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Abstract

The traveling salesman problem is a widely studied classical combinatorial problem for which

there are several integer linear formulations. In this work, we consider the Miller-Tucker-Zemlin

(MTZ), Desrochers-Laporte (DL) and Single Commodity Flow (SCF) formulations. We argue that

the choice of some parameters of these formulations is arbitrary and, therefore, there are families

of formulations of which each of MTZ, DL, and SCF is a particular case. We analyze these families

for different choices of the parameters, noting that in general the formulations involved are not

comparable to each other and there is no one that dominates the rest. Then we define and study

the closure of each family, that is, the set obtained by considering all the associated formulations

simultaneously. In particular, we give an explicit integer linear formulation for the closure of each

of the families we have defined and then show how they compare to each other.

Keywords: integer programming; linear programming; extended formulations; traveling salesman

1 Introduction

Let G = (N,A) be a complete directed graph on n ≥ 4 nodes, where N = {1, . . . , n} and A = {ij : i, j ∈

N, i 6= j}. A Hamiltonian cycle or tour is a directed cycle in G that begins and ends at the same

node and such that each node is visited exactly once. The Asymmetric Traveling Salesman Problem

(ATSP) seeks to find a Hamiltonian cycle of minimum cost with respect to a given vector c ∈ RA. It

finds a number or applications in logistics, sequencing, scheduling, among others. We refer the reader

to [1] for a thorough coverage of history, applications, and solution approaches.

A generic mixed-integer linear programming formulation for the ATSP using binary variables xij
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for ij ∈ A can be written as

min
∑
ij∈A

cijxij (1)

s.t.
∑

ij∈δ+(i)

xij = 1 for all i ∈ N (2)

∑
ji∈δ−(i)

xji = 1 for all i ∈ N (3)

{ij ∈ A :xij = 1} does not contain subtours (4)

xij ∈ {0, 1} for all ij ∈ A, (5)

where δ+(i) is the set arcs originating from node i, δ−(i) is the set of arcs arriving to node i (see

below for a formal definition of these sets of arcs) and a subtour is a cycle in G that does not cover

all nodes in N . In the optimization problem above, the objective function to be minimized is given

by (1), constraints (2), (3) and (5) define an integer linear programming formulation for a restricted

version of the Assignment Problem (equivalent to the face of the assignment polytope given by the

equations xii = 0 for all i ∈ N), while requirement (4) ensures that any feasible solution represents a

single tour. Requirement (4) can be written using linear constraints on the x variables (a formulation

in the original space) or using additional variables and linear constraints (an extended formulation).

In this paper, we study properties of parametric integer programming formulations for the ATSP

that are based on three classic formulations from the literature: the Miller-Tucker-Zemlin (MTZ), the

Desrochers–Laporte (DL), and the Single-Commodity Flow (SCF) formulations. Before stating our

results, we give some notation, precisely describe the MTZ, DL, and SCF formulations, and introduce

the parametric formulations proposed in this paper: the d-MTZ, d-DL and b-SCF formulations.

Notation: For S ⊆ N , let δ+(S) = {ij ∈ A : i ∈ S, j ∈ N \ S}, δ−(S) = {ij ∈ A : i ∈ N \ S, j ∈ S},

and A(S) = {ij ∈ A : i ∈ S, j ∈ S}. If S = {i}, we write δ+(i) and δ−(i), respectively. Denote

N1 = N \ {1} = {2, . . . , n} and A1 = {ij : i, j ∈ N1, i 6= j}. Let C1 be the set of directed cycles with

arcs in A1 and let S1 be the set of subsets of N1 of size at least 2. For a cycle C, its reversed cycle

will be denoted CR = {ji : ij ∈ C}.

Given a set Q = {(x, u) ∈ Rn1 ×Rn2 :Ax+Bu ≤ b}, its projection onto the x variables is denoted

as projx(Q) = {x ∈ Rn1 :∃u ∈ Rn2 s.t. (x, u) ∈ Q}.

The vector with all its components equal to one will be denoted 1; its dimension must be understood

by the context in which the notation is used. In addition, given a set of indices K, 1K denotes a

binary vector whose nonzero components are the ones indexed by K. Finally, R+ and R++ stand for

the nonnegative and positive real numbers, respectively.

1.1 Classic integer programming formulations for the ATSP

Below we present some of the most commonly used integer programming formulations for the ATSP.

We refer the reader to [11] for a thorough survey on different formulations for the ATSP and relations
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among them. In all formulations that follow, for modeling purposes and without loss of generality, we

consider node 1 as a special node.

The Dantzig-Fulkerson-Johnson (DFJ) formulation [5] writes (4) in terms of the variables xij for

ij ∈ A by using the exponentially many constraints known as Clique inequalities:∑
ij∈A(S)

xij ≤ |S| − 1 for all S ∈ S1. (6)

The above inequalities can be replaced by the Cut inequalities:∑
ij∈δ+(S)

xij ≥ 1 for all S ∈ S1,

obtaining an equivalent formulation.

The Miller-Tucker-Zemlin (MTZ) formulation [10], a compact extended formulation, uses additional

continuous variables u2, . . . , un ∈ R and the quadratically many inequalities

ui − uj + (n− 1)xij ≤ n− 2 for all ij ∈ A1. (7)

Variable ui for i ∈ N1 can be understood as the relative position of node i in the tour. Note that (7)

for ij ∈ A1 implies that if xij = 1, then ui + 1 ≤ uj .

The Desrochers–Laporte (DL) formulation [6] strengthens the MTZ formulation by lifting variable

xji into (7), yielding

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2 for all ij ∈ A1. (8)

Note that (8) for ij and ji ∈ A1 imply that if xij = 1, then ui + 1 = uj .

In [9], the u variables in the MTZ and DL formulations are disaggregated in terms of binary

variables that indicate precedence relations of nodes in the tour. The new variables vki for k, i ∈ N1

can be understood as indicating whether node k precedes node i. The disaggregation of the MTZ

formulation, termed RMTZ in [9], is given by

xij + vki − vkj ≤ 1 for all ij ∈ A1, k ∈ N1 : k 6= i, k 6= j (9)

xij − vij ≤ 0 for all ij ∈ A1

xij + vji ≤ 1 for all ij ∈ A1.

Moreover, lifting constraint (9) to

xij + xji + vki − vkj ≤ 1

yields a disaggregation of the DL formulation, termed L1RMTZ in [9].

The Single-Commodity Flow formulation (SCF) [8] includes additional flow variables fij ∈ R+

along the constraints

∑
ij∈δ+(i)

fij −
∑

ji∈δ−(i)

fji =

n− 1 i = 1

−1 i ∈ N1

(10)

fij ≤ (n− 1)xij for all ij ∈ A. (11)
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Similarly to the MTZ and DL formulations, the SCF formulation can be disaggregated. The Multi-

Commodity Flow formulation (MCF) [14] includes additional flow variables fkij ∈ R+ for each k ∈ N1

and ij ∈ A along the constraints

∑
ij∈δ+(i)

fkij −
∑

ji∈δ−(i)

fkji =


1 i = 1

−1 i = k

0 i ∈ N1, i 6= k

for all k ∈ N1

fkij ≤ xij for all k ∈ N1, ij ∈ A.

1.2 New parametric integer programming formulations for the ATSP

We define new formulations for the ATSP as follows: for each of the classic MTZ, DL, and SCF

formulations, we keep the assignment polytope constraints unchanged and we replace some of the

numbers appearing in the remaining constraints by appropriate parameters d ∈ RA1
++ or b ∈ RN1

++,

depending on the classic formulation being considered.

The d-MTZ formulation is defined by replacing constraints (7) in the MTZ formulation by

ui − uj + dij ≤ 1− xij ij ∈ A1. (12)

The d-DL formulation is given by the replacing the constraints (8) in the DL formulation by

ui − uj + xij + (1− dij − dji)xji ≤ 1− dij for all ij ∈ A1. (13)

The b-SCF formulation is obtained by replacing the constraints (10)-(11) in the SCF formulation

by

∑
ij∈δ+(i)

fij −
∑

ji∈δ−(i)

fji =

1 i = 1

−bi i ∈ N1

(14)

fij ≤ xij for all ij ∈ A. (15)

We remark here that in order for these to be valid formulations for the ATSP, the parameters

d ∈ RA1
++ and b ∈ RN1

++ must be chosen appropriately. We define

D =

d ∈ RA1
++ :

∑
ij∈C

dij ≤ 1 ∀C ∈ C1


and

B =

{
b ∈ RN1

++ :
∑
i∈N1

bi = 1

}
.

In the sections corresponding to each of the proposed formulations, we argue that (12) or (13) with

d ∈ D, and (14) with b ∈ B provide valid formulations for the ATSP.
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Relevant polyhedral sets: Each formulation that we have presented has a polyhedron associ-

ated to it which is obtained by removing all integrality constraints from the corresponding formula-

tion. We denote the polyhedron associated to the (restricted) Assignment Problem as PAP = {x ∈

[0, 1]A :x satisfies (2) and (3)}. Similarly, we define the polyhedra associated to the parametric for-

mulations: for the d-MTZ formulation we let QMTZ(d) = {(x, u) ∈ PAP × RN1 : (x, u) satisfies (12)},

for the DL formulation we let QDL(d) = {(x, u) ∈ PAP × RN1 : (x, u) satisfies (13)}, and for the

SCF formulation we let QSCF(b) = {(x, f) ∈ PAP × RA+ : (x, f) satisfies (14) and (15)}. We also let

PMTZ(d) = projx(QMTZ(d)), PDL(d) = projx(QDL(d)) and PSCF(b) = projx(QSCF(b)).

1.3 Our results and organization of the paper

In this paper, we study the following properties of the formulations defined in the previous section:

1. Characterization of the projection onto the x-variables space. We study the formula-

tions PMTZ(d), PDL(d), and PSCF(b) that are obtained by projecting the extended formulations

QMTZ(d), QDL(d), and QSCF(b) onto the space of x-variables. In particular, we give a full

polyhedral description and characterize their facets.

