
An analytical lower bound for a class of minimizing
quadratic integer optimization problems

Christian Schmitta, Bismark Singhb,∗

aDepartment of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
bSchool of Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, UK

Abstract

Lower bounds on minimization problems are essential for convergence of both branching-based and

iterative solution methods for optimization problems. They are also required for evaluating the

quality of feasible solutions by providing conservative optimality gaps. We provide an analytical

lower bound for a class of quadratic optimization problems with binary decision variables. In

contrast to traditional lower bounds typically obtained from solving relaxed optimization models,

our lower bound is analytical and does not require a numerical solution of any mathematical

optimization model. This especially provides value for instances of our optimization model that are

computationally difficult to even generate, before being handed to a solver for a numerical solution.

Further, we propose a greedy heuristic to determine a feasible solution that, in turn, allows us to

evaluate the quality of this lower bound. Numerical results for instances that previously could not

be generated in over five hours demonstrate an optimality gap of under 11% in less than a minute

using our bounds.

Keywords: quadratic integer optimization, non-convex, analytical bounds, lower bounds, facility

location models

1. Introduction

We revisit the following non-convex quadratic optimization model with binary variables pro-

posed in [9]:

z∗ = min
x,y,u

∑
j∈J

Cj
(
1− uj

)2 (1a)

∗Corresponding author
Email address: b.singh@southampton.ac.uk (Bismark Singh)

Preprint submitted to in review November 19, 2024

s.t. uj =
∑

i∈I UiPi,jxi,j

Cj
∀j ∈ J (1b)

∑
i∈I

UiPi,jxi,j ≤ Cj ∀j ∈ J (1c)

∑
j∈J

yj ≤ B (1d)

∑
j∈J

xi,j = 1 ∀i ∈ I (1e)

yj ≥ xi,j ∀i ∈ I, j ∈ J (1f)

uj ∈ [0, 1] ∀j ∈ J. (1g)

yj ∈ {0, 1} ∀j ∈ J (1h)

xi,j ∈ {0, 1} ∀i ∈ I, j ∈ J. (1i)

Model (1) belongs to the family of facility location problems which have a rich history in the

discrete and combinatorial optimization literature, see, e.g., [3]. Here, a set of users i ∈ I with

demands Ui > 0 are to be assigned to a set of facilities j ∈ J with capacities Cj > 0. The quantity

Pi,j ∈ (0, 1) denotes a discounting factor for each edge from i to j. The goal of model (1) is to select

B ≤ |J | facilities that minimize the quantity given in the objective function (1a) while ensuring

the capacities of the selected facilities are not exceeded and each user is assigned to exactly one

facility. The constraints (1b)-(1i) enforce these restrictions. Here, the binary decision variables in

constraints (1h) and (1i) represent whether j is selected and whether i is assigned to j, respectively.

Constraint (1f) ensures that j is selected if any i is assigned to it, while if j is not selected then

no i is assigned to it. Each i is assigned to exactly one j (represented by constraint (1e)), at most

B facilities are selected (represented by constraint (1d)) and the capacities of any facility are not

exceeded (represented by constraint (1c)). The decision variable u is an auxiliary variable, defined

by constraints (1b) and (1g), that is directly computed from the decision variables x and y. As such,

it can be removed from the optimization model (1) by substituting its definition in the objective

function (1a); however, we include it for reasons we explain later.

The aim of this work is to present an analytical lower bound for model (1). By an analytical

bound, we mean a lower bound that is expressed explicitly in terms of algebraic functions alone,

or a formula, that does not require a numerical computation. We solve no additional optimization

models to compute this bound. Such bounds are hard to obtain, even for highly-structured opti-

2

mization models and even for linear programming models. However, when available, an analytical

bound — whether lower or upper — for an optimization problem presents several advantages over

a bound computed by an iterative procedure even though the former is expected to be weaker.

The foremost of these is that it does not even require the generation of a mathematical model.

