Accelerating Benders decomposition for solving
a sequence of sample average approximation
replications

Harshit Kothari - James R. Luedtke

Abstract Sample average approximation (SAA) is a technique for obtain-
ing approximate solutions to stochastic programs that uses the average from
a random sample to approximate the expected value that is being optimized.
Since the outcome from solving an SAA is random, statistical estimates on the
optimal value of the true problem can be obtained by solving multiple SAA
replications with independent samples. We study techniques to accelerate the
solution of this set of SAA replications, when solving them sequentially via
Benders decomposition. We investigate how to exploit similarities in the prob-
lem structure, as the replications just differ in the realizations of the random
samples. Our extensive computational experiments provide empirical evidence
that our techniques for using information from solving previous replications
can significantly reduce the solution time of later replications.

Keywords Benders decomposition - Stochastic Programming - Integer
Programming

1 Introduction

We study methods for solving two-stage mixed-integer stochastic programs
with continuous recourse and randomness only in the right-hand side of the
second-stage problem:
min eTr + Ee[Q(r, €)], M)

fAS

This research has been supported by ONR grant N00014-21-1-2574.

Harshit Kothari
Department of Industrial and Systems Engineering, Wisconsin Institute of Discovery, Uni-
versity of Wisconsin-Madison, Madison, WI, USA E-mail: hkothari2@wisc.edu

James R. Luedtke
Department of Industrial and Systems Engineering, Wisconsin Institute of Discovery, Uni-
versity of Wisconsin-Madison, Madison, WI, USA E-mail: jim.luedtke@wisc.edu

2 Harshit Kothari, James R. Luedtke

where Q(z,) is the optimal value of the second-stage problem and is defined
by

Q(z,€) := myin{qu : Wy =h(€) —T(&§)x,y >0} (2)

Here x € X C Z% x R} ? is the first-stage decision vector, y € R’ is the
vector of recourse decisions and £ is a random vector.

Unless € has a finite and small number of possible realizations, it is usually
impossible to solve this general form of a stochastic program to optimality be-
cause the expected value is hard to compute. Indeed, in [I9] the authors prove
that two-stage linear stochastic programming problems are # P-hard. Sample
average approximation (SAA) [27] is an approach for obtaining approximate
solutions to stochastic programs which approximates the expectation with an
average over a finite set of scenarios sampled from the distribution of the
random vector. With K scenarios (&1, ...,&k), the SAA problem is given by:

K
AT
I =minc x—&—%p;&)(m,fk). (3)

Let Zx,Zx be the optimal value and an optimal solution of problem .
As these quantities are random, the multiple-replications procedure (MRP)
[34.3] has been proposed as a method to determine a confidence interval on
the optimal value of the problem. MRP calculates this confidence interval for
a candidate solution by solving multiple SAA replications with different inde-
pendent samples of €. When only a fixed set of realizations of the random data
is available, [29] propose a method to estimate solution quality using bootstrap
aggregating to generate multiple samples and solving the corresponding SAA
replications. Solving multiple SAA replications with different random samples
can also be used to find higher-quality feasible solutions, e.g., [44]. Stochastic
decomposition [24/[48] and stochastic approximation [40] are attractive alter-
natives to SAA for continuous stochastic programs, but are not applicable to
mixed-integer stochastic programs. With these motivations in mind, we focus
on the problem of solving a set of SAA replications of the same underlying
stochastic programming instance derived from different samples.

Our objective in this work is to investigate how information obtained from
solving one SAA replication can be used to speed up solution of other repli-
cations in order to minimize the total computation time to solve a set of SAA
replications. If these SAA replications are solved on a sufficiently large cluster
of computers, the wall clock time (as opposed to total computation time) could
be minimized by simply solving all the replications in parallel. However, even
in this setting, we argue that minimizing total computation time is an appro-
priate goal, as computing time is typically a limited resource, and power usage
grows with total computation time. In addition, when multiple machines are
available, algorithms such as Benders decomposition can be implemented in
parallel on these machines when solving a single replication. Thus, solving the
SAA replications sequentially and using information from early replications

Accelerating solution of a sequence of SAA replications 3

to reduce the solution time of later replications can also lead to reduced wall
clock time.

One approach to solving an SAA replication is to solve its deterministic
equivalent form [7]. However, this formulation can become too large to solve
directly when the the number of scenarios (K) is large. Decomposition meth-
ods like Benders decomposition [4l[47] and dual decomposition [I1] address
this by decomposing the problem and solving a sequence of smaller problems,
coordinating the results, and repeating. In this work, we focus on problems
with continuous recourse and randomness appearing only in the right-hand
side of the subproblem constraints. This problem structure is seen in many
applications such as fleet planning [34], telecommunications network design
[43] and melt control [I8]. Benders decomposition is a leading technique for
solving problems having this structure as it is able to exploit the convexity of
the recourse function, and hence we study techniques for reusing information
when using Benders decomposition to solve a set of SAA replications.

Our assumptions on the problem structure imply that the dual feasible re-
gion of the Benders subproblem is fixed across all possible scenarios. Thus, our
first proposal is to reuse dual solutions from previous replications to generate
Benders cuts for future SAA replications by storing dual solutions in a dual
solution pool (DSP). Then, whenever we would normally solve a subproblem
to generate a Benders cut, we first check the DSP to see if any dual solutions
there define a violated cut, and if so, we add the cut and avoid solving the
subproblem. The idea of reusing stored dual solutions to generate Benders cuts
has been used in different contexts when solving a single stochastic program,
such as in stochastic decomposition [24[48] and Benders decomposition [42}2].
This is the first time this technique has been used in the context of solving
multiple different SAA replications. We support this idea theoretically by es-
timating the number of solutions that need to be in the DSP to assure that a
nearly most-violated cut can be found for a given first-stage solution.

While using the DSP can reduce time spent solving subproblems to gen-
erate Benders cuts, we make several additional contributions that reduce the
computation time significantly beyond this. First, in preliminary computa-
tional studies we observed that the DSP tends to grow excessively large as
the number of replications increases, as more distinct dual extreme points are
discovered across replications. This makes the process of checking the DSP
for violated cuts time-consuming. To address this, we propose a method for
curating the DSP by retaining only some of the dual solutions in the pool.
Second, we propose two techniques for choosing Benders cuts to include in the
Benders main problem at the start of the algorithm. We tested these methods
on two-stage stochastic linear and integer programs on three test problems.
The combination of initialization techniques and DSP methods reduced the
total time taken to solve these replications by half compared to using the DSP
alone.

Our work contributes to a growing body of literature investigating tech-
niques for improving methods for solving a sequence of closely related instances
of an optimization problem. The surveys [6] and [I6] provide an overview of

4 Harshit Kothari, James R. Luedtke

recent research investigating the use of machine learning (ML) to learn better
methods for solving instances from a family of related instances. In stochas-
tic programming, the authors in [25] train a support vector machines for the
binary classification of the usefulness of a Benders cut and observe that their
model allows for a reduction in the total solving time for a variety of two-stage
stochastic programming instances. In [I7], the authors propose to approximate
the second-stage solution value with a feed-forward neural network. Recent
work by [30] also leverages ML to estimate the scenario subproblem optimal
values. In [35], the authors develop an ML approach to accelerate generalized
Benders decomposition by estimating the optimal number of cuts that should
be added to the main problem in the first iteration. There has also been work
on using ML to quickly compute primal solutions for stochastic programs [5]
37). ML-enhanced Benders decomposition has been used to accelerate solution
times across various domains, including power systems [10], wireless resource
allocation [31], network design problems [12], model predictive control [36],
among others. These studies generally begin by solving optimization problems
offline to collect data, followed by training an ML model to find algorithm pa-
rameters that speed up future solves. Our setting is fundamentally different.
We solve a sequence of SAA replications of the same stochastic program to ob-
tain statistical estimates (e.g., for confidence intervals). We do not assume we
have solved any related instances prior to beginning the solution of these SAA
replications, and hence there is no opportunity to train an ML model based
on previous instance data to aid in solving these replications. Instead, infor-
mation must be gathered and reused on the fly as each replication is solved
sequentially.

This paper is organized as follows: In Section [2| we review the Benders
decomposition method, for both two-stage stochastic linear and integer pro-
grams. In Section [3] we present our methods for accelerating Benders decom-
position by reusing information from the solution of previous replications. In
Section [4] we present our results from computational experiments.

2 Benders Decomposition

In this section, we describe the Benders decomposition method [4[47] for
solving the SAA (B). The dual of the subproblem (2) for scenario k € [K] :=
{1,..., K} is given by:

max{(h(&) — T(&)x) 'm: W <). (4)

We denote the dual feasible region as IT = {7 : W' r < ¢}, which is indepen-
dent of the scenario k € [K].
We make the following assumptions about the stochastic program :

— The subproblem dual feasible region I is non-empty.

— Relatively complete recourse: For every feasible first-stage solution z € X
and every £ in the support of the random variable &, there exists a feasible
decision to subproblem (2.

Accelerating solution of a sequence of SAA replications 5

We make the relatively complete recourse assumption mainly to simplify ex-
position. In Section [3:4.1] we introduce extensions of our methods to handle
the case where relatively complete recourse does not hold.

Under these assumptions both the primal and the dual of the subproblem
have an optimal solution and from strong duality, we conclude that their
optimal values are equal. Let V denote the set of all the vertices of II. Then,

Q(z,&k) = mgx{(h(fk) —T(&)x) 'm:m eV} (5)

Benders decomposition is based on a reformulation of , that introduces
a new variable 6 to represent the optimal value of subproblem k for each
scenario k € [K]. Using (), the reformulation is as follows:

K
: T
min c¢'xz+ E POy
rz e X,0 P

s.t. Axr =b,
Op > (h(&x) — T(&)x) 7, T7eV, kel[K].

(6)

In the following subsections we discuss how this reformulation is used within
Benders decomposition to solve two-stage stochastic linear programs (LPs)
(Section [2.1)) and two-stage stochastic IPs with continuous recourse (Section

22).

2.1 Stochastic LPs

The size of the reformulation @ depends on the number of vertices of the
dual subproblem (V), which is usually too large to explicitly enumerate. Thus,
a delayed cut generation scheme is used to iteratively add these constraints.
Specifically, Benders decomposition works with a “main problem” which has
the form of @ but at each iteration ¢ only includes a subset Vj: of the
constraints for each scenario k € [K]:

K
MP! = xnéll’)l(cla+ I;pwk (7a)
st. Az =b, (7b)

Or > (h(&) — T(&)z) ', 7k € Viy, k € [K]. (7c)

The constraints in the reformulation are called Benders cuts.

Algorithm [I] outlines the Benders decomposition algorithm for LPs. We
start by solving the main problem with some initial cuts of the form
included. For simplicity of exposition, we assume these initial cuts are suffi-
cient to assure problem is bounded and hence has an optimal solution,
(z', {0} }re (k) Next, we solve subproblems (2), with £ = &, to check for vi-
olated cuts and evaluate the objective for each subproblem k € [K]. If this
objective value is greater than 0%, we have identified a violated cut. This leads

6 Harshit Kothari, James R. Luedtke

to the generation of a Benders cut, defined by the dual solution 7. After
iterating through all the subproblems, and adding violated cuts to the main
problem, we solve the updated main problem. This iterative process continues
until no further violated cuts are found, leading to an optimal solution of the
original problem.

At each iteration, the main problem objective provides a lower bound, L?,
to the problem because it is a relaxation to the reformulation @ We also
obtain an upper bound U! in each iteration by solving the subproblems at
every iteration. The difference between U? and L! can be used as a convergence
condition, terminating when this difference falls below a tolerance denoted by
€.

Algorithm 1 Benders decomposition algorithm.

1: Initialize t :== 0

2: Initialize Vy o for all k € [K] > Initialization step
3: repeat

4: cutAdded < False

5: Solve M P! @) and obtain (zt, {0 }rc(k])

6: Lt Tt + % Zi;l Z > Calculate lower bound
T for all k € [K] do

8: Solve (2)), with € = &,z = ! and obtain Q(x?, &) and dual solution ﬂ'z

9: if Q(z",&;) > 0! then

10: Vi,t41 Vi, U {wi} > Store dual solution to add cut in next iteration
11: cutAdded < True

12: end if

13: end for

14: Ut «cTat + % Eszl Q(zt, &) > Calculate upper bound

15: t+—t+1
16: until cutAdded = False or U? — Lt < ¢

This version of Benders decomposition in which we introduce auxiliary
variables @ for every scenario k € [K] is called the multi-cut version. An
alternate version is the single-cut version [47] in which a single variable is used
to represent the epigraph of the expected value of the subproblem objective
taken over the full set of scenarios. We focus on the multi-cut version in this
paper, but in Section [3.4.2) we discuss how the methods proposed here can be
extended to the single-cut version of the algorithm.

