
w —uj +x; + (1—dij —dj)xj <1—d;; forall ij € A. (13)

The b-SCF formulation is obtained by replacing the constraints (10)-(11) in the SCF formulation
by
1 1=1
Z f’ij - Z fjl - (14)
ijEST(4) JIES (4) —b; i€ N

fij <my; forallij € A (15)

We remark here that in order for these to be valid formulations for the ATSP, the parameters

de Rf_i and b € Rfﬁr must be chosen appropriately. We define

D=SdeR{: > d; <1VC el
ijeC

and
{ ERYL: D b = 1}
1€ENy

In the sections corresponding to each of the proposed formulations, we argue that (12) or (13) with

d € D, and (14) with b € B provide valid formulations for the ATSP.



Relevant polyhedral sets: Each formulation that we have presented has a polyhedron associ-
ated to it which is obtained by removing all integrality constraints from the corresponding formula-
tion. We denote the polyhedron associated to the (restricted) Assignment Problem as Pap = {z €
[0,1]4: 2 satisfies (2) and (3)}. Similarly, we define the polyhedra associated to the parametric for-
mulations: for the d-MTZ formulation we let Qumrz(d) = {(z,u) € Pap x RM : (z,u) satisfies (12)},
for the DL formulation we let Qpr(d) = {(x,u) € Pap x RN1:(x,u) satisfies (13)}, and for the
SCF formulation we let Qscr(b) = {(z, f) € Pap x R : (z, f) satisfies (14) and (15)}. We also let
Pyrz(d) = proj, (Qurz(d)), PoL(d) = proj,(@pr(d)) and Pscr(b) = proj,(Qscr(b)).

1.3 Our results and organization of the paper

In this paper, we study the following properties of the formulations defined in the previous section:

1. Characterization of the projection onto the z-variables space. We study the formula-
tions Pyrz(d), Ppr(d), and Pscr(b) that are obtained by projecting the extended formulations
Qmrz(d), Qpr(d), and Qscr(b) onto the space of z-variables. In particular, we give a full

polyhedral description and characterize their facets.

2. Comparing the formulations for different parameters. Two formulations are comparable
if one it is included in the other (the formulation that is included in the other is said to be
stronger). We show that in general for d,d’ € D, Pyrz(d) and Pyrz(d’) are not comparable; we
also give conditions for which given d we can find a parameter d’ that gives a stronger formulation.
We also show that for d,d’ € D, under a minor condition, the formulations Ppy,(d) and Ppr,(d)
are not comparable. Finally, we show that for b,b" € B, the formulations Pscr(d) and Pscr(d')

are never comparable.

3. Characterizing the closures. We define the closure of a family of parametric formulations as
the set obtained by simultaneously considering the formulations for all values of the parameters.
More precisely, for the d-MTZ formulations the closure is the set (,. Pyurz(d), for the d-DL
formulations the closure is the set (), Por(d) and for the b-SCF formulations the closure is
the set (), Pscr(d). We completely characterize all these closures and study some of their

properties.

The rest of the paper is organized as follows: in Section 2 we define general parametric formulations,
the closure of a family of parametric formulations and related concepts, and study their properties. In
this section we also study properties of the sets of parameters D and B, and properties of classic for-
mulations. In Section 3, Section 4 and Section 5 we study the d-MTZ formulations, d-DL formulations,
and b-SCF formulations, respectively. Finally, in Section 6 we compare the closures of the parametric

formulations studied in this paper.



2 Preliminaries

2.1 General parametric formulations and extended formulations

Since in this paper we consider several formulations for the ASTP, it is convenient to study properties

of formulations and extended formulations of sets of integral vectors in more generality.

Definition 1 (Formulations). A formulation for a set S C Z™ is a set P C R™ such that S =
PNZ™. An extended formulation of S is a set Q C R™ x E, where F is an arbitrary set, such that
S = proj,(Q)NZ".

The parametric (extended) formulations we study are polyhedra, and the parameters can appear
in the constraint matrix or in the r.h.s.. The following definition encompasses all the formulations we

consider and gives a precise way to compare formulations for different parameters.

Definition 2 (Parametric Formulations, Domination). Let S C Z"*, X C R™ and let P C (R™*™ x
R™*™2 x R™) be a set of parameters. Given (A,G,b) € P, we consider the set P(A,G,b) = {z €
X :3u € R™ s.t. Az + Gu < b}. We say that P(A,G,b) with the set P is a parametric formulation
for S if P(A,G,b)nZ™ = S for all (4,G,b) € P.

For (A, G,b), (A", G',b') € P wesay that P(A, G,b) dominates P(A’,G',b") if P(A,G,b) C P(A',G',V);
we say that P(A, G,b) and P(A’, G', V') are comparable if one of these formulations dominates the other.

In the context of our paper, we have X = Pap (the restricted assignment polytope). For the d-MTZ
and d-DL formulations (respectively b-SCF formulations) we have that the associated set of parameters
is P = D (respectively P = B), and the parametric formulations are given by the polyhedra Pyrz(d)
and Ppr,(d) that only depend on the parameter d € D (respectively the polyhedron Pscr(b) that only
depends on the parameter b € B).

Observation 1. Let S CZ", X CR™ and P C (R™*™ xR™*"2 xR™) and consider the parametric
formulation given by P(A, G,b) and (A,G,b) € P. Denote Q(A,G,b) = {(z,u) € X xR"2: Ax+ Gu <
b} for (A,G,b) € P. Then we can write P(A,G,b) = {x € X :Ju € R" s.t. (z,u) € Q(A,G,b)}.
Observe that for (A, G,b), (A, G', V') € P we have that P := P(A,G,b)NP(A",G',V) is a formulation
for S, but in general Q := Q(A,G,b) N Q(A', G, V) does not define a formulation for S, as we have
proj, (@) NZ™ C PNZ™ = S and the inclusion may be strict. However, the set Q= {(z,u,v') €

X xR™ xR": Az + Gu < b, A’z + G'v' <b'} satisfies proj,(Q) = P and thus defines a formulation

for S (we show this property for arbitrary intersections in Lemma 3 below).

In addition to understanding when a formulation P(A, G,b) dominates a formulation P(A’,G',b')
for different parameters (A, G,b) and (A’,G’, V'), we are also interested in understanding the set ob-
tained by considering the formulations P(A,G,b) for all parameters (A, G,b) simultaneously. More

precisely, we are interested in the following set.

Definition 3 (Closure of a family of parametric formulations). Let X C R™ P C (R™*™1 x R™*"2 x

R™), and P(A,G,b) = {r € X :3Ju € R s.t. Az + Gu < b} for (A4, G,b) € P. The closure of a family



of parametric formulations w.r.t. the set of parameters P, denoted C1(P(P)), is the set obtained by
intersecting all the formulations P(A, G,b) with (A, G,b) € P, that is,
CIP(P))= () P(AGb) ={zecX:forall (4,G,b)eP, ucR™ st Ar+Gu<b},
(A,G,b)eP
The following classic result from the Robust Optimization literature (see [4]) allows us to restrict

our analysis to sets of parameters P that are closed and convex, and also gives a sufficient condition

for the closure C1(P(P)) to be a polyhedral set.

Lemma 2 (see [4]). Let X C R}, P C (R™*™ x R™*™2 x R™), and P(A,G,b) = {x € X:3u €
R™2 s.t. Az + Gu < b} for all (A4,G,b) € P.

1. The sets of parameters P and the closure of the convex hull of P give the same intersection:

CL(P(P)) = Cl(P(conv(P))).

2. If X and P are polyhedra, then C1(P(P)) is a polyhedron.

For the d-MTZ, d-DL, and b-SCF parametric formulations, the set of parameters P is not a poly-
hedron, as neither D or B are closed sets. However, since their closure is a polytope, by part (1.) of
Lemma 2 we will be able to work with the polytopes D and B when computing the closures of the
associated parametric formulations.

