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Abstract

We introduce a framework to accelerate the convergence of gradient-based methods with online learn-
ing. The framework learns to scale the gradient at each iteration through an online learning algorithm and
provably accelerates gradient-based methods asymptotically. In contrast with previous literature, where
convergence is established based on worst-case analysis, our framework provides a strong convergence guar-
antee with respect to the optimal scaling matrix for the iteration trajectory. For smooth strongly convex
optimization, our results provide an O(κ⋆ log(1/ε)) complexity result, where κ⋆ is the condition number
achievable by the optimal preconditioner, improving on the previous O(

√
nκ⋆ log(1/ε)) result. In partic-

ular, a variant of our method achieves superlinear convergence on convex quadratics. For smooth convex
optimization, we show for the first time that the widely-used hypergradient descent heuristic improves on
the convergence of gradient descent.

1 Introduction
We consider the unconstrained smooth strongly convex optimization problem

minimize
x∈Rn

f(x),

where f(x) : Rn → R is L-smooth and µ-strongly convex with f(x⋆) := minx f(x) > −∞. It is well-known
that gradient descent with stepsize 1/L converges with iteration complexity O(κ log(1/ε)), where κ = L/µ is
the condition number of the problem. Two major techniques have been developed in the literature to accelerate
gradient descent. One is to improve the dependence on κ through Nesterov’s fast gradient method [31, 32]; the
other is through preconditioning: a positive definite matrix stepsize P , known as preconditioner, premultiplies
the gradient to improve convergence:

xk+1 = xk − P∇f(xk).

Preconditioning has been a standard tool in convex optimization and numerical linear algebra to improve
convergence of gradient descent [27, 29, 25, 14, 15] or other iterative methods [37], and it is closely related
to the well-known adaptive gradient methods [12, 22], either for online learning or for a general optimization
problem. Some recent results quantify the effect of adaptive methods on problem conditioning [7]. In the
context of machine learning, adaptively choosing a preconditioner is also relevant to hyperparameter tuning
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[20, 31], especially choosing a learning rate schedule [9].

Despite the great empirical success of adaptive methods in practice, they usually cannot improve the theoret-
ical complexity as a function of the condition number. Recently, [23] showed that hypergradient, the gradient
of the optimization objective with respect to the preconditioner, can be used to improve the convergence of
gradient descent. The idea in [23] is to use a cutting plane subroutine to update the (diagonal) preconditioner,
and an O(

√
nκ⋆ log(1/ε)) complexity result is obtained, where n is the variable dimension and κ⋆ is the con-

dition number of the optimally preconditioned problem. Although the result in [23] is dimension-dependent
and requires a nontrivial subroutine to update the preconditioner, it provides a valuable direction to improve
the performance of first-order adaptive methods theoretically. Whether a simple adaptive first-order method
can achieve O(κ⋆ log(1/ε)) complexity or even stronger guarantees remains open.

This paper answers this question affirmatively by proposing the online scaled gradient method, a framework
that accelerates gradient-based methods through online convex optimization.

Contributions.

• We develop a framework that accelerates gradient-based algorithms through online learning. Unlike previous
work, our framework guarantees convergence with respect to the scaling matrix optimized for the iteration
trajectory, rather than the worst-case analysis.

• We propose a simple adaptive first-order gradient-based method with asymptotic O(κ⋆ log(1/ε)) complexity,
where κ⋆ is the optimal condition number achievable by the optimal preconditioner, improving on the
O(
√
nκ⋆ log(1/ε)) complexity in the previous literature. In particular, one realization of our framework

achieves superlinear convergence on strongly convex quadratics using first-order information.

• For the first time, we prove that the hypergradient heuristic improves the convergence of gradient descent.

1.1 Related literature
Preconditioned iterative methods. Preconditioning is a well-established technique to enhance the conver-
gence of iterative algorithms in both optimization [15, 33, 1, 10] and numerical linear algebra [37, 35, 17, 16, 11].
By applying a linear transformation to the optimization variables, preconditioning aims to reduce the hetero-
geneity of the optimization landscape. Recent research has focused on understanding the properties of optimal
preconditioners [35, 17, 21]. While these methods demonstrate empirical success, identifying a good precondi-
tioner can be computationally intensive and often depends on the specific structure of the problem.

Hypergradient descent heuristic. Our method is closely related to the hypergradient descent heuristic
[2, 28, 3], which updates the stepsize (hyperparameters) using the gradient of the optimization objective
with respect to it. Despite strong empirical results [2, 3], the theoretical understanding of hypergradient
descent remains limited. The existing results [36] are unable to fully justify the observed improvements [23].
Recently, [23] introduced a novel multi-dimensional backtracking approach that uses hypergradients to generate
separating hyperplanes in the space of candidate preconditioners. This work provides the first theoretical
justification for hypergradient descent. However, it solves a small cutting plane subproblem at every step and
incurs a

√
n dependence on the problem dimension. No theoretical proof exists that the original hypergradient

descent heuristics accelerate gradient-based methods. And our paper provides the first proof that quantifies
the acceleration effect of the hypergradient descent heuristic.

Adaptive first-order methods. Adaptive stepsize is a well-established technique to enhance the conver-
gence of optimization algorithms. The most notable example is AdaGrad [12, 30], which provides strong
theoretical guarantees in the context of online convex optimization. Other methods, such as Adam [22] and
RMSProp [19], have demonstrated competitive empirical performance, though they generally yield weaker online
regret bounds. Our approach also leverages online learning techniques to accelerate gradient-based methods,
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with a particular focus on improving the dependence on problem conditioning. We show that online learning
applied to the hypergradient gives optimal guarantees on problem conditioning.

Learning to optimize and meta-learning. The learning to optimize [26, 5] and meta-learning [20, 6, 13]
literatures also use online learning to improve algorithm performance. These approaches are typically designed
to solve a sequence of related optimization problems, providing performance guarantees across multiple tasks.
In contrast, our work applies online learning to improve first-order methods over the course of solving a single
optimization instance.

2 Background and preliminaries
Notations. Throughout the paper, we use ∥ · ∥ to denote vector Euclidean norm or matrix spectral norm,
and ⟨·, ·⟩ to denote Euclidean inner product. Letters A and a denote matrices and vectors, respectively.
∥A∥F =

√∑
ij a

2
ij denotes the matrix Frobenius norm. Given two vectors a, b of the same dimension, a ⊙ b

denotes their element-wise Hadamard product. The Clarke subdifferential of a function f(x) at x is defined
by ∂f(x) := {v ∈ Rn : f(y) ≥ f(x) + ⟨v, y − x⟩ + o(∥x − y∥), y → x}. We use f ′(x) ∈ ∂f(x) to denote
a subgradient. If f(x) is differentiable at x, ∂f(x) = {∇f(x)}. For symmetric matrices A,B, A ⪰ B if
A − B ∈ Sn+ is positive semidefinite. The condition number for an L-smooth and µ-strongly convex problem
is defined by κ = L/µ. Given a closed convex set C, ΠC [x] denotes the orthogonal projection of x onto C.
We use Lα := {x : f(x) ≤ α} to denote the α-sublevel set of f and X ⋆ to denote the optimal set of f . x is an
ε-optimal solution if f(x) ≤ f(x⋆) + ε and x is an ε-critical point if ∥∇f(x)∥ ≤ ε.

2.1 Assumptions
We make the following two assumptions throughout the paper.

A1: f(x) is L-smooth. |f(x)− f(y)− ⟨∇f(y), x− y⟩| ≤ L
2 ∥x− y∥2

A2: f(x) is µ-strongly convex. f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ µ
2 ∥x− y∥2

We also assume that f is twice-differentiable for simplicity. However, our algorithm does not necessarily require
twice-differentiability to work. In addition, µ-strong convexity can be relaxed to weaker conditions such as
convexity with quadratic growth [31].

2.2 Preconditioned and scaled gradient method
It is well-known that under A1 and A2, the vanilla gradient descent

x+ = x− 1
L∇f(x)

achieves O(κ log(1/ε)) complexity [18]. The dependence on the condition number κ is unfortunate since the
condition number can be very large and substantially slows down convergence. Two techniques are often used to
improve dependence on κ. One is through Nesterov’s fast gradient method [31], which achieves O(

√
κ log(1/ε))

complexity; the other is through preconditioning [14, 27, 15], which replaces the scalar stepsize by some positive
semidefinite matrix P ∈ Sn+

x+ = x− P∇f(x). (1)

Typically, P is chosen to be diagonal and positive definite. This paper also considers updates of the form (1)
but allows P to be an arbitrary matrix of proper dimension from some closed convex set P. Moreover, P is
allowed to vary across iterations:

xk+1 = xk − Pk∇f(xk) (2)

To differentiate our method from standard preconditioning techniques, which generally consider only positive
definite preconditioners, we call our method the scaled gradient method: P serves as a (not necessarily positive
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definite or symmetric) scaling matrix. Preconditioned gradient descent can be viewed as a special case of the
scaled gradient method. We define P+ := P ∩ Sn+ when we switch to the context of preconditioned gradient
descent, and without loss of generality we assume 0 ∈ P, L−1I ∈ P and that P is bounded.

A3: Closed convex set P satisfies 0 ∈ P, L−1I ∈ P and diam(P) ≤ D.

2.3 Monotone descent oracle
When P is not positive definite, a scaled gradient update will not necessarily decrease the function value.
To guarantee convergence under weak assumptions, the scaled gradient method optionally uses a monotone
descent oracle M, defined below.

Definition 2.1. Given the scaled gradient update x+ = x− P∇f(x), Mφ,P : Rn → Rn is called a monotone
descent oracle associated with the scaled gradient update and measure φ if its output Mφ,P (x) satisfies

φ(Mφ,P (x)) ≤ min{φ(x), φ(x+)}.

We use M(x) to denote the oracle when the context is clear. Three typical realizations of M are as follows.

• Line-search.

M(x) = x+ α(x+ − x) such that φ(M(x)) ≤ φ(x). Additional regularity conditions, such as P = P+, are
required to ensure that line-search stops in a finite number of steps.

• Steepest descent.

M(x) = x+α(x+−x) and α = argminα φ(x+α(x+−x)). It applies to simple functions such as quadratic.

• Simple comparison.

M(x) = x+ if φ(x+) ≤ φ(x). Otherwise M(x) = x. It takes one extra measure evaluation.

3 Online Scaled Gradient Methods
This section introduces our main methodology, which relates the scaled gradient method to online convex
optimization with P as the decision variable.

3.1 Scaled gradient method and online learning
Let φ(x) be a non-negative measure or potential energy that characterizes the optimality of x. For example,
function value gap φ(x) = f(x) − f(x⋆) and gradient norm φ(x) = ∥∇f(x)∥ are common measures. The
progress of an algorithm at step K +1 with respect to measure φ can be expressed as the telescoping product

φ(xK+1) = φ(x1)

K∏
k=1

φ(xk+1)

φ(xk)
. (3)

Then the arithmetic-geometric mean inequality upper-bounds φ(xK+1):

Theorem 3.1. Given a non-negative function φ(x) : Rn → R+ and a sequence of iterations {xk},

φ(xK+1) ≤ φ(x1)
(

1
K

∑K
k=1

φ(xk+1)
φ(xk)

)K
.