2.2 Stochastic IPs

When dealing with stochastic programs featuring integer variables in the
first-stage, solving the main problem can be computationally expensive be-
cause it is an integer program. Hence, instead of iteratively solving the main
problem and adding cuts, stochastic IPs can alternatively be solved using the
branch-and-cut method [211[3§].

A standard branch-and-cut algorithm for solving two-stage stochastic in-
teger programs with continuous recourse is outlined in Algorithm [2] The al-

Accelerating solution of a sequence of SAA replications 7

Algorithm 2 Branch-and-cut for IPs.

1: Initialize N < {0}, Z = 400, (z*, {0} rerk)) < 0

2: Initialize LPy to be the relaxation of main problem with initial cuts

3: while /' # 0 do

4 Choose a node it € N, N« N\ {3}

5: Solve LP;. If feasible, obtain optimal solution (Z, {ék}ke[}(]) and optimal value 2
6: if LP; feasible and 2 < Z then
7.
8

if £ € X then > Search for violated Benders cuts
: cutAdded < False
9: for all k € [K] do
10: Solve (2)), with £ = £,z = % and obtain Q(%, &) and dual solution 7y
11: if Q(&,&,) > 0y then
12: Add Benders cut: 0y > (h(€) — T(€)x) T 7
13: cutAdded < True
14: end if
15: end for
16: if cutAdded = True then
17: go to step 5
18: else .
19: Update incumbent solution z* < &, and z > (&, 0) is feasible
20: end if
21: else
22: Partition the problem and update A > Branching step
23: end if
24: end if

25: end while
26: return (z*, {0} }re(k])

gorithm begins by adding initial Benders cuts to the main problem. Starting
the algorithm with some initial cuts defined can help speed up convergence
of the algorithm [41l21]. The LP relaxation of this main problem is repre-
sented by the root node or LFP,. This node is added to the list of candidate
branch-and-bound nodes .

In each iteration, the algorithm selects a node from N and solves the cor-
responding LP relaxation, a relaxation of the problem with added constraints
from branching. This LP generates a candidate solution (&, {0k }re(x]). If ©
violates the integrality constraints (i.e., & ¢ X), the algorithm creates two
new subproblems by subdividing the feasible region (branching step). These
two new subproblems are then appended to N.

If £ € X, we solve subproblems with x = & and for £ = &, for each k €
[K] to check if the solution (Z, {ék}ke[K]) is feasible to the original problem. If
any violated Benders cuts are found, they are added to the main problem, and
the relaxation at that node is solved again. This process of dynamically adding
cuts can be implemented using a “Lazy constraint callback” in MIP solvers. If
no violated cuts are identified, then the current solution is feasible. Whenever
we find a feasible solution with a better objective value than the current best
solution, we update the upper bound z and the incumbent solution z*. The
algorithm terminates when there are no more nodes to explore in N.

8 Harshit Kothari, James R. Luedtke

In [21], the authors describe an implementation of Benders decomposition
using the branch-and-cut technique. They highlight the importance of initial-
izing the algorithm with a good set of cuts included in the main problem
to accelerate convergence. To achieve this, they first solve the LP relaxation
of the original problem using Benders decomposition and retain all identified
cuts in the initial main problem of the IP. We follow their approach but only
retain the cuts which are active at the optimal solution of the LP relaxation
to manage the size of the main problem.

3 Techniques for Reusing Information to Accelerate Benders
Decomposition

We now consider a setting where we wish to solve a sequence of SAA
replications of the form , each with an independently drawn set of scenarios.
Suppose we wish to solve M such replications, and each having K scenarios,
(&,..., &%) for r = 1,..., M. The question we investigate is, when solving
the SAA associated with a replication r > 1 with Benders decomposition,
how can we use information obtained from solving replications 1,...,r — 1 to
reduce the solution time?

We first consider a simple warm-start strategy for stochastic IPs: use the
optimal first-stage solution (say Z) from a previous replication as an initial
feasible solution in the branch-and-bound process. When solving a new repli-
cation, we evaluate T by solving the subproblems at (Z, &) for all scenarios
k € [K], and pass the resulting solution (Z, Q(ﬁc,gk)ke[m) to the solver. This
can help the solution process by providing an upper bound for pruning nodes.

In the remainder of this section we propose other techniques for reusing
information to accelerate Benders decomposition. To do so, we consider the key
computational tasks within Benders decomposition: solving the main problem
and solving subproblems to generate cuts. We propose two techniques, the use
of a dual solution pool (Section[3.1)) and a curated version of this pool (Section
to reduce time solving the subproblems. We also propose initialization
techniques in Section [3.3] aimed at accelerating convergence of the algorithm.

3.1 Dual Solution Pool

As discussed in Section[2] the extreme points of the dual of the subproblem
are used to generate Benders cuts. Given our assumption that W and ¢ are
fixed in the second-stage problem, the dual feasible region of the subproblem
is the same for every possible scenario, as shown in . This implies that the
dual solutions from previous replications can be used to generate valid Benders
cuts for the current replication without solving subproblems.

To exploit this observation, as we discover dual solutions when solving an
SAA replication, we store them in a dual solution pool (DSP) denoted by
Vpsp- Then, when solving a new SAA replication, these dual solutions can

Accelerating solution of a sequence of SAA replications 9

be used to generate Benders cuts if they cut off the current primal solution,
thereby potentially avoiding the need to solve the subproblem .

We first describe how the DSP is used when solving two-stage stochastic
LPs. Algorithm [I]is modified by running Algorithm [3] before starting the loop
of solving subproblems (line 7). After obtaining a main problem solution, z¢,
we check the DSP, Vpgp, for each scenario k € [K] to find if it contains any
dual solutions that define a Benders cut violated by z°. Specifically, we solve
the following problem for each scenario k € [K] (line 3 of Algorithm [3):

Qi(z",Vpsp) = max ' (h(&)— T(&)"). (8)

7T€VDsp

That is, for each k € [K], Q.(x*,Vpsp) is defined as the objective value of
subproblem evaluated at z!, with the feasible region replaced by Vpgp. If
problem identifies a violated cut, i.e., Q, (2%, Vpsp) > 0% for some scenario
k € [K], we add the identified cut for each such scenario and proceed with
solving the updated main problem (lines 4-5 in Algorithm. If no violated cut
is found from the DSP for any scenario k € [K], then Algorithm [3| proceeds
with solving the scenario subproblems (line 7). If any of these subproblems
yields a violated Benders cut, the dual solution that defines the cut is not
in the DSP (otherwise we would have found the violated cut when running
Algorithm . Thus, every dual solution that defines a violated cut is saved,
and at the end of the replication we add these the DSP for use in the solution
of the following SAA replications.

We propose to use the DSP in two ways when solving two-stage stochastic
IPs. First, as discussed in Section 2:2] the LP relaxation of the stochastic IP
is solved to obtain a set of initial cuts to include in the main problem before
starting the branch-and-cut process. The DSP can be used exactly as described
in the last paragraph for solving two-stage stochastic LPs to accelerate this
process. Second, we can apply Algorithm [3] when an integer feasible solution
Z € X is found in Algorithm [2| before solving subproblems (lines 9-15 of
Algorithm [2). If a cut is found from the DSP for any scenario k € [K] it is
added to the main problem and the LP relaxation at the node is re-solved
(line 5). If no cuts are found in the DSP, then the subproblems are solved as
usual.

Algorithm 3 Using DSP to look for a violated Benders cut.

1: Input: Current main problem first-stage solution: 2, DSP: Vpgp
2: cutAdded < False
3: for all k € [K] do
Evaluate @k (x*,Vpsp) using and let 7 be a dual solution achieving the max
if Q. (2%, Vpgp) > 0! then
Add violated cut: 0 > 75 | (h(€x) — T(€x)xt)
cutAdded <+ True
end if
end for

10 Harshit Kothari, James R. Luedtke

We next turn to a theoretical investigation of the size of the DSP that is
required for it to be expected to successfully find violated Benders cuts. Let
IT C R? be a polytope with vertex set V and define z* : R? — R as:

* T

z*(c) = maxc:' . (9)
In addition, define 7* : RY — V, where 7*(c) is an optimal solution of (9] for
each ¢ € R? (ties can be broken arbitrarily). Let A,,v € V be a partition of
R? such that A, = {c € R? : 7*(c) = v}. Assume we are solving a sequence
of N problems of the form @D with c= ¢’ for i =1,..., N where each ¢’ is a
random vector drawn independently from the same distribution. Given the set
of optimal solutions obtained from these problems (think of it as the DSP), we
then obtain a new random coefficient € from the same distribution and wish to
understand whether any solution in this set is optimal for this new coefficient.
The following lemma relates this probability to the geometry of the set I1.

Lemma 1 Let c!,...,c and ¢& be independent random vectors identically
distributed according to a distribution D. For each vertex v € V, let q, =
Pp(c € A,). Define Failure’ as the event that none of the solutions 7*(ct) for
t=1,...,N is optimal for z*(c). Then,

P(Failure) = Z qu(1 —qu)N.
veV
Proof. We analyze the probability by conditioning on the realization of the
target vector ¢. Suppose 7*(€¢) = v, and hence ¢ € A,. The sample set fails
to recover v if and only if no sample ¢ falls into A,. For a single sample
c’, the probability of missing region A, is 1 — ¢,. Since the N samples are
independent, the probability that all of them miss A, is:

P(Failure | ¢ € A,) = (1 — ¢,)".

To find the unconditional failure probability, we integrate over the possible
realizations of ¢. Since the regions A, partition the space, we apply the law of
total probability summing over all v € V:

P(Failure) = Z P(Failure | ¢ € A,)P(¢ € A,)
veEV

:Z(l_qu)N'Qv~ O

veY

If all vertices are equally likely to be optimal (¢, = 1/[V|), then the failure
probability in Lemma [1| simplifies to

2“1"(1 - Illfl)N = (1- |]1,|)N < =N/,

Thus, to assure a failure probability less than p would require N > |V|1In(1/p).
This illustrates dependence on the geometry of IT in terms of its number of

Accelerating solution of a sequence of SAA replications 11

vertices |V|. For a standard simplex in R?, this is a modest bound as |V| = d.
However, in general, |V| may be exponential in d. On the other hand, the
following corollary demonstrates that if a subset of vertices has high probability
of being optimal, then a sample size on the order of the size of that subset is
sufficient to achieve low failure probability.

Corollary 1 Let 6 > 0 and assume S CV satisfies Y, g qo > 1 — 0. Then,

5]

P(Fail < — 40
(alure)_eN—i-

Proof. Applying Lemma [T and the assumption yield

P(Failure) qu - q)

veY

= qu(l_Qv)N+ Z qv(l_qv)N
veS veEV\S

< ZQv(l_qv)N+ Z Gy < ZQU(l_Qv)N+5' (10)
veS veV\S veS

Next observe that for ¢ € [0,1], ¢(1 — ¢)V¥ < ¢e™™? and the maximum of
f(q) = ge=N4 over ¢ > 0 is obtained at ¢ = 1/N. Indeed, f'(q) = e~ N9(1—Ngq)
and hence the unique stationary point occurs at ¢ = 1/N. Since f"(q) =
—Ne Nt4 (1 - Ng)(=Ne N) = (=2N + N2g)e~ N4, f(1/N) < 0 and hence
this is the maximum. Thus, ¢(1 — ¢) < (1/N)e~! = 1/(eN). Substituting
into yields

|5\

P(Failure) Z -— O
veS N

To relate this analysis to our use of DSP for searching for a violated Ben-
ders cut, recall that to search for a violated cut from the DSP, we solve the
problem in the hopes of finding a violated cut, rather than solving the
true dual subproblem . We thus consider Vpgp as the set of the solutions,
{m*(ct),7*(c?),...,7*(c™)}, and the cost vector as & = h(&,) — T(&)xt. If
the solution z! has been used in a previous replication to generate Benders
cuts, then ¢ has the same distribution as the distribution of the cost vectors in
the subproblems in that previous replication, and hence Vpgp will contain
dual optimal solutions from K samples from the same distribution as ¢. Then
Lemma [1] provides a bound on the probability that the best solution in the
DSP (i.e., the dual solution that provides the largest right-hand side value of
a Benders cut) is optimal (i.e., the maximum possible Benders cut violation).
This implies that if a violated Benders cut exists, one would likely be found in
the DSP. This analysis is not directly applicable if the primal solution z* was
not seen in a previous replication. However, the DSP contains dual solutions
derived from many other primal solutions, and hence may still be useful for
generating Benders cuts, which we verify empirically in Section [4]

12 Harshit Kothari, James R. Luedtke

3.2 Curated DSP

Our preliminary experiments indicated that the number of distinct dual
extreme points discovered and stored in the DSP tends to grow rapidly as
we solve more SAA replications, even though the underlying dual polytope
remains fixed. This growth makes it increasingly time-consuming to search
the DSP for violated cuts. To address this, we propose to use a curated DSP
in which we restrict the set of stored dual solutions to a more manageable
size. This restricted set of stored dual solutions is denoted by V.,,.. We use
the curated DSP exactly as the DSP is used as described in Section The
only difference is that when searching for cuts based on past dual solutions,
we search the set V., rather than the full DSP (Vpgsp).