As such, the bound is not constrained by limitations of computational memory. This is the key

motivation for this work as model (1) is computationally difficult to generate for large datasets [9].

Another advantage is that the bound is, naturally, deterministic and thus predictable as opposed to

a randomized bound. Next, an analytical bound is easily introducible into numerical optimization

solvers to warm-start a branch-and-bound tree; this has shown computational value for quadratic

optimization models that are non-convex, such as ours, even when the warm-start is poor [2].

Similarly, such a bound could serve as the starting point for procedures that iteratively tighten

lower bounds such as those from a convex underestimation, see, e.g., [1]. An analytical bound

may further help in proving optimality, or determining deterministic optimality gaps, when a cor-

responding bound is also available from another mechanism, such as a numerical algorithm or a

heuristic; and, our work is in this spirit. Finally, an analytical bound presents several insights into

the structural properties of an optimization model which are not visible from its numerical analysis.

These structural properties could then assist in developing tailored solution methods particularly

for computationally challenging problems.

Lower bounds on minimization problem, such as model (1), are obtainable by solving its linear

relaxation or a Lagrangian relaxation of its constraints. For example, relaxing constraint (1d)

introduces just a single dual variable which can then be solved by a standard subgradient method.

For such bounds of a quadratic optimization model, see, e.g., [1, 6]. However, for models that are

difficult to generate, the corresponding relaxation might be difficult to generate as well; indeed,

our previous work we find this to be the case for model (1), see [9]. Similar memory limitations

have been reported before in the context of facility location problems, see, e.g., [5, 8]. We further

mention that employing the Polyak step-size rule within the subgradient method [10] — one of the

most common ways to update the step-size parameter when solving the Lagrangian relaxation —

rests on the availability of a lower bound as well [7]. An analytical bound, such as that we propose,

is then employable here as well.

The structure of the rest of this article is as follows. In Section 2, we present our analytical lower

3

bound via Theorem 1. The proof of this theorem rests on two lemmas that we also state in this

section. In Section 3, we provide a greedy heuristic to achieve a fast feasible solution for model (1).

Although there is merit in its own right for the heuristic as demonstrated by our computational

experiments, the primary purpose of this heuristic is to compute a conservative optimality gap

for our bound from Section 2; we provide these numerical results in Section 4. We conclude in

Section 5.

2. An Analytical Lower Bound

In this section, we present an analytic lower bound for model (1) that does not require the

numerical solution of any optimization model; Theorem 1 states this result. To this end, consider

the following optimization model whose structural properties we exploit in the proof of Theorem 1.

z∗
P F = min

x,y,u

∑
j∈J

Cj
(
1− uj

)2 (2a)

s.t. uj =
∑

i∈I UiP̄ixi,j

Cj
∀j ∈ J (2b)

∑
i∈I

UiP̄ixi,j ≤ Cj ∀j ∈ J (2c)

∑
j∈J

yj ≤ B (2d)

∑
j∈J

xi,j = 1 ∀i ∈ I (2e)

yj ≥ xi,j ∀i ∈ I, j ∈ J (2f)

uj ∈ [0, 1] ∀j ∈ J. (2g)

yj ∈ {0, 1} ∀j ∈ J (2h)

xi,j ∈ [0, 1] ∀i ∈ I, j ∈ J. (2i)

Model (2) differs from model (1) on only two grounds: (i) the discounting factor P̄i is inde-

pendent of j in model (2), and (ii) the binary restriction on the decision variable x in model (1)

is replaced with its continuous relaxation in model (2). In [9], model (2) is used to study the

so-called notion of proportional fairness which, although not relevant to this work, provides insight

4

into the structural properties of model (2). The following lemma states the pertinent results for

proportional fairness for our work.

Lemma 1. Assume that the set Ī = {i ∈ I, i : P̄i > 0, Ci > 0} is non-empty and that model (2) is

feasible. Consider an optimal solution, (x, y, u), of model (2) with JO = {j ∈ J : yj = 1}. Then,

uj = uj′ > 0, ∀j, j′ ∈ JO.