The quantity 1
K

∑K
k=1

φ(xk+1)
φ(xk)

on the right-hand side is the averaged contraction factor across all previous
iterates: a smaller contraction factor ensures stronger convergence. Suppose the iterates {xk}k≥2 are generated
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by the scaled gradient method in (2). Then

1
K

∑K
k=1

φ(xk+1)
φ(xk)

= 1
K

∑K
k=1

φ(xk−Pk∇f(xk))
φ(xk)

. (4)

To maximize the progress in the scaled gradient method, we aim to minimize the quantity in (4) over the
choice of scaling matrices Pk with online learning. We will show that online convex optimization can learn a
sequence of {Pk} that asymptotically accelerates gradient-based methods. Define the surrogate loss

ℓx(P ) := φ(x−P∇f(x))
φ(x)

with respect to the measure φ. Note that ℓxk only depends on x1 and all previous scaling matrices {Pj}j≤k−1.
Online learning generates a sequence {Pk} such that the cumulative regret is bounded by ρK :∑K

k=1 ℓxk(Pk)− min
P∈P

∑K
k=1 ℓxk(P ) ≤ ρK . (5)

Existing results in online optimization can guarantee sublinear regret if the losses {ℓxk} are convex and are
either Lipschitz continuous or have Lipschitz continuous gradient [34]. In this case, we say the family of
surrogate losses {ℓxk} is online-learnable. The definition of regret ρK and Theorem 3.1 imply

φ(xK+1) ≤ φ(x1)
(

1
K

∑K
k=1 ℓxk(P )

)K ≤ φ(x1)
(
min
P∈P

1
K

∑K
k=1 ℓxk(P ) + ρK

K

)K
. (6)

When the regret ρK grows sublinearly in K, the bound in (6) suggests that for large enough K,

φ(xK+1) ≤ φ(x1)
(
min
P∈P

1
K

∑K
k=1 ℓxk(P ) + ρK

K

)K ≈ φ(x1)
(
min
P∈P

1
K

∑K
k=1 ℓxk(P )

)K
.

This result is powerful: it suggests that a scaled gradient method, in the long run, can achieve convergence
that is competitive with any fixed scaling matrix optimized for the iteration trajectory. To the best of our
knowledge, this trajectory-based convergence guarantee is rare in the literature. Moreover, as long as there
exists some pre-specified scaling matrix P ⋆ (or simply stepsize P ⋆ = αI) such that ℓx(P ⋆) ≤ θ⋆ < 1 for any x,
we obtain the global convergence guarantee

φ(xK+1) ≤ φ(x1)(θ⋆ + ρK

K )K ≈ φ(x1)(θ⋆)K (7)

The algorithm, which updates the scaling matrix Pk on the fly, is called a realization of the online scaled
gradient method (OSGM).

3.2 Framework of online scaled gradient method
The online scaled gradient method is determined by the components below:

• Optimality measure. A measure φ to characterize the convergence of OSGM.

• Surrogate loss. A surrogate loss ℓx(P ) that relates φ with an online learning problem in P .

• Online learning algorithm. An online learning algorithm A that guarantees sublinear regret for
∑

k ℓxk(Pk).

• (Optional) Monotone oracle. An oracleM (Definition 2.1) that guarantees monotonicity.

• (Theoretical purpose) Hindsight scaling matrix. A hindsight scaling matrix P ⋆ to ensure global convergence.

The tuple (φ, ℓ,A,M) determines a realization of the online scaled gradient method (OSGM, Algorithm 1).
The surrogate loss ℓx is the key component of this framework. Finding a good surrogate, for given assumptions
on the function to be optimized, is the challenging aspect of the theoretical analysis. In the rest of the paper,
we provide several realizations of the framework for different function classes, summarized in Table 1.
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Algorithm 1: Online scaled gradient method (OSGM)
input x1, P1, φ, ℓ,A,M
for k = 1, 2,... do

if M = ∅ then
xk+1 = xk − Pk∇f(xk)

else
xk+1 =Mφ,Pk

(xk)
end
Pk+1 = A(ℓxk , Pk)

end
output xbest with minimum objective value

φ(x) Surrogate ℓ Strong convexity A M oracle Complexity Reference

f(x)− f(x⋆) rx(P ) = f(x+)−f(x⋆)
f(x)−f(x⋆) Yes Optional O(κ⋆ log( 1ε )) Section 4

∥∇f(x)∥ gx(P ) = ∥∇f(x+)∥
∥∇f(x)∥ Yes Required O(λ⋆ log( 1ε )) Section 5

f(x)− f(x⋆) hx(P ) = f(x+)−f(x)
∥∇f(x)∥2

Yes
OGD

Required O( 1
2µγ⋆ log( 1ε )) Section 6

No Required O( 1
γ⋆ε )

Table 1: Realizations of OSGM. OGD: online (sub)gradient method. κ⋆, λ⋆, γ⋆ and their optimal scaling matrix
P ⋆ will be defined in the next sections.

4 Function value ratio surrogate
The first surrogate, function value ratio surrogate, is defined as follows:

rx(P ) := f(x+)−f(x⋆)
f(x)−f(x⋆) = f(x−P∇f(x))−f(x⋆)

f(x)−f(x⋆) . (8)

The ratio surrogate rx measures the contraction factor of the function value gap between two consecutive
OSGM steps. We assume strong convexity (µ > 0) throughout this section. Without loss of generality, we
assume all the intermediate iterates generated by the algorithm satisfy f(x) > f(x⋆) so that rx is well-defined;
otherwise, x ∈ X ⋆ and we can immediately stop the algorithm. The ratio surrogate rx assumes the optimal
value f(x⋆) is known, and this assumption will be relaxed later in this section. The monotone oracle is optional
for rx. We present the results without a monotone oracle: M = ∅.

4.1 Surrogate loss
The function value ratio rx in (8) can be viewed as a surrogate loss since its average along OSGM iterates serves
as an upper bound on the function value gap. By substituting φ(x) = f(x) − f(x⋆) in Theorem 3.1 and
plugging in the definition of rx, OSGM iterates {xk} satisfy the following bound:

Lemma 4.1 (Surrogate loss and measure). For all K ≥ 1, the online scaled gradient method satisfies

f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))
(

1
K

∑K
k=1 rxk(Pk)

)K
. (9)

The ratio surrogate rx inherits several important properties from f , which we summarize in Proposition 4.1.
These properties are crucial for establishing the online learnability of {rxk} later in Section 4.2.

Proposition 4.1 (Properties of rx). Under A1 and A2, for any fixed x ̸∈ X ⋆, the surrogate loss rx(P ) defined
in (8) is convex, non-negative, and 2L2-smooth as a function in P . In addition, the derivative of rx takes the
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form
∇rx(P ) = −∇f(x−P∇f(x))∇f(x)⊤

f(x)−f(x⋆) . (10)

4.2 Online learning algorithm
Online gradient descent is known to ensure sublinear regret for a family of smooth, convex, and lower-bounded
losses [34], which is the case for ratio surrogate loss rx by Proposition 4.1. We tailor the classical L⋆ regret
bound from online convex optimization literature [34] to our settings in Lemma 4.2 below.

Lemma 4.2 (Learnability). Given A1, A2, and the ratio surrogate losses {rxk}, online gradient descent

Pk+1 = ΠP [Pk − η∇rxk(Pk)] (11)

with stepsize η ≤ 1/(4L2) generates a sequence of scaling matrices {Pk}k≥2 such that∑K
k=1 rxk(Pk)−

∑K
k=1 rxk(P ) ≤ 1

η∥P − P1∥2F + 4L2η
∑K

k=1 rxk(P ) for any P ∈ P. (12)

In particular, if A3 is further assumed, the choice of stepsize η = min
{

1
4L2 ,

D
2L(1+LD)

√
K

}
ensures

∑K
k=1 rxk(Pk)− min

P∈P

∑K
k=1 rxk(P ) ≤ ρK := max

{
4LD(1 + LD)

√
K, 8L2D2

}
. (13)

Remark 1. The relation (11) suggests additional complexity from a rank-one update with an orthogonal
projection. But as we will discuss in Section 7, we can choose P to have arbitrary sparsity (e.g., diagonal),
and it is only necessary to update the nonzero elements. Moreover, the orthogonal projection is often easy to
compute since we do not require Pk to be positive semidefinite or symmetric.

4.3 Algorithm design and analysis
We now state a realization of OSGM with the ratio surrogate loss rx, denoted by OSGM-R. We choose the
optimality measure φ, the surrogate loss ℓ, and the online learning algorithm A to be

φ(x) := f(x)− f(x⋆), ℓx(P ) := rx(P ), A := online gradient descent in (11),

and the monotone oracleM is optional. Algorithm 2 presents OSGM-R without the monotone oracle.

Algorithm 2: Online scaled gradient method with ratio surrogate (OSGM-R)
input x1, P1 ∈ P, online gradient stepsize η > 0
for k = 1, 2,... do

xk+1 = xk − Pk∇f(xk)
Pk+1 = ΠP [Pk − η∇rxk(Pk)]

end
output xbest with minimum objective value

Combining Lemma 4.1 and Lemma 4.2, Theorem 4.1 characterizes the trajectory-based convergence
behavior of OSGM-R.

Theorem 4.1 (Trajectory-based convergence). Under A1 to A3, Algorithm 2 (OSGM-R) with
η = min

{
1

4L2 ,
D

2L(1+LD)
√
K

}
satisfies

f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))(θ⋆K + ρK

K )K , (14)

where θ⋆K := minP∈P
1
K

∑K
k=1 rxk(P ) and ρK = max

{
4LD(1 + LD)

√
K, 8L2D2

}
is defined in (13).
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From (14), when K is large enough, ρK

K is negligible, and OSGM-R behaves like an algorithm with linear
convergence rate θ⋆K . Note that θ⋆K is based on the optimization trajectory, and the behavior of OSGM-R is
competitive with the scaling matrix that minimizes θ⋆K . To our knowledge, this trajectory-based convergence
guarantee is new in the literature. To show global convergence, we need to show that θ⋆K < 1, and this fact
follows from the existence of the optimal preconditioner.

4.3.1 Hindsight and global convergence

Define P ⋆
r to be the ratio scaling matrix that solves the following semidefinite optimization problem

κ⋆ := min
P∈P+

κ subject to 1
κI ⪯ P 1/2∇2f(x)P 1/2 ⪯ I for all x. (15)

P ⋆
r is known in the literature [23, 35] as the universal optimal preconditioner. The optimal value κ⋆ is called

the optimal condition number with respect to subset P+ = P ∩ Sn+. Since A3 assumes L−1I ∈ P, we have
κ⋆ ≤ κ and preconditioned gradient descent with preconditioner P ⋆

r converges as if the condition number of
the underlying minimization problem is reduced from κ = L/µ to κ⋆. A standard argument using the descent
lemma and strong convexity of f(x) (A2) ensures

f(x− P ⋆
r∇f(x))− f(x⋆) ≤ (1− 1

κ⋆ )(f(x)− f(x⋆)) for all x, (16)

which can be equivalently expressed in terms of the ratio surrogate loss rx in the lemma below:

Lemma 4.3 (Hindsight). Under A1 to A3, rx(P ⋆
r ) ≤ 1− 1

κ⋆ for all x ̸∈ X ⋆.

Combining Theorem 4.1 and θ⋆K ≤ 1− 1
κ⋆ from Lemma 4.3, the asymptotic linear convergence of OSGM-R fol-

lows immediately.

Corollary 4.1 (Global convergence). Under the same assumptions as Theorem 4.1, θ⋆K ≤ 1 − 1
κ⋆ and the

asymptotic complexity of OSGM-R to find an ε-optimal point is O(κ⋆ log(1/ε)), where κ⋆ is the optimal condition
number defined in (15).

In fact, a slightly better convergence result can be obtained by evaluating the regret bound (12) at P = P ⋆
r ,

which we state as the following theorem.