Our approach for creating a curated DSP is detailed in Algorithm [4] After
each SAA replication, the full DSP Vpgp is partitioned into three sets: the
permanent set (Vperm), the trial set (Viria1), and the remaining solutions which
we refer to as “the bench”. The permanent set includes dual solutions that have
generated violated cuts in multiple past replications. Once a solution is added
to the permanent set, it remains there for all subsequent replications. The trial
set consists of newly generated dual solutions discovered during the previous
replication. These newly discovered solutions are included in the curated DSP
in the following replication. If a solution in the trial set successfully identifies
a violated cut, it is added to the permanent set in the next replication. The
curated DSP, V., is the union of the permanent and trial sets. After finishing
solving a replication, all dual solutions used to define violated cuts in the
replication are added to a set called Vyseq. After each replication, dual solutions
are re-evaluated: those that were already in the DSP and defined a violated
cut (i.e., they are in the set Vyseq) are added to the permanent set Vperm. Any
dual solution that was newly generated during the current replication, and was
not already part of the full DSP, is added to the trial set V. This allows
new solutions to be tested and potentially included in future replications if
they prove effective. For the next replication, the curated DSP is updated by
combining the updated permanent and trial sets.

3.3 Initialization Techniques

The Benders decomposition method can be significantly accelerated if the
main problem is initialized with a good set of Benders cuts. For linear pro-
grams, adding the “right” initial cuts can theoretically lead to convergence in
just one iteration. Initializing the main problem with Benders cuts has also
been observed to be important to solve stochastic IPs[41l21]. Thus, we inves-
tigate techniques for determining a set of Benders cuts to add to the initial
Benders main problem. We focus our discussion on initialization techniques
for two-stage stochastic IPs, and then discuss adaptations of these ideas that
we propose for two-stage stochastic LPs.

Accelerating solution of a sequence of SAA replications 13

Algorithm 4 Curated dual solution pool.

1: Initialize Vpgp with dual solutions collected in the first replication
2: Initialize Vperm < 0, Virial < 0

3: for all replications r = 2,..., M do

4: vcur — Vperm U Vtrial

5: Solve replication using Benders decomposition

6: Add dual solutions used to generate cuts to Vysed
7.
8

for ™ € Vyseq do > Re-evaluation of duals
: if 7 € Vpgp then
9: Vperm — Vperm @] {7"'}
10: else if 7 ¢ Vpsp then
11: Virial < Virial U {7} > 7 is newly discovered
12: Vpsp < Vpsp U{r} > Update full DSP
13: end if
14: end for
15: Re-evaluate and update Vperm and Va1 for the next replication
16: end for

In our approach, we aim to leverage dual solutions collected from prior
replications (Vpsp) to generate initialization cuts for the current replication.
Using all the collected dual solutions to generate a cut for every scenario would
provide an initialization of the algorithm that provides the best possible bound
given those dual solutions. However, this would also lead to a large number of
initial cuts in the main problem, slowing down the solution of the main problem
LP relaxations throughout the algorithm. Thus, we explore techniques for se-
lecting, for each k € [K], a subset Vi¢ C Vpgp of dual solutions from the DSP
from which to add Benders cuts. To guide this selection, we use the first-stage
solutions encountered during Benders decomposition in previous replications.
We denote the set of all feasible solutions found during the solution process in
past replications as X (e.g., this includes integer first-stage solutions the
solver finds via its internal heuristics and integer solutions discovered at nodes
in the branch-and-bound search), and denote the set of optimal solutions of
previous replications as X°Pt. We propose two methods for choosing the initial
cuts to add: static initialization and adaptive initialization, described in the
following two subsections.

3.8.1 Static Initialization

The main idea behind this approach that a previous optimal solution has
a high likelihood of being near-optimal for this replication [26]. Therefore, we
want to initialize the algorithm with cuts that maximize the objective value of
the subproblem dual when evaluated on solutions in our set of previous optimal
solutions X°P!. For each previous optimal solution, Z € X°P!, and for each
scenario k € [K], we identify a dual solution from the DSP that maximize the
subproblem objective value, i.e., a dual solution that achieves the maximum
in . If there is a tie between multiple dual solutions, we randomly select one
of them. We could add the Benders cut corresponding to this dual solution
for each T € X°P! and each k € [K]. However, in our experiments, we found

14 Harshit Kothari, James R. Luedtke

that doing this for all previous optimal solutions yielded many cuts in the
initialization that were not useful. Thus, we only add cuts for the first two
optimal solutions in X°P!, leading to at most two cuts per scenario.

3.8.2 Adaptive Initialization

In this initialization technique, we use both the set of optimal solutions
of previous replications, X°P!, and the full set of previously found feasible so-
lutions, X /€% to identify initial Benders cuts to include in the main model.
This technique proceeds in two phases. In phase one, we find the solution
2" which has the lowest objective value among the solutions in X°P* for the
current SAA replication. In the second phase, we identify a set of cuts which
ensure that the objective values of all other solutions in X7¢** are subopti-
mal compared to " when evaluated on the selected set of cuts. These cuts
provide a strong initialization and ensure that these solutions are not encoun-
tered later in Benders decomposition, as, by design, their objective values in
the model will be worse than the objective value of the initial solution we
provide to the model. The hope is that the set of solutions, X /€%, serves as a
representative approximation for the entire feasible region X, and construct-
ing the cuts this way will lead to faster convergence. In the limit, if we had all
the feasible primal solutions in X7€%% then this initialization would find the
optimal solution.

Phase One. Let z(x) = ¢'z + > ke(r) Pr@(2,&k) denote the objective value
of a first-stage solution = € X. In this phase, our goal is to find the solution
2" € XoPt with the lowest true objective value, i.e., it satisfies

2(eW9) < 2(x) Va e XTI,

While this could be accomplished by directly evaluating z(z) for all z € Xfees
this would be computationally expensive as it requires solving all scenario sub-
problems for each solution. Therefore, to find "V, we use an approximation
of the true objective value,

Z(x,Vpsp) =c o+ Y prQy(x,Vpsp),
ke[K]

where, for each k € [K], Q) (z, Vpsp) is the approximate value of the subprob-
lem for scenario k as defined in . Z(xz, Vpsp) represents the approximate ob-
jective value of z, with the subproblems being evaluated on the DSP (Vpgsp) in-
stead of the full feasible region (IT). This approximation always underestimates
the true objective value, i.e., Z(z,Vpsp) < 2(z) as Q(z,Vpsp) < Q(z,&)
for all k € [K] because Vpgsp C II.

Algorithmoutlines the process of finding V5. We start by calculating the
approximate objective Z(z, Vpsp) for each solution in X°P! and then arrange
them in ascending order of this approximate objective value. We then check
whether the solution with the smallest value of Z(xz,Vpgsp), say T, has the

Accelerating solution of a sequence of SAA replications 15

lowest true objective value, by solving the scenario subproblems (2) with z =%
and & = &, for each scenario k € [K] to find the true objective value of this
solution. In this process, we may generate new dual solutions which are added
to the DSP. If any new dual solutions are found, this will increases the value
of Z(Z,Vpsp) to z(T), and T might no longer be the solution with the lowest
value of Z(z, Vpsp) among X°Pt. Therefore, we re-evaluate z(z, Vpsp) for all
solutions on the updated Vpgp to see if T remains the best candidate. If so,
the algorithm terminates; otherwise, we select the new minimizer and repeat
the process. When the algorithm terminates it holds that

2(z") =225, Vpsp) < Z(x,Vpsp) < z(z) Vze X

and hence we have found the solution with the lowest true objective value in the
set X°Pt. This algorithm is guaranteed to converge in at most | X °Pt| iterations
because in each iteration we expand Vpgp such that z(x) = Z(z, Vpsp) for a
new z € X°Pt,

Algorithm 5 Adaptive initialization - phase one.

: Evaluate z(z, Vpgp) for all z € X°P¢
repeat
2W'S « argmin{z(z, Vpsp) : © € X°Pt
Solve subproblem (), with x = W5, ¢ = & for each k € K]
Update Vpsp with newly found dual solutions
Re-evaluate z(z, Vpsp) for all x € X°Pt
until arg min{z(z, Vpgp) : © € X°Pt} = g5
return =

Phase two. The goal of phase two is to identify a (hopefully small) set
V,jel C Vpgp for each scenario k € [K] such that, when the objective value of
each solution in X7 is evaluated using the Benders cuts defined by these
solutions, the evaluation is higher than z(z"¥). As a result, when the Benders
algorithm proceeds, none of these solutions will be identified as a candidate
solution that might be better than "5, In this process, since we are consid-
ering more solutions (Xf¢%*) than we considered in phase one (X°P!), we may
find a solution 2 € X/¢% that has a better objective value than "9 identified
in phase one, in which case we update z"V*.

Given a collection of sets of dual solutions V,iez C Vpgp for k € [K], we
define the lower bound approximation of the objective value of x,

z('7:‘7 {Vliel}ke[K]> = ch + Zpk@k(xavgel)a
k

where, for each k € [K], Q,(z, Vi) is the objective of the subproblem k
evaluated using the set of dual solutions V,jez:

@k(x,v;jel) = max WT(h(fk) —T(&)x).

TrEV,‘zel

16 Harshit Kothari, James R. Luedtke

Note that for all scenarios, k € [K], V”l C Vpgp C II and so

Qi(z,) < Qp(x, Vpsp) < Q(z,&)
for all x € X. Thus,

Z(x, (Vi hheir)) < Z(z, Vpsp) < 2(z) Vx € X.

Using this notation, we restate the primary goal of phase two which is to find
sets of dual solutions {Vi®},¢ [k that satisfy

z(a:WS) < Z(z, {Vﬁel}kE[K]) Vo € XTeas, (11)

The pseudocode for phase two is presented in Algorithm [f] To initialize
{ViY ke[, we first add the dual solutions obtained by solving subproblems
for 2. This ensures that zZ(z"5, {Vi“}eix)) = 2(2"V¥). For IPs, we first
solve the LP relaxation to add initialization cuts and thus we also include
the dual solutions which defined active cuts at the optimal solution of the LP
relaxation in the sets {Vi%},c(x). Next, we evaluate Z(z, {Vi®}1e(x) for all
x € X7ee If the solution with least value of Z(x, {Vi®}1c(k]), say T, has the

same objective value as z(z"V®), then we have converged having achieved our

goal (TI).

However, if Z(z, {V;° }ke[K) < z(zW9) (line 7), this implies that we need
to add more cuts to {Vi®}ie(x) to increase z(z, {Vi* }ke[u)) above z(zV).
To do so, we first calculate Z(Z, Vpsp). If Z(Z, Vpsp) > z(z"V?), then we know
there are cuts in the DSP which can be added to {Vﬁez}ke[K to achieve the

goal of
22, Vi Y heix)) = 2(a"F). (12)

Indeed, this would be achieved by adding the dual solution from Vpgp
that achieves the maximum in to Vel for each k € [K]. However, we
heuristically try to minimize the number of dual solutions that are added
to achieve . We arrange the scenarios in decreasing order of values of
Q, (T, VDSP) Qk(x Vzel). This quantity tells us how much Q (7, Vi¢) will
increase if we add the dual solution which achieves @ (7, Vpsp) to Vi¢. For
each scenario k in this order, we add a dual solution from Vpgp that achieves
the maximum in (§)) to Vi¢, and stop as soon as we achieve (12)).

If 2(Z, Vpsp) < z(z™?) (line , this implies the dual solutions in Vpgp
are not sufficient for adding to {Vﬁd}ke[K] to achieve . Indeed, T may
even have a lower true objective than the current "', In this case, we solve
the subproblems for T and each scenario k € [K] to calculate z(Z). For
each k € [K], we add to Vi¢ and Vpgp, the optimal dual solution from the
subproblem. If 2(Z) < z(z"), we update the current best solution to be Z.
Once the algorithm converges, the final "% is provided as an initial feasible
solution when solving the SAA replication.

Adaptive initialization as described is designed primarily for initializing
Benders decomposition when solving stochastic IPs. For stochastic LPs, in
preliminary experiments we found that too much time is spent doing this

Accelerating solution of a sequence of SAA replications 17

Algorithm 6 Adaptive initialization - phase two.