The closure of a family of parametric formulations is defined by intersecting all the formulations
P(A,G,b) in the az-space. We are also interested in studying sets in the z-space that are obtained from
extended formulations that consider an arbitrary number of variables. This is motivated by the study
of the “intersection” of all the formulations Q(A, G,b), which, by Observation 1, must be done by
considering a copy of the variable u for each parameter (A, G,b) in order to obtain a valid formulation

in the x-space.

Definition 4 (Extended formulation with arbitrary number of variables). Let X C R™ and P C
(R™*™M x R™*"2 x R™) be a set of parameters. Denote Q(A4, G,b) = {(z,u) € X xR"2: Az + Gu < b}
for (4,G,b) € P. We define

Ef(Q(P)) = {(z,u) € X X (R”Z)73 : Az 4+ Gu(A, G,b) <b for all (4,G,b) € P}.

Here, we identify (R"2)” with the set of functions u:P — R™, which in general is an infinite-

dimensional vector space.

If P is finite in the above definition, we recover R"2*” whose dimension is ny|P|. In particular, if
P ={(AY,GLbY), ..., (AF G*, b¥)}, we can write
Ef(Q(P)) = {(z, (u',...,uF)) € X x (R™)* 1 Alx + G’ < b foralli=1,... k}.
Let (A,G,b) € P. Note that by definition we have P(A,G,b) = proj,.(Q(4,G,b)). A similar

relation can be established between the operators Cl(-) and Ef(-) when considering all the formulations

with parameters in the set P.



Lemma 3. Let X C R}, P C (R™*™ x R™*"2 x R™), and for (A,G,b) € P, let P(A,G,b) = {z €
X :3u e R™ st. Az + Gu < b} and Q(A,G,b) = {(z,u) € X x R": Ax + Gu < b} . We have that

proj, (Ef(Q(P))) = CI(P(P))
Proof. We have

proj, (Ef(Q(P))) = {z € X:3u e (R™)” s.t. Az + Gu(A,G,b) < b for all (A,G,b) € P}
={z e X:forall (4,G,b) e P, JueR™ st. Ar+ Gu < b}

= m {r € X:3ueR™ st. Az + Gu < b}
(A,G.b)EP

— () P4,G,b) = CUP(P)).
(A,G,b)EP

O

As a corollary of the previous results, we obtain that if the set of parameters P is a polytope, then
the associated closure and the extended formulation with arbitrary number of variables have a finite

representation in terms of the vertices of the polytope.

Corollary 4. If P is a nonempty polytope with vertices V, then C1(P(P)) = CI(P(V)) and Ef(Q(P)) =
Ef(Q(V)).

Proof. Since P = conv(V), by (1.) of Lemma 2, we obtain C1(P(P)) = CI(P(V)). Now, by Lemma 3,
we have proj,(Ef(Q(P))) = CI(P(P)) for any set of parameters P, and therefore

proj, (Ef(Q(P))) = CL(P(P)) = CI(P(V)) = proj, (Ef(Q(V))).
O

Observation 5. If P(A,G,b) is a formulation and Q(A,G,b) is an extended formulation of a set S
for all (A,G,b) € P, it is easy to see that CL(P(P)) is a formulation of S and that Ef(Q(P)) is an
extended formulation of S with E = (R™)”. As in Observation 1, we have that the set {(z,u) €
X xR™: Az + Gu < b for all (A,G,b) € P}, where we use the common variable u € R™ over all
parameters in P, in general is not a formulation of S. Finally, C1(P(P)) (resp. Ef(Q(P)) can be a
formulation (resp. extended formulation) of S even if P(A,G,b) (resp. Q(A,G,b)) is not a formulation
(resp. extended formulation) for some (A,G,b) € P (see Proposition 16 in Section 3.4, Proposition 23
in Section 4.4, and Proposition 30 in Section 5.3).

2.2 Properties of the sets of parameters D and B

Let D be the topological closure of D, that is, D = {d € Rfl Y di; <1forall C e}

ijeC
Proposition 6. D is a full-dimensional polytope and all its inequalities are non-redundant and thus

facet-defining.



Proof. Note that as D C Rfﬂ for any d € D we have d;; > 0 for all ij € A;. On the other hand,
since G is a complete directed graph, every arc ij € A; belongs to some cycle in C;. Hence, variable
d;; appears in at least one inequality defining D, and thus di; <1 for any d € D. This shows that
D C [0,1]4, and therefore D is bounded, hence, a polytope. On the other hand, since the point
ZES] | R S R 1 satisfies all inequalities defining D strictly, we conclude D is a full-dimensional set.

Next we show that for each C' € C; the inequality ), jec d;; < 1 is facet-defining. As D is full-

dimensional, it suffices to show that this inequality is nonredundant. To see this, observe that the

point 1c e RY 1 satisfies all inequalities defining D except for the one associated to C. O

\C\ 1

Proposition 7. The separation problem with respect to D is NP-hard.

Proof. Let H1 C C; be the set of Hamiltonian cycles on N;. We consider an instance of longest
Hamiltonian cycle given by d € Zﬁl and a lower bound k& € Z,. The instance has answer Yes if

and only if there exists C' € H; such that ) di; > k + 1, where this condition is equivalent to

ijeC
> jec d;; > k. Without loss of generality, we can assume that d < k1, for otherwise the answer is
trivially Yes.

Let d = d + k1. We have max{>_ :C € Ha} = max{}, ;.o dij: C € Hi} + k|N1|. Note
that dj; = dij +k < 2k <2k +dy +diy; = d; + d" for distinct ¢,7,1 € Ny. Therefore, d’' satisfies
yeodij:C €Ci} =max{}_, ;.o d;;:C € Hi}, which implies
max{} ;o di;:C € C1} = max{d_;;ccdij:C € Hi} + k[N1|. In particular, max{>_,; - di; : C €
Hi} >k if and only if max{}~,; - d;;:C € C1} > k(|N1[ + 1). Let d= d'. We have d ¢ D if
and only if there exists C' € C; such that >

ijeC zg

the triangle inequality and hence max{>_

IN [+1)
ijec zfij > 1, which is equivalent to max{}_,;,.-di;: C €
H1} > k. Since building d takes linear time, we have a polynomial reduction. O
Observation 8. Proposition 7 implies that enumerating the vertices of D is unlikely to be a tractable

problem. On the other hand, letting B = {b € R} : Y ien, bi = 1}, we have that B is an (n — 2)-

dimensional polytope whose vertices are the n — 1 canonical vectors in RN,

2.3 Properties of classic formulations for the ATSP

Since the extended formulations presented in Section 1.2 are given by different sets of additional
variables (in addition to the binary variables z;; for ij € A), we consider their projection onto the

x-space to compare them. The following lemma in the spirit of [13] will prove useful.

Lemma 9. Let X C RA. For each ij € Ay, let o € R4 and 7 € R, and consider the set

Q= {(:mu) € X x RM T — uj 4+ Z azxkl < BY for all ij € Al}.
kl€A

Then proj,(Q) = P, where

P=<zrxeX: Z Zazxklg Zﬁij for all C € C;

ij€C kl€A ijeC



Proof. If x € proj,(Q), then there exists u € RM such that (x,u) € Q. Therefore, for any C' € Cy, (x,u)
satisfies w; — uj + > ca azxkl < B9 for all ij € C, which implies Dijec 2kica a}ixkl <Yijec B,
Hence, x € P.

