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Abstract

In this paper, we reveal a new characterization of the super-efficiency model for Data
Envelopment Analysis (DEA). In DEA, the efficiency of each decision making unit (DMU)
is measured by the ratio the weighted sum of outputs divided by the weighted sum of inputs.
In order to measure efficiency of a DMU, DMUj , say, in CCR model, the weights of inputs
and outputs are determined so that the effiency of DMUj is maximized under the constraint
that the efficiency of each DMU is less than or equal to one. DMUj is called CCR-efficient
if its efficiency score is equal to one. It often happens that weights making DMUj CCR-
efficient are not unique but form continuous set. This can be problematic because the
weights representing CCR-efficiencty of DMUj play an important role in making decisions
on its management strategy. In order to resolve this problem, we propose to choose weights
which minimize the efficency of the second best DMU enhancing the strength of DMUj , and
demonstrate that this problem is reduced to a linear programming problem identical to the
renowned super-efficiency model. We conduct numerical experiments using data of Japanese
commercial banks to demonstrate the advantage of the supper-efficiency model.

1 Introduction

Data Envelopment Anlysis (DEA) is a widely used tool for comparing the efficiency of decision
making units (DMUs). When each DMU has multiple inputs and outputs, the efficiency of
the underlying DMU is measured by the weighted sum of inputs divided by the weighted sum
of outputs. Under the classical CCR model developed by Charnes, Cooper and Rhodes [2],
the weights of inputs and outputs are decided so that the effiency of the underlying DMU is
maximized under the constraint that the efficiency of each DMU is less than or equal to one. A
DMU whose efficiency is equal to one is said to be CCR-efficient. As a standard text of DEA,
we list one by Cooper et al [3].

For a CCR-efficient DMU, there may be multiple ways of choosing weights which give the
efficiency equal to one. If this is the case, it is desirable to choose weights which highlight
the differences between the underlying DMU and the other DMUs. Motivated by this idea,
in this paper we consider to chose for weights which minimize the maximum efficiency of the
other DMU, under the constraint that they give the efficiency equal to one for the underlying
DMU. Surprisingly, we show that the well-known super-efficiency model [1, 4, 5] exactly does
this job. Namely, the weight minimizing a score of the second-best DMU is obtained by solving
the associated super-efficiency model.
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We conduct numerical experiments using data of Japanese commercial banks and observe
that when applied to a CCR-efficient DMU, we can obtain weights which clearly reflect strengths
and weaknesses of the DMU.

2 CCR model

Suppose there are n decision making units (DMUs). For i ∈ {1, . . . , n}, i-th DMU has l inputs
x1i, . . . , xli and m outputs y1i, . . . , ymi. From these inputs and outputs, we define the input
vector

xi = (x1i, . . . , xli)
⊤

and the output vector
yi = (y1i, . . . , ymi)

⊤.

We also define the matrix X which is consisted of the input vectors as

X = [x1,x2, . . . ,xn]

and the matrix Y consisted of the output vectors

Y = [y1,y2, . . . ,yn].

Further, we define matrix X−i as

X−i = [x1,x2, . . . ,xi−1,xi+1, . . . ,xn]

that is , X−i is the matrix obtained by deleting the i-th column vector of X. Similarly, we define
the matrix Y−i.

Suppose we want to measure the efficiency of o-th DMU (o ∈ {1, . . . , n}). In DEA, we
measure the effiency of the o-th DMU by the ratio

y⊤
o v

x⊤
o u

where u ∈ Rm
+ and v ∈ Rl

+ are weight vectors. Under CCR model, nonnegative weights u and
v which maximize the efficiency of the o-th DMU subject to the effiency of each DMU is not
more than one, is sought. To be precise, the problem

max θo =
y⊤

o v
x⊤

o u

subject to
y⊤

i v
x⊤

i u
≤ 1, i ∈ {1, . . . , n}

u ≥ 0, v ≥ 0

(1)

is solved to find nonegative weights u and v. This model is proposed by Charnes, Cooper and
Rhodes in 1978.