1: Input: 29 from phase one
2: Initialize Vi€ « 0 for all k € [K]
3: Add 7w which achieves the maximum in at 2% to Vgel for each k € [K]
4: Add active LP cuts to {V,ﬁel}ke[;(]
5: WS (—E(CEWS7VDSP)
6: while True do
7 Evaluate z(z, {Viez}kE[K]) for all z € Xfeas
8: T < argmin{ZzZ(z, {Vﬁel}ke[m) cx € Xfeasy
9: if Z(T, {ViYrer)) < 2"'S then
10: Compute z(Z, Vpsp)
11: if Z2(Z,Vpsp) > 2° then
12: Add enough duals from DSP to {V,‘:El}ke[K] so that Z(z, {Vj:ez}ke[l(]) > WS
13: else
14: Solve for ¢ = T and & = & for each k € [K] to compute z(T)
15: Add the optimal dual solution from to V;:ez and Vpgp for each k € [K]
16: if 2(%) < z(z"'S) then
17: Update 25 « 7, 2WS « 2(%)
18: end if
19: end if
20: else
21: Break
22: end if

23: end while
24: return zW5, {Vﬁel}ke[x]

initialization process relative to the savings it yields in the eventual algo-
rithm. Thus, for LPs, we make some changes to the adaptive initialization. In
phase one, we evaluate the previously collected optimal solutions (X °P!) on the
DSP. Let T denote the solution with the lowest approximate objective value
Z(x, Vpsp). Rather than solving scenario subproblems to verify whether T has
the lowest true objective value (line 4 of Algorithm , we directly declare @
to be 25, Phase two begins with this solution and proceeds as in Algorithm
[l with line [4] skipped as it is not relevant for LPs. The next change is after
the else condition on line which is run when Z(Z, Vpsp) < 2"V°. In the LP
case, we do not solve subproblems at this point. Instead, we update V5 to
7, add the dual solution that achieves the maximum in at 29 to V,‘:el for
each k € [K], and then terminate the initialization.

3.4 Extensions

In this section, we describe how our ideas for accelerating Benders de-
composition using information from previous replications can be adapted for
solving problems without relatively complete recourse (Section and for
the single-cut version of Benders decomposition (Section [3.4.2).

18 Harshit Kothari, James R. Luedtke

3.4.1 Relatively Complete Recourse

In the absence of relatively complete recourse, the reformulation @ that
is the basis of Benders decomposition needs to be augmented with Benders
feasibility cuts []: (h(&x) — T(&x)x) 'r <0 Vr € R,k € [K], where R is the
set of extreme rays of the dual feasible region IT.

The Benders decomposition algorithm is modified such that if the sub-
problem is infeasible, then an extreme ray of the dual feasible region is
identified and used to add a Benders feasibility cut to the main problem.

Since the dual feasible region remains fixed according to our assumptions
that W and c are fixed, the set of rays also remains constant across replications.
Thus, as we seek to solve a sequence of SAA replications, we can store the
dual extreme rays that are identified in a DSP just as we do for Benders
optimality cuts. When we obtain a main problem solution, we search the DSP
for violated cuts (both optimality and feasibility cuts). If no violated cut is
found for any scenario, we proceed by solving the subproblems to generate a
feasibility or optimality cut. Curating the DSP follows the same principles as
we have discussed in Section

For the static and adaptive initialization method, we can initialize the Ben-
ders optimality cuts exactly as described previously. In adaptive initialization,
if a scenario subproblem is infeasible, then we identify an extreme ray of
the dual feasible region and add the associated Benders feasibility cut as an
initial cut. For adding Benders feasibility cuts, we would check the DSP to de-
termine if any primal solutions from previous replications Xf¢** are violated
by any of the associated feasibility cuts, and add at least one such cut for each
solution in X /€% that violates one of these cuts.

3.4.2 Single-Cut

In single-cut implementation of Benders decomposition, we introduce a
variable @ which represents the expected value of the subproblem objective.
The single-cut Benders decomposition algorithm is based on a reformulation
that includes Benders cuts of the form

K
0> pie(h() — T(&)x) T, (13)
k=1

where 7, € V for each k € [K].

In standard Benders decomposition, given a main problem solution Z, a
Benders cut of the form is found by solving the scenario subproblem
for each scenario k € [K], and then using the dual solution 7 from subproblem
k for each k € [K] to define the cut (13). The single-cut version uses fewer
variables in the main problem and only adds one cut per iteration. Hence, the
main problem typically is more compact and hence solves faster than in the
multi-cut approach, but it often requires more iterations to reach optimality.

Accelerating solution of a sequence of SAA replications 19

Our proposal for using the DSP and the curated DSP directly adapts to the
single-cut version. For every scenario k € [K], at a solution xt, we find the dual
solution with maximum Q, (2!, Vpsp) by solving and then aggregate them
to generate a cut using these dual solutions. If it is violated by z?, we add
it to the main problem and continue with the algorithm. Otherwise, we solve
all scenario subproblems and generate a cut using those dual solutions (and
update the DSP with the newly identified dual solutions). We expect that
this would speed up the Benders iterations because the full set of scenario
subproblems do not need to be solved at every iteration.

To adapt static initialization in this context, for each previously collected
optimal solution, we identify dual solutions from the DSP that maximize the
subproblem objective value by solving for each k € [K]. Aggregating these
yields a cut for that primal solution, and repeating this procedure for all
previously collected optimal solutions leads to a set of initial cuts that can be
added to the main problem.

For adaptive initialization, phase one remains unchanged, where the pri-
mary goal is to identify the best solution (") to provide as an initial feasible
solution to the branch-and-cut algorithm. We follow the steps in Algorithm
to do this. To adapt this method for single-cut, we also maintain {V,jel}ke[;q
in phase one. Now, whenever we evaluate any solution, say T, on the DSP
to estimate its value, the dual solutions for each scenario k € [K] that corre-
spond to Q. (T, Vpsp) are stored in V;:ez. Furthermore, any dual solutions that
are found when solving the scenario subproblems are also incorporated into
{V,ﬁel} ke[k]- In phase two, we follow the same steps as outlined in Algorithm@
This algorithm outputs both an updated {V,jd}ke[k] and the initial candidate
solution, 25, In the multi-cut version, we would add a Benders cut to the
main problem for every dual solution in Vi for each scenario k € [K]. For
single-cut, the main problem is first initialized with a cut of the form ,
with the 7, dual solutions defined according to the optimal dual solution of
subproblem with 2 = 25 and ¢ = &,. To determine which additional cuts
to initialize the main problem with, we iterate through each primal solution
T € X7e, For each such 7, we find the maximum value of the right-hand
side of the currently added cuts on Z. Let’s call this value O(Z). If ¢ T+ O(z)
exceeds z(z"9), we do nothing as the current cuts are sufficient to ensure
that the objective value of T in the model is higher than the objective value
of 29 in the model. Otherwise, we find the dual solution which achieves
Qr(T, {Vi®Yie(x)) for each scenario k € [K] and use these to define a cut.
This cut is added to the main problem, ensuring that, as a result of phase two,
the updated ¢’ Z 4+ O(z) will be at least z(z"9).

4 Computational Study

This section presents a comprehensive computational study to evaluate the
effectiveness of our proposed information reuse strategies.

20 Harshit Kothari, James R. Luedtke

4.1 Experimental Setup and Implementation Details

We compare the following approaches for reusing information from previous
solves of a replication:

— Baseline: This approach represents the standard Benders decomposition
algorithm. The only information reused from previous replications is that
for IPs an initial feasible solution is provided based on the optimal solution
of the most recent replication, as described at the beginning of Section
No information is reused for LPs.

— DSP: This approach stores the dual solutions collected in previous SAA
replications and uses them to generate cuts as described in Section

— Curated DSP: This approach refines the DSP by maintaining a smaller
pool of dual solutions as described in Section [3.2

— Static init: This approach extends the curated DSP approach by ini-
tializing the algorithm with cuts generated through static initialization as
described in Section B.3.11

— Adaptive init: This approach extends the curated DSP approach by ini-
tializing the algorithm with cuts generated through adaptive initialization
as described in Section 3.3.21

For the computational experiments, we solve 26 replications of problem ,
each with an independently drawn set of scenarios. The first replication is used
for data collection and is identical for all compared methods. Thus, to compare
the impact of different strategies for reusing information, all results presented
in the following sections are based on the 25 SAA replications excluding the
first one. Every replication is given a time limit of one hour for each method.
To reduce the time required to run the experiments, we run less than the full
25 replications for the baseline method because it is significantly slower than
the other methods. This method is only tested on the 2nd, 14th and 26th
replications, and results reported are averaged over these three runs instead
of the full 25 as in the other methods. Since all replications are independent
and the only information used from previous replications is an initial feasible
solution for IPs, and nothing for LPs, an average of a metric taken over this
subset is expected to be a close approximation of the average over the full set
of replications.

We implemented Benders decomposition in Python using Gurobi 10.0.1 as
the optimization solver for both LPs and IPs. We build a main problem model
and a single subproblem model which is updated with the current primal
solution (%) and scenario data (£) whenever we need to look for a cut, saving
model building time and enabling warm-starting of the subproblems.

The DSP is implemented as follows: each dual solution 7 is stored in an in-
dexed array and assigned a unique integer index for efficient retrieval. We use
Python’s hash function to determine if a dual solution obtained after solving
a subproblem is already present in the DSP or not. When searching the DSP
for dual solutions that potentially generate a violated cut, we must efficiently
evaluate problem () for each scenario k € [K]: determine which dual solution

Accelerating solution of a sequence of SAA replications 21

from Vpgp provides the tightest Benders cut for a given first-stage solution
xt. To avoid repeatedly computing 7' k(&) for all dual solutions m € Vpsp
and scenarios k € [K] for every primal solution z!, we precompute and store
these terms in a matrix of dimension |Vpgp| x K at the beginning of each SAA
replication using a single matrix multiplication operation. When evaluating a
candidate first-stage solution z*, we compute 7' (=T (£;)a*) for all dual solu-
tions simultaneously using vectorized matrix operations via the 1inalg library
in NumPy, yielding a vector of length |Vpgp|. We then solve problem by
combining this vector with the precomputed 7 "h(£) terms and finding the
maximum for each scenario using numba to efficiently calculate the argmax.
As discussed in the beginning of Section (3] whenever we solve a new SAA
replication (after the first), we provide the solver with the optimal primal so-
lution of the previous replication as a candidate solution. To do this, we solve
the scenario subproblems given the new scenario data and this candidate solu-
tion &, and then provide this solution (&, {Q(%,&x)}ke[k]) to the solver. This
initialization is done for all methods except for the adaptive initialization, in
which the method generates its own candidate solution. We do this initializa-
tion even for the baseline method in order to better illustrate the impacts of
the other techniques we propose for reusing information.

We terminate Benders decomposition when the optimality gap percentage
is less than 1074 (U* — L*)/L! % 100% < 10~%. A candidate Benders cut of
the form 6, > oy — Brx is considered violated by the current main problem
solution (&, {9k}ke[K]) if it satisfies

O — Q(&,&) = 107" ||(1, au, Br) || -

This relative cut violation threshold ensures that the violation exceeds a small
tolerance scaled by the norm of the cut’s coefficients.

For the branch-and-cut method (Section , we implement the algorithm
using a callback provided by the solver Gurobi. Whenever the algorithm finds
an integer feasible solution, the callback is called to verify if this solution is
feasible to the true problem. In this callback, if we are using the DSP, we
first check the DSP for violated cuts. If no violated cuts are found in the
DSP, we solve subproblems to check if any cuts are violated. If DSP is not
employed, then we directly solve subproblems to check for violated cuts. Due
to the presence of callbacks, we set the lazyconstraints parameter to 1, and
that avoids reductions and transformations which are incompatible with lazy
constraints.

For stochastic IPs, we first solve the LP relaxation of the problem via
Benders decomposition. Benders cuts that are active after solving the LP re-
laxation are retained in the main problem and used as part of the formulation
that is given to the solver when it starts the the branch-and-cut algorithm.
The initialization methods add cuts in addition to these cuts. If we deploy
any initialization method for the IP, then the same method is also used to
initialize the LP relaxation of the problem. Initialization methods are always
used in conjunction with curated DSP to check for violated cuts. Only duals
from curated DSP are considered to generate initialization cuts.

22 Harshit Kothari, James R. Luedtke

The experiments were run on two Intel Core i7 machines: an i7-9700 CPU
at 3.00GHz and an i7-10700 CPU at 2.90GHz.

4.2 Test Problems

The study investigates the performance of all these methods on three prob-
lem classes: stochastic capacitated facility location, stochastic network design,
and stochastic unit commitment. We describe these problems at a high level
below. Appendix [A] provides the detailed formulation of each problem. All test
instances have 400 scenarios, unless mentioned otherwise.

Capacitated Facility Location Problem (CFLP) The CFLP has a set of facil-
ities and a set of customers with uncertain demands. The objective of the
problem is to minimize the total expected cost of building and operating facil-
ities while ensuring that customer demand is met. In the first-stage, we decide
which facilities to open. Every facility has a setup cost and also a capacity.
In the second-stage, we decide how to allocate goods from open facilities to
satisfy customer demand as much as possible. Unmet demands are penalized,
and thus this model has relatively complete recourse.