Now, given z € P, let ¢ = 87 — 37, 4 o xy for ij € A;. We have > ijec Cij > 0 for all O € Cy,
and thus there are no cycles in C; with negative length with respect to ¢. Fix h € N7 and for each
1 € N1, let —u; € R be the length of a shortest path from h to i with respect to c. Since there are no
negative-length cycles, we have —u; < —u;+c;; = —u; + B9 — 3,0 4 oz for all ij € A;. Therefore,

u € RN is such that (z,u) € Q, and hence z € proj,(Q). O

Projecting onto the z-variables the different extended formulations, we obtain formulations on the
x-variables that have different constraints whose comparison allows to analyze the strength of the
ATSP formulations we consider.

We first observe that the Clique inequalities (6) in the DFJ formulation dominate the Clircuit

inequalities
> i <IC| =1 forall C e (16)
ijelC
and the Weak clique inequalities
> gg--<|$|fﬂ forall S € S 17
1) = -1 1- ( )
ijEA(S) "

In turn, the Circuit inequalities dominate the Weak circuit inequalities
Z zy; <|C| — % for all C' € Cy.
ijeC
By using Lemma 9, it can be shown that the projection of the MTZ and RMTZ formulations onto
the z-variables is given by the Weak circuit inequalities [12] and Clircuit inequalities [9], respectively,
while projecting the SCF and MCF formulations yields the Weak clique inequalities [12] and Clique
inequalities [14], respectively. In particular, MCF is equivalent to DFJ. The projection of the DL

formulation gives rise to a class of Lifted weak circuit inequalities [3]

—3 C
inj‘i‘zil Z $ij§|C‘—7n|7|1 for all C € Cq, |C] > 3.
1je’ ijeCR

Observation 10. Note that (2) and (3) imply 3°,.c 4 Tij = n and Y54 (1yus- (1) Tij = 2, and thus
> ijea, Tij =n — 2. Therefore, the Clique inequalities (6) for S € Si with |S| =n — 2 are redundant,

which in turn implies that the above inequalities are redundant as well for C' € Cy with |C| =n — 2.

3 Parametric c-MTZ formulations

Given d € Rﬁbr and a constant M > 0, we consider the following generalization of the MTZ inequalities

(7):
U; — Uy +d2]§M(1—.’E”) ’L]GAl (18)

10



For large enough M, inequalities (18) define a valid extended formulation for the ATSP that we call
d-MTZ formulation: for z;; = 0, (18) reduces to the superfluous constraint u; — u; +d;; < M, whereas
for z;; = 1, it implies u; > u; + d;; > u; and thus prohibits = from defining cycles in C;. Constant M
can be chosen appropriately as M = M(d) > max{}_,.c-di;:C € C1}. We recover the inequalities
(7) defining the original MTZ formulation when we set d;; =1 for all ij € A; and M =n — 1.

We want to study the effect of different choices of d € Rﬁbr on the d-MTZ formulation. For this
purpose, it is convenient to normalize d by choosing d € D = {d € ]Rf_j_ : Zz‘jec d;j <1lforallC e (i}
so that M = 1 defines a valid ATSP formulation. We obtain the (normalized) generalized MTZ-like
inequalities (12):

u—u; +diy <1 —wy; 45 € Ay
For instance, the vector dMT% € D defined as d%[TZ = ﬁ forij € A; gives the classic MTZ inequalities
in normalized form:

1
ul—uj—i—mgl—x”

For d € D, recall the set Qurz(d), the continuous relaxation of the extended ATSP formulation

obtained when using inequalities (12):
QMTz(d) = {(w,u) € Pap X RV TU; — Uy —|—dij <1- Tij for all ij € Al}

While d € D\ D does not define a valid formulation, for convenience we extend the above definition

of Qutz(d) to d € D as well.

3.1 Obtaining the d-MTZ formulation from convexification

In this section, we argue that the proposed generalization is a natural and sensible choice. To that
end, below we generalize and strengthen Proposition 1 in [3].
For d € D and ij € Ay, let ZﬁTZ(d) be the set of vectors (u;, u;,xi;,x;;) € R? x {0,1}? such that
Tij + Xji S 1 and
[ ] [Il?ij = 1, Zji :O] :>’U,1+d” SUj, Uj — Uy S lfdji
° [l‘ij =0, xjizl] :>Uj+dji < u;, U; — Uy < l—dij
L] [CCijZO, mji:O]:>ui—uj Sl_dijy Uj — Uy Sl—dﬂ
Proposition 11. The convex hull of ZﬁTZ(d) is given by
Ui — uj + 55 < 1—d1‘j
uj —up + x5 <1 —dj
Zij + 25 <1
iEij 2 0
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Proof. Let us write Zyi1,(d) as the union of the following sets:
o {(uj,u;) € R?1u; +dij <wyj, uj —u; <1—dj} x{(1,0)}
o {(uj,u;) € R?:1uj +dj; <wyy ug—uj <1—dij} x{(0,1)}
o {(uj,u;) € R?*1uy —uy <1—dyj, uj —u; <1—dj;} x {(0,0)}

By disjunctive programming [2], the convex hull of ZﬁTZ (d) is given by the projection on the (u;, uj, 5, j;)

variables of the system

u; = v} + o o} v}—v;+dij)\1§0
uj:vjl-—i—ng-—l—v;’ v}—v}—(l—dji))\lgo
Tij = M vjz- - v? +djid2 <0
Tji = A2 vf—vf—(l—dij)/\ggo
MA+X+A3=1 vf — v} — (1 —dij)A3 <0
A1, A2, A3 >0 v) =) — (1 —dj)As <0
By projecting out (A, v3, 1}5’)7 we arrive to
2i; >0, x5 >0 UJ2» — vf < —djirj;
-2y —25>0 v? —UJ2- < (1 —dij)xji
vf —vj < —djai; wi —vp — v —uj+v; + 07 < (1—di)(1— 255 — x5)
v — v} < (1= dji)zi wj —vj —v; —u+vf + 0] < (1 —dji)(1— zij — 5)

Along the first three constraints, by projecting out v}, we obtain

’UJZ» — ’Uiz S —djia?ji U; — ’Ui2 — Uy + Uj2' S (1 — dij)(l — Ti5 — .’L‘ji) — dijxij
v} =i < (1 dij)aji uj —vf —up+ o} < (1—dp)(1 =2y —250) + (1 dji)zji-
By projecting out vjl., we obtain the result. O

We remark here that the first and second constraints of the convex hull of ZﬁTZ (d) are precisely
the generalized MTZ inequalities (12) associated to arcs ij and ji € A;. We also note that these
constraints are non-redundant and can be strictly satisfied, and thus they define facets of the convex

hull of Zi.1.,(d).

3.2 Projecting QMTZ (d)

To compare formulations for different choices of d, we consider the projection of Qumrz(d) on the x

variables, that is, the set Pyrz(d) = proj, (Qmrz(d)).

12



Proposition 12. We have that

Purz(d) = 2 € Pap: Z zi; < |C| — Z d;; for all C' € Cy
ijec ijeC
Proof. Tt follows from Lemma 9 by taking X = Pap and defining o/ for each ij € A by O‘g _ 1
af), = 0 for kl # ij, and B9 =1 — dj;. O

These inequalities generalize the Weak circuit inequalities (17). Note that d € D only affects the

right-hand side in the inequalities defining Pyrz(d) and that, since di; <1, each constraint in

ijeC
Pyrz(d) is dominated by the corresponding circuit inequality.
Proposition 13. For each d € D and C € Cy, the inequality Yijec Tij < |Cl =X ec dij defines a
facet of Purz(d) if and only if 3°,.cc dij > 0 and |C] <n —2.