Note that the ratio
y⊤

i v
x⊤

i u
is unchanged if we multiply u and v by some constant. Thus we

can assume x⊤
o u = 1. Then we can rewrite (1) to the following linear programming problem

(LP).
max θo = y⊤

o v
subject to x⊤

o u = 1
y⊤
i v ≤ x⊤

i u, i ∈ {1, . . . , n}
u ≥ 0, v ≥ 0
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This problem can be expressed compactly by using the matrix X and Y as

max θo = y⊤
o v

subject to x⊤
o u = 1

Y Tv ≤ XTu
u ≥ 0, v ≥ 0

(2)

The optimal value θ∗o of (2) is called CCR-efficient. If θ∗o = 1, o-th DMU is said to be
CCR-efficient, otherwise it is said to be CCR-inefficient.

3 Minimizaing the efficiency score of the second best DMU

Assume o-th DMU is CCR-efficient, namely θ∗o = 1. In this case there could be multiple (u,v)
which is a feasible solution of (2) and y⊤

o v = 1. Out of these weight vectors, we want to choose
one which minimizes the maximum value of the efficiencies of the other DMUs. By choosing
a weight in this way, we expect that we can make the difference between o-th DMU (i.e. a
CCR-efficient DMU) and the other DMUs more clearly. This kind of weights can be obtained
by solving the following problem.

min to

subject to
y⊤

o v
x⊤

o u
= 1

y⊤
i v

x⊤
i u

≤ to, i ∈ {1, . . . , n} \ {o}
u ≥ 0, v ≥ 0

(3)

As we explained above, we can assume that x⊤
o u = 1. Then (3) becomes

min to
subject to x⊤

o u = 1
y⊤
o v = 1

y⊤
i v ≤ tox

⊤
i u, i ∈ {1, . . . , n} \ {o}

u ≥ 0, v ≥ 0

By setting ũ = tou, this problem can be reduced to the following LP.

min to
subject to x⊤

o ũ = to
y⊤
o v = 1

y⊤
i v ≤ x⊤

i ũ, i ∈ {1, . . . , n} \ {o}
u ≥ 0, ṽ ≥ 0

By using the matrices X−o and Y−o defined in Section 2, we can express this problem as

min to
subject to x⊤

o ũ = to
y⊤
o v = 1

Y T
−ov ≤ XT

−oũ
ũ ≥ 0, v ≥ 0

(4)

We can think of the problem (4) for a DMU which is not CCR-efficient. We have the following
lemma for the problem (4).

Lemma 3.1. Let t∗o be the optimal value for the problem (4). Then o-th DMU is CCR-efficient
if and only if t∗o ≤ 1.
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Proof. First assume o-th DMU is CCR-efficient. Then there exist u∗ and v∗ satifying

x⊤
o u

∗ = 1
y⊤
o v

∗ = 1
Y Tv∗ ≤ XTu∗

u ≥ 0, v∗ ≥ 0

Then u∗ and v∗ together with to = 1 is a feasible solution of (4) with the objective value 1.
Thus t∗o ≤ 1.

Next let (ũ∗,v∗, t∗o) be an optimal solution of (4) with t∗o ≤ 1. Then it is easy to see

that ( ũ
∗

t∗o
,v∗) is a feasible solution of (2) with the objective value 1. Thus o-th DMU is CCR-

efficient.

Using standard techniques of linear programming, we can show that the dual problem of (4)
is given as follows.

(S) max η̃
subject to Xλ−o ≤ xo

Y λ−o ≥ η̃yo

λ−o ≥ 0

(5)

where η̃ ∈ R and λ−o ∈ Rn−1 are variables. In the dual problem we try to make inputs and
outputs using those of the DMUs other than o-th DMU and nonnegative weights, so that the
resulting inputs are less than or equal to that of o-th DMU, and the resulting output is η̃ times
bigger than or equal to that of o-th DMU. Note that this is an output-oriented model, as we try
to adjust outputs of the o-th DMU. We can see that in the dual, the o-th unit is not included
in the reference set, and the model (S) is identical to the renowned super-efficiency model [1],
where its objective is to rank efficient DMUs. We note that Mehrabian et al. [5] propose an
alternative approach which overcomes some drawbacks of the original super efficiency model.
We also remark that effects of excluding the column being scored from the input and output
matrices are studied by Dulá and Hickman [4].