Our instances use the data from [I14] and the extension of these to create
stochastic programming instances from [I7]. They create a stochastic variant
by first generating the first-stage costs and capacities, followed by generating
scenarios by sampling K demand vectors using the distributions defined in [I4].
In Tables [1] and 2| we list the number of facilities and sets of customers we
consider for the IP and LP instances, respectively. We use larger test instances
for the LP instances to provide a more difficult test for that problem class.

Facilities Customers
15 {105,125,215}
25 {95, 105,185} Facilities Customers
35 {105,185} 25 {305, 355,405, 455,495}
55 {125} 55 {305, 355, 405, 455,495}
75 {105} 85 {305}

Table 1: CFLP instance data for Table 2: CFLP instance data for
IPs. LPs.

Multi Commodity Network Design Problem (CMND) The CMND problem is
defined on a directed network comprising of nodes (), arcs (A4), and commodi-
ties (). Each commodity must be routed from an origin node to a destination
node in the network. The arcs are characterized by installation costs and ca-
pacity. The objective is to determine a subset of arcs for installation with the
goal of minimizing the expected total cost. In the first-stage, binary decisions

Accelerating solution of a sequence of SAA replications 23

are made for each arc to decide if it will be installed or not. In the second-
stage, after the demand for each commodity is revealed, routing decisions are
made for how to route the realized commodity amounts in the network.

We use the test instances in [15]. The instances were originally proposed
for the deterministic fixed charge capacitated multi-commodity network design
problem [23]. To generate stochastic programming instances, we adopt the
approach outlined in [25]. They use the techniques described in [45] to create
random samples for the demands of various commodities. In each scenario, the
demand of a commodity follows a normal distribution with the mean set to the
demand in the deterministic instances and standard deviation of 0.1 times the
mean. To generate instances, we start with base instances given in Tables
and [L3] These tables give the number of nodes, arcs and commodities for each
base instance. For each base instance, we run experiments on three versions
of these instances that differ in the ratio of fixed costs to variable costs. These
are given by r02.1, r02.2, and r02.3 in the actual dataset documentation for
the II base instance.

Problem Set |N| |A] |K| Problem Set |N| |A] [K|
II 10 35 25 VI 10 60 50
11T 10 35 50 IX 10 83 50
I\% 10 60 10 X 20 120 40

Table 3: CMND instance data for IPs. Table 4: CMND instance data for LPs.

Stochastic Unit Commitment Problem (UC) The UC problem schedules a fleet
of thermal generators over a time horizon to meet uncertain electricity demand
while minimizing expected total cost. In the first-stage, binary decisions de-
termine the on/off commitment status for each generator in each time period,
subject to minimum up-time and down-time constraints that couple decisions
across periods. In the second-stage, once demand is realized, continuous dis-
patch variables determine the power output levels for all committed units,
subject to generator capacity limits and the system-wide demand balance con-
straint. To guarantee relatively complete recourse, unmet demand is permitted
at each time period but penalized at a sufficiently high cost. For a comprehen-
sive survey on mixed-integer programming formulations and solution methods
for UC problems, we refer the reader to [28].

For computational experiments, we adopt the classical thermal UC instance
generation procedure of Borghetti et al. [9], distributed through Beasley’s OR-
Library [I]. It produces single-bus UC instances with a 2-day horizon (48
hourly periods) and fleets whose size we vary between 10, 20, 30, and 40 ther-
mal units. We use difficulty levels 2 and 3 in the instance generator, which differ
primarily in the minimum up- and down-time requirements. Unlike CFLP and
CMND, we use the same problem sizes for both LP and IP variants of UC.
From preliminary experiments, we noticed that we can solve instances of the

24 Harshit Kothari, James R. Luedtke

same size for both LP and IP, as the LP relaxation is close to optimal for the
IP and generates strong initial cuts.

To construct stochastic instances, we generate K demand scenarios by
perturbing the base load B, at each time period t with independent, zero-
mean Gaussian noise.

4.3 Results

Metric Description

Total T Time taken to optimize a SAA replication

LP T Time taken to solve the LPs to optimality

Init T Time taken to initialize the problem. For IPs, this includes selecting
active cuts from the LP and finding other initial cuts

IP T Time taken to solve the IPs to optimality, excluding LP T and Init T

Iterations (LP only) # of iterations needed to solve the problem

SP count # of times subproblems are solved to generate cuts

DSP T Time taken to search for a violated cut in the DSP

SP T Time taken to solve subproblems and find a violated cut

Cut T Time taken to find violated cuts to add to the main problem

Nodes (IP only) # of branch-and-bound nodes

Root gap (IP only) Gap closed at the root node of the IP from initialization cuts

Callback calls (IP only) # of calls to the callback to check an integer feasible solution

Table 5: Benders decomposition metrics.

Table Bl summarizes the metrics used to evaluate different methods. Each
metric represents the arithmetic mean of the quantity calculated over the
25 SAA replications after the first replication. For results that are aggregated
over multiple instances, like in Tables|[6]- the quantity presented is a shifted
geometric mean over all instances of that test problem, with a shift of 1 being
applied. Geometric mean is chosen as the relevant mean when summarizing
results over different base instances because there might be a lot of variation
in the values for different instances. Arithmetic mean is used for summarizing
results across the 25 replications of an individual instance because we expect
the values to remain more consistent over the 25 replications. All the time-
related measurements are done in seconds.

For IPs, note that LP T represents the time spent solving the initial LP
relaxation before proceeding with the IP. IP T notes the time taken to solve
the IP after initializing, and Total T includes the time taken for this entire
process. For each IP instance, Total T = Init T+ LP T + IP TE

DSP T and SP T describe how much time is being spent to generate Benders
cuts via the DSP and by solving subproblems. Cut T tells us the total time
taken to find and add Benders cuts: for each instance, Cut T = DSP T + SP
T.

1 This equality holds on a per-instance basis, but does not hold for the summary statistics
because we use geometric mean to summarize across instances.

Accelerating solution of a sequence of SAA replications 25

4.8.1 LP Results

Method Total T Iterations SP count Cut T DSP T SP T Init T
Baseline 213.9 81.2 81.2 187.4 - 1874 -
DSP 62.1 66.4 8.0 50.8 36.0 14.3 -
Curated DSP 46.3 58.6 8.4 37.8 22.3 15.2 -
Static init 23.3 25.1 8.4 20.7 5.4 15.2 0.1
Adaptive init 22.2 20.7 8.5 18.7 3.2 15.4 1.3

Table 6: LP results: CFLP.

Method Total T Iterations SP count Cut T DSP T SP T Init T
Baseline 616.9 131.4 131.4 531.2 - 531.2 -
DSP 89.7 75.2 10.0 70.2 26.3 40.3 -
Curated DSP 63.4 66.2 10.2 47.3 4.9 41.4 -
Static init 49.9 31.5 10.4 44.4 2.0 42.2 0.1
Adaptive init 51.2 21.9 10.5 44.0 1.2 42.7 3.6

Table 7: LP results: CMND.

Method Total T Iterations SP count Cut T DSPT SP T 1Init T
Baseline 265.0 44.8 44.8 71.7 - 1.7 -
DSP 159.0 47.5 6.2 36.4 26.5 10.3 -
Curated DSP 135.9 46.9 6.9 22.6 11.1 11.4 -
Static init 56.7 33.6 7.2 16.4 4.6 12.0 0.8
Adaptive init 54.0 31.5 7.4 15.6 3.6 12.3 4.0

Table 8: LP results: UC.

Tables|[6]- [§ display the summary results of the different methods for solving
the LP test instances for CFLP, CMND, and UC problems, respectively. The
tables demonstrate the significant benefits of information reuse techniques
across all three problem classes. The introduction of DSP drastically reduces
SP count, suggesting that we are usually able to find violated cuts in the
DSP, and only occasionally need to solve subproblems to generate cuts. This
validates the presence of valuable dual solutions within the DSP, and their
effectiveness in generating violated cuts. The reduction in SP count directly
contributes to savings in SP T, leading to the observed savings in Total T.
A somewhat surprising result is the decrease in iterations of the algorithm
from baseline to DSP for CFLP and CMND.

As hoped, we observe curated DSP reduces DSP T and hence leads to a
reduction in Cut T and ultimately Total T. Intuitively, one might expect SP

26 Harshit Kothari, James R. Luedtke

1.0 1.0
0 i 2
20.8 I‘ 20.8
3 j 3
£0.6 P £0.6 i
‘G I kS i
804 | DSP g0.4 i DSP
£ I - z I
S E Curated DSP S Curated DSP
002 = Static init 00.2 Static init
& : —-— Adaptive init e —-— Adaptive init
0.0 25 50 75 100 125 0.0 0 100 200 300 400
Total Time Average Total Time Average
(a) CFLP (b) CMND
1.0

[%2]

Sos|

8 :

[92]

£0.6| |

Y— H

° i

604 !

B I —— DSP

g . Curated DSP

00271 Static init

e : —-— Adaptive init

0.0 0 250 500 750 1000

Total Time Average
(e) UC

Fig. 1: Plots showing the fraction of solved LP instances over time for CFLP,
CMND, and UC problems.

T to increase from DSP to curated DSP, as we have fewer dual solutions in the
curated pool. However, the curation does not lead to a substantial increase
in SP T suggesting that curated DSP obtains a good trade-off in the time
saved from searching the DSP against the small extra time spent solving the
subproblems

Both static and adaptive initialization methods consistently outperform
baseline and DSP methods, needing fewer iterations to converge. This shows
the value of initializing the algorithm with Benders cuts. This reduction in
iterations directly contributes to these methods having the shortest overall
Total T. Interestingly, adaptive initialization needs the fewest iterations to
converge. This suggests that it is able to identify useful cuts. However, we
do not see proportional decrease in Total T because adaptive initialization
needs more time to find these initial cuts. Also, adaptive initialization usually
adds more cuts in the main problem, leading to longer time to solve the main
problem. Overall, using the combination of information reuse methods, we are
able to solve CFLP and CMND problems approximately 10 times faster com-

Accelerating solution of a sequence of SAA replications 27

pared to baseline on average, while for UC we observe approximately 5 times
speedup. The more modest improvement for UC is because the subproblems
are easier to solve. As a result, Cut T makes up a smaller share of Total T.
Therefore, DSP and curated DSP, which primarily reduce Cut T, have limited
impact on Total T. Hence, most of the improvement for UC comes from the
initialization methods, rather than from DSP or curated DSP.

We complement the summary results presented in Tables [0] - [§ with the
total time cumulative distribution function (CDF) plots shown in Figure
In these figures, the Y-axis shows the proportion of solved instances and the
X-axis represents time. To focus on the relative improvements beyond just
using DSP, these figures display only the four methods that reuse information
and exclude the baseline method. Broadly, we observe that curated DSP im-
proves significantly over DSP and that both initialization methods improve
significantly over curated DSP, while they are comparable to each other.

4.3.2 IP Results

Method Total T IP T LP T Cut T DSP T SP T Init T
Baseline 387.5 327.1 44.9 163.9 - 163.9 0.6
DSP 244.0 2126 20.0 61.0 56.9 3.0 0.5
Curated DSP 216.9 1914 14.7 46.2 41.4 3.8 0.5
Static init 194.1 1824 6.1 43.9 39.2 3.8 0.6
Adaptive init 102.2 uové 5.7 5.7 4.5 1.2 13.7

Table 9: IP results: CFLP - Part 1.

Method Total T IP T LPT Cut T DSPT SP T Init T
Baseline 667.2 537.8 89.2 259.2 - 259.2 1.5
DSP 100.9 75.2 18.2 26.1 23.2 2.9 1.0
Curated DSP 61.8 45.8 9.8 10.5 7.0 3.4 1.0
Static init 58.5 47.2 6.5 9.4 6.3 2.9 1.1
Adaptive init 40.5 21.2 6.1 1.6 1.2 0.5 8.4

Table 10: IP Results: CMND - Part 1.

Tables [9] - display the summary results of the different methods for
solving the IP test instances for CFLP, CMND, and UC problems, respectively.
For IPs, we solve the LP relaxation first to obtain a good initialization for
branch-and-bound. Table reveals that for UC, LP T dominates Total T.
This computational profile differs from CFLP and CMND, where IP solving
consumes the majority of time.