Proof. From the hypothesis, there exists at least one i with strictly positive values for Ui and Pi.

Then, from equation (2b) and equation (2e), we have at least one j∗ ∈ J that is selected and has

uj∗ > 0; i.e., |JO| > 0. Then, from Theorem 2 of [9] the utilization of all selected j are equal to

uj∗ . The result follows.

Additional to Lemma 1, we need the following lemma for the proof of Theorem 1.

Lemma 2. Let P̄i = maxj∈J Pi,j ,∀i ∈ I. Let

z∗
1 = min

x,y,u

∑
j∈J

Cj
(
1− uj

)2
, s.t.

(
(1b)− (1i) ∩

{ ∑
i∈I

UiP̄i ≤
∑
j∈J

yjCj
})

(3)

and

z∗
P F = min

x,y,u

∑
j∈J

Cj
(
1− uj

)2
, s.t.

(
(2b)− (2i)

)
. (4)

Then, z∗
1 ≥ z∗

P F .

Proof. Let (x∗, y∗, u∗) be an optimal solution of model (3). We show that there exists a feasible

solution (x, y, u) for model (2), where P̄i = maxj∈J Pi,j ,∀i ∈ I, with uj ≥ u∗
j ,∀j ∈ J . We first note

that a feasible solution for the decision variables u always exists given a feasible solution for the

decision variables x and y variables, since u is an auxiliary variable (i.e., directly computed from

the x and y variables).

Let JO = {j ∈ J : y∗
j = 1} denote the set of selected facilities, Ij = {i ∈ I : x∗

i,j = 1},∀j ∈ J

denote the set of users that are assigned to facility j, and ji denote the facility that user i is

assigned to. Then, P̄i ≥ Pi,ji , ∀i ∈ I and from equation (1e) ∑
j∈J Pi,jx∗

i,j = Pi,ji ; i.e., ji is the

facility j corresponding to x∗
i,j = 1. We distinguish two cases below: (i) Pi,ji = P̄i,∀i ∈ I and (ii)

∃i ∈ I : P̄i > Pi,ji .

(i) First, we show that (x, y)← (x∗, y∗) is a feasible solution for model (2).

5

• (x, y) satisfy constraints (2c):

for j ∈ J , we have ∑
i∈I UiP̄ixi,j =∑

i∈I

UiPi,jix
∗
i,j =

∑
i∈Ij

UiPi,ji =
∑
i∈Ij

UiPi,j =
∑
i∈I

UiPi,jx∗
i,j ≤ Cj . (5)

The first equality holds from the hypothesis and from the construction of (x, y), while

the second and fourth equality follows from the definition of Ij . The third equality holds

from the fact that ji = j,∀i ∈ Ij , while the last inequality follows from equation (1c).

• (x, y) satisfy constraints (2b), (2d)-(2i):

Constraint (2b) holds by definition, constraint (2g) follows from equation (2c) proven

above, while the five constraints (2d)-(2f), (2h) and (2i) follow from the hypothesis and

equations (1d)-(1h), respectively.

Next, we show that uj ≥ u∗
j , ∀j ∈ J . For j ∈ J , we have uj =∑

i∈I UiP̄ixi,j

Cj
=

∑
i∈I UiPi,jix

∗
i,j

Cj
=

∑
i∈I UiPi,jx∗

i,j

Cj
= u∗

j .

The first and fourth equalities hold from constraints (2b) and (1b), respectively, the second

equality follows from the hypothesis and the construction of x, and the third equality holds

by the definition of ji.