2. Comparing the formulations for different parameters. Two formulations are comparable

if one it is included in the other (the formulation that is included in the other is said to be

stronger). We show that in general for d, d′ ∈ D, PMTZ(d) and PMTZ(d′) are not comparable; we

also give conditions for which given d we can find a parameter d′ that gives a stronger formulation.

We also show that for d, d′ ∈ D, under a minor condition, the formulations PDL(d) and PDL(d′)

are not comparable. Finally, we show that for b, b′ ∈ B, the formulations PSCF(d) and PSCF(d′)

are never comparable.

3. Characterizing the closures. We define the closure of a family of parametric formulations as

the set obtained by simultaneously considering the formulations for all values of the parameters.

More precisely, for the d-MTZ formulations the closure is the set
⋂
d∈D PMTZ(d), for the d-DL

formulations the closure is the set
⋂
d∈D PDL(d) and for the b-SCF formulations the closure is

the set
⋂
b∈B PSCF(d). We completely characterize all these closures and study some of their

properties.

The rest of the paper is organized as follows: in Section 2 we define general parametric formulations,

the closure of a family of parametric formulations and related concepts, and study their properties. In

this section we also study properties of the sets of parameters D and B, and properties of classic for-

mulations. In Section 3, Section 4 and Section 5 we study the d-MTZ formulations, d-DL formulations,

and b-SCF formulations, respectively. Finally, in Section 6 we compare the closures of the parametric

formulations studied in this paper.
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2 Preliminaries

2.1 General parametric formulations and extended formulations

Since in this paper we consider several formulations for the ASTP, it is convenient to study properties

of formulations and extended formulations of sets of integral vectors in more generality.

Definition 1 (Formulations). A formulation for a set S ⊆ Zn1 is a set P ⊆ Rn1 such that S =

P ∩ Zn1 . An extended formulation of S is a set Q ⊆ Rn1 × E, where E is an arbitrary set, such that

S = projx(Q) ∩ Zn1 .

The parametric (extended) formulations we study are polyhedra, and the parameters can appear

in the constraint matrix or in the r.h.s.. The following definition encompasses all the formulations we

consider and gives a precise way to compare formulations for different parameters.

Definition 2 (Parametric Formulations, Domination). Let S ⊆ Zn1 , X ⊆ Rn1 , and let P ⊆ (Rm×n1×

Rm×n2 × Rm) be a set of parameters. Given (A,G, b) ∈ P, we consider the set P (A,G, b) = {x ∈

X :∃u ∈ Rn2 s.t. Ax + Gu ≤ b}. We say that P (A,G, b) with the set P is a parametric formulation

for S if P (A,G, b) ∩ Zn1 = S for all (A,G, b) ∈ P.

For (A,G, b), (A′, G′, b′) ∈ P we say that P (A,G, b) dominates P (A′, G′, b′) if P (A,G, b) ⊆ P (A′, G′, b′);

we say that P (A,G, b) and P (A′, G′, b′) are comparable if one of these formulations dominates the other.

In the context of our paper, we have X = PAP (the restricted assignment polytope). For the d-MTZ

and d-DL formulations (respectively b-SCF formulations) we have that the associated set of parameters

is P = D (respectively P = B), and the parametric formulations are given by the polyhedra PMTZ(d)

and PDL(d) that only depend on the parameter d ∈ D (respectively the polyhedron PSCF(b) that only

depends on the parameter b ∈ B).

Observation 1. Let S ⊆ Zn1 , X ⊆ Rn1 , and P ⊆ (Rm×n1×Rm×n2×Rm), and consider the parametric

formulation given by P (A,G, b) and (A,G, b) ∈ P. Denote Q(A,G, b) = {(x, u) ∈ X×Rn2 :Ax+Gu ≤

b} for (A,G, b) ∈ P. Then we can write P (A,G, b) = {x ∈ X :∃u ∈ Rn2 s.t. (x, u) ∈ Q(A,G, b)}.

Observe that for (A,G, b), (A′, G′, b′) ∈ P we have that P := P (A,G, b)∩P (A′, G′, b′) is a formulation

for S, but in general Q := Q(A,G, b) ∩ Q(A′, G′, b′) does not define a formulation for S, as we have

projx(Q) ∩ Zn1 ⊆ P ∩ Zn1 = S and the inclusion may be strict. However, the set Q̂ = {(x, u, u′) ∈

X ×Rn2 ×Rn2 :Ax+Gu ≤ b, A′x+G′u′ ≤ b′} satisfies projx(Q̂) = P and thus defines a formulation

for S (we show this property for arbitrary intersections in Lemma 3 below).

In addition to understanding when a formulation P (A,G, b) dominates a formulation P (A′, G′, b′)

for different parameters (A,G, b) and (A′, G′, b′), we are also interested in understanding the set ob-

tained by considering the formulations P (A,G, b) for all parameters (A,G, b) simultaneously. More

precisely, we are interested in the following set.

Definition 3 (Closure of a family of parametric formulations). Let X ⊆ Rn1 , P ⊆ (Rm×n1×Rm×n2×

Rm), and P (A,G, b) = {x ∈ X :∃u ∈ Rn2 s.t. Ax+Gu ≤ b} for (A,G, b) ∈ P. The closure of a family

6



of parametric formulations w.r.t. the set of parameters P, denoted Cl(P (P)), is the set obtained by

intersecting all the formulations P (A,G, b) with (A,G, b) ∈ P, that is,

Cl(P (P)) =
⋂

(A,G,b)∈P

P (A,G, b) = {x ∈ X : for all (A,G, b) ∈ P, ∃u ∈ Rn2 s.t. Ax+Gu ≤ b }.

The following classic result from the Robust Optimization literature (see [4]) allows us to restrict

our analysis to sets of parameters P that are closed and convex, and also gives a sufficient condition

for the closure Cl(P (P)) to be a polyhedral set.

Lemma 2 (see [4]). Let X ⊆ Rn1 , P ⊆ (Rm×n1 × Rm×n2 × Rm), and P (A,G, b) = {x ∈ X :∃u ∈

Rn2 s.t. Ax+Gu ≤ b} for all (A,G, b) ∈ P.

1. The sets of parameters P and the closure of the convex hull of P give the same intersection:

Cl(P (P)) = Cl(P (conv(P))).

2. If X and P are polyhedra, then Cl(P (P)) is a polyhedron.

For the d-MTZ, d-DL, and b-SCF parametric formulations, the set of parameters P is not a poly-

hedron, as neither D or B are closed sets. However, since their closure is a polytope, by part (1.) of

Lemma 2 we will be able to work with the polytopes D and B when computing the closures of the

associated parametric formulations.

The closure of a family of parametric formulations is defined by intersecting all the formulations

P (A,G, b) in the x-space. We are also interested in studying sets in the x-space that are obtained from

extended formulations that consider an arbitrary number of variables. This is motivated by the study

of the “intersection” of all the formulations Q(A,G, b), which, by Observation 1, must be done by

considering a copy of the variable u for each parameter (A,G, b) in order to obtain a valid formulation

in the x-space.

Definition 4 (Extended formulation with arbitrary number of variables). Let X ⊆ Rn1 and P ⊆

(Rm×n1 ×Rm×n2 ×Rm) be a set of parameters. Denote Q(A,G, b) = {(x, u) ∈ X×Rn2 :Ax+Gu ≤ b}

for (A,G, b) ∈ P. We define

Ef(Q(P)) = {(x, u) ∈ X × (Rn2)
P

:Ax+Gu(A,G, b) ≤ b for all (A,G, b) ∈ P}.

Here, we identify (Rn2)
P

with the set of functions u :P → Rn2 , which in general is an infinite-

dimensional vector space.

If P is finite in the above definition, we recover Rn2×P , whose dimension is n2|P|. In particular, if

P = {(A1, G1, b1), . . . , (Ak, Gk, bk)}, we can write

Ef(Q(P)) = {(x, (u1, . . . , uk)) ∈ X × (Rn2)
k

:Aix+Giui ≤ bi for all i = 1, . . . , k}.

Let (A,G, b) ∈ P. Note that by definition we have P (A,G, b) = projx(Q(A,G, b)). A similar

relation can be established between the operators Cl(·) and Ef(·) when considering all the formulations

with parameters in the set P.
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Lemma 3. Let X ⊆ Rn1 , P ⊆ (Rm×n1 × Rm×n2 × Rm), and for (A,G, b) ∈ P, let P (A,G, b) = {x ∈

X :∃u ∈ Rn2 s.t. Ax+Gu ≤ b} and Q(A,G, b) = {(x, u) ∈ X × Rn2 :Ax+Gu ≤ b} . We have that

projx(Ef(Q(P))) = Cl(P (P))

Proof. We have

projx(Ef(Q(P))) = {x ∈ X :∃ u ∈ (Rn2)
P

s.t. Ax+Gu(A,G, b) ≤ b for all (A,G, b) ∈ P}

= {x ∈ X : for all (A,G, b) ∈ P, ∃ u ∈ Rn2 s.t. Ax+Gu ≤ b}

=
⋂

(A,G,b)∈P

{x ∈ X :∃u ∈ Rn2 s.t. Ax+Gu ≤ b}

=
⋂

(A,G,b)∈P

P (A,G, b) = Cl(P (P)).

As a corollary of the previous results, we obtain that if the set of parameters P is a polytope, then

the associated closure and the extended formulation with arbitrary number of variables have a finite

representation in terms of the vertices of the polytope.

Corollary 4. If P is a nonempty polytope with vertices V, then Cl(P (P)) = Cl(P (V)) and Ef(Q(P)) =

Ef(Q(V)).

Proof. Since P = conv(V), by (1.) of Lemma 2, we obtain Cl(P (P)) = Cl(P (V)). Now, by Lemma 3,

we have projx(Ef(Q(P))) = Cl(P (P)) for any set of parameters P, and therefore

projx(Ef(Q(P))) = Cl(P (P)) = Cl(P (V)) = projx(Ef(Q(V))).