Proof. First observe that given d € D, the vector ﬁl € Pyrz(d) satisfies all the inequalities of
Pyrrz(d) of the form Y2, owij < [C] — 32, o dij strictly since
1 ]
Z m:ﬁ<|c|_1§|c‘_,zd“’
ijeC ijeC
where the first inequality follows from n > 4 and |C| > 2. Therefore, such a constraint defines a facet
of Pyirz(d) if and only if it is non-redundant, that is, removing it from the system defining Pyiryz(d)
does add new vectors.
Given C' € C; with Zijeé‘ d;; > 0 and |C’| <n—2,let C C A be a directed cycle on the nodes of
N not covered by ' and consider & = 15+ 15 € {0,134 We have that # € Pyp and satisfies all the
constraints in the definition of Pyrrz(d), with the exception of that associated to C' as Yijec iy = |C.
Therefore, this constraint is non-redundant and thus it defines a facet of Pyrz(d).
If >, jcc dij = 0, then the corresponding inequality is implied by z;; < 1forij € C. If |C| = n—1,

the corresponding inequality is redundant (see Observation 10). O

3.3 Comparing Pyrz(d) for different d € D

The following results show that d-MTZ formulations defined by vectors in int(D), the topological
interior of D, can be strictly dominated by a d-MTZ formulation defined by another vector in int(D),
and that, on the other hand, two different d-MTZ formulations defined by vectors in the boundary of
D might be incomparable.

Proposition 14. The following statements are true:
1. For all d € int(D), there exists d’ € int(D) such that Pyrz(d') € Purz(d).

2. Let C,C" € C; with |C,|C'| <n—2,C # C" and d,d’ € D in the relative interior of the facets
of D defined by C,C" respectively. Then Pyrz(d') and Pyrz(d) are not comparable.

Proof.

13



1. Let d € int(D). Then, for all C € Cy, dijecdij < 1. Let e = 2 min{(1 — >ijec @ij)/|C]:C €
C1} > 0 and define d’ = d + €1, where 1 € R41. Observe that for all C € C;

Zd;j:Zdij+‘C|€< Zd”+|c‘ lfzdij /|C|:1

ijeC ijeC ijeC ijeC

Therefore, d’ € int(D) and, moreover

Pyrz(d') ={x € Pap: > wi; <|C| = > dj; forall C €Ci}

ijec ijec
C{x € Pap: Zmij <|C| - Zdij for all C € C1}
ijec ijec

= Purz(d),

The strict inclusion follows from the characterizations of the facets of Pyrz(d') (see Proposi-

tion 13) and the fact that >, dij <> ;e di; for all C € Cy.

2. Since d is in the relative interior of the facet of D defined by C, we have that 1 = ZijEC dij >
>ijecr dij > 0. Similarly, for @’ we have that 1 =73",. . dj; > 3, d;; > 0. Since |C],|C"] <
ijec Tij < |C] =1 and <

|C"| = >4 jecr dij define facets of Parz(d) and that the inequalities >, 2i; < [C'| — 1 and
Zijec x5 < |C| - Zz‘jec dgj define facets of Pyrz(d). This implies that Pyrz(d) ¢ Purz(d')

n — 2 by Proposition 13 we obtain that the inequalities > ijecr Tij

since any point in the relative interior of the facet > ;v xiy < [C'| = 32,;c v dij of Purz(d)

it is cut off by the inequality > zij < |C’| =1 of Pyrz(d’). Similarly, we conclude that

ijec’

Purz(d) € Purz(d), and thus, these two formulations are not comparable.
O

Recall the vector M™% € D defined as d%TZ = L for ij € A; which gives the (normalized) MTZ
formulation. By Proposition 12, we obtain
Purz(dM™) =S a € Pap: > ai; <|C|= Y diyf™¥ forall C € Cy

ij
ijeC ijeC

C
=< x € Pyp: injg\ﬂ—%forallCGCl
ijeC

dMTZ

The following proposition shows that no anti-symmetric perturbation of can improve the

associated d-MT7Z formulation.

Proposition 15. Let § € R4t be such that dMT% + 6 € D and 0ij = —0j; for any ij € Ay. Then
PMTZ (dMTZ + 5) Q PMTZ (dMTZ) implies PMTZ (dMTZ + (5) = PMTZ (dMTZ).

Proof. First, since dM™ + 6 € D we have that for any C € C; the following inequality holds

> (d™+6y) <1 (19)

ij€C
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On the other hand, since dMT%, dM*% 4§ € D by the characterizations of Pyitz(d) (Proposition 12)
and their facets (Proposition 13) we have that Pypz(dMT% + §) C Pyrz(d™M™?) if and only if
1= 3 (@™ +d) <10l = 3 dy™
ijec ijec
for any C' € C; such that |C| < n — 2, as the facets of Pyrz(dMT%) are defined by the inequalities

Yijec Tij < |C1 =2 iiec d%[TZ, and similarly for Pyrz(d™T% 4 §). This condition is equivalent to

> 6 >0 (20)
ijeC
for any C' € C; such that |C| <n —2.
From this discussion, it follows that Pyrz(dM* + 6) = Pyrz(dM™?) if and only if we have that
> ijec 0ij = 0 for any C' € €1 with [C| <n —2. We will use this equivalence later in the proof.
Observe that by the anti-symmetry assumption on d, that is, §;; = —J;; for any ij € Ay, we have
that Zijec d;; = 0 for any C' € C; with |C| = 2. Also, by (19), note that any cycle C € C; with
|Cl =n — 1 satisfies 3. ccd; <1— 19— .

iy = n—1
In order to show that ) 0;; = 0 for any cycle C € C; with 2 < |C] < n — 1, we will show that

ijeC

given m with 3 < m <n —1, if each C € C; with |C| = m satisfies > 0;; = 0, then any C € C;

ijec
with |[C| = m—1 also satisfies 3, ;. di; = 0. Let C' € Cy with [C] =m—1. Since 3 <m < n—1, there
exist Ik € A; an edge of C' and v € N7 a node not in C such that the cycle C’ = C\ {lk} U{lv, vk} has
size |C'| = m. By using inequalities (20) for the cycles {kl,lv,vk} and C, and the assumption that

the property is true for any cycle of size m, we obtain that
Okt + 0 + 0ok >0, Y65 >0, Y 8 =0. (21)
ijec ijec’

Moreover, by definition of C’ we can compute

> 6= 8ij — Ok + 61w + ok

ijec’ ijeC
Since &y = —Jx; by the anti-symmetric assumption and (21) we obtain that

0= > 6= 0ij+ (Ort + 0w + Guk).
ijec’ ijeC

As the two terms in the sum are non-negative, we conclude » 0;; = 0. This shows that Pyrrz (dMT2 4

8) = Pyrz(dM™?), as desired.

ijec

3.4 The intersection of all d-MTZ formulations

Given nonempty D’ C D, recall the set

Ef(Qurz(D)) = {(x,u) € Pap X (RNl)D/ H(z,u(d)) € Qurz(d) Vd € D'}.
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Proposition 16. Let D' C D. If for each C € Cy, there exists d € D' such that Yijec dij >0,
then no integer x € proj, (Ef(Qumrz(D’))) can define subtours. In particular, if D’ is finite, then
Ef(QumTz(D’)) is a valid extended formulation for the ATSP.