(ii) For this case, let Rj = y∗
j · (Cj−

∑
i∈Ij

UiPi,j) ≥ 0, ∀j ∈ J denote the surplus capacity for each

facility; in particular, if j is not selected, then Rj = 0. Then, it follows from the hypothesis

that

0 <
∑
i∈I

UiP̄i −
∑
i∈I

UiPi,ji (6a)

≤
∑
j∈J

y∗
j Cj −

∑
i∈I

UiPi,ji (6b)

=
∑
j∈J

y∗
j Cj −

∑
i∈I,j∈J

UiPi,jx∗
i,j (6c)

=
∑
j∈J

y∗
j Cj −

∑
j∈J,i∈Ij

UiPi,j (6d)

=
∑
j∈J

y∗
j

(
Cj −

∑
i∈Ij

UiPi,j
)

(6e)

=
∑
j∈J

Rj . (6f)

6

The first inequality holds from P̄i ≤ Pi,ji ,∀i ∈ I and the hypothesis that this inequality is

strict for at least one i ∈ I. The second inequality holds as y∗ is feasible for model (3). The

first, second, and fourth equalities hold from the definition of ji, Ij , and Rj , respectively, while

the third equality follows from equation (1f) and equation (1h).

Next, we construct a solution (x, y) of model (2) as follows:

xi,j ←
Pi,j

P̄i
x∗

i,j + Rj∑
j∈J Rj

· UiP̄i − UiPi,ji

UiP̄i
, ∀i ∈ I, j ∈ J (7a)

yj ← y∗
j , ∀j ∈ J. (7b)

Now, we show that (x, y) is feasible for model (2).

• (x, y) satisfy constraints (2b):

This follows by definition.

• (x, y) satisfy constraints (2c):

for j ∈ J , we have ∑
i∈I UiP̄ixi,j =

∑
i∈I

UiP̄i
(Pi,j

P̄i
x∗

i,j + Rj∑
j∈J Rj

· UiP̄i − UiPi,ji

UiP̄i

)
(8a)

=
∑
i∈Ij

UiPi,j + Rj∑
j∈J Rj

∑
i∈I

(
UiP̄i − UiPi,ji

)
(8b)

≤
∑
i∈Ij

UiPi,j +
∑

i∈I UiP̄i −
∑

i∈I UiPi,ji∑
i∈I UiP̄i −

∑
i∈I UiPi,ji

Rj (8c)

=
∑
i∈Ij

UiPi,j + Rj (8d)

≤
∑
i∈Ij

UiPi,j + Cj −
∑
i∈Ij

UiPi,j (8e)

=Cj . (8f)

Equation (8a) holds from construction (7a), while equation (8b) follows from the defini-

tion of Ij . Equation (8c) holds from equation (6), while equation (8e) follows from the

definition of Rj .

• (x, y) satisfy constraints (2d):

This follows from construction (7b).

7

• (x, y) satisfy constraints (2e):

for i ∈ I, we have ∑
j∈J xi,j =

∑
j∈J

(Pi,j

P̄i
x∗

i,j + Rj∑
j∈J Rj

· UiP̄i − UiPi,ji

UiP̄i

)
(9a)

=Pi,ji

P̄i
+ UiP̄i − UiPi,ji

UiP̄i
·

∑
j∈J

Rj∑
j∈J Rj

(9b)

=Pi,ji

P̄i
+

(
1− Pi,ji

P̄i

)
·

∑
j∈J Rj∑
j∈J Rj

(9c)

=1. (9d)

Equation (9a) holds from construction (7a), equation (9b) follows from the definition of

ji, while equations (9c) and (9d) follow from algebra.

• (x, y) satisfy constraints (2f):

We distinguish two cases: (a) j ∈ JO and (b) j ∈ J \ JO.

(a) For i ∈ I, we have xi,j =

Pi,j

P̄i
x∗

i,j+ Rj∑
j∈J Rj

·UiP̄i − UiPi,ji

UiP̄i
≤ Pi,j

P̄i
x∗

i,j+
(
1−Pi,ji

P̄i

)
≤ Pi,ji

P̄i
+

(
1−Pi,ji

P̄i

)
= 1 = y∗

j = yj .

The first equality holds from construction (7a), the first inequality follows from

algebra, the second inequality uses the definition of ji, the second equality follows

from algebra, while the last two equalities follow from j ∈ JO and construction (7b),

respectively.