Observation 5. If P (A,G, b) is a formulation and Q(A,G, b) is an extended formulation of a set S

for all (A,G, b) ∈ P, it is easy to see that Cl(P (P)) is a formulation of S and that Ef(Q(P)) is an

extended formulation of S with E = (Rn2)
P

. As in Observation 1, we have that the set {(x, u) ∈

X × Rn2 :Ax + Gu ≤ b for all (A,G, b) ∈ P}, where we use the common variable u ∈ Rn2 over all

parameters in P, in general is not a formulation of S. Finally, Cl(P (P)) (resp. Ef(Q(P)) can be a

formulation (resp. extended formulation) of S even if P (A,G, b) (resp. Q(A,G, b)) is not a formulation

(resp. extended formulation) for some (A,G, b) ∈ P (see Proposition 16 in Section 3.4, Proposition 23

in Section 4.4, and Proposition 30 in Section 5.3).

2.2 Properties of the sets of parameters D and B

Let D be the topological closure of D, that is, D = {d ∈ RA1
+ :

∑
ij∈C dij ≤ 1 for all C ∈ C1}.

Proposition 6. D is a full-dimensional polytope and all its inequalities are non-redundant and thus

facet-defining.
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Proof. Note that as D ⊆ RA1
+ , for any d ∈ D we have dij ≥ 0 for all ij ∈ A1. On the other hand,

since G is a complete directed graph, every arc ij ∈ A1 belongs to some cycle in C1. Hence, variable

dij appears in at least one inequality defining D, and thus dij ≤ 1 for any d ∈ D. This shows that

D ⊆ [0, 1]A1 , and therefore D is bounded, hence, a polytope. On the other hand, since the point

1
|A1|+11 ∈ RA1

+ satisfies all inequalities defining D strictly, we conclude D is a full-dimensional set.

Next we show that for each C ∈ C1 the inequality
∑
ij∈C dij ≤ 1 is facet-defining. As D is full-

dimensional, it suffices to show that this inequality is nonredundant. To see this, observe that the

point 1
|C|−11C ∈ RA1

+ satisfies all inequalities defining D except for the one associated to C.

Proposition 7. The separation problem with respect to D is NP-hard.

Proof. Let H1 ⊆ C1 be the set of Hamiltonian cycles on N1. We consider an instance of longest

Hamiltonian cycle given by d ∈ ZA1
+ and a lower bound k ∈ Z+. The instance has answer Yes if

and only if there exists C ∈ H1 such that
∑
ij∈C dij ≥ k + 1, where this condition is equivalent to∑

ij∈C dij > k. Without loss of generality, we can assume that d ≤ k1, for otherwise the answer is

trivially Yes.

Let d′ = d + k1. We have max{
∑
ij∈C d

′
ij :C ∈ H1} = max{

∑
ij∈C dij :C ∈ H1} + k|N1|. Note

that d′ij = dij + k ≤ 2k ≤ 2k + dil + dlj = d′il + d′lj for distinct i, j, l ∈ N1. Therefore, d′ satisfies

the triangle inequality and hence max{
∑
ij∈C d

′
ij :C ∈ C1} = max{

∑
ij∈C d

′
ij :C ∈ H1}, which implies

max{
∑
ij∈C d

′
ij :C ∈ C1} = max{

∑
ij∈C dij :C ∈ H1} + k|N1|. In particular, max{

∑
ij∈C dij :C ∈

H1} > k if and only if max{
∑
ij∈C d

′
ij :C ∈ C1} > k(|N1|+ 1). Let d̂ = 1

k(|N1|+1)d
′. We have d̂ /∈ D if

and only if there exists C ∈ C1 such that
∑
ij∈C d̂ij > 1, which is equivalent to max{

∑
ij∈C dij :C ∈

H1} > k. Since building d̂ takes linear time, we have a polynomial reduction.

Observation 8. Proposition 7 implies that enumerating the vertices of D is unlikely to be a tractable

problem. On the other hand, letting B = {b ∈ RN1
+ :

∑
i∈N1

bi = 1}, we have that B is an (n − 2)-

dimensional polytope whose vertices are the n− 1 canonical vectors in RN1 .

2.3 Properties of classic formulations for the ATSP

Since the extended formulations presented in Section 1.2 are given by different sets of additional

variables (in addition to the binary variables xij for ij ∈ A), we consider their projection onto the

x-space to compare them. The following lemma in the spirit of [13] will prove useful.

Lemma 9. Let X ⊆ RA. For each ij ∈ A1, let αij ∈ RA and βij ∈ R, and consider the set

Q =

{
(x, u) ∈ X × RN1 :ui − uj +

∑
kl∈A

αijklxkl ≤ β
ij for all ij ∈ A1

}
.

Then projx(Q) = P , where

P =

x ∈ X :
∑
ij∈C

∑
kl∈A

αijklxkl ≤
∑
ij∈C

βij for all C ∈ C1

 .
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Proof. If x ∈ projx(Q), then there exists u ∈ RN1 such that (x, u) ∈ Q. Therefore, for any C ∈ C1, (x, u)

satisfies ui − uj +
∑
kl∈A α

ij
klxkl ≤ βij for all ij ∈ C, which implies

∑
ij∈C

∑
kl∈A α

ij
klxkl ≤

∑
ij∈C β

ij .

Hence, x ∈ P .

Now, given x ∈ P , let cij = βij −
∑
kl∈A α

ij
klxkl for ij ∈ A1. We have

∑
ij∈C cij ≥ 0 for all C ∈ C1,

and thus there are no cycles in C1 with negative length with respect to c. Fix h ∈ N1 and for each

i ∈ N1, let −ui ∈ R be the length of a shortest path from h to i with respect to c. Since there are no

negative-length cycles, we have −uj ≤ −ui+cij = −ui+βij−
∑
kl∈A α

ij
klxkl for all ij ∈ A1. Therefore,

u ∈ RN1 is such that (x, u) ∈ Q, and hence x ∈ projx(Q).

Projecting onto the x-variables the different extended formulations, we obtain formulations on the

x-variables that have different constraints whose comparison allows to analyze the strength of the

ATSP formulations we consider.

We first observe that the Clique inequalities (6) in the DFJ formulation dominate the Circuit

inequalities ∑
ij∈C

xij ≤ |C| − 1 for all C ∈ C1 (16)

and the Weak clique inequalities∑
ij∈A(S)

xij ≤ |S| −
|S|
n− 1

for all S ∈ S1. (17)

In turn, the Circuit inequalities dominate the Weak circuit inequalities∑
ij∈C

xij ≤ |C| −
|C|
n− 1

for all C ∈ C1.

By using Lemma 9, it can be shown that the projection of the MTZ and RMTZ formulations onto

the x-variables is given by the Weak circuit inequalities [12] and Circuit inequalities [9], respectively,

while projecting the SCF and MCF formulations yields the Weak clique inequalities [12] and Clique

inequalities [14], respectively. In particular, MCF is equivalent to DFJ. The projection of the DL

formulation gives rise to a class of Lifted weak circuit inequalities [3]∑
ij∈C

xij +
n− 3

n− 1

∑
ij∈CR

xij ≤ |C| −
|C|
n− 1

for all C ∈ C1, |C| ≥ 3.

Observation 10. Note that (2) and (3) imply
∑
ij∈A xij = n and

∑
ij∈δ+(1)∪δ−(1) xij = 2, and thus∑

ij∈A1
xij = n− 2. Therefore, the Clique inequalities (6) for S ∈ S1 with |S| = n− 2 are redundant,

which in turn implies that the above inequalities are redundant as well for C ∈ C1 with |C| = n− 2.

3 Parametric d-MTZ formulations

Given d ∈ RA1
++ and a constant M > 0, we consider the following generalization of the MTZ inequalities

(7):

ui − uj + dij ≤M(1− xij) ij ∈ A1. (18)
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For large enough M , inequalities (18) define a valid extended formulation for the ATSP that we call

d-MTZ formulation: for xij = 0, (18) reduces to the superfluous constraint ui−uj +dij ≤M , whereas

for xij = 1, it implies uj ≥ ui + dij > ui and thus prohibits x from defining cycles in C1. Constant M

can be chosen appropriately as M = M(d) ≥ max{
∑
ij∈C dij :C ∈ C1}. We recover the inequalities

(7) defining the original MTZ formulation when we set dij = 1 for all ij ∈ A1 and M = n− 1.

We want to study the effect of different choices of d ∈ RA1
++ on the d-MTZ formulation. For this

purpose, it is convenient to normalize d by choosing d ∈ D = {d ∈ RA1
++ :

∑
ij∈C dij ≤ 1 for all C ∈ C1}

so that M = 1 defines a valid ATSP formulation. We obtain the (normalized) generalized MTZ-like

inequalities (12):

ui − uj + dij ≤ 1− xij ij ∈ A1.

For instance, the vector dMTZ ∈ D defined as dMTZ
ij = 1

n−1 for ij ∈ A1 gives the classic MTZ inequalities

in normalized form:

ui − uj +
1

n− 1
≤ 1− xij .

For d ∈ D, recall the set QMTZ(d), the continuous relaxation of the extended ATSP formulation

obtained when using inequalities (12):

QMTZ(d) =
{

(x, u) ∈ PAP × RN1 :ui − uj + dij ≤ 1− xij for all ij ∈ A1

}
.

While d ∈ D \D does not define a valid formulation, for convenience we extend the above definition

of QMTZ(d) to d ∈ D as well.

3.1 Obtaining the d-MTZ formulation from convexification

In this section, we argue that the proposed generalization is a natural and sensible choice. To that

end, below we generalize and strengthen Proposition 1 in [3].

For d ∈ D and ij ∈ A1, let ZijMTZ(d) be the set of vectors (ui, uj , xij , xji) ∈ R2 × {0, 1}2 such that

xij + xji ≤ 1 and

• [xij = 1, xji = 0]⇒ ui + dij ≤ uj , uj − ui ≤ 1− dji

• [xij = 0, xji = 1]⇒ uj + dji ≤ ui, ui − uj ≤ 1− dij

• [xij = 0, xji = 0]⇒ ui − uj ≤ 1− dij , uj − ui ≤ 1− dji.

Proposition 11. The convex hull of ZijMTZ(d) is given by

ui − uj + xij ≤ 1− dij

uj − ui + xji ≤ 1− dji

xij + xji ≤ 1

xij ≥ 0

xji ≥ 0.