For CFLP and CMND, we find that DSP reduces SP T which translates
into savings in Total T. Curated DSP reduces the DSP T because of a smaller

28 Harshit Kothari, James R. Luedtke

Method Total T IP T LP T Cut T DSPT SPT 1InitT
Baseline 313.6 6.7 300.0 2.6 - 2.6 1.6
DSP 220.4 11.9 180.0 3.2 1.9 1.3 1.3
Curated DSP 194.5 11.1 145.2 1.9 0.6 1.2 1.3
Static init 101.6 10.8 65.5 1.8 0.5 1.3 1.9
Adaptive init 80.3 6.1 58.3 1.3 0.2 1.1 4.9

Table 11: IP results: UC - Part 1.

pool, in turn also helping to decrease Total T. Similar to the LP results,
curated DSP does not lead to a significant increase in SP T, suggesting that
curated DSP provides a good trade-off in the time checking the DSP against
the time spent solving subproblems. For UC, Cut T remains similar across
most methods because the tight LP relaxation requires few additional cuts
during the IP solving phase.

For all the test problems, static and adaptive initialization methods consis-
tently outperform baseline and DSP techniques. While the two initialization
methods performed comparably for LPs, we observe a clear distinction for
IPs. For CFLP, static initialization offers only a marginal improvement over
curated DSP, whereas adaptive initialization demonstrates a substantial two-
fold improvement in total time and a ten-fold reduction in cut generation
time. This highlights the effectiveness of adaptive initialization in identify-
ing strong initial cuts. Data for CMND shows a similar trend, with adaptive
initialization again proving superior and static initialization providing only a
marginal benefit over curated DSP. For UC, both initialization schemes signif-
icantly outperform the DSP methods, with adaptive initialization maintaining
a slight edge over static initialization. For all the problem classes, although
adaptive initialization has a higher initial computational cost (Init T), it de-
livers superior overall performance (Total T), making it the best choice for
IPs.

Method Nodes Root gap (%) Callback calls SP count
Baseline 2814.5 2.9 115.7 115.7
DSP 2819.9 3.1 116.6 6.1
Curated DSP 2824.7 3.1 114.8 6.6
Static init 2645.7 3.1 111.0 6.5
Adaptive init 2129.8 2.8 13.4 1.9

Table 12: IP results: CFLP - Part 2.

Tables - present additional branch-and-bound metrics for all three
problem classes. For CFLP and CMND, we observe significant reductions in
SP count after employing DSP, similar to what we saw for LPs. Interestingly,
deploying adaptive initialization leads to a significant reduction in both the
callback calls and SP count compared to other methods. This suggests

Accelerating solution of a sequence of SAA replications 29

Method Nodes Root gap (%) Callback calls SP count
Baseline 2404.9 12.7 140.1 140.1
DSP 1446.1 11.6 71.2 5.0
Curated DSP 1357.7 11.2 64.5 5.5
Static init 1420.7 9.3 62.5 5.2
Adaptive init 1379.0 3.9 10.8 1.2

Table 13: IP Results: CMND - Part 2.

Method Nodes Root gap (/%) Callback calls SP count
Baseline 2.5 0.08 3.2 3.2
DSP 9.3 0.08 3.3 2.2
Curated DSP 8.3 0.08 3.6 2.1
Static init 8.6 0.08 3.2 2.2
Adaptive init 2.0 0.08 2.3 2.0

Table 14: IP Results: UC - Part 2.

that the initial cuts generated by adaptive initialization provide a strong re-
laxation of the original problem, minimizing the need for looking for additional
cuts during the optimization process. Furthermore, adaptive initialization im-
proves root gaps, particularly for CMND. Since root gaps help isolate the
impact of initialization, this demonstrates that adaptive initialization closes
the most gap among all methods. The resulting reduction in callback calls
confirms that the initial cuts are highly effective. For UC, Table [14] shows ex-
tremely low root gaps (0.07%) and very few branch-and-bound node counts,
confirming the near-integrality of the LP relaxation. This indicates that once
the LP is solved, minimal additional work is required to obtain the IP solution.
This behavior reinforces our observation that UC IP performance is dominated
by LP solving.

Figure [2 presents the cumulative distribution function (CDF) plots of solu-
tion times for IP instances, again displaying the results only for the methods
that reuse information. These plots further illustrate that the adaptive ini-
tialization method has the best performance. We also see that curated DSP
generally leads to an improvement in total time compared to regular DSP.

4.8.3 Solution Quality with Equal Time Budgets

The results presented above demonstrate significant speedups in solution
times when using our information reuse methods, particularly adaptive initial-
ization. As these results focus on time to solve to optimality, they do not give
a picture of of how much improvement in solution quality and gap is achieved
earlier in the solution process. To investigate this, we conduct additional ex-
periments comparing solution quality obtained by the baseline method when
limited to a time comparable to the time it takes the adaptive method to solve
to optimality.

30 Harshit Kothari, James R. Luedtke

1.0 | ; 1.0
. ~ L g
©0.8 P 908
© J ©
@ @
£06 o £06
G A bS]
S04 | 5041 1
=] DSP E= e — DSP
S Curated DSP S A Curated DSP
902 Static init ©0.2) I': Static init
&] ——- Adaptive init e : ——- Adaptive init
0.0 0 200 400 600 800 0.0 50 100 150 200 250
Total Time Average Total Time Average
(a) CFLP (b) CMND
1.0

(%2}

So.8

©

@

£0.6

G]

504 !

F=] t —— DSP

g Curated DSP

00.2) I Static init

e ! —-— Adaptive init

0.0L
] 500 1000 1500 2000

Total Time Average
(e) UC

Fig. 2: Plots showing the fraction of solved LP instances over time for CFLP,
CMND, and UC problems.

For each test instance, we first ran the adaptive initialization method on
the 25 replications after the first one and recorded its average solution time 7.
We then ran the baseline method on the first replication of the same instance
with two time limits: T' and 27T, recording whether it proved optimality and,
if not, the final optimality gap at termination.

Tables[I5] and [T6] present the average optimality gaps across instances. The
Gap - T (%) column shows the optimality gap when the baseline is limited
to the time limit 7', while Gap - 2T (%) shows the gap when the baseline is
given twice that time limit. All runs hit the solver timeout without proving
optimality.

These results confirm that the baseline’s longer solution times are not sim-
ply due to closing a small amount of remaining optimality gap. Even when
run for twice the time it takes the adaptive method to solve the instances to
optimality, the baseline fails to achieve the solution quality that the adaptive
initialization obtains. For IP instances, the gaps are smaller but still signif-

Accelerating solution of a sequence of SAA replications 31

Problem Gap - T () Gap - 2T (%)

CMND 12474.8 4061.8
CFLP 15.0 6.5
UcC 9.4 1.0

Table 15: LP relaxation: Average optimality gaps with time limits.

Problem Gap - T (%) Gap - 2T (%)

CMND 11.1 10.7
CFLP 3.5 2.4
ucC - -

Table 16: IP: Average optimality gaps with time limits.

icant, demonstrating that our methods provide fundamental algorithmic im-
provements across both LP and IP formulations.

Note that for some IP instances, the baseline did not complete the initial
LP relaxation within the time limit. For UC-IP, all instances timeout on the LP
relaxation for both time limits T and 27, hence no gap values are reported in
Table For CMND-IP, four instances did not finish the LP relaxation within
time T and 2 instances did not finish within 27. For CFLP-IP, one instance
did not finish the LP relaxation within 7', but all instances completed it within
2T'. The gap averages reported in Table are calculated only for instances
that completed the LP relaxation, as a gap cannot be computed otherwise.

4.8.4 Cut Distribution

Method Initial cuts SP cuts DSP cuts Total cuts
Baseline - 39192 - 39192
DSP - 448 33455 33903
Curated DSP - 589 34139 34728
Static Init 784 608 33327 34719
Adaptive Init 13105 128 3610 16843

Table 17: Cut distribution for the CFLP instance with 35 facilities and 105
customers.

Our algorithm generates Benders cuts from three sources: cuts provided
during initialization (Initial cuts), cuts derived by solving subproblems
during the algorithm (SP cuts), and cuts obtained by searching a pool of
dual solutions (DSP cuts). To provide more insight about our methods, we
present in Tables [L7] - [19] the distribution of cuts of each type for sample IP
instances of the CFLP, CMND, and UC problems, respectively. To focus on
differences between the methods, the Initial cuts and Total cuts exclude
active LP cuts, which are nearly identical for all methods.

32 Harshit Kothari, James R. Luedtke

Method Initial cuts SP cuts DSP cuts Total cuts
Baseline - 55721 - 55721
DSP - 85 29851 29936
Curated DSP - 128 27604 27732
Static Init 782 50 26455 27287
Adaptive Init 8723 24 3629 12376

Table 18: Cut distribution for the CMND instance r03.3.

Method Initial cuts SP cuts DSP cuts Total cuts
Baseline - 667 - 667
DSP - 116 1223 1339
Curated DSP - 16 1011 1027
Static Init 726 48 161 935
Adaptive Init 1520 0 176 1696

Table 19: Cut distribution for the UC instance with 20 generators and difficulty
3.

We find that the inclusion of DSP in the Benders decomposition frame-
work significantly reduces the number of subproblems solved to generate cuts,
leading to a dramatic decrease in SP cuts across all problem types. This is
expected and confirms the presence of useful dual solutions within the pool,
capable of generating violated cuts. For CFLP and CMND, we observe that cu-
rated DSP requires slightly more SP cuts than DSP, which can be attributed
to the reduced size of the curated DSP compared to the DSP. However, for the
UC instance, curated DSP reduces SP cuts compared to DSP. Using either
of the initialization methods leads to a further reduction in the number of
subproblem solves required to generate cuts relative to the curated DSP. For
CFLP and CMND, we observe a drastic reduction in the number of total cuts
needed to reach the optimal solution when using adaptive initialization, which
is explained by the significant decrease in the number of cuts added from the
DSP. The adaptive initialization method requires very few additional cuts be-
yond the initial set introduced during problem initialization, which translates
to significant time savings in solving the SAA replication. In contrast, for UC,
the number of cuts added beyond the LP relaxation is relatively small across
all methods, whether through initialization or by solving subproblems. This
suggests that for UC instances, the LP relaxation cuts provide most of the
constraints needed to get to the optimal IP solution, with initialization and
DSP methods offering more modest incremental improvements.

4.8.5 Impact of Adaptive Initialization

Analysis of the cut distribution in Tables - reveals that adaptive
initialization consistently introduces a higher number of initial cuts compared
to static initialization. However, for the CFLP and CMND instances, the dif-
ference in the number of initial cuts between static and adaptive initialization

Accelerating solution of a sequence of SAA replications 33

is more drastic compared to the UC instance. Therefore, to isolate the impact
of cut quality from quantity on the observed performance improvements, we
focus our analysis on CFLP and CMND and conduct an experiment in which
we modify the static initialization method to add the same number of cuts as
adaptive initialization for these two problem types. In this version of static
initialization, which we refer to as boosted static initialization, we solve the
LP relaxation first as usual, and then use static initialization to add [cuts
per scenario to the main problem, where n is the number of cuts that was
added by the adaptive initialization method for the same instance. For each
scenario within the new SAA replication, we identify the top [%1 dual solu-
tions from the DSP that lead to the highest value of the subproblem objective
value function, Q(Z,Vpsp), evaluated at the first two optimal solutions in
X°Pt, The cuts generated from these are then used to initialize the problem.
This ensures both initialization approaches use the same number of cuts.

In Fig. |3] we track the root node gap closed and also the average time
taken to solve the i** SAA replication over 26 replications using boosted static
initialization and adaptive initialization. The results demonstrate that adap-
tive initialization remains superior even when the static initialization adds the
same number of cuts. Thus, we conclude that the adaptive nature of adaptive
initialization is important, and in particular it seems to benefit from allowing
the number of cuts added for each scenario to vary.

4.8.6 Impact of Curated DSP

In Figure [d] we plot the size of the DSP and curated DSP as we solve more
SAA replications. For CMND and UC, we notice that, the DSP constantly
increases in size, but the curated DSP has a sharp decrease in size in the second
replication. Although it begins to grow again after that, the increase is not
as significant compared to the DSP. This indicates that we have successfully
achieved our goal for the curated DSP, as we are able to maintain a controlled
size of the pool. In the case of CFLP, we notice similar trends, although the
reduction in size from the first to the second replication is not as pronounced
as in CMND. Additionally, by the end of the 25 replications, the size of the
pool is nearly the same as it was after the first replication.

We next investigate the importance of our particular mechanism for choos-
ing the dual solutions to keep in the curated DSP. To do this, we compared our
method to a baseline that randomly selects the same number of dual solutions
as were chosen in our curated DSP method. We refer to this method as the
random curated DSP. In Table we display the average total time taken

Method CFLP CMND UC
Curated DSP 153.17 89.56 228.42
Random curated DSP 152.28 92.19 286.46

Table 20: Total time comparison for curated DSP and random DSP.