(b) We have y∗
j = 0,∀j ∈ J \ JO; thus, x∗

i,j = Rj = 0, ∀j ∈ J \ JO, i ∈ I. Hence, for

i ∈ I, we have xi,j =

Pi,j

P̄i
x∗

i,j + Rj∑
j∈J Rj

· UiP̄i − UiPi,ji

UiP̄i
= 0 = y∗

j = yj .

The first equality holds from construction (7a), the second equality follows from

algebra, the third equality holds from construction, while the last equality follows

from construction (7b).

• (x, y) satisfy constraints (2g):

This follows from constraint (2c) proven above.

• (x, y) satisfy constraints (2h):

This follows from construction (7b).

8

• (x, y) satisfy constraints (2i):

This follows from construction (7a), P̄i ≥ Pi,ji ,∀i ∈ I, and Rj ≥ 0,∀j ∈ J .

Next, we show that uj ≥ u∗
j , ∀j ∈ J . For j ∈ J , we have uj =

∑
i∈I UiP̄ixi,j

Cj
=

∑
i∈I UiP̄i

(Pi,j

P̄i
x∗

i,j + Rj∑
j∈J

Rj
· UiP̄i−UiPi,ji

UiP̄i

)
Cj

≥
∑

i∈I UiPi,jx∗
i,j

Cj
= u∗

j .

The first equality follows from equation (2b), the second equality holds from construction (7a),

the last equality follows from equation (1b), while the inequality follows from Rj ≥ 0, ∀j ∈ J

and P̄i ≥ Pi,ji , ∀i ∈ I.

Thus, uj ≥ u∗
j , ∀j ∈ J , and (x, y) is feasible to model (2). Since Cj > 0, ∀j ∈ J , it follows that:

z∗
1 =

∑
j∈J

Cj(1− u∗
j)2 ≥

∑
j∈J

Cj(1− uj)2 = z∗
P F .

We are now ready to present our key result.

Theorem 1. Let P̄i = maxj∈J Pi,j ,∀i ∈ I. Let JL denote the set of B facilities with the largest

values of Cj. Assume models (1) and model (2) are feasible. Let z∗ denote the optimal objective

function value for model (1), z∗
1 = ∑

j∈J Cj +
(∑

i∈I
UiP̄i

)2∑
j∈JL

Cj
− 2 ∑

i∈I UiP̄i, and z∗
2 = ∑

j∈J Cj −∑
i∈I UiP̄i. Then, z∗ = min{z1, z2} ≤ z∗.

Proof. Consider the two optimization models

z∗
1 = min

x,y,u

∑
j∈J

Cj
(
1− uj

)2
, s.t.

(
(1b)− (1i) ∩

{ ∑
i∈I

UiP̄i ≤
∑
j∈J

yjCj
})

, (10)

and

z∗
2 = min

x,y,u

∑
j∈J

Cj
(
1− uj

)2
, s.t.

(
(1b)− (1i) ∩

{ ∑
i∈I

UiP̄i >
∑
j∈J

yjCj
})

. (11)

Since model (1) is feasible by the hypothesis, exactly one of model (10) or model (11) is also

feasible; let +∞ be the optimal objective function value of either model if it is infeasible. Then,

we have z∗ = min{z∗
1 , z∗

2}. Hence, it suffices to show (i) z∗
1 ≥ z∗

1 and (ii) z∗
2 ≥ z∗

2 . To do so, we

distinguish the two exclusive cases below.

9

(i) Consider the first case; i.e., model (10) is feasible. Then, it follows from Lemma 2 that

z∗
1 ≥ z∗

P F . Thus, to prove z∗
1 ≥ z∗

1 it suffices to show z∗
P F ≥ z∗

1 .