4 Relations between CCR and the super-efficiency model

In this section, we investigate relations between the classical CCR model and the super-efficiency
model. First, the dual of CCR model (2) is given as follows.

min θ
subject to θx0 ≥ Xλ′

y0 ≤ Y λ′

λ′ ≥ 0

where θ ∈ R and λ′ ∈ Rn are variables. Similar to (S), we make the model output-oriented by
setting η = 1

θ and λ = λ′/θ, and converting the model to

(C) max η
subject to x0 ≥ Xλ

ηy0 ≤ Y λ
λ ≥ 0

(6)

In association with (6), we define the following slack-maximization problem.

(CSM) max 1T ϵ1 + 1T ϵ2
subject to x0 − ϵ1 = Xλ

η∗y0 + ϵ2 = Y λ
λ ≥ 0, ϵ1 ≥ 0, ϵ2 ≥ 0

(7)
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where η∗ is the optimal value of (C) and λ ∈ Rn, ϵ1 ∈ Rl, and ϵ2 ∈ Rm are variables. Similarly,
for the problem (5), we define the slack-maximization problem.

(SSM) max 1T ϵ1 + 1T ϵ2
subject to x0 − ϵ1 = X−oλ−o

η̃∗y0 + ϵ2 = Y−oλ−o

λ−o ≥ 0, ϵ1 ≥ 0, ϵ2 ≥ 0

(8)

where η̃∗ is the optimal value of (S) and λ−o ∈ Rn−1, ϵ1 ∈ Rl and ϵ2 ∈ Rm are variables.

Relations between the classical CCR model and the super-efficiency model are summarized
in a 4× 4 table Table 1. In the table, “Opt” means “Optimal value”. Table 1 is interpreted as
follows. For example, if the optimal value of (CSM) is equal to zero and (CSM) has a unique
solution (λo, λ−o) = (1,0) (see the first row of the table), then the optimal value of (S) is less
than one and this is the only possibility, and so on.

Table 1: Relations between CCR model and the super-effiency model
Opt of (S)> 1 Opt of (S)= 1 Opt of (S)< 1

Opt of (SSM) > 0 Opt of (SSM) = 0

Opt of (C)= 1
Opt of (CSM) = 0

Unique optimal solution (λ0, λ−o) = (1,0) × (R0) × (R1) × (R2) ⃝
Other than the above × (R0) × (R3) ⃝ × (R4)

Opt of (CSM) > 0 × (R0) ⃝ × (R5) × (R6)

Opt of (C)> 1 ⃝ × (R0) × (R0) × (R0)

Proof of (R0) As we obeserved in Lemma 3.1, o-th DMU is efficient if and only if Opt of
(S) is less than or equal to one. Similarly it is easy to see that o-th DMU is efficient if and only
if Opt of (C) is equal to one. By combining these facts, we have (R0).

Proof of (R1), (R3) Assume the optimal value of (CSM) is equal to 0 and (CSM) has a
unique optimal solution (λo, λ−o) = (1,0). Assume also that the optimal value of (S) is equal
to one and the optimal value of (SSM) is positive. Then by considering an optimal solution of
(S), there exsit λ−o ∈ Rn−1, ϵ1 ∈ Rl and ϵ ∈ Rm satisfying the following system.

1T ϵ1 + 1T ϵ2 > 0
xo − ϵ1 = X−oλ−o

yo + ϵ2 = Y−oλ−o

λ−0 ≥ 0, ϵ1 ≥ 0, ϵ2 ≥ 0

Then (0, λ−o), ϵ1 and ϵ2 is a feasible solution of (CSM), which has a positive objective value.
This contradicts our assumption that the optimal value of (CSM) is equal to zero. Thus (R1)
is proved. We can show (R3) similarly.