34 Harshit Kothari, James R. Luedtke

! =+ Boosted Static init N Boosted Static init
300 i —-=- Adaptive init —_ 1 Adaptive init
£35
~250 ' =~
) i 3)
3.0 i
2200 3 i
£ v
= 150 225
he] i >
100 ‘ Q
Q2.
’ R A i o 20
50 A e
1 A 1.5
0 5 10 15 20 25 0 5 10 15 20 25
SAA number SAA number
(a) Total time - CFLP. (b) Root gap - CFLP.
e Boosted Static init 200 Boosted Static init
--- Adaptive init —_ Adaptive init
200 S)
o S15) :
o b
g150 -, o A
= it / o W
= T 010
2 v S i '
100 = !
o 5
1 -4
e
50 0
0 5 10 15 20 25 0 5 10 15 20 25
SAA number SAA number
(c) Total time - CMND. (d) Root gap - CMND.

Fig. 3: Total time and root gap trends for boosted static initialization and
adaptive initialization per replication. The CFLP results (top plots) are for
the instance with 35 facilities and 105 customers. The CMND results
(bottom plots) are for the r03.3 instance.

to solve 25 SAA replications after the first one with these two methods. We
use the same instances to test these methods as the experiments on cut dis-
tribution in Sec. [£.3:4] For the UC instances, curated DSP achieves a notable
improvement over random curated DSP. This suggests that for UC, the smart
selection mechanism of curated DSP successfully identifies more effective dual
solutions compared to random selection. In contrast, for CFLP and CMND
instances, the performance is comparable between the two approaches, with no
significant difference in solution times. These results indicate that the primary
benefit of curated DSP comes from maintaining a smaller pool size. However,
for some problem classes like UC, the intelligent selection mechanism provides
additional computational gains by identifying more effective dual solutions.
Importantly, a key feature of our method is that it automatically determines
the number of dual solutions to retain in the curated DSP without requiring
this number as input.

Accelerating solution of a sequence of SAA replications 35
10 x10° x10°
B[— Curated DSP T] e Curated DSP 7
5 -~ DSP el 5 1.25{ -~ Dsp o=
gos -] s
- e « 1.00 a0
(o] 0 6 »(/ o //’X
Foa P 2075 e
g g
50.41 50.50(
8 14 | i 8 o5l |
02 e 025| S S
0 5 10 15 20 25 0 5 10 15 20 25
SAA number SAA number
(a) CFLP (b) CMND
x10°
0.61 Curated DSP e
S -~ DSP [
s} =
o)/{
G T
P
© o
£ &
Co02{ ¢
o} |
0 5 10 15 20 25
SAA number
(c) UC

Fig. 4: Number of dual solutions in the pool for DSP and curated DSP.

4.8.7 Performance with Varying Number of Scenarios

All the previous experiments have been done on instances in which the
number of scenarios in each replication is 400. We next investigate the impact
of varying the number of scenarios in the replications on our conclusions.

For this experiment, we select one instance for each problem class and then
run our methods for that instance with the number of scenarios as 200, 400,
and 800. For network design, we use instance r09.2 for the LP case and r03.3
for the IP case. For facility location, we select the instance with 55 facilities
and 495 customers for LP, while the IP instance has 35 facilities and 105
customers. For UC, we use an instance with 30 generators and difficulty 3.

Figure [f] displays the relative performance of our information reuse meth-
ods as a fraction of the execution time of the baseline method, across three
scenario sets. We find that in general the relative performance of the differ-
ent methods is similar across the different scenario sizes. We also find that
the improvements from reusing information tend to be more significant for
instances with more scenarios, which is not surprising considering that in such

36 Harshit Kothari, James R. Luedtke

[200 scenarios 0.6 [200 scenarios
[400 scenarios ’ [400 scenarios
v 0.25 [800 scenarios Q [800 scenarios
£ E 05
=] =]
2 0.20 o
C f=
3 5 04
wn wn
8 015 8 03
k3 5
c c
§ 0.10 _§ 0.2
£ 0.05 €01
0.00 " - 0.0 " -
DSP Curated Static Adaptive DSP Curated Static Adaptive
DSP init init DSP init init
(a) LP - CFLP (b) IP - CFLP
I 200 scenarios I 200 scenarios
0.14 [400 scenarios 0.20 [400 scenarios
] i] i
£ 012 [0 800 scenarios £ [0 800 scenarios
=] =]
2010 2oas
o o
wn wv
& 0.08 s
S ‘s 0.10
2 0.06 2
o o
S 0.04 S
£ & 0.05
0.02
0.00 DSP Curated Static Adaptive 0.00 DSP Curated Static Adaptive
DSP init init DSP init init
(¢) LP - CMND (d) IP - CMND
I 200 scenarios 08 I 200 scenarios
0.7 [0 400 scenarios 0.7 [0 400 scenarios
“E-‘ = 800 scenarios “EJ ’ = 800 scenarios
= S 0.6
2 2
3 8 04
k5 G
.S .S 0.3
© S 02
& g o.
w w
0.1
0.0 - - 0.0 - -
DSP Curated Static Adaptive DSP Curated Static Adaptive
DSP init init DSP init init
(e) LP - UC (f) IP - UC

Fig. 5: Comparison of performance of methods as number of scenarios vary.

instances there is more work that has to be done in solving subproblems, and
hence more opportunity to save time on that work with the proposed DSP
and initialization techniques.

Accelerating solution of a sequence of SAA replications 37

Method Total T Iterations SP count Cut T DSP T SP T Init T
Baseline 621.7 374.1 374.1 621.1 - 621.1 -
DSP 406.4 207.5 10.6 401.0 380.4 20.3 -
Curated DSP 138.1 172.9 12.8 132.8 106.9 24.4 -
Static Init 130.5 151.2 13.8 123.8 95.4 27.2 1.0
Adaptive Init 68.7 33.9 9.9 35.4 16.0 19.3 27.8

Table 21: Single-cut LP results: CFLP.

Method Total T IPT LPT CutT DSPT SPT Init T
Baseline 263.9 176.3 86.8 176.1 - 176.1 0.4
DSP 230.2 167.1 60.5 166.9 164.3 2.2 0.6
Curated DSP 111.6 81.0 28.7 80.8 78.1 2.4 0.6
Static Init 99.2 744 22.0 74.1 71.4 2.4 1.0
Adaptive Init 76.5 9.5 5.4 9.1 7.2 1.6 51.6

Table 22: Single-cut IP results: CFLP - Part 1.

4.4 Single-Cut Benders Decomposition

As described in Section [3.4.2] our proposed information reuse strategies
can be adapted to the single-cut variant of Benders decomposition. To eval-
uate whether these adaptations remain effective in the single-cut setting, we
conducted experiments on CFLP instances for both LP and IP variants using
the same experimental setup as described previously, with the key difference
being that we use single-cut Benders decomposition to solve each SAA repli-
cation instead of multi-cut. In all experiments, we impose a time limit of 3600
seconds per replication. We do not report results for CMND or UC instances
with single-cut Benders decomposition, as our experiments found the single-
cut method to be impractical for these test instances. For our computational
experiments on the CFLP, we selected a subset of instances from Tables [1| and
Specifically, for the LP variant, we tested instances with (warehouses, facil-
ities) dimensions of (25, 305), (25, 495), and (55, 495), and for the IP variant,
we tested instances with dimensions (15, 105), (15, 215), and (25, 95).

Table [21] presents results for CFLP-LP instances using single-cut Benders
decomposition. The high iteration count in single-cut results in the discovery
of a large number of dual solutions throughout the solution process, causing
the DSP to grow considerably. Consequently, the DSP provides only marginal
improvement over the baseline, as most of the time is spent searching through
the large DSP. In contrast, the curated DSP approach maintains a smaller set
of high-quality dual solutions, substantially reducing DSP search time. This
demonstrates the importance of curation when a large number of dual solu-
tions are collected. The initialization methods provide further improvements.
Notably, adaptive initialization achieves a dramatic reduction in Benders iter-
ations compared to the baseline, solving far fewer subproblems on average.

38 Harshit Kothari, James R. Luedtke

Method Nodes Root gap (%) Callback calls SP count
Baseline 4233.2 22.9 276.1 276.1
DSP 4020.5 16.8 272.6 3.2
Curated DSP 3842.9 14.3 265.0 3.5
Static Init 3518.5 9.1 252.9 3.5
Adaptive Init 1642.7 7.7 25.1 2.3

Table 23: Single-cut IP results: CFLP - Part 2.

Table and Table present complementary results for CFLP-IP in-
stances using single-cut Benders decomposition. The pattern observed for LP
instances is replicated here: the uncurated DSP provides modest improvement,
while curated DSP achieves more substantial gains. Static initialization fur-
ther improves performance, and adaptive initialization again delivers the best
results. While adaptive initialization requires a significant initialization invest-
ment, it dramatically reduces both the LP relaxation time and the IP phase
time.

Table 23] provides additional perspective through branch-and-bound met-
rics. The information reuse methods progressively improve the root gap, with
adaptive initialization achieving the lowest root gap by adding high-quality
cuts that effectively strengthen the problem formulation before branch-and-
bound begins. This improvement in root gap quality translates directly to
reduced node counts and callback invocations, with adaptive initialization ex-
ploring substantially fewer nodes and requiring far fewer callback invocations
with minimal subproblem solves per callback.

These results demonstrate that our information reuse strategies remain
highly effective for single-cut Benders decomposition across both LP and IP
problem variants when applied to this problem class.

5 Conclusion and Future Directions

We presented methods to accelerate solving a sequence of SAA replica-
tions in two-stage stochastic programming, assuming randomness only in the
right-hand sides of the subproblems. These methods are derived for Benders
decomposition as the solution algorithm and we find that, for our test prob-
lems, it is possible to reduce the time to solve the replications after the first
one by a factor of 10 for both stochastic LP and IP problems by using the
information reuse techniques we have proposed.

One significant direction for future research is to consider problems in
which the subproblems have uncertainty in either the objective coefficients or
the recourse matrix. Such problems do not have the property that the dual
feasible region is fixed across scenarios, and hence the techniques we proposed
do not extend directly to such problems.

This paper focused on the Benders decomposition algorithm, as it is a
leading algorithm for both two-stage stochastic LPs and for IPs with contin-

Accelerating solution of a sequence of SAA replications 39

uous recourse. Future research could investigate techniques for accelerating
different algorithms in this context of solving a sequence of SAA replications.
For example, for two-stage stochastic LPs, the level method [32120] often per-
forms better than Benders decomposition. We anticipate that the techniques
presented here would be useful for accelerating this and other cut-based de-
composition methods, but testing this hypothesis would be an interesting di-
rection for future work. It would also be interesting to explore methods to
accelerate alternative methods for solving two-stage stochastic IPs, such as
dual decomposition [I1] and methods that use different types of cuts [8[13L22]
331 39L146].

References

1. OR-library: distributing test problems by electronic mail. Journal of the operational
research society 41(11), 1069-1072 (1990)

2. Adulyasak, Y., Cordeau, J.F., Jans, R.: Benders decomposition for production routing
under demand uncertainty. Operations Research 63(4), 851-867 (2015)

3. Bayraksan, G., Morton, D.P.: Assessing solution quality in stochastic programs. Math-
ematical Programming 108, 495-514 (2006)

4. Benders, J.: Partitioning procedures for solving mixed-variables programming prob-
lems. Numerische Mathematik 4, 238-252 (1962). URL https://doi.org/10.1007/
BF01386316

5. Bengio, Y., Frejinger, E., Lodi, A., Patel, R., Sankaranarayanan, S.: A learning-based
algorithm to quickly compute good primal solutions for stochastic integer programs.
In: Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search: 17th International Conference, CPAIOR 2020, Vienna, Austria, September 21—
24, 2020, Proceedings 17, pp. 99-111. Springer (2020)

6. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research 290(2),
405-421 (2021)

7. Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer Science &
Business Media (2011)

8. Boland, N., Christiansen, J., Dandurand, B., Eberhard, A., Linderoth, J., Luedtke, J.,
Oliveira, F.: Combining progressive hedging with a Frank-Wolfe method to compute
Lagrangian dual bounds in stochastic mixed-integer programming. SIAM Journal on
Optimization 28(2), 1312-1336 (2018)

9. Borghetti, A., Frangioni, A., Lacalandra, F., Nucci, C.A.: Lagrangian heuristics based on
disaggregated bundle methods for hydrothermal unit commitment. IEEE Transactions
on Power Systems 18(1), 313-323 (2003)

10. Borozan, S., Giannelos, S., Falugi, P., Moreira, A., Strbac, G.: Machine learning-
enhanced benders decomposition approach for the multi-stage stochastic transmission
expansion planning problem. Electric Power Systems Research 237, 110985 (2024).
DOI https://doi.org/10.1016/j.epsr.2024.110985. URL https://www.sciencedirect.
com/science/article/pii/S0378779624008708