Proof. We have that proj,(Ef(Qutz(D’))) = \sepr Proj.(@mtz(d)). Therefore, by Proposition 12,
for any = € proj, (Ef(Qurz(D’))) and C € Cy, it holds that 3=, o wij < [C| =37, dij foralld € D',
or equivalently, >, o zi; < [C| —max{}_,;c~dij:d € D'}. By hypothesis, the right-hand side is at
least |C| — 1, but less than |C|. Thus, no integer x € proj,,(Ef(Qumrz(D’))) can define subtours and

the last assertion follows. O

Note that any D’ = {d} with d € D satisfies the above condition since d > 0, in which case
Qurz(D') = Qurz(d). Also, observe that we can choose D’ contained in the boundary of D as long
it satisfies the condition in Proposition 16. Following the above result, for each k € Ny, let dF € Rfl

be such that
g 1 i=k
1] .
0 i#k,
and define Vyyrz = {d*:k € N;}. Note that for each k € Ny and C € Cy, we have Zijec dfj =1if
kj € C for some j € Ny and ZijGC dfj = 0 else. Therefore, Vayrrz € D. Moreover, each element of

Varrz is a vertex of D, although they do not encompass the complete set of vertices of D in general.

Theorem 17. We have that CI(PMTz(D)) = CI(PMTz(VMTz)) = PMTZ, where
ﬁMTZ: xePAp:inj§|C|—1forallCeC1
ijeC
Proof. Noting that Pyrz C Pyrz(d) for alld € D, we have Pyirz € Cl(Pyrz(D)) = Cl(Pyrz(D)) C

C1(Pyrz(Varrz)). Now, to show that Cl(Pyrz(Vamrz)) = Pz, observe that from Proposition 12,

for each k € N1 we have

Pyrz(d¥) = ¢z € Pap: Y @ <|C| = Y df forall C €

ijeC iy€C
3" 2y <O~ 1forall C € Cr:CNE*(k)#0
=2 € Ppp: e
> @y <[C for all C € C:C N EH (k) =0
ijeC

=2 € Prp: Zmijg\C\—lforallCEClzCﬂ(5+(k)7é(Z)
ijeC
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Therefore,

Cl(Purz(Vurz)) = ﬂ Purz(d”)
kEN,

=@ ePap: Y i <|C|—1forallC €Cy, forall ke Ny:CNot(k)#0
ijeC

= x € Ppp: inj§|C|flf0rallC’€C1 :ﬁMTZ-
ijeC
O

We remark here that from Theorem 17, Cl(Pyrz(D)) can be obtained with O(n) vectors in D
which are easy to identify, instead of requiring the complete set of vertices of D as in Corollary 4.
Moreover, the latter is unlikely to be efficiently accomplished in view of Proposition 7.

Also, observe that Cl(Pyitz(D)) is given by the circuit inequalities (16), and therefore it is directly
related to the RMTZ formulation. Corollary 18 below recovers Theorem 1 in [9].

Corollary 18. We have that C1(Pytz(D)) = proj, (Qnrz), where

Uf—vf§—$kj forall k,j € Ni:j#k
oF vfgl—xij for all k,i,j € Ny:i#k, j#£1i

P

@MTZ = (I, (’Uk:k € Nl)) € Pap X RN XNy,

Proof. Noting that Qyrry = Ef (Purz(Varrz)), the result follows from Theorem 17 and Corollary 4. [

4 Parametric d-DL formulations
For d € Rﬁ_, consider the generalization of the DL formulation
U; — Uj + M.]?ij + (M — dij — dji)xji <M — dij for all ij € A (22)

As with the MTZ formulation, for large enough M, inequalities (22) define a valid extended formulation
for the ATSP that we call d-DL formulation: for z;; = 0 and x;; = 0, (22) for ij and ji reduces to the
superfluous constraints u; — u; + d;; < M and u; — u; + dj; < M, respectively, whereas for z;; = 1
and xj; = 0, it implies u; = u; +d;; > u; and thus prohibits  from defining cycles in C;. Normalizing

with M =1, we obtain (13):
wi —uj + i + (1 —dij —dji)r;s <1—d;; forall ij € Ay.
For d € D, recall the set
QpL(d) = {(x,u) € Pap x RN qy; — uj+ i+ (1 —dij —dji)xj <1—d;j forall ij € Al} .
Note that since z > 0 and d;; + dj; < 1 for any d € D, we have that (13) implies (12) and thus

QpL(d) € Qumrz(d).

17



4.1 Obtaining the d-DL formulation from convexification

As with the MTZ formulation, we first argue that our generalization of the DL formulation is sound.
For d € D and ij € Ay, let Z{, (d) be the set of vectors (u;,uj, x;,2;:) € R? x {0,1}? such that

2 + x5 <1 and
o [z;; =1, zj; =0] = u; =u; +d;;
o [z, =0, zj; =1] = u; = uj +dj;
o [2;; =0, zj; =01 = u; —uj; <1—d;j, uj —u; <1—dj;.
Proposition 19. The convex hull of Zli)jL(d) s given by
U —uj+a; + (1 —dij —dji)zj <1—dj;
uj —u;+x+ (1 —djy —dij)as; <1—djj
5 >0

Observe that the constraint z;; + =;; < 1 is redundant as it is implied by the first two, which are

indeed the generalized DL inequalities.
Proof. Let us write ZpJ; (d) as the union of the following sets:
o {(uj,u;) € R*:u; +dij = uy} x {(1,0)}
o {(uj,u;) € R*:uj +dj; = u;} x {(0,1)}
o {(uj,u;) € R?1uy —uy <1—dyj, uj —u; <1—dj;} x {(0,0)}

By disjunctive programming [2], the convex hull of Z]Z'DjL (d) is given by the projection on the (u;, uj, ;j, ;)

variables of the system

u; = vi + o +od vil—vjl.—i—dij)\l:O
uj:vjl-—i-vf--i-v;-’ vf—v?—kdﬁ)\g—o
Tij =M ’U?*’U?*(l*dij)Ag <0
Tji = A2 U?*U?*(l*dji)/\g <0.

AM+XA+A3=1

A1, A2,A3 >0
By projecting out (X, v?, v?’, v]l, v?), we obtain the result. O
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4.2 Projecting Qpr(d)
We now turn our attention to the set Ppr,(d) = proj, (Qpw(d)).

Proposition 20. We have that

Eijec(xij + J)ji) — Eijec(di]' + dji)xji < ‘Cl — ZijeC dij for all C € Cy: |C| >3
Tij + Xjs S 1 for all Z] € A1

PDL(d)Z T € Pyp:

o

Proof. From Lemma 9, by taking X = Pap and defining o for each ij € A by ozg =1, a} =

1 —dyj — dji, @) = 0 for kl # ij, ji, and 8% = 1 — d;;, we obtain

Por(d) =2 € Pap: Y (wij+x50) — > _ (dij +dji)zji <|C| = Y dyj for all C € Cy
ijeC ijec ijec
Observe that if |C| = 2, then C = {ij, ji} for some ij € A, and the corresponding inequality reduces
to
(wij + @j0) + (w0 + wij) — (dij + dji)zji — (dji + dij)wi; <2 —dij — dji.
Dividing both sides by 2 — d;; — dj; > 0, the result follows. O

Note that d affects both left- and right-hand sides of Ppr,(d), in contrast to what happens with
Ptz (d) where d appears in the right-hand side only. Also, note that the inequalities x;; + z;; < 1
for ij € A; are independent of d. Finally, observe that Ppy,(d) C Pyrz(d) for all d € D as Qpr(d) C
Qurz(d).

Proposition 21. For each d € D and C € Cy, the inequality Yijec(Tij+Ti) =Y ico(dig+dji)xyi <
|Cl =2 ijec dij defines a facet of Por(d) if and only if |C| =2 or 3 ,.ccdij >0 and 3 < |C] <n—2.
Proof. Given C' € Cy with [C| =2 0r 3, cadiy > 0 and 3 < |C] < n—2, let C C A be a directed
cycle on the nodes of N not covered by C' and consider & = 1a+16 € {0, 1}4. We have that # € Pap
and satisfies all the constraints in the definition of Ppy,(d), with the exception of that associated to
C as Zijeé(jij + &) — Zijeé(dij +dji)Z = |C’| Therefore this constraint is non-redundant. This
inequality is satisfied strictly by ﬁl € Ppr,(d) since, recalling that n > 4, we have % < |C’ | —1if
|C| = 2 and, if |C| > 3 we have

2 12 a2 i
- dij + dji <02 <ICl-1<|C] = d;i.
> g 2 Wy i) <G <O < (6= 1< 0= 3 di
ijeC ijeC ijeC

We conclude that the constraint defines a facet of Ppy,(d).