Theorem 4.2 (Refined global convergence). Under A1 to A2, Algorithm 2 (OSGM-R) with
η = min{ 1

4L2 ,
∥P⋆

r −P1∥F

2L
√
K
} satisfies

f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))
(
1− 1

κ⋆ +max
{ 4L∥P⋆

r −P1∥F√
K

,
8L2∥P⋆

r −P1∥2
F

K

})K
. (17)

Remark 2. Note that Theorem 4.2 has no dependence on D, the diameter of P. Therefore, OSGM-R can be
applied even if P = Rn×n, and there is no need to project P onto P.

The asymptotic linear convergence rate of OSGM-R is comparable to that of preconditioned gradient descent
using the universal optimal preconditioner P ⋆

r . This result removes the dimension dependence from the
O(
√
nκ⋆ log(1/ε)) result in [23]. As previously remarked, the practical convergence behavior of OSGM-R could

be even better: the linear convergence rate θ⋆K is determined by the best possible choice of P ∈ P optimized
for the iteration trajectory {xk}, while the universal optimal preconditioner P ⋆

r is chosen against all possible
x in the domain. For convex quadratics, we have the following equivalent characterization of P ⋆

r through rx:

Proposition 4.2 (Relation between P ⋆
r and rx). For f(x) = 1

2 ⟨x,Ax⟩, A ∈ Sn++, the optimal solutions to the
following two problems coincide:

min
P∈P+

κ subject to 1
κI ⪯ P 1/2AP 1/2 ⪯ I; (18)

min
P∈P+

max
x̸∈X⋆

rx(P ). (19)
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Since no practical algorithm will visit every x ∈ Rn, the trajectory-based convergence guarantee more precisely
characterizes the practical performance of OSGM.

Unknown optimal value. Our method can be extended to the case where f(x⋆) is unknown, but instead,
a lower bound z < f(x⋆) is available. In this case, we can define the auxiliary surrogate loss:

rzx(P ) := f(x−P∇f(x))−z
f(x)−z , (20)

obtained by replacing f(x⋆) in the surrogate loss rx with lower bound z. Using an additional outer loop to
update the lower bound z, the resulting algorithm (Algorithm 6 in appendix) can achieve O(κ⋆ log2(1/ε))
iteration complexity.

Theorem 4.3 (Global convergence without knowing f(x⋆), informal). Instate the same assumptions as The-
orem 4.1 and suppose z < f(x⋆) is known. There exists a variant of OSGM-R that finds an ε-optimal point in
O(κ⋆ log2(1/ε)) asymptotic complexity.

The analysis for Algorithm 6 is more involved, and we leave it to the appendix.

Convex quadratics. For strongly convex quadratics f(x) = 1
2 ⟨x,Ax⟩− ⟨b, x⟩, P ⋆

r = A−1 gives rx(A−1) = 0
for all x. This implies the following superlinear convergence guarantee.

Theorem 4.4 (Superlinear convergence on quadratics). For strongly convex quadratics with ∇2f(x) ≡ A ≻ 0,
OSGM-R with P = Rn×n and η = 1

4L2 satisfies f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))(
4L2∥P1−A−1∥2

F

K )K .

5 Gradient norm surrogate
The second surrogate, gradient norm surrogate, is defined as follows:

gx(P ) := ∥∇f(x+)∥
∥∇f(x)∥ = ∥∇f(x−P∇f(x))∥

∥∇f(x)∥ . (21)

Similar to the ratio surrogate, the gradient norm surrogate is defined with respect to the contraction of the
gradient norm. We assume strong convexity (µ > 0) throughout this section. The gradient norm surrogate gx
can be evaluated without knowing f(x⋆). However, as we will discuss later in the section, it is more challenging
to establish the learnability of gx, which requires the following extra assumption:

A4: f(x) has H-Lipschitz Hessian. ∥∇2f(x)−∇2f(y)∥ ≤ H∥x− y∥ for all x, y.

In this section, we assume a nonempty monotone oracle with respect to gradient normM∥∇f(x)∥,P ̸= ∅.

5.1 Surrogate loss
Substituting φ(x) in Theorem 3.1 with φ(x) = ∥∇f(x)∥ and applying the definition of the gradient norm
surrogate gx, we obtain the following lemma.

Lemma 5.1 (Surrogate loss and measure). For all K ≥ 1, the online scaled gradient method with nonempty
monotone oracle M∥∇f(x)∥,P ̸= ∅ satisfies

∥∇f(xK+1)∥ ≤ ∥∇f(x1)∥( 1
K

∑K
k=1 gxk(Pk))

K .

Although the gradient norm surrogate gx can be nonconvex, Proposition 6.1 shows that gx can be approxi-
mated by an L-Lipschitz continuous convex function.

9



Proposition 5.1 (Properties of gx). Under A1 to A4, for any fixed x ̸∈ X ⋆, the surrogate loss gx(P ) defined
in (21) is L-Lipschitz continuous as a function in P and

|gx(P )− ĝx(P )| ≤ H∥∇f(x)∥∥P∥2,

where ĝx(P ) =
∥∥∥ ∇f(x)
∥∇f(x)∥ −∇

2f(x)P ∇f(x)
∥∇f(x)∥

∥∥∥ is convex and L-Lipschitz continuous. In particular,

gx(P1)− gx(P2)− ⟨g′x(P2), P1 − P2⟩ ≥ −HD2∥∇f(x)∥.

In addition, if x− P∇f(x) ̸∈ X ⋆, the loss gx(P ) is differentiable at P and its derivative takes the form

∇gx(P ) = −∇2f(x−P∇f(x))∇f(x−P∇f(x))∇f(x)⊤

∥∇f(x)∥·∥∇f(x−P∇f(x))∥ . (22)

Proposition 5.1 bounds the nonconvexity of gx by ∥∇f(x)∥, the non-stationarity at x. We can still apply
online learning algorithms to gx using these properties.

5.2 Online learning algorithm
Given Lipschitz loss functions whose nonconvexity can be bounded, online subgradient method gives the
following regret guarantee.

Lemma 5.2 (Learnability). Given A1 to A3 and the gradient norm surrogate losses {gxk}, online subgradient
method

Pk+1 = ΠP [Pk − ηg′xk(Pk)] (23)

with stepsize η = c/
√
K generates a sequence of scaling matrices {Pk}k≥2 such that∑K

k=1 gxk(Pk)− min
P∈P

∑K
k=1 gxk(P ) ≤ ( 2D

2

c + cL2

2 )
√
K + HD2

2 ∥∇f(x
1)∥K.

In particular, optimizing the constant c suggests the stepsize η = 2D
L
√
K

and the regret bound:

∑K
k=1 gxk(Pk)− min

P∈P

∑K
k=1 gxk(P ) ≤ ρK := 2LD

√
K + HD2

2 ∥∇f(x
1)∥K. (24)

5.3 Algorithm design and analysis
We now state a realization of OSGM with the gradient norm surrogate loss gx, denoted by OSGM-G. We choose
the optimality measure φ, the surrogate loss ℓ, and the online learning algorithm A to be

φ(x) := ∥∇f(x)∥, ℓx(P ) := gx(P ), A := online subgradient method in (23),

and the monotone oracleM is necessary. Algorithm 3 presents the pseudocode for OSGM-G.

Algorithm 3: Online scaled gradient method with gradient norm surrogate (OSGM-G)
input x1, P1 ∈ P, online gradient stepsize η > 0,nonempty M∥∇f(x)∥,P
for k = 1, 2,... do

xk+1 =M∥∇f(xk)∥,Pk
(xk)

Pk+1 = ΠP [Pk − ηg′xk(Pk)]

end
output xbest with minimum objective value

Combining Lemma 5.1 and Lemma 5.2, Theorem 5.1 characterizes the trajectory-based convergence
behavior of OSGM-G.
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Theorem 5.1 (Trajectory-based convergence). Under A1 to A4, Algorithm 3 (OSGM-G) with
η = 2D

L
√
K

satisfies
∥∇f(xK+1)∥ ≤ ∥∇f(x1)∥(θ⋆K + ρK

K )K ,

where θ⋆K := minP∈P
1
K

∑K
k=1 gxk(P ) and ρK = 2LD

√
K + HD2

2 ∥∇f(x
1)∥K is defined in (24).

Theorem 5.1 itself does not necessarily yield convergence. The regret ρK contains HD2

2 ∥∇f(x
1)∥K and

thus is linear in K. One solution is to start the algorithm at a near-stationary point with sufficiently small
∥∇f(x1)∥. This strategy leads to a two-stage algorithm, and our main result is based on this strategy for
brevity of exposition.

Remark 3. For convex quadratics, the Lipschitz constant for Hessian is zero (i.e., H = 0) and the convergence
of OSGM-G follows immediately.

5.3.1 Hindsight and global convergence

Define P ⋆
g to be the gradient norm scaling matrix that solves

ω⋆ := min
P∈P

max
x
∥I −∇2f(x)P∥.

The definition is motivated by

∥∇f(x− P∇f(x))∥ = ∥∇f(x)−
∫ 1

0
∇2f(x− tP∇f(x))P∇f(x)dt∥

= ∥
∫ 1

0
[I −∇2f(x− tP∇f(x))P ]∇f(x)dt∥

≤ [
∫ 1

0
∥I −∇2f(x− tP∇f(x))P∥dt] · ∥∇f(x)∥

and a contraction is established if ∥I − ∇2f(x)P∥ < 1 for all x. Define the quantity λ⋆ := 1
1−ω⋆ . Then the

following facts follow:

Lemma 5.3 (Hindsight). Under A1 to A3, the followings hold:

• Contraction. ∥∇f(x− P ⋆
g∇f(x))∥ ≤ (1− 1

λ⋆ )∥∇f(x)∥ for all x.

• Conditioning. λ⋆ ≤ L
µ = κ.

• Surrogate loss bound. gx(P
⋆
g ) ≤ 1− 1

λ⋆ for all x ̸∈ X ⋆.

Corollary 5.1 (Global convergence). Under the same assumptions as Theorem 5.1, θ⋆K ≤ 1− 1
λ⋆ and with

∥∇f(x1)∥ ≤ 1
HD2λ⋆ , the asymptotic complexity of OSGM-G to find an ε-critical point is O(2λ⋆ log(1/ε)).

Remark 4. It is possible to sharpen Corollary 5.1 using a more fine-grained analysis: the nonconvexity will
vanish as the algorithm converges, and O(λ⋆ log(1/ε)) complexity still holds asymptotically.

Remark 5. OSGM-G can also output an ε-optimal solution due to the relation f(x)−f(x⋆) ≤ 1
2µ∥∇f(x)∥

2 from
strong convexity.

6 Hypergradient surrogate
The last surrogate loss, hypergradient surrogate, is defined as follows:

hx(P ) := f(x+)−f(x)
∥∇f(x)∥2 = f(x−P∇f(x))−f(x)

∥∇f(x)∥2 . (25)

The name hypergradient comes from [2], by which the hypergradient descent heuristic improves the convergence
of gradient-based methods. Unlike the ratio surrogate rx or the gradient norm surrogate gx, the hypergradient
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surrogate hx itself is not directly derived from φ(x) using a telescopic product, but instead motivated by the
descent lemma:

f
(
x− 1

L∇f(x)
)
− f(x) ≤ − 1

2L∥∇f(x)∥
2.

Dividing both sides of the inequality by ∥∇f(x)∥2 for x ̸∈ X ⋆ gives hx. The descent lemma does not depend on
the strong convexity coefficient µ, so the hypergradient surrogate hx applies to general convex (non-strongly
convex) optimization problems. Throughout this section, we assume a nonempty monotone oracle with respect
to function value gap Mf(x)−f(x⋆),P ̸= ∅.