11. Carge, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Op-
erations Research Letters 24(1-2), 37-45 (1999)

12. Chan, T., Lin, B., Saxe, S.: A machine learning approach to solving large bilevel and
stochastic programs: Application to cycling network design. Available at SSRN 4592562
(2023)

13. Chen, R., Luedtke, J.: On generating lagrangian cuts for two-stage stochastic integer
programs. INFORMS Journal on Computing 34(4), 2332-2349 (2022)

14. Cornuéjols, G., Sridharan, R., Thizy, J.M.: A comparison of heuristics and relaxations
for the capacitated plant location problem. European journal of operational research
50(3), 280-297 (1991)

https://doi.org/10.1007/BF01386316
https://doi.org/10.1007/BF01386316
https://www.sciencedirect.com/science/article/pii/S0378779624008708
https://www.sciencedirect.com/science/article/pii/S0378779624008708

40 Harshit Kothari, James R. Luedtke

15. Crainic, T.G., Fu, X., Gendreau, M., Rei, W., Wallace, S.W.: Progressive hedging-based
metaheuristics for stochastic network design. Networks 58(2), 114-124 (2011)

16. Deza, A., Khalil, E.B.: Machine learning for cutting planes in integer programming: A
survey. arXiv preprint arXiv:2302.09166 (2023)

17. Dumouchelle, J., Patel, R., Khalil, E.B., Bodur, M.: Neur2sp: Neural two-stage stochas-
tic programming. arXiv preprint arXiv:2205.12006 (2022)

18. Dupacova, J., Popela, P.: Melt control: Charge optimization via stochastic program-
ming. In: Applications of stochastic programming, pp. 277-297. STAM (2005)

19. Dyer, M., Stougie, L.: Computational complexity of stochastic programming problems.
mathematical programming 106, 423-432 (2006)

20. Féabidn, C.I., Széke, Z.: Solving two-stage stochastic programming problems with level
decomposition. Computational Management Science 4, 313-353 (2007)

21. Fortz, B., Poss, M.: An improved benders decomposition applied to a multi-layer network
design problem. Operations research letters 37(5), 359-364 (2009)

22. Gade, D., Kiciikyavuz, S., Sen, S.: Decomposition algorithms with parametric Gomory
cuts for two-stage stochastic integer programs. Mathematical Programming 144(1-2),
39-64 (2014)

23. Ghamlouche, I., Crainic, T.G., Gendreau, M.: Cycle-based neighbourhoods for fixed-
charge capacitated multicommodity network design. Operations research 51(4), 655—
667 (2003)

24. Higle, J.L., Sen, S.: Stochastic decomposition: An algorithm for two-stage linear pro-
grams with recourse. Mathematics of operations research 16(3), 650-669 (1991)

25. Jia, H., Shen, S.: Benders cut classification via support vector machines for solving two-
stage stochastic programs. INFORMS Journal on Optimization 3(3), 278-297 (2021)

26. Kim, S., Pasupathy, R., Henderson, S.G.: A guide to sample average approximation.
Handbook of simulation optimization pp. 207-243 (2015)

27. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation
method for stochastic discrete optimization. SIAM Journal on optimization 12(2), 479—
502 (2002)

28. Knueven, B., Ostrowski, J., Watson, J.P.: On mixed-integer programming formulations
for the unit commitment problem. INFORMS Journal on Computing 32(4), 857-876
(2020)

29. Lam, H., Qian, H.: Bounding optimality gap in stochastic optimization via bagging:
Statistical efficiency and stability. arXiv preprint arXiv:1810.02905 (2018)

30. Larsen, E., Frejinger, E., Gendron, B., Lodi, A.: Fast continuous and integer l-shaped
heuristics through supervised learning. INFORMS Journal on Computing (2023)

31. Lee, M., Ma, N., Yu, G., Dai, H.: Accelerating generalized benders decomposition for
wireless resource allocation. IEEE Transactions on Wireless Communications 20(2),
1233-1247 (2020)

32. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math-
ematical programming 69, 111-147 (1995)

33. Lulli, G., Sen, S.: A branch-and-price algorithm for multistage stochastic integer pro-
gramming with application to stochastic batch-sizing problems. Management Science
50(6), 786-796 (2004)

34. Mak, W.K., Morton, D.P.;, Wood, R.K.: Monte carlo bounding techniques for determin-
ing solution quality in stochastic programs. Operations research letters 24(1-2), 47-56
(1999)

35. Mitrai, I., Daoutidis, P.: Learning to initialize generalized benders decomposition via
active learning. FOCAPO/CPC, San Antonio, Texas (2023)

36. Mitrai, I., Daoutidis, P.: Computationally efficient solution of mixed integer model pre-
dictive control problems via machine learning aided benders decomposition. Journal of
Process Control 137, 103207 (2024)

37. Nair, V., Dvijotham, D., Dunning, I., Vinyals, O.: Learning fast optimizers for contex-
tual stochastic integer programs. In: UAI, pp. 591-600 (2018)

38. Naoum-Sawaya, J., Elhedhli, S.: An interior-point benders based branch-and-cut algo-
rithm for mixed integer programs. Annals of Operations Research 210, 33-55 (2013)

39. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The benders decomposition

algorithm: A literature review. European Journal of Operational Research 259(3),
801-817 (2017)

Accelerating solution of a sequence of SAA replications 41

40.

41.

42.

43.

44.

45.

46.

47.

48.

Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Mathe-
matical Statistics pp. 400-407 (1951)

Saharidis, G.K., Boile, M., Theofanis, S.: Initialization of the benders master problem
using valid inequalities applied to fixed-charge network problems. Expert Systems with
Applications 38(6), 66276636 (2011)

Sakhavand, N., Gangammanavar, H.: Subproblem sampling vs. scenario reduction: effi-
cacy comparison for stochastic programs in power systems applications. Energy Systems
pp. 1-29 (2022)

Sen, S., Doverspike, R.D., Cosares, S.: Network planning with random demand. Telecom-
munication systems 3(1), 11-30 (1994)

Sen, S., Liu, Y.: Mitigating uncertainty via compromise decisions in two-stage stochastic
linear programming: Variance reduction. Operations Research 64(6), 1422-1437 (2016)
Song, Y., Luedtke, J.R., Kii¢likyavuz, S.: Chance-constrained binary packing problems.
INFORMS Journal on Computing 26(4), 735-747 (2014)

van der Laan, N., Romeijnders, W.: A converging Benders’ decomposition algorithm for
two-stage mixed-integer recourse models. Operations Research 72, 2190-2214 (2023)
Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal
control and stochastic programming. SIAM journal on applied mathematics 17(4),
638-663 (1969)

Wang, S., Gangammanavar, H., Eksioglu, S., Mason, S.J.: Statistical estimation of op-
erating reserve requirements using rolling horizon stochastic optimization. Annals of
Operations Research 292, 371-397 (2020)

42 Harshit Kothari, James R. Luedtke

Appendix A

We provide detailed descriptions of the problems considered in our compu-
tational study. We adopt the formulations and problem descriptions from [25]
for both test problems.

A.1 Capacitated Facility Location Problem

Consider a set F' of facilities, where a facility ¢ € F has a setup cost f;
and a production capacity limit u;. Additionally consider a set of customers
C, where each customer j has an uncertain demand denoted by J]—. The vector
of realizations of this uncertain demand in a scenario k € [K] is denoted by
dp = [drj : j € J]. This demand can be met by shipping from any open
facility ¢ to customer j at a unit transportation cost ¢;;. Any unmet demand
for customer j incurs a lost-sale penalty, with a unit cost p;. The objective is
to select a subset of facilities to open in order to minimize the total expected
cost.

This problem is modeled as a two-stage stochastic programming problem.
The first-stage binary decision variables z; indicate whether the facility 7 is
opened or not. In the second-stage, after revelation of the demands, we in-
troduce continuous decision variables y;; > 0,Vi € F,j € C, which represent
goods transported from facility ¢ to customer j. The model aims to find the
best decisions to minimize the sum of facility setup cost, expected transporta-
tion cost, and expected lost-sale cost. The first-stage formulation is given by:

min) fir; +) prQ(w,di)

i€F ke[K]
st.z; € {0,1} ieF.

The second-stage problem for each scenario k, Q(x,dy) is defined using trans-
portation variables y;; from a facility 7 to a customer j and auxiliary variables
aj that denote the amount of unmet demand of customer j. We have:

Q(z,dy) = min YO i+ Y piay

ieF jeC JEF
subject to Z Yij < UL Vi € F,
jec
dij — Y i < aj vjedl,
ieF
yZJZO ViEF,jEC,
e Z 0 Vj eC.

By allowing unmet demand, the problem always has a feasible solution and
Benders decomposition only requires optimality cuts.

Accelerating solution of a sequence of SAA replications 43

A.2 Multi Commodity Network Design Problem

Consider a directed network with node set N, arc set A, and commodity
set K. Each commodity ¢ has an uncertain demand v, that must be routed
from an origin node, oy € N, to its destination node, dy € N. The vector of
demands in scenario k € [K] is denoted by vy = [vi : £ € K]. For each arc
(,7) € A, there is an installation cost f;; and an arc capacity u;;. The cost for
transporting one unit of commodity ¢ on installed arc (i, j) is cfj‘ Any demand
that is not met is penalized at a rate of B > 0 per unit.

The objective in the first-stage is to decide which subset of arcs to install
to minimize the sum of arc installation cost and expected total transportation
cost and penalty for unmet demand. In the second-stage, after demand is
realized, the goal is to determine the optimal flow of commodities through the
installed arcs to minimize the sum of transportation and unmet demand costs.

In the first-stage, we define binary decisions x;; for all arcs (i,7) € A such
that z;; = 1 if we install arc (4, j). The first-stage formulation is given by:

min ST fumii+ Y peQx,vk)
(i,j)€A kE[K]
s.t. Tij € {0, 1} (Z,]) € A.
In the second-stage, we define non-negative continuous decisions yfj to repre-
sent transportation units of commodity ¢ on arc (7, j). Additionally, we intro-

duce auxiliary variables a to denote the unmet demand for commodity £. For
scenario k, the formulation is given by:

Qo) =min > lZijyfﬁBaf

)

(ii)eA Leek

subject to Z yfj - Z yfi = gi(vf, — o) Vie N,Le K,
J:(i,4)€A J:(4,H)eA
Z Yij < wiji v(i,j) € A,
e
yszo V(i,j) € AL e K,
at>0 Vie Nl eK.

The parameter g is set to 1 if node 4 is the origin of the commodity ¢, —1 if
node 7 is the destination of the commodity ¢, or 0 otherwise. By allowing unmet
demand, the problem always has a feasible solution and Benders decomposition
only requires optimality cuts.

A.3 Stochastic Unit Commitment Problem

Consider a set G of thermal generators operating over a discrete time hori-
zon T = {1,...,T} with time periods indexed by ¢. Each generator g € G

44 Harshit Kothari, James R. Luedtke

has power output bounds Bg,ﬁg (minimum and maximum power output in
MW when the generator is on), temporal constraints U, (minimum up-time)
and Dy (minimum down-time) measured in number of periods, and marginal
production cost Cy (3/MWh). The electricity demand at time ¢ in scenario
k € [K] is denoted by By, (MW). To ensure feasibility of the subproblems,
we allow unmet demand with penalty cost M per unit. The objective is to
determine the commitment schedule (which generators are on or off at each
time period) to minimize expected total cost.

The first-stage binary decision variables x4 € {0,1} indicate the commit-
ment status of generator g at time ¢ (1 if on, 0if off), forg € G, ¢ € {0,1,...,T},
where x40 represents the initial state at time 0. Additionally, binary variables
wqr and vy for g € G, ¢ € T track startup and shutdown events. In the second-
stage for scenario k, after revelation of demand, continuous decision variables
pgtie > 0,Vg € G,t € T, represent power output from generator g at time ¢,
and auxiliary variables oy, > 0,Vt € T to denote the unmet demand at time
t. The first-stage formulation is given by:

mgcin Z prQ(z, By)

ke[K]
st.zg0=0 Vgeg,
Tgt = Lgr—1+ Wt —Vgr Vg EGLET,

t

Z wgsgxgt vyegat€T7
s=max{t—Ugy+1,1}

t

Z vgs <1—zgy VgeG,teT,
s=max{t—Dy+1,1}

Tgt, Wyt, Vgt S {0, 1} Vg S g,t eT.

The second-stage problem for each scenario k, Q(z, By) is defined as:

Q(a, By) =min 3% Copgu+ Y Mo

geGLeT teT

subject to P gt < pgik < ﬁgmgt VgeG,teT,
Zpgtk + o > B vteT,
geg
gtk 2 0 VgeG,teT,
o >0 VteT.

By allowing unmet demand, the problem has relatively complete recourse.

	Introduction
	Benders Decomposition
	Techniques for Reusing Information to Accelerate Benders Decomposition
	Computational Study
	Conclusion and Future Directions
	