Since model (2) is feasible by the hypothesis, an optimal solution to it exists. Let (x, y, u)

denote an optimal solution to model (2), JO = {j ∈ J : yj = 1} denote the set of selected

facilities, aj = ∑
i∈I UiP̄ixi,j , ∀j ∈ J for this optimal solution, and ū = aj

Cj
. Then, we have

∑
j∈JO

aj =
∑

j∈JO

∑
i∈I

UiP̄ixi,j =
∑
i∈I

UiP̄i

∑
j∈J

xi,j =
∑
i∈I

UiP̄i, (12)

where the first equality holds by definition, the second equality follows follow from equa-

tions (2f), and third equality follows from equation (2e). From Lemma 1, we have ū = aj

Cj
>

0,∀j ∈ JO. This implies ū
∑

j∈JO
Cj = ∑

j∈JO
aj = ∑

i∈I UiP̄i; i.e., u =
∑

i∈I
UiP̄i∑

j∈JO
Cj

. The

objective function value of model (2) corresponding to this feasible solution is as follows.

z∗
P F =

∑
j∈J

Cj
(
1− uj

)2 (13a)

=
∑

j∈JO

Cj

(
1−

∑
i∈I UiP̄i∑
j∈JO

Cj

)2
+

∑
j∈J\JO

Cj(1− 0)2 (13b)

=
∑

j∈JO

(
Cj + Cj ·

(∑i∈I UiP̄i)2

(∑j∈JO
Cj)2 − 2Cj ·

∑
i∈I UiP̄i∑
j∈JO

Cj

)
+

∑
j∈J\JO

Cj(1− 0)2 (13c)

=
∑

j∈JO

Cj +
(∑

i∈I UiP̄i
)2∑

j∈JO
Cj

− 2
∑
i∈I

UiP̄i +
∑

j∈J\JO

Cj (13d)

=
∑
j∈J

Cj +
(∑

i∈I UiP̄i
)2∑

j∈JO
Cj

− 2
∑
i∈I

UiP̄i (13e)

Equation (13e) contains only data except the set JO. Thus, it is minimized when JO is the

set of the B largest facilities; i.e., JO = JL. Then, z∗
P F ≥ z∗

1 follows.

(ii) Consider the second case; i.e., model (11) is feasible. Again, let JO = {j ∈ J : yj = 1} denote

the set of selected facilities. Then, from the hypothesis that ∑
i∈I UiP̄i >

∑
j∈J yjCj =∑

j∈JO
Cj it follows that:

∑
j∈J\JO

Cj =
∑
j∈J

Cj −
∑

j∈JO

Cj >
∑
j∈J

Cj −
∑
i∈I

UiP̄i. (14)

10

Now, consider the objective function value of model (11). We obtain a lower bound for z∗
2 as

follows.

z∗
2 ≥

∑
j∈JO

Cj(1− 1)2 +
∑

j∈J\JO

Cj(1− 0)2 (15a)

=
∑

j∈J\JO

Cj (15b)

>
∑
j∈J

Cj −
∑
i∈I

UiP̄i (15c)

= z∗
2 . (15d)

Here, the inequality equation (15a) follows from the fact that the terms in the objective func-

tion of model (11) decrease by increasing the u values. From constraint (1g), the maximum

value of u for any selected facility j is 1. Thus, we set uj = 1, ∀j ∈ JO and uj = 0 otherwise.

Equation (15b) holds directly, equation (15c) follows from equation (14), while equation (15d)

follows by definition. Thus, z∗
2 ≥ z∗

2 .

This completes the proof.

Theorem 1 provides a very easy way to calculate a lower bound for model (2). The only as-

sumptions we employ for the proof of Theorem 1 are feasibility of model (1) and (2). Feasibility of

model (1) is natural to assume as we seek its own lower bound and it is a minimization problem.

Feasibility of model (2) is a relatively mild assumption which is satisfied given large enough capac-

ities of the facilities; note that model (2) does not include binary restrictions on the x variables.

Finally, we mention that our proof does not employ the convexity of the objective function (1a)

and neither the unimodular structure of constraints (1e)-(1f).