11



Proof. Let us write ZijMTZ(d) as the union of the following sets:

• {(ui, uj) ∈ R2 :ui + dij ≤ uj , uj − ui ≤ 1− dji} × {(1, 0)}

• {(ui, uj) ∈ R2 :uj + dji ≤ ui, ui − uj ≤ 1− dij} × {(0, 1)}

• {(ui, uj) ∈ R2 :ui − uj ≤ 1− dij , uj − ui ≤ 1− dji} × {(0, 0)}

By disjunctive programming [2], the convex hull of ZijMTZ(d) is given by the projection on the (ui, uj , xij , xji)

variables of the system

ui = v1
i + v2

i + v3
i v1

i − v1
j + dijλ1 ≤ 0

uj = v1
j + v2

j + v3
j v1

j − v1
i − (1− dji)λ1 ≤ 0

xij = λ1 v2
j − v2

i + djiλ2 ≤ 0

xji = λ2 v2
i − v2

j − (1− dij)λ2 ≤ 0

λ1 + λ2 + λ3 = 1 v3
i − v3

j − (1− dij)λ3 ≤ 0

λ1, λ2, λ3 ≥ 0 v3
j − v3

i − (1− dji)λ3 ≤ 0.

By projecting out (λ, v3
i , v

3
j ), we arrive to

xij ≥ 0, xji ≥ 0 v2
j − v2

i ≤ −djixji

1− xij − xji ≥ 0 v2
i − v2

j ≤ (1− dij)xji

v1
i − v1

j ≤ −dijxij ui − v1
i − v2

i − uj + v1
j + v2

j ≤ (1− dij)(1− xij − xji)

v1
j − v1

i ≤ (1− dji)xij uj − v1
j − v2

j − ui + v1
i + v2

i ≤ (1− dji)(1− xij − xji)

Along the first three constraints, by projecting out v1
i , we obtain

v2
j − v2

i ≤ −djixji ui − v2
i − uj + v2

j ≤ (1− dij)(1− xij − xji)− dijxij

v2
i − v2

j ≤ (1− dij)xji uj − v2
j − ui + v2

i ≤ (1− dji)(1− xij − xji) + (1− dji)xji.

By projecting out v1
j , we obtain the result.

We remark here that the first and second constraints of the convex hull of ZijMTZ(d) are precisely

the generalized MTZ inequalities (12) associated to arcs ij and ji ∈ A1. We also note that these

constraints are non-redundant and can be strictly satisfied, and thus they define facets of the convex

hull of ZijMTZ(d).

3.2 Projecting QMTZ(d)

To compare formulations for different choices of d, we consider the projection of QMTZ(d) on the x

variables, that is, the set PMTZ(d) = projx(QMTZ(d)).

12



Proposition 12. We have that

PMTZ(d) =

x ∈ PAP :
∑
ij∈C

xij ≤ |C| −
∑
ij∈C

dij for all C ∈ C1

 .

Proof. It follows from Lemma 9 by taking X = PAP and defining αij for each ij ∈ A by αijij = 1,

αijkl = 0 for kl 6= ij, and βij = 1− dij .

These inequalities generalize the Weak circuit inequalities (17). Note that d ∈ D only affects the

right-hand side in the inequalities defining PMTZ(d) and that, since
∑
ij∈C dij ≤ 1, each constraint in

PMTZ(d) is dominated by the corresponding circuit inequality.

Proposition 13. For each d ∈ D and C ∈ C1, the inequality
∑
ij∈C xij ≤ |C| −

∑
ij∈C dij defines a

facet of PMTZ(d) if and only if
∑
ij∈C dij > 0 and |C| ≤ n− 2.

Proof. First observe that given d ∈ D, the vector 1
n−11 ∈ PMTZ(d) satisfies all the inequalities of

PMTZ(d) of the form
∑
ij∈C xij ≤ |C| −

∑
ij∈C dij strictly since

∑
ij∈C

1

n− 1
=
|C|
n− 1

< |C| − 1 ≤ |C| −
∑
ij∈C

dij ,

where the first inequality follows from n ≥ 4 and |C| ≥ 2. Therefore, such a constraint defines a facet

of PMTZ(d) if and only if it is non-redundant, that is, removing it from the system defining PMTZ(d)

does add new vectors.

Given Ĉ ∈ C1 with
∑
ij∈Ĉ dij > 0 and |Ĉ| ≤ n− 2, let C̄ ⊆ A be a directed cycle on the nodes of

N not covered by Ĉ and consider x̂ = 1Ĉ + 1C̄ ∈ {0, 1}A. We have that x̂ ∈ PAP and satisfies all the

constraints in the definition of PMTZ(d), with the exception of that associated to Ĉ as
∑
ij∈Ĉ x̂ij = |Ĉ|.

Therefore, this constraint is non-redundant and thus it defines a facet of PMTZ(d).

If
∑
ij∈C dij = 0, then the corresponding inequality is implied by xij ≤ 1 for ij ∈ C. If |C| = n−1,

the corresponding inequality is redundant (see Observation 10).

3.3 Comparing PMTZ(d) for different d ∈ D

The following results show that d-MTZ formulations defined by vectors in int(D), the topological

interior of D, can be strictly dominated by a d-MTZ formulation defined by another vector in int(D),

and that, on the other hand, two different d-MTZ formulations defined by vectors in the boundary of

D might be incomparable.

Proposition 14. The following statements are true:

1. For all d ∈ int(D), there exists d′ ∈ int(D) such that PMTZ(d′) ( PMTZ(d).

2. Let C,C ′ ∈ C1 with |C|, |C ′| ≤ n− 2, C 6= C ′ and d, d′ ∈ D in the relative interior of the facets

of D defined by C,C ′ respectively. Then PMTZ(d′) and PMTZ(d) are not comparable.

Proof.

13



1. Let d ∈ int(D). Then, for all C ∈ C1,
∑
ij∈C dij < 1. Let ε = 1

2 min{(1 −
∑
ij∈C dij)/|C| :C ∈

C1} > 0 and define d′ = d+ ε1, where 1 ∈ RA1 . Observe that for all C ∈ C1

∑
ij∈C

d′ij =
∑
ij∈C

dij + |C|ε <
∑
ij∈C

dij + |C|

1−
∑
ij∈C

dij

 /|C| = 1.

Therefore, d′ ∈ int(D) and, moreover

PMTZ(d′) = {x ∈ PAP :
∑
ij∈C

xij ≤ |C| −
∑
ij∈C

d′ij for all C ∈ C1}

( {x ∈ PAP :
∑
ij∈C

xij ≤ |C| −
∑
ij∈C

dij for all C ∈ C1}

= PMTZ(d),

The strict inclusion follows from the characterizations of the facets of PMTZ(d′) (see Proposi-

tion 13) and the fact that
∑
ij∈C dij <

∑
ij∈C d

′
ij for all C ∈ C1.

2. Since d is in the relative interior of the facet of D defined by C, we have that 1 =
∑
ij∈C dij >∑

ij∈C′ dij > 0. Similarly, for d′ we have that 1 =
∑
ij∈C′ d

′
ij >

∑
ij∈C d

′
ij > 0. Since |C|, |C ′| ≤

n − 2 by Proposition 13 we obtain that the inequalities
∑
ij∈C xij ≤ |C| − 1 and

∑
ij∈C′ xij ≤

|C ′| −
∑
ij∈C′ dij define facets of PMTZ(d) and that the inequalities

∑
ij∈C′ xij ≤ |C ′| − 1 and∑

ij∈C xij ≤ |C| −
∑
ij∈C d

′
ij define facets of PMTZ(d). This implies that PMTZ(d) * PMTZ(d′)

since any point in the relative interior of the facet
∑
ij∈C′ xij ≤ |C ′| −

∑
ij∈C′ dij of PMTZ(d)

it is cut off by the inequality
∑
ij∈C′ xij ≤ |C ′| − 1 of PMTZ(d′). Similarly, we conclude that

PMTZ(d′) * PMTZ(d), and thus, these two formulations are not comparable.

Recall the vector dMTZ ∈ D defined as dMTZ
ij = 1

n−1 for ij ∈ A1 which gives the (normalized) MTZ

formulation. By Proposition 12, we obtain

PMTZ(dMTZ) =

x ∈ PAP :
∑
ij∈C

xij ≤ |C| −
∑
ij∈C

dMTZ
ij for all C ∈ C1


=

x ∈ PAP :
∑
ij∈C

xij ≤ |C| −
|C|
n− 1

for all C ∈ C1

 .

The following proposition shows that no anti-symmetric perturbation of dMTZ can improve the

associated d-MTZ formulation.

Proposition 15. Let δ ∈ RA1 be such that dMTZ + δ ∈ D and δij = −δji for any ij ∈ A1. Then

PMTZ(dMTZ + δ) ⊆ PMTZ(dMTZ) implies PMTZ(dMTZ + δ) = PMTZ(dMTZ).

Proof. First, since dMTZ + δ ∈ D we have that for any C ∈ C1 the following inequality holds∑
ij∈C

(
dMTZ
ij + δij

)
≤ 1 (19)

14



On the other hand, since dMTZ, dMTZ +δ ∈ D by the characterizations of PMTZ(d) (Proposition 12)

and their facets (Proposition 13) we have that PMTZ(dMTZ + δ) ⊆ PMTZ(dMTZ) if and only if

|C| −
∑
ij∈C

(
dMTZ
ij + δij

)
≤ |C| −

∑
ij∈C

dMTZ
ij

for any C ∈ C1 such that |C| ≤ n − 2, as the facets of PMTZ(dMTZ) are defined by the inequalities∑
ij∈C xij ≤ |C| −

∑
ij∈C d

MTZ
ij , and similarly for PMTZ(dMTZ + δ). This condition is equivalent to∑

ij∈C
δij ≥ 0 (20)

for any C ∈ C1 such that |C| ≤ n− 2.

From this discussion, it follows that PMTZ(dMTZ + δ) = PMTZ(dMTZ) if and only if we have that∑
ij∈C δij = 0 for any C ∈ C1 with |C| ≤ n− 2. We will use this equivalence later in the proof.