6.1 Surrogate loss
To analyze the hypergradient surrogate hx, we must connect it with a measure of convergence. Lemma 6.1
presents this relation.

Lemma 6.1 (Surrogate loss and measure). Under A1, A2, for all K ≥ 1, the online scaled gradient method
with nonempty monotone oracle Mf(x)−f(x⋆),P ̸= ∅ satisfies:

• If µ > 0, then

f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))(1− 2µmax{ 1
K

∑K
k=1−hxk(Pk), 0})K . (26)

• If µ ≥ 0, then

min
1≤k≤K

∥∇f(xk)∥2 ≤ f(x1)−f(x⋆)
K · 1

max{ 1
K

∑K
k=1 −h

xk (Pk),0}
, (27)

f(xK+1)− f(x⋆) ≤ ∆2

K ·
1

max{ 1
K

∑K
k=1 −h

xk (Pk),0}
, (28)

where ∆ = maxx∈Lf(x1)
minx⋆∈X⋆ ∥x− x⋆∥.

Remark 6. The max{·, 0} terms arise from the monotone oracle. Here, we slightly abuse the notation: if the
denominator in (27) or (28) is 0, the bound simplifies to a trivial bound, with the right-hand side being infinity.
Note that the surrogate loss appears in the denominator of the sublinear convergence rate, which differs from
the previous analyses.
Now we establish the properties of the hypergradient surrogate hx.

Proposition 6.1 (Properties of hx). Under A1 to A3, for any fixed x ̸∈ X ⋆, the surrogate loss hx(P ) defined
in (25) is convex and (LD+1)-Lipschitz continuous as a function in P . In addition, the derivative of hx takes
the form

∇hx(P ) = −∇f(x−P∇f(x))∇f(x)⊤

∥∇f(x)∥2 . (29)

6.2 Online learning algorithm
Given convex and Lipschitz-continuous losses, online gradient descent gives the following regret guarantee.

Lemma 6.2 (Learnability). Given A1 to A3 and the hypergradient surrogate losses {hxk}, online gradient
descent

Pk+1 = ΠP [Pk − η∇hxk(Pk)] (30)

with stepsize η = c/
√
K generates a sequence of scaling matrices {Pk}k≥2 such that∑K

k=1 hxk(Pk)− min
P∈P

∑K
k=1 hxk(P ) ≤ ( 2D

2

c + c(LD+1)2

2 )
√
K.

In particular, optimizing the constant c suggests the stepsize η = 2D
(LD+1)

√
K

and the regret bound:

∑K
k=1 hxk(Pk)− min

P∈P

∑K
k=1 hxk(P ) ≤ ρK := 2D(LD + 1)

√
K. (31)
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6.3 Algorithm design and analysis
We now state a realization of OSGM with the hypergradient surrogate loss hx, denoted by OSGM-H. We choose
the optimality measure φ, the surrogate loss ℓ, and the online learning algorithm A to be

φ(x) := f(x)− f(x⋆) or ∥∇f(x)∥, ℓx(P ) := hx(P ), A := online gradient descent in (30),

and the monotone oracleM is necessary. Algorithm 4 presents the pseudocode for OSGM-H.

Algorithm 4: Online scaled gradient method with hypergradient surrogate (OSGM-H)
input x1, P1 ∈ P, online gradient stepsize η > 0,nonempty oracleMf(x)−f(x⋆),P

for k = 1, 2,... do
xk+1 =Mf(x)−f(x⋆),Pk

(xk)
Pk+1 = ΠP [Pk − η∇hxk(Pk)]

end
output xbest with minimum objective value

Combining Lemma 6.1 and Lemma 6.2, Theorem 6.1 characterizes the trajectory-based convergence
behavior of OSGM-H.

Theorem 6.1 (Trajectory-based convergence). Under A1 to A3, Algorithm 4 (OSGM-H) with
η = 2D

(LD+1)
√
K

satisfies

• If µ > 0, then
f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))(1− 2µmax{−θ⋆K −

ρK

K , 0})K .
• If µ ≥ 0, then

min
1≤k≤K

∥∇f(xk)∥2 ≤ f(x1)−f(x⋆)
K · 1

max{−θ⋆
K− ρK

K ,0} ,

f(xK+1)− f(x⋆) ≤ ∆2

K ·
1

max{−θ⋆
K− ρK

K ,0} ,

where θ⋆K := minP∈P
1
K

∑K
k=1 hxk(P ), ∆ is defined in Lemma 6.1 and ρK = 2D(LD + 1)

√
K is defined in

(31).

6.3.1 Hindsight and global convergence

Define P ⋆
h to be the hypergradient scaling matrix that solves

γ⋆ := max
P∈P

min
x∈Lf(x1)\X⋆

−hx(P ) = f(x)−f(x−P∇f(x)
∥∇f(x)∥2 .

Intuitively, γ⋆ maximizes the function value progress with respect to the gradient norm and can be interpreted
as the inverse of the local Lipschitz smoothness constant. The descent lemma gives a lower bound on γ⋆.

Lemma 6.3 (Hindsight). Under A1 to A3, −hx(P⋆
h) ≥ γ⋆ ≥ 1

2L for all x ̸∈ X ⋆.

Corollary 6.1 (Global convergence). Under the same assumptions as Theorem 6.1, θ⋆K ≤ −γ⋆, and

• If µ > 0, then the asymptotic complexity of OSGM-H to find an ε-optimal point is O( 1
2µγ⋆ log(1/ε)).

• If µ = 0, then the asymptotic complexity of OSGM-H to find an ε-optimal point is O( 1
γ⋆ε ).

Remark 7. Given −θ⋆K ≥ 1
2L , the complexity of OSGM-H is no worse than vanilla gradient descent and can

provide acceleration if −θ⋆K > 1
2L . Our results for the first time show that the hypergradient heuristic, when

combined with a monotone oracleM, provably accelerates gradient descent.
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7 Practical considerations
This section considers practical aspects of implementing OSGM.

7.1 Gradient evaluations for rx and hx using simple comparison oracle
A first look at Algorithm 2 and Algorithm 4 suggests an additional gradient evaluation at every iteration.
Both ∇rx and ∇hx need to evaluate two gradients in every iteration. However, with xk+1/2 := xk−Pk∇f(xk)
and simple comparison (Section 2.3) as the monotone oracle, the gradient ∇rxk(P ) in Algorithm 2 can be
expressed as

∇rxk(P ) = −∇f(xk+1/2)∇f(xk)⊤

f(xk)−f(x⋆)
. (32)

If xk+1 = xk+1/2, then ∇f(xk+1/2) can be reused in the next iteration; if xk+1 = xk, then ∇f(xk) can be
reused. Therefore, simple comparison oracle ensures that the total number of gradient evaluations in OSGM-R is
the same as that of gradient descent but simply requires an additional cache to store ∇f(xk+1). Regarding
∇gx, its implementation needs a Hessian-gradient product, which can be efficiently computed in practice.

7.2 Efficient scaling matrix updates
The subset P can be chosen to have a simple structure, such as diagonal matrices or sparse matrices with
some prespecified sparsity pattern. Then the scaling matrix Pk+1 can be efficiently updated in the cost of
O(supp(P)) since it suffices to compute the non-zero entries of the sparsity pattern in P. For example, if P
is the set of diagonal matrices, then (32) simplifies to ∇rxk(P ) = −∇f(xk−Pk∇f(xk))⊙∇f(xk)

f(xk)−f(x⋆)
, where ⊙ denotes

the element-wise product. A simpler structure in P provides more efficient scaling matrix updates. However,
more freedom in P may provide smaller θ⋆K , enhancing the convergence of OSGM.

7.3 Choice of candidate set of scaling matrices P
We propose two heuristics for choosing a subset P of sparse matrices. Sparsity refers to either entries sparsity
or spectrum sparsity. We assume that some Hessian matrix ∇2f(x) = A ≻ 0 is known.

• Nonzero sparsity pattern.
A preconditioner can be viewed as a cutting plane in the difference of extremal spectrum [17]. Let vmin

and vmax be two extremal eigenvectors of A. Then |vmaxv
⊤
max − vminv

⊤
min|, an n × n grid with nonnegative

entries, serves as a score function for the most critical sparsity pattern. The large-magnitude entries in
|vmaxv

⊤
max − vminv

⊤
min| strongly affect the conditioning of the system.

• Spectral sparsity (low rank).
It is common to consider diagonal plus low-rank preconditioners, and randomized preconditioners have
proved to be very efficient [16]. Given a low-rank matrix M , we can parameterize P = {diag(d) + αM :
(d, α) ∈ Rn+1} to be the linear combination between diagonal matrices and M .

7.4 Choice of online learning algorithm A
Our convergence analyses show that a good online learning algorithm A benefits convergence of OSGM. For
simplicity, the simplest possible online learning algorithms are adopted in the theoretical analysis. However,
OSGM is compatible with more advanced online learning algorithms such as AdaGrad. Using advanced online
algorithms often greatly improves the robustness and practical performance of OSGM. In particular, our results
on the hypergradient surrogate loss provide new insights into improving the hypergradient descent heuristics.
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8 Numerical experiments
In this section, we conduct experiments to show the performance of online scaled gradient methods. We test
on standard strongly convex optimization problems, including least squares and regularized logistic regression.

8.1 Experiment setup
Synthetic data. For the least squares problem f(x) = 1

2∥Ax − b∥2, A ∈ Rn×n = CDC⊤ + σI with C is
element-wise generated from 0.01 × N (0, 1) and an identity matrix I is added to it; D is a diagonal matrix
with U [0, 1]n diagonals; b ∈ Rm is generated from U [0, 1]n.

Real data. We use datasets from LIBSVM [4] for support vector machine (SVM) problem f(x) = 1
m

∑m
i=1 fi(x)+

λ
2 ∥x∥

2, where fi is the squared hinge loss [24]. We set λ = 5/n.

Benchmark algorithms. Eight algorithms are compared:

• (GD) Gradient descent with 1/L stepsize.

• (OptDiagGD) Gradient descent with the universal optimal diagonal preconditioner [35, 17].

• (OSGM-R) Online scaled gradient method with ratio surrogate.

• (OSGM-G) Online scaled gradient method with gradient norm surrogate.

• (OSGM-H) Online scaled gradient method with hypergradient surrogate.

• (AdaGrad) Adaptive (sub)gradient method [12].

• (AGD) Accelerated gradient descent for general convex problems [8].

• (SAGD) Accelerated gradient descent for strongly convex problems [8].

OptDiagGD and OSGM-G are only tested on problems with fixed Hessian.

Algorithm configurations. We configure the algorithms as follows.

1) Dataset generation. For synthetic data, we pick n = 100 and σ ∈ {10−4, 10−3, 10−2, 10−1}.

2) Initial point. Initial points x1 for all the algorithms are generated from standard normal N (0, In) and
scaled to have unit length. Initial scaling matrix P0 = 0.

3) Maximum iteration. The maximum iteration is set to K = 10000.

4) Stopping criterion. Algorithm stops when ∥∇f(xk)∥ ≤ 10−10.

5) Stepsize configuration. (AdaGrad) uses the optimal stepsize among {10−3, 10−2, 10−1, 1, 10}.

6) Monotone oracle. All OSGM methods use simple comparison (Section 2.3) as the monotone oracle.

7) Online learning algorithm. All OSGM methods use A = (AdaGrad) with the optimal stepsize among
{10−3, 10−2, 10−1, 1, 10}.

8) Choice of candidate scaling matrix P. We choose P = Rn×n in Section 8.3 and P as the set of diagonal
matrices in the rest of the experiments.