If Zijec d;; = 0, then the corresponding inequality is implied by x;; + x;; < 1 for 35 € C and
—djxj; <0 for ij € C. If |C| = n — 1, the corresponding inequality is redundant (see Observation
10). O
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4.3 Comparing Ppy,(d) for different d € D

Unlike the case of Pyrz(d), by Proposition 20, the parameter d in the inequalities defining Ppy,(d) not
only appears as a constant in the r.h.s., but also in the l.h.s. multiplying some of the variables. As
a consequence, the comparison of different d-DL formulations Ppr,(d) for different vectors d is not as
straightforward as in the case of d-MTZ formulations. The next result shows that under some technical

assumptions, anti-symmetric perturbations yield incomparable formulations.

Proposition 22. Let d € D and § € R4\ {0} be such that d+6 € D, §;; = —8;; for allij € Ay, and

assume that there exists C' € Cy with |C| > 3 such that Y. 0i; # 0. Then Ppr(d) and Ppr(d+ 6)

’LJEC

are not comparable, that is, none of these formulations is included in the other.

Proof. Since d € D we have that > d;; > 0 for any C' € C;. Then by Proposition 21, the non-trivial

ijec
facets of Ppy,(d) are given by the inequalities

Z (@ij + xj55) — Z (dij + dji)zji < |C] — Z dij (23)

ijeC ijeC ijeC
for all C € C; with |C| < n—2. Given C € C; with |C] <n—2, let C® = {ji:ij € C} be its associated
reversed cycle. We can write the facet of Ppy,(d) associated to CR as follows:

Do (@ +ag) = Y (dig+dj)z <|CY = Y dy.
ijeCR ijeCR ijeCR

Equivalently, we can write

> (@i ap) = > (dig + dji)ay < |Cl= Y dji (24)

ijelC ijelC ijelC

Now, notice that
dij + dji = (dij + 6i) + (dji — 6i) = (dij + 0i5) + (dji + 055) = (d+ 6)ij + (d + 0) i,

where the second equality is given by the anti-symmetry assumption on J, that is, §;; = —d;; for any
ij € Ay. Since d + ¢ € D, this implies that the non-trivial facets of Ppr(d + §) are given by the

inequalities

@iyt ap) = Y (dij+d)a <[Cl= D dij— Y 8y (25)

ijeC ijeC ijeC ijeC
for all C' € Cy with |C] < n — 2. For the reversed cycle we obtain:

D (@ +wg) = Y (diy+di)ay <O =D dj— Y by

ijeC ijeC ijeC ijec
And by the anti-symmetry assumption on § for C® we can write

S (@i ) = Y (dig +di)wi; < |CL= Y dji+ Y by (26)

ijeC ijeC ijeC ijeC

Let C' € C; as in the statement of the proposition and notice that without loss of generality we

may assume that ) 0;; > 0. Then by Proposition 21 the inequalities (23) and (24) of Ppr.(d)

ijeC
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and the inequalities (25) and (26) of Ppp(d + &) associated to C' are all facet defining. Now, since

> ijec 0ij > 0, for the cycle C we have that the r.h.s. of inequality (25) of Ppr(d + 8) is strictly less
than the r.h.s. of inequality (23) of Ppp(d). As both inequalities define facets, we obtain that Ppr,(d)
is not contained in Ppy,(d 4 §). Similarly, for the cycle C' the r.h.s. of inequality (24) of Ppy(d) is
strictly less than the r.h.s. of inequality (26) of Ppy,(d + ). Therefore, we obtain that Ppy(d) is not

contained in Ppy, (cZ—l— ). We conclude that Ppy, (CZ) and PDL(a?—i— ) are not comparable. O

We note here that the assumption “there exists C' € C; with |C| > 3 such that Yijec 0ij # 07 is
not superfluous as the following example shows: consider N7 = {2,3,4} and d32 = —da3 = 1, d34 =
—d043 = 1/2, and 40 = —d24 = 1/2. Then ¢ satisfies the anti-symmetric property and ZijeC di5 =0
for any cycle C € C;.

4.4 The intersection of all d-DL formulations

Given nonempty D’ C D, consider
D/
Ef(Qpw(D')) = {(x, u) € Pap x (R¥)” 2 (2,u(d)) € QpL(d) Vd € D'} .

Proposition 23. Let D' C D. If for each C € Cy, there exists d € D’ such that ZUGC d;j > 0, then no
integer x € proj, (Ef(QpL(D’))) can define subtours. In particular, if D' is finite, then Ef(QpL (D))

is a valid extended formulation for the ATSP.

Proof. The result follows from Proposition 16 by noting that proj, (Ef(QpL(D’))) C proj, (Ef(Qmrz(D))).
O

As with the MTZ formulation, any D’ = {d} with d € D satisfies the above condition since d > 0,
in which case Qpr(D’) = Qpr(d). Also, we can choose D’ contained in the boundary of D as long it
satisfies the conditions if Proposition 23. Following the above result, for kl € A;, let d*! be the ki-th
canonical vector in R4t and define Vpy, = {d*' : kl € A;}. Clearly, we have Vip;, C D and each element

of Vpr, is a vertex of D.
Theorem 24. We have that C1(Ppy,(D)) = Cl(PpL(VbL)) = PpL, where

_ . Tii+x5) —xp < |C|l—1 forall C €Cq, forallkle C:|C| >3
PpL =z € Pap: Zuec( J ]) w < | | 1 | |
xij+xj; <1 forallije Ay
Proof. From Proposition 20, for any kIl € A; we have
Sijec@ig +x50) = Y ea(dif + di)zyi <|C) =3, c0dff forall CeCr:|Cl>3
xij+xj; <1 forallije Ay

PDL(dkl) =< X € Ppp:

dijec(@ij+xj) —a <[C| =1 forallC€Ci:kleC, [C|>3
Yijec(@ij +aji) —x < |C| forall C € Ci:lk e C, |C] >3
ZijeC(‘rij + .’Eji) < |C| for all C' € Cy : kl, Ik ¢ C, ‘Cl >3
Tij + X4 <1 forall 1j € Ay

= x € Pap:
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—{zePyp: Yijec(@ij taji) —ap <|C| =1 forallCeCi:kleC, |C] >3
zi;+x5, <1 forallije Ay
Therefore,
CI(PDL(VDL)) = ﬂ PDL(dkl)
kleA,

Zz‘jeC(xij —|—.13j,‘) — T < |C| —1 VYC ey, VKl € C, |C‘ >3 _

=< x € Pap: = Ppr.

rij +xj <1 Vije Ay
We thus obtain Cl(Ppr,(D)) = Cl(Ppr(D)) € Cl(PpL(VbL)) = Ppr. To show that Ppr, C
Cl(Pp(D)), let z € Ppr, d € D and C € C; with |C| > 3. We have
3" (@i + )+ 12w <|C| VELEC.
ijeC