Observe that by the anti-symmetry assumption on δ, that is, δij = −δji for any ij ∈ A1, we have

that
∑
ij∈C δij = 0 for any C ∈ C1 with |C| = 2. Also, by (19), note that any cycle C ∈ C1 with

|C| = n− 1 satisfies
∑
ij∈C δij ≤ 1− |C|

n−1 = 0.

In order to show that
∑
ij∈C δij = 0 for any cycle C ∈ C1 with 2 < |C| < n− 1, we will show that

given m with 3 < m ≤ n − 1, if each C ∈ C1 with |C| = m satisfies
∑
ij∈C δij = 0, then any C ∈ C1

with |C| = m−1 also satisfies
∑
ij∈C δij = 0. Let C ∈ C1 with |C| = m−1. Since 3 < m ≤ n−1, there

exist lk ∈ A1 an edge of C and v ∈ N1 a node not in C such that the cycle C ′ = C \{lk}∪{lv, vk} has

size |C ′| = m. By using inequalities (20) for the cycles {kl, lv, vk} and C, and the assumption that

the property is true for any cycle of size m, we obtain that

δkl + δlv + δvk ≥ 0,
∑
ij∈C

δij ≥ 0,
∑
ij∈C′

δij = 0. (21)

Moreover, by definition of C ′ we can compute∑
ij∈C′

δij =
∑
ij∈C

δij − δlk + δlv + δvk.

Since δlk = −δkl by the anti-symmetric assumption and (21) we obtain that

0 =
∑
ij∈C′

δij =
∑
ij∈C

δij + (δkl + δlv + δvk).

As the two terms in the sum are non-negative, we conclude
∑
ij∈C δij = 0. This shows that PMTZ(dMTZ+

δ) = PMTZ(dMTZ), as desired.

3.4 The intersection of all d-MTZ formulations

Given nonempty D′ ⊆ D, recall the set

Ef(QMTZ(D′)) =
{

(x, u) ∈ PAP ×
(
RN1

)D′
: (x, u(d)) ∈ QMTZ(d) ∀d ∈ D′

}
.
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Proposition 16. Let D′ ⊆ D. If for each C ∈ C1, there exists d ∈ D′ such that
∑
ij∈C dij > 0,

then no integer x ∈ projx(Ef(QMTZ(D′))) can define subtours. In particular, if D′ is finite, then

Ef(QMTZ(D′)) is a valid extended formulation for the ATSP.

Proof. We have that projx(Ef(QMTZ(D′))) =
⋂
d∈D′ projx(QMTZ(d)). Therefore, by Proposition 12,

for any x ∈ projx(Ef(QMTZ(D′))) and C ∈ C1, it holds that
∑
ij∈C xij ≤ |C|−

∑
ij∈C dij for all d ∈ D′,

or equivalently,
∑
ij∈C xij ≤ |C| −max{

∑
ij∈C dij : d ∈ D′}. By hypothesis, the right-hand side is at

least |C| − 1, but less than |C|. Thus, no integer x ∈ projx(Ef(QMTZ(D′))) can define subtours and

the last assertion follows.

Note that any D′ = {d} with d ∈ D satisfies the above condition since d > 0, in which case

QMTZ(D′) = QMTZ(d). Also, observe that we can choose D′ contained in the boundary of D as long

it satisfies the condition in Proposition 16. Following the above result, for each k ∈ N1, let dk ∈ RA1
+

be such that

dkij =

 1 i = k

0 i 6= k,

and define VMTZ = {dk : k ∈ N1}. Note that for each k ∈ N1 and C ∈ C1, we have
∑
ij∈C d

k
ij = 1 if

kj ∈ C for some j ∈ N1 and
∑
ij∈C d

k
ij = 0 else. Therefore, VMTZ ⊆ D. Moreover, each element of

VMTZ is a vertex of D, although they do not encompass the complete set of vertices of D in general.

Theorem 17. We have that Cl(PMTZ(D)) = Cl(PMTZ(VMTZ)) = PMTZ, where

PMTZ =

x ∈ PAP :
∑
ij∈C

xij ≤ |C| − 1 for all C ∈ C1

 .

Proof. Noting that PMTZ ⊆ PMTZ(d) for all d ∈ D, we have PMTZ ⊆ Cl(PMTZ(D)) = Cl(PMTZ(D)) ⊆

Cl(PMTZ(VMTZ)). Now, to show that Cl(PMTZ(VMTZ)) = PMTZ, observe that from Proposition 12,

for each k ∈ N1 we have

PMTZ(dk) =

x ∈ PAP :
∑
ij∈C

xij ≤ |C| −
∑
ij∈C

dkij for all C ∈ C1


=

x ∈ PAP :

∑
ij∈C

xij ≤ |C| − 1 for all C ∈ C1 :C ∩ δ+(k) 6= ∅∑
ij∈C

xij ≤ |C| for all C ∈ C1 :C ∩ δ+(k) = ∅


=

x ∈ PAP :
∑
ij∈C

xij ≤ |C| − 1 for all C ∈ C1 :C ∩ δ+(k) 6= ∅

 .
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Therefore,

Cl(PMTZ(VMTZ)) =
⋂
k∈N1

PMTZ(dk)

=

x ∈ PAP :
∑
ij∈C

xij ≤ |C| − 1 for all C ∈ C1, for all k ∈ N1 :C ∩ δ+(k) 6= ∅


=

x ∈ PAP :
∑
ij∈C

xij ≤ |C| − 1 for all C ∈ C1

 = PMTZ.

We remark here that from Theorem 17, Cl(PMTZ(D)) can be obtained with O(n) vectors in D

which are easy to identify, instead of requiring the complete set of vertices of D as in Corollary 4.

Moreover, the latter is unlikely to be efficiently accomplished in view of Proposition 7.

Also, observe that Cl(PMTZ(D)) is given by the circuit inequalities (16), and therefore it is directly

related to the RMTZ formulation. Corollary 18 below recovers Theorem 1 in [9].

Corollary 18. We have that Cl(PMTZ(D)) = projx(QMTZ), where

QMTZ =

(x, (vk : k ∈ N1)) ∈ PAP × RN1×N1 :
vkk − vkj ≤ −xkj for all k, j ∈ N1 : j 6= k

vki − vkj ≤ 1− xij for all k, i, j ∈ N1 : i 6= k, j 6= i

 .

Proof. Noting thatQMTZ = Ef (PMTZ(VMTZ)), the result follows from Theorem 17 and Corollary 4.

4 Parametric d-DL formulations

For d ∈ RA1
++, consider the generalization of the DL formulation

ui − uj +Mxij + (M − dij − dji)xji ≤M − dij for all ij ∈ A1. (22)

As with the MTZ formulation, for large enough M , inequalities (22) define a valid extended formulation

for the ATSP that we call d-DL formulation: for xij = 0 and xji = 0, (22) for ij and ji reduces to the

superfluous constraints ui − uj + dij ≤ M and ui − uj + dji ≤ M , respectively, whereas for xij = 1

and xji = 0, it implies uj = ui + dij > ui and thus prohibits x from defining cycles in C1. Normalizing

with M = 1, we obtain (13):

ui − uj + xij + (1− dij − dji)xji ≤ 1− dij for all ij ∈ A1.

For d ∈ D, recall the set

QDL(d) =
{

(x, u) ∈ PAP × RN1 :ui − uj + xij + (1− dij − dji)xji ≤ 1− dij for all ij ∈ A1

}
.

Note that since x ≥ 0 and dij + dji ≤ 1 for any d ∈ D, we have that (13) implies (12) and thus

QDL(d) ⊆ QMTZ(d).
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4.1 Obtaining the d-DL formulation from convexification

As with the MTZ formulation, we first argue that our generalization of the DL formulation is sound.

For d ∈ D and ij ∈ A1, let ZijDL(d) be the set of vectors (ui, uj , xij , xji) ∈ R2 × {0, 1}2 such that

xij + xji ≤ 1 and

• [xij = 1, xji = 0]⇒ uj = ui + dij

• [xij = 0, xji = 1]⇒ ui = uj + dji

• [xij = 0, xji = 0]⇒ ui − uj ≤ 1− dij , uj − ui ≤ 1− dji.

Proposition 19. The convex hull of ZijDL(d) is given by

ui − uj + xij + (1− dij − dji)xji ≤ 1− dji

uj − ui + xji + (1− dji − dij)xij ≤ 1− dij

xij ≥ 0

xji ≥ 0.

Observe that the constraint xij + xji ≤ 1 is redundant as it is implied by the first two, which are

indeed the generalized DL inequalities.

Proof. Let us write ZijDL(d) as the union of the following sets:

• {(ui, uj) ∈ R2 :ui + dij = uj} × {(1, 0)}

• {(ui, uj) ∈ R2 :uj + dji = ui} × {(0, 1)}

• {(ui, uj) ∈ R2 :ui − uj ≤ 1− dij , uj − ui ≤ 1− dji} × {(0, 0)}

By disjunctive programming [2], the convex hull of ZijDL(d) is given by the projection on the (ui, uj , xij , xji)

variables of the system

ui = v1
1 + v2

i + v3
i v1

i − v1
j + dijλ1 = 0

uj = v1
j + v2

j + v3
j v2

j − v2
i + djiλ2 = 0

xij = λ1 v3
i − v3

j − (1− dij)λ3 ≤ 0

xji = λ2 v3
j − v3

i − (1− dji)λ3 ≤ 0.

λ1 + λ2 + λ3 = 1

λ1, λ2, λ3 ≥ 0

By projecting out (λ, v3
i , v

3
j , v

1
j , v

2
i ), we obtain the result.
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4.2 Projecting QDL(d)

We now turn our attention to the set PDL(d) = projx(QDL(d)).

Proposition 20. We have that

PDL(d) =

x ∈ PAP :

∑
ij∈C(xij + xji)−

∑
ij∈C(dij + dji)xji ≤ |C| −

∑
ij∈C dij for all C ∈ C1 : |C| ≥ 3

xij + xji ≤ 1 for all ij ∈ A1

 .

Proof. From Lemma 9, by taking X = PAP and defining αij for each ij ∈ A by αijij = 1, αijji =

1− dij − dji, αijkl = 0 for kl 6= ij, ji, and βij = 1− dij , we obtain

PDL(d) =

x ∈ PAP :
∑
ij∈C

(xij + xji)−
∑
ij∈C

(dij + dji)xji ≤ |C| −
∑
ij∈C

dij for all C ∈ C1

 .