Proof of (R2) Assume the optimal value of (CSM) is equal to 0 and (CSM) has a unique
optimal solution (λo, λ−o) = (1,0). Assume also that the optimal value of (S) is equal to 1 and
the optimal value of (SSM) is equal to zero. Then by considering an optimal solution of (SSM),
there exist λ−o ∈ Rn−1, ϵ1 ∈ Rl and ϵ ∈ Rm satisfying the following system.

1T ϵ1 + 1T ϵ2 = 0
xo − ϵ1 = X−oλ−o

yo + ϵ = Y−oλ−o

λ−0 ≥ 0, ϵ1 ≥ 0, ϵ2 ≥ 0

Then (0, λ−o), ϵ1 and ϵ2 is a feasible solution of (CSM), whose objective is equal to zero, namely
the optimal value of (CSM). Thus this solution is an optimal solution of (SSM), which is supposed
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to have a unique optimal solution (λo, λ−o) = (1,0), a contradiction.

Proof of (R4) Assume that the optimal value of (CSM) is equal to zero and it has an optimal
solution (λo, λ−o) ̸= (1,0) and the optimal value of (S) is less than 1, Then by considering an
optimal solution of (CSM), there exist (λo, λ−o) satisfying the following system.

xo = λoxo +X−oλ−o

yo = λoyo + Y−oλ−o

If λo = 1, then we have λ−o = 0, contradicting our assumption. Thus λ0 ̸= 1 and in particular,
λ < 1. Then by a simple calculation leads to

xo = X−o

(
1

1−λλ−o

)
yo = Y−o

(
1

1−λλ−o

)
Then η = 1, 1

1−λλ−o is a feasible solution of (S) with the objective value equal to 1. This is a
contradiction since we assumed the optimal value of (S) is less than 1.

Proof of (R5) Assume that the optimal values of (CSM), (S) and (SSM) are positive,
one and zero, respectively. Then by considering an optimal solution of (CSM), there exist
(λo, λ−o), ϵ1 and ϵ2 satisfying the following system.

1T ϵ1 + 1T ϵ2 > 0
xo − ϵ1 = λoxo +X−oλ−o

yo + ϵ2 = λoyo + Y−oλ−o

(λo, λ−o) ≥ 0
ϵ1 ≥ 0, ϵ2 ≥ 0

If λo = 1, then we have λo = 0 from the second equation. Then we have ϵ1 = 0 and ϵ2 = 0,
which contradict the first equation. Thus we have λo ̸= 1 and in particular, λo < 1. Then form
the second and the third equation, we have

xo − 1
1−λ0

ϵ1 = X−o

(
1

1−λλ−o

)
yo +

1
1−λ0

ϵ2 = Y−o

(
1

1−λλ−o

)
By noting the o-th DMU is CCR-efficient, i.e. η̃∗ = 1, 1

1−λλ−o, 1− λ0ϵ1 and 1− λ0ϵ2 is a feasible
solution of (SSM) whose objective value is positive. This is a contradiction since we assumed
that the optimal value of (SSM) is equal to 0.

Proof of (R6) Assume that the optimal values of (CSM) and (S) are positive and less than
1, respectively. Then similarly as the proof of (R5), there exist (λo, λ−o), ϵ1 and ϵ2 satisfying
(4). Then η = 1 and 1

1−λλ−o is a feasible solution of (S) with the objective value equal to one.
But this is a contradiction since we assumed that the optimal value of (S) is less than 1.

5 Numerical example

In this section, we show a numerical example using real data. In this example, we compare
the efficiency of 21 Japanese banks (4 city banks (C), 14 regional banks (R) and 3 others (O))
in 2016. The data used in this section are from [6], and they were originally from financial
statements of the banks. Following [6], we adopt interest expenses and non-interest expenses as
inputs and we select interest income and non-interest income as outputs. We show the data in
Table 2.
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Table 2: Inputs and outputs for 18 Japanese banks (unit: Yen)
No. Name Type of bank Inputs Outputs