9) Knowledge of optimal value. When the exact optimal value is unknown, OSGM-R uses the auxiliary surrogate
rzx in (20). But we allow z to be an arbitrary guess of f(x⋆), and if z > f(xk), we heuristically adjust
z ← f(xk) −min{5(z − f(xk)), 1} to update the lower bound. This strategy is not theoretically justified
but performs well in practice.
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8.2 Toy example: near diagonal convex quadratic
This section verifies the convergence behavior of OSGM on a toy least squares problem with near diagonal
Hessian. The problem has κ ≈ 68 and κ⋆ ≈ 4.7 <

√
κ. Theory predicts that OSGM should outperform SAGD

asymptotically. Figure 1 (left) illustrates the performance of the eight tested algorithms, with OSGM-R and
OSGM-H showing the most competitive performance. In particular, the linear convergence rates (slope) of three
OSGM algorithms are better than that of SAGD, which aligns with our theory. Moreover, OSGM-R and OSGM-H
both converge faster than gradient descent using the universal diagonal preconditioner (OptDiagGD). This is
also consistent with our theory and suggests that we can still gain from being adaptive, even on a convex
quadratic with fixed curvature. Notably, AdaGrad also achieves competitive performance on this problem.
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Figure 1: Left: comparison of benchmark algorithms on toy quadratic problem. Right: superlinear conver-
gence of OSGM-R on convex quadratics. x-axis: iteration count.

8.3 Superlinear convergence on quadratics
This section verifies the Theorem 4.4, the superlinear convergence behavior of OSGM-R. We take P = Rn×n

and plot the theoretical bound in Theorem 4.4 as well as the true performance of OSGM-R. Figure 1 (right)
indicates that OSGM-R exhibits superlinear convergence and validates our theory.

8.4 More comparison between the algorithms
This section compares different algorithms on the aforementioned datasets. Figure 2 shows the results on
synthetic least squares problems with different condition numbers.
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Figure 2: Function value gap on least squares problem with σ ∈ {10−4, 10−3, 10−2, 10−1}

Figure 2 suggests that when κ⋆ ≪
√
κ, OSGM tends to outperform accelerated methods. On the other hand,

if κ⋆ >
√
κ, OSGM is often less competitive compared to SAGD on quadratics.

Figure 3 shows the results on the SVM problems from LIBSVM, and we observe similar competitive performance
of OSGM-R and OSGM-H.
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Figure 3: Function value gap on the support vector machine problems

9 Conclusions and future directions
In this paper, we discuss OSGM, a general framework that allows online convex optimization algorithms to
provably accelerate gradient-based algorithms. Our framework achieves a strong trajectory-based convergence
guarantee and explains the success of the popular hypergradient descent heuristic. Future directions include
extending the results to accelerated gradient descent, stochastic gradient descent, nonconvex, nonsmooth,
and constrained optimization, and to other iterative algorithms where a scaled update affects the algorithm
performance.
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A Proof of results in Section 3

A.1 Proof of Theorem 3.1
Since the measure φ is non-negative. Applying arithmetic-geometric mean inequality(∏K

k=1 ak
)1/K ≤ 1

K

∑K
k=1 ak

completes the proof.

B Proof of results in Section 4

B.1 Auxiliary results
Lemma B.1 ([34]). Let r(P ) be a τ -smooth function with minP∈P r(P ) ≥ 0. Then r(P ) ≥ 1

2τ ∥∇r(P )∥2 for
all P ∈ P.

Lemma B.2. Given a family of non-negative, convex, and τ -smooth losses {rk}, online gradient descent

Pk+1 = ΠP [Pk − η∇rk(Pk)] (33)

with stepsize η ≤ 1/(2τ) generates a sequence of scaling matrices {Pk}k≥2 such that∑K
k=1 rk(Pk)−

∑K
k=1 rk(P ) ≤ 1

η∥P − P1∥2F + 2τη
∑K

k=1 rk(P ) for any P ∈ P. (34)

Proof. The proof follows the standard proof of the L⋆ regret bound [34] in online convex optimization but is
tailored to our settings. For any P ∈ P, we have

∥Pk+1 − P∥2F = ∥ΠP [Pk − η∇rk(Pk)]− P∥2F
≤ ∥Pk − P − η∇rk(Pk)∥2F (35)

= ∥Pk − P∥2F − 2η⟨∇rk(Pk), Pk − P ⟩+ η2∥∇rk(Pk)∥2F , (36)

where (35) uses non-expansiveness of projection. With convexity rk(P )− rk(Pk) ≥ ⟨∇rk(Pk), P − Pk⟩,

∥Pk+1 − P∥2F ≤ ∥Pk − P∥2F + 2η(rk(P )− rk(Pk)) + η2∥∇rk(Pk)∥2F .

Re-arrangement yields rk(Pk) − rk(P ) ≤ η
2∥∇rk(Pk)∥2 + 1

2η [∥Pk − P∥2F − ∥Pk+1 − P∥2F ]. Telescoping over k

and dropping the term − 1
2η∥PK+1 − P∥2F to obtain∑K

k=1 rk(Pk)−
∑K

k=1 rk(P ) ≤ 1
2η∥P1 − P∥2F + η

2

∑K
k=1 ∥∇rk(Pk)∥2F . (37)

Using Lemma B.1, we have ∥∇rk(Pk)∥2F ≤ 2τrk(Pk). Plugging this bound into (37) gives∑K
k=1 rk(Pk)−

∑K
k=1 rk(P ) ≤ 1

2η∥P1 − P∥2F + τη
∑K

k=1 rk(Pk).

Re-arrangement gives

(1− τη)
[∑K

k=1 rk(Pk)−
∑K

k=1 rk(P )
]
≤ 1

2η∥P1 − P∥2F + τη
∑K

k=1 rk(P ). (38)

For η ≤ 1
2τ , we may divide both sides of (38) by 1− τη and plug in the bound 1

1−τη ≤ 2 to obtain∑K
k=1 rk(Pk)−

∑K
k=1 rk(P ) ≤ 1

η∥P − P1∥2F + 2τη
∑K

k=1 rk(P ), (39)

21



and this completes the proof.

B.2 Proof of Lemma 4.1
Since f(x)− f(x⋆) ≥ 0, applying Theorem 3.1 with φ(x) = f(x)− f(x⋆) completes the proof.

B.3 Proof of Proposition 4.1
Denote ux(P ) := f(x − P∇f(x)). As a function of P , ux(P ) = f(x − P∇f(x)) is a composition of convex
function f(x) and affine transformation x− P∇f(x). Hence ux is a convex function. The chain rule gives

∇ux(P ) = ∇f(x− P∇f(x)) = ∇f(x− P∇f(x))∇f(x)⊤.

For any P1, P2 ∈ P, we can successively deduce that

∥∇ux(P1)−∇ux(P2)∥F = ∥∇f(x− P1∇f(x))∇f(x)⊤ −∇f(x− P2∇f(x))∇f(x)⊤∥F
= ∥[∇f(x− P1∇f(x))−∇f(x− P2∇f(x))]∇f(x)⊤∥F
≤ ∥∇f(x− P1∇f(x))−∇f(x− P2∇f(x))∥ · ∥∇f(x)∥ (40)
≤ L∥(P1 − P2)∇f(x)∥ · ∥∇f(x)∥ (41)

≤ L∥∇f(x)∥2∥P1 − P2∥
≤ L∥∇f(x)∥2∥P1 − P2∥F ,

where (40) uses the submultiplicativity of Frobenius norm ∥AB∥F ≤ ∥A∥F ∥B∥F ; and (41) uses L-smoothness
of f(x). Hence ux is L∥∇f(x)∥2-smooth. Since the surrogate loss rx(P ) = ux(P )−f(x⋆)

f(x)−f(x⋆) is a positive-scaled
convex function ux with translation, and hence rx is also convex. Next, since x ̸∈ X ⋆, the denominator
of rx(P ) must be positive, and hence rx(P ) ≥ 0 for all P . Lastly, since rx(P ) = ux(P )−f(x⋆)

f(x)−f(x⋆) and ux is
L∥∇f(x)∥2-smooth, rx(P ) is also smooth with smoothness constant no greater than 2L2:

L∥∇f(x)∥2

f(x)−f(x⋆) =
L∥∇f(x)−∇f(x⋆)∥2

f(x)−f(x⋆) ≤ 2L2,

where the last inequality invokes L-smoothness of f(x). This completes the proof.

B.4 Proof of Lemma 4.2
For simplicity we denote rk(P ) := rxk(P ). By Proposition 4.1, the surrogate losses {rk} are 2L2-smooth
and non-negative. Then using Lemma B.2 with τ = 2L2, we get∑K

k=1 rk(Pk)−
∑K

k=1 rk(P ) ≤ 1
η∥P − P1∥2F + 4L2η

∑K
k=1 rk(P ), (42)

which proves (49). Suppose further diam(P) ≤ D. Then

rx(P ) = f(x−P∇f(x))−f(x⋆)
f(x)−f(x⋆)

≤ f(x)−f(x⋆)−⟨∇f(x),(−P+L
2 P⊤P )∇f(x)⟩

f(x)−f(x⋆)

≤ 1 + ∥L2 P
⊤P − P∥ ∥∇f(x)∥2

f(x)−f(x⋆)

≤ 1 + 2L(L2D
2 +D)

= (1 + LD)2.
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Therefore, (42) implies: for η ≤ 1
4L2 ,∑K

k=1 rk(Pk)−
∑K

k=1 rk(P ) ≤ 1
ηD

2 + 4L2(1 + LD)2Kη, (43)

in which the right-hand side is minimized (as a function of η) at η = D
2L(1+LD)

√
K

. By taking the stepsize

η = min
{

1
4L2 ,

D
2L(1+LD)

√
K

}
and then minimizing over P ∈ P, we conclude

∑K
k=1 rxk(Pk) ≤ min

P∈P

∑K
k=1 rxk(P ) + max

{
4LD(1 + LD)

√
K, 8L2D2

}
.

and this completes the proof.

B.5 Proof of Theorem 4.1
By Lemma 4.2, we have

1
K

∑K
k=1 rxk(Pk) ≤ 1

K

∑K
k=1 rxk(P ) + ρK

K

for all P ∈ P. and plugging the relation into Lemma 4.1 completes the proof.

B.6 Proof of Lemma 4.3
For any fixed x ̸∈ X ⋆, the result rx(P

⋆
r ) ≤ 1− 1

κ⋆ is a direct consequence of (16).

B.7 Proof of Corollary 4.1
Using Lemma 4.3 and Theorem 4.1, θ⋆K ≤ 1− 1

κ⋆ and plugging the bound back into Theorem 4.1 completes
the proof.

B.8 Proof of Theorem 4.2
Combining Lemma 4.1 and (49) from Lemma 4.2 and using the relation rx(P

⋆
r ) ≤ 1− 1

κ⋆ from Lemma 4.3,
we have, for η ≤ 1

4L2 , that

f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))
(

1
K

∑K
k=1 rxk(P ⋆

r ) +
1
η∥P

⋆
r − P1∥2F + 4L2η

∑K
k=1 rxk(P ⋆

r )
)K

≤ (f(x1)− f(x⋆))
(
1− 1

κ⋆ + 1
η∥P

⋆
r − P1∥2F + 4L2Kη

)K
. (44)

Take the stepsize η = min
{

1
4L2 ,

∥P⋆
r −P1∥F

2L
√
K

}
. The bound (44) implies the desired result:

f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))
(
1− 1

κ⋆ +max
{ 4L∥P⋆

r −P1∥F√
K

,
8L2∥P⋆

r −P1∥2
F

K

})K
.