Observe that if |C| = 2, then C = {ij, ji} for some ij ∈ A1, and the corresponding inequality reduces

to

(xij + xji) + (xji + xij)− (dij + dji)xji − (dji + dij)xij ≤ 2− dij − dji.

Dividing both sides by 2− dij − dji > 0, the result follows.

Note that d affects both left- and right-hand sides of PDL(d), in contrast to what happens with

PMTZ(d) where d appears in the right-hand side only. Also, note that the inequalities xij + xji ≤ 1

for ij ∈ A1 are independent of d. Finally, observe that PDL(d) ⊆ PMTZ(d) for all d ∈ D as QDL(d) ⊆

QMTZ(d).

Proposition 21. For each d ∈ D and C ∈ C1, the inequality
∑
ij∈C(xij +xji)−

∑
ij∈C(dij +dji)xji ≤

|C| −
∑
ij∈C dij defines a facet of PDL(d) if and only if |C| = 2 or

∑
ij∈C dij > 0 and 3 ≤ |C| ≤ n− 2.

Proof. Given Ĉ ∈ C1 with |Ĉ| = 2 or
∑
ij∈Ĉ dij > 0 and 3 ≤ |Ĉ| ≤ n − 2, let C̄ ⊆ A be a directed

cycle on the nodes of N not covered by Ĉ and consider x̂ = 1Ĉ + 1C̄ ∈ {0, 1}A. We have that x̂ ∈ PAP

and satisfies all the constraints in the definition of PDL(d), with the exception of that associated to

Ĉ as
∑
ij∈Ĉ(x̂ij + x̂ji)−

∑
ij∈Ĉ(dij + dji)x̂ji = |Ĉ|. Therefore this constraint is non-redundant. This

inequality is satisfied strictly by 1
n−11 ∈ PDL(d) since, recalling that n ≥ 4, we have |Ĉ|

n−1 < |Ĉ| − 1 if

|Ĉ| = 2 and, if |Ĉ| ≥ 3 we have∑
ij∈Ĉ

2

n− 1
−
∑
ij∈Ĉ

(dij + dji)
1

n− 1
< |Ĉ| 2

n− 1
≤ |Ĉ|2

3
≤ |Ĉ| − 1 ≤ |Ĉ| −

∑
ij∈Ĉ

dij .

We conclude that the constraint defines a facet of PDL(d).

If
∑
ij∈C dij = 0, then the corresponding inequality is implied by xij + xji ≤ 1 for ij ∈ C and

−djixji ≤ 0 for ij ∈ C. If |C| = n − 1, the corresponding inequality is redundant (see Observation

10).
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4.3 Comparing PDL(d) for different d ∈ D

Unlike the case of PMTZ(d), by Proposition 20, the parameter d in the inequalities defining PDL(d) not

only appears as a constant in the r.h.s., but also in the l.h.s. multiplying some of the variables. As

a consequence, the comparison of different d-DL formulations PDL(d) for different vectors d is not as

straightforward as in the case of d-MTZ formulations. The next result shows that under some technical

assumptions, anti-symmetric perturbations yield incomparable formulations.

Proposition 22. Let d ∈ D and δ ∈ RA1 \ {0} be such that d+ δ ∈ D, δij = −δji for all ij ∈ A1, and

assume that there exists Ĉ ∈ C1 with |Ĉ| ≥ 3 such that
∑
ij∈Ĉ δij 6= 0. Then PDL(d) and PDL(d + δ)

are not comparable, that is, none of these formulations is included in the other.

Proof. Since d ∈ D we have that
∑
ij∈C dij > 0 for any C ∈ C1. Then by Proposition 21, the non-trivial

facets of PDL(d) are given by the inequalities∑
ij∈C

(xij + xji)−
∑
ij∈C

(dij + dji)xji ≤ |C| −
∑
ij∈C

dij (23)

for all C ∈ C1 with |C| ≤ n−2. Given C ∈ C1 with |C| ≤ n−2, let CR = {ji : ij ∈ C} be its associated

reversed cycle. We can write the facet of PDL(d) associated to CR as follows:∑
ij∈CR

(xij + xji)−
∑
ij∈CR

(dij + dji)xji ≤ |CR| −
∑
ij∈CR

dij .

Equivalently, we can write∑
ij∈C

(xij + xji)−
∑
ij∈C

(dij + dji)xij ≤ |C| −
∑
ij∈C

dji. (24)

Now, notice that

dij + dji = (dij + δij) + (dji − δij) = (dij + δij) + (dji + δji) = (d+ δ)ij + (d+ δ)ji,

where the second equality is given by the anti-symmetry assumption on δ, that is, δij = −δji for any

ij ∈ A1. Since d + δ ∈ D, this implies that the non-trivial facets of PDL(d + δ) are given by the

inequalities ∑
ij∈C

(xij + xji)−
∑
ij∈C

(dij + dji)xji ≤ |C| −
∑
ij∈C

dij −
∑
ij∈C

δij (25)

for all C ∈ C1 with |C| ≤ n− 2. For the reversed cycle we obtain:∑
ij∈C

(xij + xji)−
∑
ij∈C

(dij + dji)xij ≤ |C| −
∑
ij∈C

dji −
∑
ij∈C

δji.

And by the anti-symmetry assumption on δ for CR we can write∑
ij∈C

(xij + xji)−
∑
ij∈C

(dij + dji)xij ≤ |C| −
∑
ij∈C

dji +
∑
ij∈C

δij . (26)

Let Ĉ ∈ C1 as in the statement of the proposition and notice that without loss of generality we

may assume that
∑
ij∈Ĉ δij > 0. Then by Proposition 21 the inequalities (23) and (24) of PDL(d)
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and the inequalities (25) and (26) of PDL(d + δ) associated to Ĉ are all facet defining. Now, since∑
ij∈Ĉ δij > 0, for the cycle Ĉ we have that the r.h.s. of inequality (25) of PDL(d̂ + δ) is strictly less

than the r.h.s. of inequality (23) of PDL(d̂). As both inequalities define facets, we obtain that PDL(d̂)

is not contained in PDL(d̂ + δ). Similarly, for the cycle Ĉ the r.h.s. of inequality (24) of PDL(d̂) is

strictly less than the r.h.s. of inequality (26) of PDL(d̂ + δ). Therefore, we obtain that PDL(d̂) is not

contained in PDL(d̂+ δ). We conclude that PDL(d̂) and PDL(d̂+ δ) are not comparable.

We note here that the assumption “there exists Ĉ ∈ C1 with |Ĉ| ≥ 3 such that
∑
ij∈Ĉ δij 6= 0” is

not superfluous as the following example shows: consider N1 = {2, 3, 4} and δ32 = −δ23 = 1, δ34 =

−δ43 = 1/2, and δ42 = −δ24 = 1/2. Then δ satisfies the anti-symmetric property and
∑
ij∈C δij = 0

for any cycle C ∈ C1.

4.4 The intersection of all d-DL formulations

Given nonempty D′ ⊆ D, consider

Ef(QDL(D′)) =
{

(x, u) ∈ PAP ×
(
RN1

)D′
: (x, u(d)) ∈ QDL(d) ∀d ∈ D′

}
.

Proposition 23. Let D′ ⊆ D. If for each C ∈ C1, there exists d ∈ D′ such that
∑
ij∈C dij > 0, then no

integer x ∈ projx(Ef(QDL(D′))) can define subtours. In particular, if D′ is finite, then Ef(QDL(D′))

is a valid extended formulation for the ATSP.

Proof. The result follows from Proposition 16 by noting that projx(Ef(QDL(D′))) ⊆ projx(Ef(QMTZ(D′))).

As with the MTZ formulation, any D′ = {d} with d ∈ D satisfies the above condition since d > 0,

in which case QDL(D′) = QDL(d). Also, we can choose D′ contained in the boundary of D as long it

satisfies the conditions if Proposition 23. Following the above result, for kl ∈ A1, let dkl be the kl-th

canonical vector in RA1 , and define VDL = {dkl : kl ∈ A1}. Clearly, we have VDL ⊆ D and each element

of VDL is a vertex of D.

Theorem 24. We have that Cl(PDL(D)) = Cl(PDL(VDL)) = PDL, where

PDL =

x ∈ PAP :

∑
ij∈C(xij + xji)− xlk ≤ |C| − 1 for all C ∈ C1, for all kl ∈ C : |C| ≥ 3

xij + xji ≤ 1 for all ij ∈ A1

 .

Proof. From Proposition 20, for any kl ∈ A1 we have

PDL(dkl) =

x ∈ PAP :

∑
ij∈C(xij + xji)−

∑
ij∈C(dklij + dklji)xji ≤ |C| −

∑
ij∈C d

kl
ij for all C ∈ C1 : |C| ≥ 3

xij + xji ≤ 1 for all ij ∈ A1



=


x ∈ PAP :

∑
ij∈C(xij + xji)− xlk ≤ |C| − 1 for all C ∈ C1 : kl ∈ C, |C| ≥ 3∑

ij∈C(xij + xji)− xkl ≤ |C| for all C ∈ C1 : lk ∈ C, |C| ≥ 3∑
ij∈C(xij + xji) ≤ |C| for all C ∈ C1 : kl, lk /∈ C, |C| ≥ 3

xij + xji ≤ 1 for all ij ∈ A1
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=

x ∈ PAP :

∑
ij∈C(xij + xji)− xlk ≤ |C| − 1 for all C ∈ C1 : kl ∈ C, |C| ≥ 3

xij + xji ≤ 1 for all ij ∈ A1

 .

Therefore,

Cl(PDL(VDL)) =
⋂

kl∈A1

PDL(dkl)

=

x ∈ PAP :

∑
ij∈C(xij + xji)− xlk ≤ |C| − 1 ∀C ∈ C1, ∀kl ∈ C, |C| ≥ 3

xij + xji ≤ 1 ∀ij ∈ A1

 = PDL.