Interest Non-interest Interest Non-interest

1 Mizuho Financial Group C 577,737 1,977,650 1,445,555 1,847,345
2 Sumitomo Mitsui Banking Corporation C 553,394 3,573,995 1,912,027 3,221,218
3 Mitsubishi UFJ Financial Group C 863,677 3,755,124 2,888,134 3,091,434
4 Resona Bank C 28,422 505,224 406,328 355,529
5 Aozora Bank O 21,507 61,432 67,154 67,550
6 Shinsei Bank O 16,209 167,957 138,488 122,587
7 Japan Post Bank Co O 348,746 1,107,938 1,567,512 329,769
8 The Chiba Bank R 16,589 133,618 135,533 92,278
9 The Bank of Yokohama R 10,953 222,692 183,217 206,953
10 The Shizuoka Bank R 14,661 188,335 123,005 126,799
11 The Bank of Fukuoka R 15,988 97,002 123,899 48,873
12 Hokuhoku Financial Group R 6,243 141,699 120,786 66,634
13 Hokuyo Bank (North Pacific Bank) R 3,471 123,104 78,229 69,743
14 Aichi Bank R 1,282 41,188 31,015 19,016
15 Miyazaki Bank R 2,014 35,993 34,558 19,371
16 Ehime Bank R 2,861 31,728 33,120 8,943
17 Bank of Kyoto R 5,082 77,697 70,725 39,755
18 Hiroshima Bank R 9,417 83,760 80,579 57,684
19 Tottori Bank R 996 13,246 12,112 4,080
20 Akita Bank R 2,709 38,369 31,235 16,230
21 The Bank of Iwate R 1,486 36,986 31,863 19,268

Table 3: The effiency of banks (CCR-efficient banks are in bold letters.)
No. Name CCR-Efficiency Input weight Output weight

u1 u2 v1 v2
1 Mizuho Financial Group 0.876 2.68× 10−7 4.27× 10−7 0 4.74× 10−7

2 Sumitomo Mitsui Banking Corporation 0.911 1.60× 10−7 2.55× 10−7 0 2.83× 10−7

3 Mitsubishi UFJ Financial Group 0.798 1.46× 10−7 2.33× 10−7 0 2.58× 10−7

4 Resona Bank 0.905 4.96× 10−6 1.70× 10−6 1.76× 10−6 5.33× 10−7

5 Aozora Bank 1.000 0 1.63× 10−5 1.06× 10−5 4.26× 10−6

6 Shinsei Bank 0.869 5.01× 10−6 5.47× 10−6 3.85× 10−6 2.75× 10−6

7 Japan Post Bank Co 1.000 0 9.03× 10−7 6.38× 10−7 0
8 The Chiba Bank 0.952 6.15× 10−6 6.72× 10−6 4.72× 10−6 3.37× 10−6

9 The Bank of Yokohama 1.000 8.35× 10−5 3.83× 10−7 0 4.83× 10−6

10 The Shizuoka Bank 0.744 4.54× 10−6 4.96× 10−6 3.48× 10−6 2.49× 10−6

11 The Bank of Fukuoka 1.000 2.35× 10−5 6.43× 10−6 8.07× 10−6 0
12 Hokuhoku Financial Group 0.962 4.98× 10−5 4.86× 10−6 7.97× 10−6 0
13 Hokuyo Bank (North Pacific Bank) 1.000 2.88× 10−4 0 9.98× 10−6 3.14× 10−6

14 Aichi Bank 1.000 4.52× 10−4 1.02× 10−5 2.37× 10−5 1.39× 10−5

15 Miyazaki Bank 1.000 6.97× 10−5 2.39× 10−5 2.47× 10−5 7.48× 10−6

16 Ehime Bank 0.985 8.66× 10−5 2.37× 10−5 2.97× 10−5 0
17 Bank of Kyoto 0.926 3.15× 10−5 1.08× 10−5 1.12× 10−5 3.39× 10−6

18 Hiroshima Bank 0.927 9.91× 10−6 1.08× 10−5 7.61× 10−6 5.44× 10−6

19 Tottori Bank 0.900 2.16× 10−4 5.92× 10−5 7.43× 10−5 0
20 Akita Bank 0.812 7.57× 10−5 2.07× 10−5 2.60× 10−5 0
21 The Bank of Iwate 1.000 3.69× 10−4 1.22× 10−5 2.50× 10−5 1.05× 10−5
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First we check the efficiency of each bank (DMU) by CCR model solving (2). Results are
summarized in Table 3. CCR-efficient banks are indicated in bold letters. We see that there are
7 CCR-efficient banks whose efficiency values are 1.