B.9 Proof of Proposition 4.2
Given the optimization problem (18),

min
P∈P+

κ subject to 1
κI ⪯ P 1/2AP 1/2 ⪯ I,

we can define τ = 1/κ and reduce it to a standard semidefinite optimization problem (SDP)

max
P∈P+

τ = κ−1 subject to A−1τ ⪯ P ⪯ A−1. (45)

On the other hand, using f(x) = 1
2 ⟨x,A, x⟩, we can explicitly write
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rx(P ) =
1
2 ⟨x,A(PAP − 2P )Ax⟩

1
2 ⟨x,A, x⟩

and rx is degree-zero homogeneous in x. Therefore, we can consider the following optimization problem

min
P∈P+

max
⟨x,Ax⟩=1

⟨x,A(PAP − 2P )Ax⟩,

which can be further re-written as

max
P∈P+

λ subject to 2A1/2PA1/2 −A1/2PAPA1/2 ⪰ λI

Next we do variable replacement by letting M := A1/2PA1/2 and P ′
+ = {M = A1/2PA1/2 : P ∈ P+} and it

suffices to show the equivalence between the following two problems.

max
M∈P′

+

τ subject to τI ⪯M ⪯ I (SDP)

max
M∈P′

+

λ subject to 2M −M2 ⪰ λI (Minimax)

Given optimal solution (M⋆
1 , τ

⋆) to (SDP), we have τ⋆I ⪯ M⋆
1 ⪯ I and let M⋆

1 = QΛ1Q
⊤. Plugging M⋆

1 into
the constraint,

2M⋆
1 − (M⋆

1 )
2 = Q(2Λ1 − Λ2

1)Q
⊤,

which corresponds to λ = 2τ⋆ − (τ⋆)2. On the other hand, given optimal solution (M⋆
2 , λ

⋆) to (Minimax),
2M⋆

2−M⋆
2
2 ⪰ λ⋆I and similarly we let M⋆

2 = QΛ2Q
⊤. Then

Q(2Λ2 − Λ2
2)Q

⊤ ⪰ λ⋆I

and there exists some qj such that 2λ2j − λ2
2j = λ⋆. It corresponds to τ = 2τ2 − τ = λ⋆. This establishes the

equivalence between the two problems and completes the proof.

B.10 Proof of Theorem 4.4
Recall that by (44) we have

f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))( 1
K

∑K
k=1 rxk(P ⋆

r ) +
1
η∥P

⋆
r − P1∥2F + 4L2η

∑K
k=1 rxk(P ⋆

r )).

Using rxk(P ⋆
r ) = 0, P ⋆

r = A−1 and taking η = 1/(4L2), we get

f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))(
4L2∥P1−A−1∥2

F

K )K .

This completes the proof.

C Function value ratio surrogate with optimal value lower bound
This section analyzes the sub-optimal ratio surrogate loss rzx(P ) defined in (20). Recall that

rzx(P ) := f(x−P∇f(x))−z
f(x)−z = f(x+)−z

f(x)−z , (46)

where z < f(x⋆) is a lower bound for the optimal objective value. The challenging part of the analysis
when z < f(x⋆) is that the algorithm is only guaranteed to converge to some suboptimal solution whose
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suboptimality is determined by f(x⋆) − z, the accuracy of the lower bound. The analysis in this section is
more involved than in Section 4, and for clarity, we only present the global convergence result.

C.1 Surrogate loss
Lemma C.1 (Surrogate loss and measure). For all K ≥ 1, the online scaled gradient method satisfies

f(xK+1)− z ≤ (f(x1)− z)
(

1
K

∑K
k=1 r

z
xk(Pk)

)K
. (47)

Proposition C.1 (Properties of rzxk). Let z < f(x⋆) be a given lower bound. Under A1 and A2, for any
fixed x, the surrogate loss rzx(P ) defined in (46) is convex, non-negative, and 2L2-smooth as a function in P .
In addition, the derivative of rzx takes the form

∇rzx(P ) = −∇f(x−P∇f(x))∇f(x)⊤

f(x)−z .

C.2 Online learning algorithm
Lemma C.2 (Learnability). Given A1, A2, and the ratio surrogate losses {rzxk}, online gradient descent

Pk+1 = ΠP [Pk − η∇rzxk(Pk)] (48)

with stepsize η ≤ 1/(4L2) generates a sequence of scaling matrices {Pk}k≥2 such that∑K
k=1 r

z
xk(Pk)−

∑K
k=1 r

z
xk(P ) ≤ 1

η∥P − P1∥2F + 4L2η
∑K

k=1 r
z
xk(P ) for any P ∈ P. (49)

C.3 Algorithm design and analysis
In this section, we show how to obtain an O(κ⋆ log2(1/ε)) complexity through a double-loop algorithm. Since
the double-loop algorithm deviates from our framework, only global convergence is established for brevity. We
start by specifying the OSGM-RZ, a subroutine that will be invoked in the inner loop.
We choose the optimality measure φ, the surrogate loss ℓ, and the online learning algorithm A to be

φ(x) := f(x)− f(x⋆), ℓx(P ) := rzx(P ), A := online gradient descent in (48),

and the monotone oracleM is optional. Algorithm 5 presents OSGM-RZ without the monotone oracle.

Algorithm 5: Online scaled gradient method with lower bound ratio surrogate (OSGM-RZ)
input x1, P1 ∈ P, η > 0, z < f(x⋆)
for k = 1, 2,... do

xk+1 = xk − Pk∇f(xk)
Pk+1 = ΠP [Pk − η∇rzxk(Pk)]

end
output xbest with minimum objective value

Theorem C.1 characterizes the convergence behavior of OSGM-RZ.

Theorem C.1 (Global convergence with lower bound). Under A1 to A3, Algorithm 5 (OSGM-RZ) with
η = min{ 1

4L2 ,
∥P⋆

r −P1∥F

2L
√
K
} satisfies

min
1≤k≤K+1

f(xk)− f(x⋆) ≤ 1
2 (f(x

⋆)− z) + (f(x1)− f(x⋆))(1− 1
2κ⋆ + ρK

K )K ,

where ρK := max{4L
√
K∥P ⋆

r − P1∥F , 8L2∥P ⋆
r − P1∥2F }.
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Lemma C.3 (Lower bound update). Under the same assumptions and parameter choice as Theorem C.1
and denote

z+ =
1

2

[
min

1≤k≤K+1
f(xk) + z

]
.

Then exactly one of the cases below happens:

• f(xK+1)− f(x⋆) ≤ (f(x1)− f(x⋆))(1− 1
2κ⋆ + ρK

K )K , or

• f(x⋆)− z+ ≤ 1
2 (f(x

⋆)− z) and z+ ≤ f(x⋆).

Lemma C.3 suggests that the output of OSGM-RZ either already satisfies the desirable convergence result, or
the accuracy of the lower bound can be improved by a factor of 2. This motivates the idea of running OSGM-RZ
multiple times and outputting the best solution, as presented in Algorithm 6.

Algorithm 6: Online scaled gradient method with ratio surrogate and lower bound update
input x1, P1 ∈ P, η > 0, z1 < f(x⋆)
for t = 1, 2,... do

xt+1 = OSGM-RZ(xt, P1, η, z
t)

zt+1 = 1
2 (f(x

t+1) + zt)

end
output xbest with minimum objective value

Theorem C.2 provides the final convergence result.

Theorem C.2. Under the same assumptions and parameter choices as Theorem C.1, Algorithm 6 attains
f(xbest)− f(x⋆) ≤ ε in at most O(κ⋆ log2(1/ε)) scaled gradient iterations.

C.4 Proof of Lemma C.1
Since f(x)− z > 0, applying Theorem 3.1 with φ(x) = f(x)− z completes the proof.

C.5 Proof of Proposition C.1
Since z < f(x), both the numerator and the denominator of rzx are positive. Following the proof of Proposi-
tion 4.1, we can show that rzx is convex. Since ux is L∥∇f(x)∥2-smooth, rzx is L∥∇f(x)∥2

f(x)−z -smooth, and

L∥∇f(x)∥2

f(x)−z < L∥∇f(x)∥2

f(x)−f(x⋆) =
L∥∇f(x)−∇f(x⋆)∥2

f(x)−f(x⋆) ≤ 2L2,

which completes the proof.

C.6 Proof of Lemma C.2
By Proposition C.1, the surrogate losses {rzxk} are 2L2-smooth and non-negative. Applying Lemma B.2
with τ = 2L2 completes the proof.

C.7 Proof of Theorem C.1
Using Lemma C.1 and Lemma C.2 with P = P ⋆

r ,

f(xK+1)− z ≤ (f(x1)− z)( 1
K

∑K
k=1 r

z
xk(Pk))

K

≤ (f(x1)− z)( 1
K

∑K
k=1 r

z
xk(P

⋆
r ) +

1
K [ 1η∥P − P ⋆

r ∥2F + 4L2η
∑K

k=1 r
z
xk(P

⋆
r )])

K

≤ (f(x1)− z)( 1
K

∑K
k=1 r

z
xk(P

⋆
r ) +

1
K [ 1η∥P − P ⋆

r ∥2F + 4L2η])K , (50)
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where (50) uses f(x− P ⋆
r∇f(x)) ≤ f(x) and that rzx(P

⋆
r ) =

f(x−P⋆
r ∇f(x))−z

f(x)−z ≤ 1.

Taking η = min{ 1
4L2 ,

∥P⋆
r −P1∥F

2L
√
K
} gives

f(xK+1)− z ≤ (f(x1)− z)
(

1
K

∑K
k=1 r

z
xk(P

⋆
r ) + max

{ 4L∥P⋆
r −P1∥F√
K

,
8L2∥P⋆

r −P1∥2
F

K

})K
= (f(x1)− z)

(
1
K

∑K
k=1 r

z
xk(P

⋆
r ) +

ρK

K

})K
.

Next we analyze 1
K

∑K
k=1 r

z
xk(P

⋆
r ), and using

f(x− P ⋆
r∇f(x))− f(x⋆) ≤ (1− 1

κ⋆ )(f(x)− f(x⋆)),

we deduce that

f(x− P ⋆
r∇f(x))− z = f(x− P ⋆

r∇f(x))− f(x⋆) + f(x⋆)− z

≤ (1− 1
κ⋆ )[f(x)− f(x⋆)] + f(x⋆)− z

= (1− 1
κ⋆ )[f(x)− z]− (1− 1

κ⋆ )[f(x
⋆)− z] + f(x⋆)− z

= (1− 1
κ⋆ )[f(x)− z] + 1

κ⋆ [f(x
⋆)− z]

Dividing both sides by f(x)− z gives

f(x−P⋆
r ∇f(x))−z

f(x)−z = (1− 1
κ⋆ ) +

1
κ⋆

f(x⋆)−z
f(x)−z = 1− 1

κ⋆

f(x)−f(x⋆)
f(x)−z .

Hence 1
K

∑K
k=1 r

z
xk(P

⋆
r ) ≤ 1− 1

κ⋆ (
1
K

∑K
k=1

f(xk)−f(x⋆)
f(xk)−z

). Now, we do case analysis

Case 1. Suppose f(xk)−f(x⋆)
f(xk)−z

≥ 1
2 for all 1 ≤ k ≤ K, then 1

K

∑K
k=1 r

z
xk(P

⋆
r ) ≤ 1− 1

2κ⋆ and

min
1≤k≤K+1

f(xk)− f(x⋆) ≤ f(xK+1)− f(x⋆)

≤ (f(x1)− f(x⋆))
(
1− 1

2κ⋆ + ρK

K

)K
.