We thus obtain Cl(PDL(D)) = Cl(PDL(D)) ⊆ Cl(PDL(VDL)) = PDL. To show that PDL ⊆

Cl(PDL(D)), let x ∈ PDL, d ∈ D and C ∈ C1 with |C| ≥ 3. We have∑
ij∈C

(xij + xji) + 1− xlk ≤ |C| ∀kl ∈ C.

Multiplying each of these inequalities by dkl∑
kl∈C dkl

and summing over all kl ∈ C, we obtain

∑
ij∈C

(xij + xji) +
1∑

kl∈C dkl

∑
ij∈C

(dij − dijxji) ≤ |C|.

Since
∑
kl∈C dkl ≤ 1 and dij − dijxji ≥ 0, we have∑

ij∈C
(xij + xji) +

∑
ij∈C

(dij − dijxji) ≤ |C|.

As
∑
ij∈C −djixji ≤ 0, the latter inequality implies that∑

ij∈C
(xij + xji) +

∑
ij∈C

(dij − (dij + dji)xji) ≤ |C|.

Therefore, x ∈ PDL(d) for all d ∈ D and thus PDL ⊆ Cl(PDL(D)).

Corollary 25. We have that Cl(PDL(D)) = projx(QDL), where

QDL =

(x, (ukl : kl ∈ A1)) ∈ PAP × RA1×N1
+ :

uklk − ukll ≤ −xkl for all kl ∈ A1

ukll − uklk ≤ 1− xlk for all kl ∈ A1

ukli − uklj ≤ 1− xij − xji for all kl, ij ∈ A1 : ij 6= kl, ij 6= lk

 .

Proof. Noting that QDL = Ef(QDL(VDL)), the result follows from Theorem 24 and Corollary 4.

Theorem 24 shows that Cl(PDL(D)) can be obtained with a modest number of vectors in D which

are easy to identify, instead of the complete set of vertices of D. This time, however, we require O(n2)

such vectors instead of O(n) as with the MTZ formulation. Moreover, it can be shown that VMTZ does

not necessarily yield Cl(PDL(D)).

Proposition 26. Cl(PDL(VMTZ)) is given byx ∈ PAP :

∑
ij∈C(xij + xji)− xkkC− − xkC+k ≤ |C| − 1 for all C ∈ C1, for all k ∈ C : |C| ≥ 3

xij + xji ≤ 1 for all ij ∈ A1

 ,

where kC− and kC+ denote the node preceding and succeeding k in cycle C, respectively.
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Proof. From Proposition 20, for any k ∈ N1 we have

PDL(dk) =

x ∈ PAP :

∑
ij∈C(xij + xji)−

∑
ij∈C(dkij + dkji)xji ≤ |C| −

∑
ij∈C d

k
ij for all C ∈ C1 : |C| ≥ 3

xij + xji ≤ 1 for all ij ∈ A1



=

x ∈ PAP :

∑
ij∈C(xij + xji)−

∑
ij∈C(dkij + dkji)xji ≤ |C| − 1 for all C ∈ C1 : |C| ≥ 3, k ∈ C∑

ij∈C(xij + xji) ≤ |C| for all C ∈ C1 : |C| ≥ 3, k /∈ C

xij + xji ≤ 1 for all ij ∈ A1


=

x ∈ PAP :

∑
ij∈C(xij + xji)− xkkC− − xkC+k ≤ |C| − 1 for all C ∈ C1 : |C| ≥ 3, k ∈ C

xij + xji ≤ 1 for all ij ∈ A1

 ,

Therefore,

Cl(PDL(VMTZ)) =
⋂
k∈N1

PDL(dk)

=

x ∈ PAP :

∑
ij∈C(xij + xji)− xkkC− − xkC+k ≤ |C| − 1 for all C ∈ C1, for all k ∈ C : |C| ≥ 3

xij + xji ≤ 1 for all ij ∈ A1

 .

Observe that the L1RMTZ formulation in [9] coincides with Cl(PDL(VMTZ)). However, from The-

orem 24 and Proposition 26, we have that L1RMTZ does not yield Cl(PDL(D)) in general.

5 Parametric b-SCF formulations

In this section, we consider flow-based formulations for the ATSP parametrized by demand and supply.

We apply a framework similar to that of d-MTZ and d-DL formulations.

Given b ∈ RN1
++, let M =

∑
i∈N1

bi and consider the following generalization of the SCF formulation

∑
ij∈δ+(i)

fij −
∑

ji∈δ−(i)

fji =

M i = 1

−bi i ∈ N1

fij ≤Mxij for all ij ∈ A.

Note that the set B = {b ∈ RN1
++ :

∑
i∈N1

bi = 1} is obtained by the normalizing condition M = 1. For

b ∈ B, recall

QSCF(b) =

(x, f) ∈ PAP × RA+ :

∑
ij∈δ+(i)

fij −
∑

ji∈δ−(i)

fji = −bi for all i ∈ N1

fij ≤ xij for all ij ∈ A

 ,

where we have omitted the flow constraint on node i = 1 since it is redundant.
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5.1 Projecting QSCF(b)

We now give an explicit description of the set PSCF(b) = projx(QSCF(b)).

Proposition 27. We have that

PSCF(b) =

x ∈ PAP :
∑

ij∈δ+(S)

xij ≥
∑
i∈S

bi for all S ∈ S1

 .

Proof. Let x ∈ PSCF(b) and let b̂ = (−1, b) ∈ RN . Since
∑
i∈N b̂i = 0, by Gale’s flow theorem [7],

there exists f ∈ RA+ such that f ≤ x and
∑
ij∈δ−(i) fij −

∑
ji∈δ+(i) fji = b̂i for i ∈ N if and only if∑

ij∈δ−(S) xij ≥
∑
i∈S b̂i for all ∅ 6= S ( N . Note that if 1 ∈ S, then

∑
i∈S b̂i =

∑
i∈S\{1} bi − 1 ≤ 0

and the condition is trivially satisfied. In addition, since x ∈ PAP, we have
∑
ji∈δ−(i) xji = 1 ≥ bi for

i ∈ N1, and thus the condition is satisfied if S = {i}. Therefore, the existence of f holds if and only if∑
ij∈δ−(S) xij ≥

∑
i∈S bi for all S ∈ S1. Finally, since x ∈ PAP, we have

∑
ij∈δ−(S) xij =

∑
ij∈δ+(S) xij ,

which completes the proof.

Noting that any x ∈ PAP satisfies
∑
ij∈A(S) xij +

∑
ij∈δ+(S) xij = |S| for all S ∈ S1, we have

PSCF(b) =

x ∈ PAP :
∑

ij∈A(S)

xij ≤ |S| −
∑
i∈S

bi for all S ∈ S1

 . (27)

The inequalities in (27) generalize the Weak clique inequalities (17).

Proposition 28. For each b ∈ B and S ∈ S1, the inequality
∑
ij∈δ+(S) xij ≥

∑
i∈S bi defines a facet

of PSCF(b) if and only if
∑
i∈S bi > 0 and S 6= N1.

Proof. Given Ŝ ∈ S1 with
∑
i∈S bi > 0 and Ŝ 6= N1, let Ĉ and C̄ be directed cycles covering all nodes

in Ŝ and in N \ Ŝ, respectively, and consider x̂ = 1Ĉ + 1C̄ ∈ {0, 1}A. We have that x̂ ∈ PAP and

satisfies all the constraints in the definition of PSCF(b), with the exception of that associated to Ŝ

as
∑
ij∈δ+(S) x̂ij = 0, and therefore this constraint is non-redundant. In addition, this inequality is

satisfied strictly by 1
n−11 ∈ PSCF(b) since∑

ij∈δ+(S)

1

n− 1
= |S|(n− |S|) 1

n− 1
≥ 2(n− 2)

1

n− 1
> 1 ≥

∑
i∈S

bi,

where the first inequality follows from 2 ≤ |S| ≤ n − 2 and the second from n ≥ 4. We conclude the

constraint defines a facet of PSCF(b).

If
∑
i∈S bi = 0, the inequality is implied by xij ≥ 0 for ij ∈ δ+(S). If S = N1, the corresponding

inequality is redundant (see Observation 10).

5.2 Comparing PSCF(b) for different b ∈ B̄

The case of b-SCF formulations is somewhat simpler than the case of d-MTZ or d-DL formulations.

The following result shows that b-SCF formulations are never comparable.

24



Proposition 29. For any b, b′ ∈ B with b 6= b′, PSCF(b) and PSCF(b′) are not comparable.

Proof. Given b, b′ ∈ B with b 6= b′, let η = b′ − b. Without loss of generality, assume that η2 ≤

η3 ≤ · · · ≤ ηn−1 ≤ ηn. Since b 6= b′ and
∑
i∈N1

ηi = 0, we have η2 < 0 and ηn > 0. We will show

now that η2 + η3 < 0. If η3 ≤ 0, we are done. If η3 > 0, then
∑
i∈N1\{2,3} ηi > 0, and we obtain

η2 + η3 = −
∑
i∈N1\{2,3} ηi < 0, as desired. Similarly, we have ηn−1 + ηn > 0. Let S = {2, 3} and

S′ = {n − 1, n}. We have
∑
ij∈δ+(S) xij ≥

∑
i∈S bi >

∑
i∈S b

′
i. Since

∑
ij∈δ+(S) xij ≥

∑
i∈S b

′
i and∑

ij∈δ+(S) xij ≥
∑
i∈S bi define facets of PSCF(b′) and PSCF(b), respectively, this shows that PSCF(b) *

PSCF(b′). Analogously, we have
∑
ij∈δ+(S′) xij ≥

∑
i∈S′ b

′
i >

∑
i∈S′ bi. Since

∑
ij∈δ+(S′) xij ≥

∑
i∈S′ bi

and
∑
ij∈δ+(S′) xij ≥

∑
i∈S′ b

′
i define facets of PSCF(b) and PSCF(b′), respectively, this shows that

PSCF(b′) * PSCF(b).

5.3 The intersection of all b-SCF formulations

Given nonempty B′ ⊆ B, let

Ef(QSCF(B′)) =
{

(x, f) ∈ PAP ×
(
RA
)B′

: (x, f(b)) ∈ QSCF(b) ∀b ∈ B′
}
.