Now, we choose one particular CCR-effient bank, namely the Bank of Yokohama to feature
the super-efficiency model in comparison with CCR model. From Table 3, we see that the input
and weight weights (u∗

ccr,v
∗
ccr) by CCR model for the Bank of Yokohama are

u∗
ccr = (8.35× 10−5, 3.83× 10−7)⊤ and v∗

ccr = (0, 4.83× 10−6)⊤. (9)

The efficiency of each bank based on this weight is shown in the first column of Table 4. We see
that there is another efficient bank Hokuyo bank under this weight.

Next we solve (4) with o = 9 (9 is ID of the Bank of Yokohama) to compute the input
and output weights by the super-efficiency model and obtain that t∗ = 0.720, ũ∗

s = (2.36 ×
10−5, 2.07 × 10−6)⊤, v∗

s = (0, 4.83 × 10−6)⊤. Dividing ũs by t∗ to scale the weight so that the
efficiency of the most efficient unit, namely, the Bank of Yokohama is 1, we obtain the weights

ũs/t
∗ = (3.28× 10−5, 2.88× 10−6)⊤ and v∗

s = (0, 4.83× 10−6)⊤ (10)

by the super-efficient model. The efficiency of each bank based on this weight is shown in the
second column of Table 4.

Table 4: Comparison of the super-efficiency model and CCR model
No. Name Efficiency (CCR model) Efficiency (super-efficiency model)

1 Mizuho Financial Group 0.182 0.362
2 Sumitomo Mitsui Banking Corporation 0.327 0.547
3 Mitsubishi UFJ Financial Group 0.203 0.382
4 Resona Bank 0.669 0.720
5 Aozora Bank 0.179 0.370
6 Shinsei Bank 0.418 0.584
7 Japan Post Bank Co 0.054 0.109
8 The Chiba Bank 0.310 0.480
9 The Bank of Yokohama 1.000 1.000
10 The Shizuoka Bank 0.473 0.599
11 The Bank of Fukuoka 0.172 0.294
12 Hokuhoku Financial Group 0.559 0.526
13 Hokuyo Bank (North Pacific Bank) 1.000 0.720
14 Aichi Bank 0.748 0.572
15 Miyazaki Bank 0.514 0.552
16 Ehime Bank 0.172 0.233
17 Bank of Kyoto 0.423 0.492
18 Hiroshima Bank 0.341 0.507
19 Tottori Bank 0.223 0.279
20 Akita Bank 0.325 0.394
21 The Bank of Iwate 0.673 0.600

It is seen that, while we have another efficient bank Hokuyo Bank (North Pacific Bank) other
than the Bank of Yokohama in CCR model, the Bank of Yokohama bank is the only efficient
bank in the super-efficiency model, where efficiency of all other banks are lower than 0.720 with
the second best being attained by Hokuyo Bank (North Pacific Bank) and Resona Bank. Thus,
the super-efficiency model succeeds better in enhancing the strength of Yokohama bank.

By comparing the weights (9) of CCR model and (10) of the super-efficiency model, we
observe that there exists considerable difference in the input weights although the output weights
are identical. In paticular, CCR model puts much higher weight on interest expenses than the
super-efficiency model. This suggests that strength of the Bank of Yokohama lies in the balance
between interest and non-interest expenses.
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6 Conclusion

In this paper, we revealed a new characteristic of the super-efficiency model for DEA. In CCR
model, weights of inputs and outputs are decided so that the effiency of the underlying DMU
is maximized. For a CCR-efficient DMU, we considered to choose weights so that the efficiency
score of the second best DMU is minimized. We showed that the problem is reduced to a
linear programming problem which is identical to the dual of the famous super-efficiency model.
We conducted numerical experiments and showed that we can obtain weights that highlight
differences between efficient and non-efficient DMUs.
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