Multiplying each of these inequalities by ﬁ

. and summing over all kl € C', we obtain
€

1
D (@i + 250 + S dn D (dij — dijayi) <|C).
ijeC kleC Kkl jico

Since ZkleC dkl < 1 and dZJ — d,’j&?ﬂ > 0, we have

> @i ap) + > (diy — dijag) < |C).
ijeC ijeC

As 3 iiec —djizji < 0, the latter inequality implies that

(@i +x0) + Y (dij — (dij + dji)wse) < |C).
ijeC ijeC

Therefore, x € Ppy,(d) for all d € D and thus Ppy, C Cl(Pp(D)). O

Corollary 25. We have that Cl(Ppr,(D)) = proj, (Qpy,), where

u’,jl - ufl < —xy; for all kl € A

Qpr, = { (z, (u*' Kkl € Ay)) € Pap x RﬁIXNl : ubt —uft <1 -y forall kl € A;

uk! ufl <1—x; —xy forall kl,ij € Ay:ij # K, ij # 1k

i =

Proof. Noting that Qp;, = Ef(Qpr(VpL)), the result follows from Theorem 24 and Corollary 4. [

Theorem 24 shows that C1(Ppr,(D)) can be obtained with a modest number of vectors in D which
are easy to identify, instead of the complete set of vertices of D. This time, however, we require O(n?)
such vectors instead of O(n) as with the MTZ formulation. Moreover, it can be shown that Vy 1z does

not necessarily yield Cl(Ppr,(D)).
Proposition 26. Cl(Ppr,(VmTz)) is given by

Yiico(®ij +xji) —wppe —xpcy, <|C| =1 forall CeCy, forall ke C:[|C] >3
xr € PAp: J - + R
Tij + Xji <1 forallije A

where k€ and kf denote the node preceding and succeeding k in cycle C, respectively.
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Proof. From Proposition 20, for any k € N1 we have

ZijEC(wij —+ SUji) — Zijec(di?j —+ dfl)xﬂ § |C‘ — ZijEC d,lfj for all C € Cl : |C| Z 3
Tij + Xji <1 forallije A

PDL(dk): T € Pap:

>ijec(@ij +xji) — Zijec(di‘cj +d5)z; <|C| =1 forall CeCi:[C]>3, kel

=< 2 € Pap: Zijec(mij+xji)§|c| forallC eCy:|C| >3, k¢ C
Tij + Xji <1 forallije A

D . > ijec(@ij +xji) — Tpp0 — Toy < IC|—1 forall Ce€Cy:|C| >3, keC ’

Tij + Ty < 1 for all ij € Ay

Therefore,

Cl(Ppr(VmTz)) = m Ppr(d¥)
kEN,

>ijec (@i + xji) — Tppo — Tpey < |C]—1 forall C €Cy, forallke C:|C| >3

=<z € Prp:
Tij + X4 <1 for all 1 €A

O

Observe that the LIRMTZ formulation in [9] coincides with Cl(Ppy,(Virz)). However, from The-
orem 24 and Proposition 26, we have that LIRMTZ does not yield C1(Ppr (D)) in general.

5 Parametric b-SCF formulations

In this section, we consider flow-based formulations for the ATSP parametrized by demand and supply.
We apply a framework similar to that of d-MTZ and d-DL formulations.
Given b € R} let M = 3"

ien, bi and consider the following generalization of the SCF formulation

=1
Z fij — Z fii= Z

ijest(4) jies— (i) —b; i€ Ny

fij < M.’Eij for all ij € A.

Note that the set B = {b € Rfﬁ_ : D ien, bi = 1} is obtained by the normalizing condition M = 1. For
b € B, recall

Z fig = Z fji=—b; forallie N;
QSCF(b) = (l’, f) S PAP X ]Rﬁ T ijesT(4) ji€s— () 7
fij <y forallije A

where we have omitted the flow constraint on node i = 1 since it is redundant.
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5.1 Projecting Qscr(b)
We now give an explicit description of the set Pscr(b) = proj, (Qscr(b)).

Proposition 27. We have that

Pscr(b) =@ € Pap: > wy =Y b forall Se8
ijedt(S) €S
Proof. Let © € Pscp(b) and let b = (—1,b) € RY. Since D ieN b; = 0, by Gale’s flow theorem [7],
there exists f € R4 such that f < z and Zijeé,(i) fij — Zjieﬁ(i) fii = b; for i € N if and only if
Yijes () i = Yicgbi for all § # S € N. Note that if 1 € S, then Y,cgbi =Yg 130 — 1 <0

and the condition is trivially satisfied. In addition, since € Pap, we have zj; =1 > b; for

jies—(3)
i € N1, and thus the condition is satisfied if S = {i}. Therefore, the existence of f holds if and only if
Eijeé,(s) Tij > Y cqbi forall S € Sp. Finally, since 2 € Pap, we have Zije(;,(s) T = Zij€5+(s) Zij,

which completes the proof. O

Noting that any x € Pap satisfies >, 4(g) %ij + 224 jes+(s) Tij = |S] for all S € Sy, we have

Pscr(b) ={x€Pap: Y a; <[S|=) biforall S€S . (27)
ij€A(S) €S

The inequalities in (27) generalize the Weak clique inequalities (17).

Proposition 28. For each b € B and S € Sy, the inequality Zijeﬁ(S) Tij > g bi defines a facet
of Pscr(b) if and only if Y ,.gb; >0 and S # Ni.

Proof. Given S € 8 with Y icgbi >0 and S # Ny, let C and C be directed cycles covering all nodes
in S and in N \ S, respectively, and consider & = 1, + 16 € {0, 1}4. We have that & € Pap and
satisfies all the constraints in the definition of Pscr(b), with the exception of that associated to S
as y., jes+(8) Z;; = 0, and therefore this constraint is non-redundant. In addition, this inequality is

satisfied strictly by —151 € Pscr(b) since

1 1 1
Y — = —8)——>2n—-2)— > 1> :
— = ISl =S —— 2 2(n = 2)—— > > b,

ijE€ST(S) i€S
where the first inequality follows from 2 < |S| < n — 2 and the second from n > 4. We conclude the
constraint defines a facet of Pscr(b).
If 3,5 bi = 0, the inequality is implied by z;; > 0 for ij € 67(S). If S = Ny, the corresponding

inequality is redundant (see Observation 10). O

5.2 Comparing Pscr(b) for different b € B

The case of b-SCF formulations is somewhat simpler than the case of d-MTZ or d-DL formulations.

The following result shows that b-SCF formulations are never comparable.
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Proposition 29. For any b,b" € B with b # b, Pscr(b) and Pscr(b') are not comparable.

Proof. Given b,b’ € B with b # V', let n = b — b. Without loss of generality, assume that 7, <
m3 < oo < o1 < . Since b # b and Yoy, 7 = 0, we have 72 < 0 and 7, > 0. We will show
now that no + 13 < 0. If 53 < 0, we are done. If 53 > 0, then ZieNl\{ZS} 1; > 0, and we obtain
N2 + 13 = *Zz‘eNl\{zS} 7; < 0, as desired. Similarly, we have n,_1 + 71, > 0. Let S = {2,3} and
S"={n—1,n}. Wehave } , cs:(5)Tij = Dicgbi > Diegbi- Since 3o csi()Tij = D ieqb; and
Zij65+(s) Tij > Y ;g bi define facets of Pscr(b') and Pscr(b), respectively, this shows that Pscr(b) ¢
Pscp(b'). Analogously, we have Zij65+(s,) Tij > D ieq b > D icq bio Since Zij65+(s,) Tij > Y g bi
and D7, csv (s Tij = Diesr b define facets of Pscr(b) and Pscr(b'), respectively, this shows that
Pscr(b') € Pscr(b). O

5.3 The intersection of all »-SCF formulations

Given nonempty B’ C B, let
Ef(QSCF(B/)) = {(Q?,f) € Pap X (RA)B, (.’lﬁ,f(b)) S QSC‘F(b) Vb € B/} .

Proposition 30. If for each i € Ny, there exists b € B’ such that b; > 0, then no integer x €
proj, (Ef(Qscr(B’))) can define subtours. In particular, if B' is finite, then Ef(Qscr(B’)) is a valid
extended formulation for the ATSP.