Proposition 30. If for each i ∈ N1, there exists b ∈ B′ such that bi > 0, then no integer x ∈

projx(Ef(QSCF(B′))) can define subtours. In particular, if B′ is finite, then Ef(QSCF(B′)) is a valid

extended formulation for the ATSP.

Proof. We have that projx(Ef(QSCF(B′))) =
⋂
b∈B′ projx(QSCF(b)). Therefore, by Proposition 27,

for any x ∈ projx(QSCF(B′)) and S ∈ S1, it holds that
∑
ij∈δ+(S) xij ≥

∑
i∈S bi for all b ∈ B′,

or equivalently,
∑
ij∈A(S) xij ≤ |S| − max{

∑
i∈S bi : b ∈ B′}. By hypothesis, the right-hand side is

strictly less than |S|. Thus, no integer x ∈ projx(QSCF(B′)) can define subtours and the last assertion

follows.

For each k ∈ N1, let bk ∈ B be the k-canonical vector, and define VSCF = {bk : k ∈ N1}. Clearly,

VSCF is the set of vertices of B (see Observation 8).

Theorem 31. We have that Cl(PSCF(B)) = Cl(PSCF(VSCF)) = P SCF, where

P SCF =

x ∈ PAP :
∑

ij∈δ+(S)

xij ≥ 1 for all S ∈ S1

 .

Proof. We have P SCF ⊆ PSCF(b) for all b ∈ B, and thus P SCF ⊆ Cl(PSCF(B)) = Cl(PSCF(B)). To

show that Cl(PSCF(B)) = P SCF, note that for any k ∈ N1,

PSCF(bk) =

x ∈ PAP :
∑

ij∈δ+(S)

xij ≥
∑
i∈S

bki for all S ∈ S1


=

x ∈ PAP :
∑

ij∈δ+(S)

xij ≥ 1 for all S ∈ S1 : k ∈ S

 .
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Therefore,

Cl(PSCF(VSCF)) =
⋂
k∈N1

PSCF(bk)

=

x ∈ PAP :
∑

ij∈δ+(S)

xij ≥ 1 for all S ∈ S1, for all k ∈ N1 : k ∈ S


=

x ∈ PAP :
∑

ij∈δ+(S)

xij ≥ 1 for all S ∈ S1

 = P SCF.

Note that P SCF can be equivalently written as

P SCF =

x ∈ PAP :
∑

ij∈A(S)

xij ≤ |S| − 1 for all S ∈ S1

 ,

and in particular, we recover the DFJ formulation. Below we recover MCF as an extended formulation.

Corollary 32. We have that P SCF = projx(QSCF), where

QSCF =

(x, (fk : k ∈ N1)) ∈ PAP × RN1×A
+ :

∑
ij∈δ+(i)

fkij −
∑

ji∈δ−(i)

fkji = −δik for all i, k ∈ N1

fij ≤ xij for all ij ∈ A

 .

and δik = 1 if i = k and δik = 0 else.

Proof. Noting that QSCF = EfQSCF(VSCF)), the result follows from Theorem 31 and Corollary 4.

6 Comparing closures

Below, we formalize how the closures we have introduced in previous sections relate.

Proposition 33. The following hold:

1. For n ≥ 4, Cl(PSCF(B)) ⊆ Cl(PDL(D)) ⊆ Cl(PDL(VMTZ)) ⊆ Cl(PMTZ(D)).

2. For n = 4, Cl(PSCF(B)) = Cl(PDL(D)) = Cl(PDL(VMTZ)) = Cl(PMTZ(D)).

3. For n ≥ 5, for any Ĉ ∈ C1 with 3 ≤ |Ĉ| ≤ n−2 and for any k ∈ Ĉ, there exists x̂ ∈ Cl(PMTZ(D))

that violates
∑
ij∈Ĉ(xij + xji) − xk+k − xkk− ≤ |Ĉ| − 1. In particular, Cl(PDL(VMTZ)) (

Cl(PMTZ(D)).

4. For n ≥ 5, for any Ĉ ∈ C1 with 3 ≤ |Ĉ| ≤ n − 2 and for any kl ∈ Ĉ, there exists x̂ ∈

Cl(PDL(VMTZ)) that violates
∑
ij∈Ĉ(xij + xji) − xlk ≤ |Ĉ| − 1. In particular, Cl(PDL(D)) (

Cl(PDL(VMTZ)).

5. For n ≥ 5, for any Ŝ ∈ S1 with 3 ≤ |S| ≤ n − 2, there exists x̂ ∈ Cl(PDL(D)) that violates∑
ij∈A(S) xij ≤ |Ĉ| − 1. In particular, Cl(PSCF(B)) ( Cl(PDL(D)).
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Proof. 1. Given S ∈ S1 and C ∈ C1 with C ⊆ A(S) and |C| = |S| ≥ 3, we have
∑
ij∈A(S) xij ≥∑

ij∈C(xij + xji) − xk+k ≥
∑
ij∈C(xij + xji) − xk+k − xkk− ≥

∑
ij∈C xij for any x ∈ PAP and

k ∈ S.

2. From Observation 10, we have that all four above sets are equal to {x ∈ PAP :xij + xji ≤

1 for all ij ∈ A1} since the remaining constraints are redundant in each case.

3. Given Ĉ ∈ C1 with 3 ≤ |Ĉ| ≤ n − 2, let C̃ ⊆ A be any directed cycle on the remaining nodes

of N , which are at least 2. Define x̂ ∈ RA by x̂ij = |Ĉ|−1

|Ĉ| if ij ∈ Ĉ, x̂ij = 1
|Ĉ| if ji ∈ Ĉ,

x̂ij = 1 if ij ∈ C̃, and x̂ij = 0 else. Clearly, we have x̂ ∈ PAP. Now, let C ∈ C1. If C = Ĉ,

then
∑
ij∈C x̂ij = |C| − 1. If C 6= Ĉ, then

∑
ij∈C x̂ij =

∑
ij∈C∩(Ĉ∪C̃) x̂ij ≤ |C| − 1. Therefore,

x̂ ∈ Cl(PMTZ(D)). However,
∑
ij∈Ĉ(x̂ij + x̂ji)− x̂k+k− x̂kk− = |Ĉ|− 2

|Ĉ| > |Ĉ|−1 for any k ∈ Ĉ.

4. Given Ĉ ∈ C1 with 3 ≤ |Ĉ| ≤ n− 2, let C̃ ⊆ A be any directed cycle on the remaining nodes of

N , which are at least 2. Define x̂ ∈ RA by x̂ij = 1
2 if ij ∈ Ĉ or ji ∈ Ĉ, x̂ij = 1 if ij ∈ C̃, and

x̂ij = 0 else. Clearly, we have x̂ ∈ PAP and x̂ij + x̂ji ≤ 1 for all ij ∈ A1. Now, let C ∈ C1 with

|C| ≥ 3 and let k ∈ C. If C = Ĉ, then
∑
ij∈C(x̂ij + x̂ji)− x̂kkC− − x̂kC+k = |C|− 1. If C 6= Ĉ, then∑

ij∈C(x̂ij + x̂ji)− x̂kkC− − x̂kC+k ≤
∑
ij∈C∩(Ĉ∪C̃) x̂ij ≤ |C| − 1. Therefore, x̂ ∈ Cl(PDL(VMTZ)).

However,
∑
ij∈Ĉ(x̂ij + x̂ji)− x̂lk = |Ĉ| − 1

2 > |Ĉ| − 1 for any kl ∈ Ĉ.

5. Given Ŝ ∈ S1 with 3 ≤ |Ŝ| ≤ n − 2, let Ĉ ∈ C1 be any directed cycle on Ŝ. Also, let C̃ ⊆ A be

any directed cycle on the remaining nodes of N , which are at least 2. Let h ∈ N \ Ŝ be the node

succeeding node 1 in C̃ and define x̂ ∈ RA by x̂ij = |Ĉ|−1

2|Ĉ|−1
if ij ∈ Ĉ or ji ∈ Ĉ, x̂1j = 1

2|Ĉ|−1
if

j ∈ Ŝ, x̂ih = 1
2|Ĉ|−1

if i ∈ Ŝ, x1h = |Ĉ|−1

2|Ĉ|−1
, x̂ij = 1 if ij ∈ C̃ \ {1h}, and x̂ij = 0 else. Clearly,

we have x̂ ∈ PAP and x̂ij + x̂ji ≤ 1 for all ij ∈ A1. Now, let C ∈ C1 with |C| ≥ 3 and let

kl ∈ C. If C = Ĉ, then
∑
ij∈C(x̂ij + x̂ji)− x̂lk = 2|C| |C|−1

2|C|−1 −
|C|−1
2|C|−1 = |C| − 1. If C 6= Ĉ, then∑

ij∈C(x̂ij + x̂ji) − x̂lk ≤
∑
ij∈C∩[Ĉ∪C̃∪δ+(1)∪δ−(h)] x̂ij ≤ |C| − 1. Therefore, x̂ ∈ Cl(PDL(D)).

However,
∑
ij∈A(Ŝ) x̂ij = |Ĉ| 2|Ĉ|−2

2|Ĉ|−1
= |Ĉ| − |Ĉ|

2|Ĉ|−1
> |Ĉ| − 1.

For a graph with five or more nodes (n ≥ 5), the results in Proposition 33 can be summarized in

the following corollary.

Corollary 34. For n ≥ 5, Cl(PSCF(B)) ( Cl(PDL(D)) ( Cl(PDL(VMTZ)) ( Cl(PMTZ(D)).

7 Final remarks

In this work, we have introduced parametric formulations for the ATSP based on the MZT, DL, and

SCF formulations. We showed how these formulations arise and how they compare in terms of the

choice of parameters and in terms of their closures.

A natural question is how to apply these results computationally to solve instances of the ATSP.

We envision a scheme where we start with the extended formulation given by a single element of a
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parametric family (a particular choice of the parameters), and then we enrich this formulation by

including variables and constraints associated to more elements of the family. It would be interesting

to study how to select the parameters in a dynamic fashion, as we might need criteria different from

the notion of a most-violated constraint given a fractional solution.

Another research direction is to apply the framework of parametric formulations to other combi-

natorial problems whose natural or classic formulations can be generalized.
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