Case 2. Otherwise, there is some 1 ≤ j ≤ K such that f(xj)−f(x⋆)
f(xj)−z ≤ 1

2 , a re-arrangement gives 2f(xj) −
2f(x⋆) ≤ f(xj)− z and

min
1≤k≤K+1

f(xk)− f(x⋆) ≤ f(xj)− f(x⋆) ≤ 1
2 (f(x

j)− z).

Putting the two cases together, we complete the proof.

C.8 Proof of Lemma C.3
The argument is the same as in Theorem C.1. In Case 1, we get the first convergence result. Otherwise,
we know that there exists some 1 ≤ j ≤ K such that f(xj)−f(x⋆)

f(xj)−z ≤ 1
2 and since min1≤k≤K f(xk) ≤ f(xj), we

have
min1≤k≤K f(xk)−f(x⋆)

min1≤k≤K f(xk)−z
≤ f(xj)−f(x⋆)

f(xj)−z ≤ 1
2 .

Rearranging the relation, we have z+ = 1
2 [min1≤k≤K f(xk) + z] ≤ f(x⋆) and

f(x⋆)− 1
2

[
min

1≤k≤K
f(xk) + z

]
= 1

2 [f(x
⋆)− min

1≤k≤K
f(xk)] + 1

2 [f(x
⋆)− z]

≤ 1
2 [f(x

⋆)− z].
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This completes the proof.

C.9 Proof of Theorem C.2
Denote xt+1 as the output of OSGM-RZ in iteration t of Algorithm 6. If we fall into Case 1 in Lemma C.3
after running OSGM-RZ for K iterations, then

f(xt+1)− f(x⋆) ≤ (f(xt)− f(x⋆))
(
1− 1

2κ⋆ + ρK

K

)K (51)

since xt is the initial point of OSGM-RZ in iteration t. Using the fact that z1 is a lower bound for f(x⋆),
algebraic manipulation shows that the right-hand side of (51) is less than ε whenever

K ≥ 128∥P⋆
r −P1∥2

FL2

log2(1− 1
2κ⋆ )

+ 2κ⋆ log
( f(x1)−z1

ε

)
=: K0.

We claim that if we run OSGM-RZ for K0 iterations at each iteration t in Algorithm 6 and run Algorithm 6
for T := 1

log 2 log
( 4(f(x1)−z1)

ε

)
iterations, then we have f(xbest) − f(x⋆) ≤ ε where xbest is the point in {xt :

t = 1, . . . , T +1} with the smallest function value. Hence, Algorithm 6 takes at most K0T = O(κ⋆ log2(1/ε))
scaled gradient iterations.

We will show that at least one of the iterates in {xt : t = 1, . . . , T + 1} from our algorithm satisfies f(xt) −
f(x⋆) < ε. If we fall into Case 1 in Lemma C.3 for some iteration t, then we have f(xt+1) − f(x⋆) ≤ ε by
(51). Otherwise, we fall into Case 2 in Lemma C.3 for all t ≤ T . In this case, we halve the distance between
zt and f(x⋆) after every outer iteration, so that after T :=

⌈
1

log 2 log
( 4(f(x1)−z1)

ε

)⌉
iterations, we have

|zT − f(x⋆)| ≤
(
1
2

)T−1
(f(x⋆)− z1) ≤

(
1
2

)T−1
(f(x1)− z1) ≤ ε

2 .

Since zT+1 = 1
2 (f(x

t+1) + zT ) and we fall into Case 2 at iteration T , we have

|zT+1 − f(x⋆)| =
∣∣ f(xT+1)+zT

2 − f(x⋆)
∣∣ ≤ 1

2 |z
T − f(x⋆)| ≤ ε

4 .

Rearranging the relation, we have f(xT+1) ≤ f(x⋆)+ 1
2ε+(f(x⋆)−zT ) ≤ f(x⋆)+ε. This completes the proof.

D Proof of results in Section 5

D.1 Proof Lemma 5.1
Given monotone oracleM with respect to gradient norm and by definition of gx,

∥∇f(xk+1)∥ = ∥∇f(M(xk))∥ ≤ ∥∇f(xk − Pk∇f(xk))∥ = gxk(Pk)∥∇f(xk)∥.

Hence, through the same argument as in Theorem 3.1, we deduce that

∥∇f(xK+1)∥
∥∇f(x1)∥ =

∏K
k=1

∥∇f(xk+1)∥
∥∇f(xk)∥ ≤ ( 1

K

∑K
k=1

∥∇f(xk+1)∥
∥∇f(xk)∥ )K ≤ ( 1

K

∑K
k=1 gxk(Pk))

K

and this completes the proof.
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D.2 Proof of Proposition 5.1
Lipschitzness of gx is straight-forward:

|gx(P1)− gx(P2)| =
∣∣∣∥∇f(x−P1∇f(x))∥

∥∇f(x)∥ − ∥∇f(x−P2∇f(x))∥
∥∇f(x)∥

∣∣∣
≤ ∥∇f(x−P1∇f(x))−∇f(x−P2∇f(x))∥

∥∇f(x)∥ (52)

≤ L∥P1−P2∥·∥∇f(x)∥
∥∇f(x)∥ (53)

= L∥P1 − P2∥ ≤ L∥P1 − P2∥F

where (52) uses the triangle inequality |∥a∥ − ∥b∥| ≤ ∥a− b∥ and (53) uses L-smoothness of f . Next consider
|gx(P )− ĝx(P )| and we deduce that

|gx(P )− ĝx(P )| =
∣∣∣∥∥∥ ∇f(x)

∥∇f(x)∥ −
∫ 1

0
∇2f(x− tP∇f(x))P ∇f(x)

∥∇f(x)∥ dt
∥∥∥− ∥∥∥ ∇f(x)

∥∇f(x)∥ −∇
2f(x)P ∇f(x)

∥∇f(x)∥

∥∥∥∣∣∣
≤ ∥

∫ 1

0
∇2f(x− tP∇f(x))P ∇f(x)

∥∇f(x)∥ −∇
2f(x)P ∇f(x)

∥∇f(x)∥ dt∥ (54)

≤
∫ 1

0
∥∇2f(x− tP∇f(x))−∇2f(x)∥ dt ·

(∥P∥∥∇f(x)∥
∥∇f(x)∥

)
(55)

≤ H
∫ 1

0
∥P∇f(x)∥t dt · ∥P∥ (56)

≤ 1
2H∥P∥

2∥∇f(x)∥ (57)

where (54) again uses |∥a∥ − ∥b∥| ≤ ∥a− b∥ and (55) uses the Lispchitzness of the Hessian; (56) uses ∥AB∥ ≤
∥A∥∥B∥. Convexity of ĝx is straight-forward since ĝx is a composition of linear function (in P ) with norm
∥ · ∥. To show L-Lipschitzness of ĝx, we have

|ĝx(P1)− ĝx(P2)| =
∣∣∣∥∥∥ ∇f(x)

∥∇f(x)∥ −∇
2f(x)P1

∇f(x)
∥∇f(x)∥

∥∥∥− ∥∥∥ ∇f(x)
∥∇f(x)∥ −∇

2f(x)P2
∇f(x)

∥∇f(x)∥

∥∥∥∣∣∣
≤ 1

∥∇f(x)∥∥∇
2f(x)(P1 − P2)∇f(x)∥ (58)

≤ L∥P1 − P2∥, (59)

where (58) again uses |∥a∥ − ∥b∥| ≤ ∥a − b∥ and (59) uses ∥∇2f(x)∥ ≤ L. Last, we combine the convex
subgradient lower bound of ĝx with the approximation

gx(P1) ≥ ĝx(P1)− 1
2H∥P1∥2∥∇f(x)∥ (60)

≥ ĝx(P2) + ⟨ĝ′x(P2), P1 − P2⟩ − 1
2H∥P1∥2∥∇f(x)∥ (61)

≥ gx(P2) + ⟨ĝ′x(P2), P1 − P2⟩ − 1
2H[∥P1∥2 + ∥P2∥2]∥∇f(x)∥ (62)

≥ gx(P2) + ⟨ĝ′x(P2), P1 − P2⟩ −HD2∥∇f(x)∥,

where (60) uses (57), (61) uses convexity of ĝx and (62) again applies (57). This completes the proof.

D.3 Proof of Lemma 5.2
Denote gk(Pk) := gxk(Pk). For any P ∈ P, we have

∥Pk+1 − P∥2F = ∥ΠP [Pk − ηg′k(Pk)]∥2F
≤ ∥Pk − P − ηg′k(Pk)∥2F
= ∥Pk − P∥2F − 2η⟨g′k(Pk), Pk − P ⟩+ η2∥g′k(Pk)∥2F
≤ ∥Pk − P∥2F − 2η[gk(Pk)− gk(P )] + η2L2 + ηHD2∥∇f(xk)∥, (63)
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where (63) invokes Proposition 6.1. Dividing both sides by η and re-arranging the terms,

gk(Pk)− gk(P ) ≤ ∥Pk−P∥2
F

2η − ∥Pk+1−P∥2
F

2η + η
2L

2 + HD2

2 ∥∇f(x
k)∥

≤ ∥Pk−P∥2
F

2η − ∥Pk+1−P∥2
F

2η + η
2L

2 + HD2

2 ∥∇f(x
1)∥, (64)

where (64) uses we use the fact that ∥∇f(xk)∥ ≤ ∥∇f(x1)∥. Summing both sides from k = 1, . . . ,K, we get
the desired result: ∑K

k=1 gk(Pk)−
∑K

k=1 gk(P ) ≤ ∥P1−P∥2
F

2η + η
2L

2K + HD2

2 ∥∇f(x
1)∥K. (65)

Finally, using the bound ∥P1 − P∥2F ≤ 4D2 and plugging in the stepsize η = 2D
L
√
K

yield (24).

D.4 Proof of Theorem 5.1
By Lemma 5.2, we have

1
K

∑K
k=1 gxk(Pk) ≤ min

P∈P
1
K

∑K
k=1 gxk(P ) + ρK

K

Plugging the relation into Lemma 5.1 completes the proof.

D.5 Proof of Lemma 5.3
The first relation follows from

∥∇f(x−P ⋆
g∇f(x))∥ ≤ [

∫ 1

0
∥I−∇2f(x− tP ⋆

g∇f(x))P ⋆
g ∥dt] · ∥∇f(x)∥ ≤ ω⋆∥∇f(x)∥ = (1− 1

λ⋆ )∥∇f(x)∥. (66)

The fact that µ
LI ⪯ L−1∇2f(x) ⪯ I for all x implies ∥I − L−1∇2f(x)∥ ≤ 1 − µ

L for all x. Hence, by taking
P = 1

LI ∈ P, we conclude

ω⋆ := min
P∈P

max
x
∥I −∇2f(x)P∥ ≤ max

x
∥I − L−1∇2f(x)∥ ≤ 1− µ

L .

The desired inequality λ⋆ ≤ L
µ immediately follows from the definition λ⋆ = 1

1−ω⋆ . Finally, rearranging (66)
gives the desired bound on gradient norm surrogate loss:

gx(P
⋆
g ) =

∥∇f(x−P⋆
g ∇f(x))∥

∥∇f(x)∥ ≤ 1− 1
λ⋆ .