Proof. We have that proj,(Ef(Qscr(B’))) = (yep Proj,(Qscr(b)). Therefore, by Proposition 27,
for any = € proj,(Q@scr(B’)) and S € i, it holds that } . csi(s)Tij = Djegbi for all b € B,
or equivalently, ;. 4(g)%ij < [S| —max{} ;cgb;i:b € B'}. By hypothesis, the right-hand side is
strictly less than |\S|. Thus, no integer = € proj,(Qscr(B’)) can define subtours and the last assertion

follows. O

For each k € Ny, let b* € B be the k-canonical vector, and define Vgcp = {b¥:k € N;}. Clearly,

Vscr is the set of vertices of B (see Observation 8).

Theorem 31. We have that Cl(Pscr(B)) = Cl(Pscr(Vscr)) = Pscr, where
Pscr =4 2 € Pap: Z x5 > 1forall Se&;
ijesT(S)

Proof. We have Pscr C Pscr(b) for all b € B, and thus Pscr € Cl(Pscr(B)) = Cl(Pscr(B)). To
show that Cl(Pscr (E)) = Pscr, note that for any k € Ny,

PSCF(bk) =< 1€ Ppp: Z Tij > be forall S € S
ijedt(S) icS

=T € Ppp: Z zi; > 1forall SeS:ke s
ijE€ST(S)

25



Therefore,

CI(PSCF(VSCF)) = m PSCF(bk)
kEN1

=< T € Ppp: Z x;; > 1forall S €Sy, forallke Ni:keS
ij€d+(S)

=T € Ppp: Z T4j >1forall S €S :ﬁSCF-
ij€d+(S)

Note that Pscr can be equivalently written as

Pscr =4 2 € Pap: Z ;5 <|S|—1forall S€S;p,
ijEA(S)

and in particular, we recover the DFJ formulation. Below we recover MCF as an extended formulation.

Corollary 32. We have that Pscr = proj,(Qgcp), where

Z k- Z £ =—0u foralli ke Ny

Qscr = < (z, (fk:k € Np)) € Pap X RleA: 5 €5+ (4) Jies— (i)
fij <wxyy forallije A

and 6; = 1 ifi =k and §;;, = 0 else.

Proof. Noting that Qgcr = EfQscr(Vscr)), the result follows from Theorem 31 and Corollary 4. [

6 Comparing closures

Below, we formalize how the closures we have introduced in previous sections relate.
Proposition 33. The following hold:

1. Forn >4, Cl(Pscr(B)) C Cl(Ppr(D)) C Cl(Pp,(Vmrz)) C Cl(Pyrz(D)).

2. For n =4, Cl(Pscr(B)) = Cl(Ppr(D)) = C1(Ppr.(VmTz)) = Cl(Purz(D)).

8. Forn > 5, for any C € Cy with 3 < |C| < n—2 and for any k € C, there exists & € Cl(Pyrz(D))
that violates 3 ,.:co(Tij + ®ji) — Tprp, — Tpp— < \C| — 1. In particular, CY(PpL(Virz)) C
Cl(Purz(D)).

4. Forn > 5, for any C € Cy with 3 < |C'\ < n—2 and for any kl € C, there ezists & €
Cl(PpL(Vamrz)) that violates 3, c o (wij + 2ji) — T < |C| = 1. In particular, C(Pp(D)) C
Cl(Por. (VuTz))-

5. Forn > 5, for any S e 8 with 3 < IS| < n — 2, there exists & € Cl(Ppr(D)) that violates
Sijeacs) Tij < |C| = 1. In particular, Cl(Pscr(B)) & Cl(PpL(D)).
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Proof. 1. Given S € Sy and C € C, with ¢ C A(S) and |C| = [S| > 3, we have 3. 45y Tij =
ZijGC(‘rij + l‘ji) — Tp+g = ZijeC(mij + SL'J‘Z‘) — Tp+g — Thi— = Zijec Tij for any x € Pap and
kes.

2. From Observation 10, we have that all four above sets are equal to {x € Pap:x;j + i <

1 for all 45 € A;} since the remaining constraints are redundant in each case.

3. Given C € C; with 3 < |C] < n —2, let ¢ C A be any directed cycle on the remaining nodes

of N, which are at least 2. Define # € R4 by Ty = \C]‘(\?—‘l if ij € C, iy = I%‘\ if ji € C,

Ty =1ifij € C~’7 and Z;; = 0 else. Clearly, we have £ € Pap. Now, let C € C;. If C = C',
then Y, ico #i5 = |C| = 1. It C # C, then 3,1 #i5 = Xijconeuey #i < |C| — 1. Therefore,

& € Cl(Purz(D)). However, 3= o (Zij + i) — Lprp, — Tap- = |C|— % > |C|—1forany k € C.

4. Given C € C; with 3 < |C’| <n—2,let C C A be any directed cycle on the remaining nodes of
N, which are at least 2. Define & € R4 by Ti; = % if ij € C or ji € C’, Ty =11ifij € C’, and
235 = 0 else. Clearly, we have & € Pap and Z;; + ;; < 1 for all ij € A;. Now, let C' € C; with
|C| >3 andlet k€ C. If C = C, then 3, (&ij + &5i) — Eppe —dop = |C| -~ 1L I C # C, then
Yijec@ig + i) — Eppe — Tey < Yijecncue) Tij < |C| — 1. Therefore, & € C1(PpL(Vmrz))-

However, 3, o (& + 25i) — T = IC| - > |C| =1 for any kl € C.

5. Given S € S; with 3 < |5’| <n-—2,let Ce Cy be any directed cycle on S. Also, let C C A be

any directed cycle on the remaining nodes of N, which are at least 2. Let h € N\ S be the node
|C]-1

succeeding node 1 in C and define & 6 RA by #;; = 21 ifij € Cor jieC, Z1; = 2\071|71 if
jeSs, di= 2\071|—1 ifieS, = 2%7'7_11, z;; = 1if ij € C\ {1k}, and &;; = 0 else. Clearly,

we have & € Pap and &;; + 2;; < 1 for all ij € A;. Now, let C' € C; with |C] > 3 and let
. . A . Cl— Ol .

kleC. T8 C =C, then Yo, (s + d5:) — du = 2|C|3E= — 90y = €] = 1. T C # C, then

ZijeC(i‘ij + ’i}jl) — I < ZijECﬂ[C’UC‘U(F*(l)UJ*(h)] :i’ij < ‘C| — 1. Therefore, & € Cl(PDL(D))

. 412|C|—2 A ¢ A
However, 3. 45 &ij = |C\2}é}_1 =|C| - 2%,“_1 > |C] - 1.

O

For a graph with five or more nodes (n > 5), the results in Proposition 33 can be summarized in

the following corollary.

Corollary 34. Forn Z 5, CI(PSCF(B)) g CI(PDL(D)) g CI(PDL(VMTz)) g CI(PMTz(D))

7 Final remarks

In this work, we have introduced parametric formulations for the ATSP based on the MZT, DL, and
SCF formulations. We showed how these formulations arise and how they compare in terms of the
choice of parameters and in terms of their closures.

A natural question is how to apply these results computationally to solve instances of the ATSP.

We envision a scheme where we start with the extended formulation given by a single element of a
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parametric family (a particular choice of the parameters), and then we enrich this formulation by
including variables and constraints associated to more elements of the family. It would be interesting
to study how to select the parameters in a dynamic fashion, as we might need criteria different from
the notion of a most-violated constraint given a fractional solution.

Another research direction is to apply the framework of parametric formulations to other combi-

natorial problems whose natural or classic formulations can be generalized.
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