Remark 8. We can link λ⋆ and κ⋆ through two relations below:

∥∇f(x− P ⋆
g∇f(x))∥ ≤ (1− 1

λ⋆ )∥∇f(x)∥,
∥∇f(x− P ⋆

r∇f(x))∥P⋆
r
≤ (1− 1

κ⋆ )∥∇f(x)∥P⋆
r
. (67)

The second relation (67) holds by simple algebraic derivation: since 1
κ⋆ I ⪯ (P ⋆

r )
1/2∇2f(x)(P ⋆

r )
1/2 ⪯ I for all

x, we deduce that

∥∇f(x− P ⋆
r∇f(x))∥2P⋆

r

= ∥∇f(x)−
∫ 1

0
∇2f(x− tP ⋆

r∇f(x))P ⋆
r∇f(x)dt∥2P⋆

r

= ∥
∫ 1

0
(I −∇2f(x− tP ⋆

r∇f(x))P ⋆
r )∇f(x) dt∥2P⋆

r

= ⟨
∫ 1

0
(I −∇2f(x− tP ⋆

r∇f(x))P ⋆
r )∇f(x) dt, P ⋆

r

∫ 1

0
(I −∇2f(x− tP ⋆

r∇f(x))P ⋆
r )∇f(x) dt⟩

= ⟨(P ⋆
r )

1/2∇f(x), (
∫ 1

0
(I −Mt) dt)

2(P ⋆
r )

1/2∇f(x)⟩,
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where Mt := (P ⋆
r )

1/2∇2f(x− tP ⋆∇f(x))(P ⋆
r )

1/2. Using the fact that 1
κ⋆ ⪯Mt ⪯ I, we have

∫ 1

0
(I −M)2dt ⪯

(1− 1
κ⋆ )

2I and hence
∥∇f(x− P ⋆

r∇f(x))∥2P⋆
r
≤ (1− 1

κ⋆ )
2∥∇f(x)∥2P⋆

r
.

Taking square root on both sides gives the desired relation. However, since evaluating ∥·∥P⋆
r

requires knowledge
of P ⋆

r , we have to define auxiliary quantity λ⋆ and P ⋆
g .

D.6 Proof of Corollary 5.1
With convergence results from standard gradient descent, it takes O(κ log(HD2λ⋆)) iterations to output x̂
such that ∥∇f(x̂)∥ ≤ 1

HD2λ⋆ . Next let x1 = x̂. Using Lemma 5.3 and Theorem 5.1, θ⋆K ≤ 1− 1
λ⋆ and

∥∇f(xK+1)∥ ≤ ∥∇f(x1)∥(1− 1
λ⋆ + 2DL√

K
+ HD2

2 ∥∇f(x
1)∥)K

≤ ∥∇f(x1)∥(1− 1
λ⋆ + 2DL√

K
+ 1

2λ⋆ )
K (68)

≤ ∥∇f(x1)∥(1− 1
2λ⋆ + 2DL√

K
)K ,

where (68) uses the assumption that ∥∇f(x1)∥ ≤ 1
HD2λ⋆ . This completes the proof.

E Proof of results in Section 6

E.1 Proof of Lemma 6.1
For convenience we denote xk+1/2 := xk − Pk∇f(xk). By definition of the monotone oracle, we always have

f(xk+1) = f(M(xk)) ≤ min{f(xk), f(xk+1/2)}.

Proof of relation (26). Suppose µ ̸= 0. By definition of hx(P ), we can write

f(xk+1/2)− f(x⋆) = f(xk)− f(x⋆) + hxk(Pk)∥∇f(xk)∥2

= (f(xk)− f(x⋆))
[
1 +

h
xk (Pk)∥∇f(xk)∥2

f(xk)−f(x⋆)

]
. (69)

Since f(xk+1) = f(M(xk)) ≤ min{f(xk), f(xk+1/2)}, we have

f(xk+1)− f(x⋆) ≤ min{f(xk)− f(x⋆), f(xk+1/2)− f(x⋆)}

= (f(xk)− f(x⋆))
[
1 + min

{
h
xk (Pk)∥∇f(xk)∥2

f(xk)−f(x⋆)
, 0
}]

, (70)

where (70) uses (69). We successively deduce that

f(xK+1)−f(x⋆)
f(x1)−f(x⋆) =

∏K
k=1

f(xk+1)−f(x⋆)
f(xk)−f(x⋆)

≤
(

1
K

∑K
k=1

f(xk+1)−f(x⋆)
f(xk)−f(x⋆)

)K
≤

(
1 + 1

K

∑K
k=1 min

{
h
xk (Pk)∥∇f(xk)∥2

f(xk)−f(x⋆)
, 0
})K

≤
(
1 + 2µ

K

∑K
k=1 min{hxk(Pk), 0}

)K
, (71)

where (71) is by 1
2µ∥∇f(x

k)∥2 ≥ f(xk)− f(x⋆) and min{hxk(Pk), 0} ≤ 0:

min
{

h
xk (Pk)∥∇f(xk)∥2

f(xk)−f(x⋆)
, 0
}
= ∥∇f(xk)∥2

f(xk)−f(x⋆)
·min{hxk(Pk), 0} ≤ 2µmin{hxk(Pk), 0}.
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By concavity of min{·, 0}, we have

1 + 2µ
K

∑K
k=1 min{hxk(Pk), 0} ≤ 1 + 2µmin{ 1

K

∑K
k=1 hxk(Pk), 0}

and using the identity max{·, 0} = −min{−(·), 0} completes the proof.

Proof of relation (27). Again by definition of hx(P ), f(xk+1/2)− f(xk) = hxk(Pk)∥∇f(xk)∥2 and

f(xk+1)− f(xk) ≤ min
{
f(xk+1/2)− f(xk), f(xk)− f(xk)

}
= min{hxk(Pk), 0}∥∇f(xk)∥2.

Summing the inequality from k = 1 to K, we have

f(xK+1)− f(x1) ≤
∑K

k=1 min{hxk(Pk), 0}∥∇f(xk)∥2.

Re-arrangement gives

(
∑K

k=1 max{−hxk(Pk), 0}) · min
1≤k≤K

∥∇f(xk)∥2

≤
∑K

k=1 max{−hxk(Pk), 0}∥∇f(xk)∥2

≤ f(x1)− f(xK+1)

≤ f(x1)− f(x⋆)

Last, using convexity of max{·, 0},

min
1≤k≤K

∥∇f(xk)∥2 ≤ f(x1)−f(x⋆)
K

1
1
K

∑K
k=1 max{−h

xk (Pk),0}

≤ f(x1)−f(x⋆)
K

1
max{ 1

K

∑K
k=1 −h

xk (Pk),0}

and this completes the proof.

Proof of relation (28). Take x⋆ to be the equilibrium of the inner problem maxx∈Lf(x1)
minx⋆∈X⋆ ∥x−x⋆∥,

we deduce that

f(xk+1)− f(x⋆) ≤ f(xk)− f(x⋆) + min{hxk(Pk), 0}∥∇f(xk)∥2

= f(xk)− f(x⋆) + min{hxk(Pk), 0}∥∇f(xk)∥2∥xk−x⋆∥2

(f(xk)−f(x⋆))2
[f(xk)−f(x⋆)]2

∥xk−x⋆∥2

≤ f(xk)− f(x⋆) + min{hxk(Pk), 0} [f(x
k)−f(x⋆)]2

∥xk−x⋆∥2 , (72)

where the last inequality uses f(xk)− f(x⋆) ≤ ∥∇f(xk)∥∥xk − x⋆∥ and that

min{hxk(Pk), 0} · ∥∇f(xk)∥2∥xk−x⋆∥2

[f(xk)−f(x⋆)]2
[f(xk)−f(x⋆)]2

∥xk−x⋆∥2 ≤ min{hxk(Pk), 0} · [f(x
k)−f(x⋆)]2

∥xk−x⋆∥2

since min{hxk(Pk), 0} ≤ 0. Re-arranging the terms, we get

1
f(xk+1)−f(x⋆)

− 1
f(xk)−f(x⋆)

= f(xk)−f(x⋆)−[f(xk+1)−f(x⋆)]
[f(xk+1)−f(x⋆)][f(xk)−f(x⋆)]

≥
−min{h

xk (Pk),0}
[f(xk)−f(x⋆)]2

∥xk−x⋆∥2

[f(xk+1)−f(x⋆)][f(xk)−f(x⋆)]
(73)

=
−min{h

xk (Pk),0}[f(xk)−f(x⋆)]

[f(xk+1)−f(x⋆)]∥xk−x⋆∥2

≥ −min{h
xk (Pk),0}

∥xk−x⋆∥2 ≥ − 1
∆2 min{hxk(Pk), 0}, (74)
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where (73) plugs in (72); (74) uses the fact that f(xk) ≤ f(x1) and that

∥xk − x⋆∥ ≤ max
x∈Lf(x1)

∥x− x⋆∥ = ∆.

Finally, we telescope the relation

1
f(xk+1)−f(x⋆)

− 1
f(xk)−f(x⋆)

≥ − 1
∆2 min{hxk(Pk), 0}

from k = 1 to K and get

1
f(xK+1)−f(x⋆)

− 1
f(x1)−f(x⋆) =

∑K
k=1

1
f(xk+1)−f(x⋆)

− 1
f(xk)−f(x⋆)

≥ − 1
∆2

∑K
k=1 min{hxk(Pk), 0}

= 1
∆2

∑K
k=1 max{−hxk(Pk), 0}.

Re-arranging the terms and using convexity of max{·, 0},

f(xK+1)− f(x⋆) ≤ ∆2∑K
k=1 max{−h

xk (Pk),0}
≤ ∆2

K
1

max{− 1
K

∑K
k=1 h

xk (Pk),0}

and this completes the proof.

E.2 Proof of Proposition 6.1

To show the Lipschitzness of hx, it suffices to show the gradient is bounded. Given∇hx(P ) = ∇f(x−P∇f(x))∇f(x)⊤

∥∇f(x)∥2 ,

we deduce that

∥∇hx(P )∥F = ∥∇f(x−P∇f(x))∇f(x)⊤∥F

∥∇f(x)∥2

= ∥∇f(x−P∇f(x))∥
∥∇f(x)∥ (75)

≤ ∥∇f(x−P∇f(x))−∇f(x)∥+∥∇f(x)∥
∥∇f(x)∥ (76)

≤ L∥P∇f(x)∥
∥∇f(x)∥ + 1 (77)

≤ L∥P∥+ 1 ≤ LD + 1,

where (75) uses ∥ab⊤∥F = ∥a∥ · ∥b∥ and (77) applies L-Lispschitzness of ∇f(x).

E.3 Proof of Lemma 6.2
The proof is again a direct application of the results in online convex optimization. For any P ∈ P, (37) gives∑K

k=1 hxk(Pk)−
∑K

k=1 hxk(P ) ≤ 1
2η∥P1 − P∥2F + η

2

∑K
k=1 ∥∇hxk(Pk)∥2F ≤ 2D2

η + η(LD+1)2

2 K,

where the last inequality ∥P1−P∥F ≤ ∥P1∥F+∥P∥F ≤ 2D and the bounded gradient ∥∇hxk(P )∥F ≤ L(D+1).
Taking η to minimize the right-hand side completes the proof.

E.4 Proof of Theorem 6.1
By Lemma 6.2, we have

1
K

∑K
k=1 hxk(Pk) ≤ 1

K

∑K
k=1 hxk(P ) + ρK

K

for all P ∈ P and plugging − 1
K

∑K
k=1 hxk(Pk) ≥ −θ⋆P −

ρK

K into Lemma 6.1 completes the proof.
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E.5 Proof of Lemma 6.3
According to A3, L−1I ∈ P and descent lemma gives, for all x ̸∈ X ⋆, that

hx(L
−1I) =

f(x− 1
L∇f(x))−f(x)

∥∇f(x)∥2 ≤ − 1
2L

and this completes the proof.

E.6 Proof of Corollary 6.1
Using Lemma 6.3 and Theorem 6.1, θ⋆K ≤ −γ⋆ and plugging the bound back into Theorem 6.1 completes
the proof.
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