The bound in Theorem 1 is given by the minimum of the lower bounds of two related optimiza-

tion models, namely model (10) and model (11). By construction, only one of these two models

is feasible. We do not require a solution of either optimization model. Given sufficient capacity,

model (10) is feasible and then the first term, z1, provides the lower bound. When capacity is

insufficient, the second term, z2, provides the lower bound. Here, this second case improves upon

relatively trivial bounds when model (10) is infeasible. An example of such a trivial, but analytical,

lower bound is ∑
j∈J Cj which is obtained by simply setting all the u variables to 0. This bound is

improved by instead selecting the the B largest facilities and setting their corresponding u variables

11

to 1; this provides a better analytical lower bound, although again trivial, of ∑
j∈J\JL

Cj . The term,

z2, improves this trivial bound; while, the term z1 improves this further when sufficient capacity

is assured. Both these terms coincide with the trivial bound when ∑
i∈I UiP̄i = ∑

j∈JL
Cj ; note

that this condition can be verified before the optimization. We summarize this discussion in the

corollary below.

Corollary 1. In Theorem 1, let
∑

i∈I UiP̄i = ∑
j∈JL

Cj. Then, z∗ = z1 = z2 = ∑
j∈J\JL

Cj.

Proof. The proof follows from the first case of Theorem 1.

The simple nature of the bound we present in Theorem 1 is motivated by models that are

difficult to generate when populated by large instances. As such, we do not consider bounds based

on a linear programming relaxation or solving a Lagrangian dual since they both require the solution

(and, hence, generation) of the underlying optimization model. For such bounds of a quadratic

optimization model, see, e.g., [1, 6]. However, a natural question is the effectiveness of such a

bound particularly in light of its highly simple nature. We answer this question by constructing

a corresponding upper bound given by a feasible solution to model (1); the presence of an upper

bound additionally allows us to compute an optimality gap. We develop this upper bound using a

fast heuristic that we describe next.

3. A Fast Greedy Upper Bound

Generating model (1) requires large amounts of memory. As we demonstrate in Section 4, we are

unable to generate instances beyond |I| ≈ 1, 200 and |J | ≈ 700 naively. Hence, our previous work

employs a number of techniques to reduce the size of model (1), see [9]. In this section, we present

an algorithm that provides high-quality feasible solutions for model (1). These feasible solutions

provide upper bounds for model (1). In the same spirit as Section 2, the foremost advantage

of our algorithm is that it does not require the generation of any optimization model. Further,

the algorithm includes a heuristic that is greedy, and, as we demonstrate later in this work, the

computational effort is significantly lesser than that of a naive solution method. We introduce our

algorithm below.

Solving model (1) involves two steps. In the first step, we solve a combinatorial problem to

select a subset of facilities; this step determines the y variables. In the second step, we solve an

12

assignment problem that allocates, subject to capacity restrictions, users to the selected facilities;

this determines the x variables. This observation motivates a straightforward greedy heuristic

where we solve both these steps heuristically. For a survey of heuristics for pure FLPs, see, e.g., [4].

Algorithm 1 presents our greedy algorithm that we summarize below.

The algorithm takes as input a lower bound, z, for model (1). Such a bound comes from any

procedure, and not necessarily the one we present in Section 2. We begin by selecting a set of B

facilities with the largest capacities. To compute the assignments, we first determine the “most

preferred facility” for each user; this is the most accessible facility among those that are selected

and have sufficient capacity to accommodate this user. Step 7 of Algorithm 1 computes this.

Assigning all users to their most preferred facility, j′, could result in exceedance of the capacity

of the corresponding facility, hence we conduct the assignments iteratively up to the limit. To

this end, we assign users in decreasing rank of their preferences to j′ while iteratively reducing the

capacities. We continue until the capacity of j′ is exhausted, and repeat this assignment process

until all the users are assigned, thereby completing both phases of our proposed algorithm. This

provides a feasible solution and a corresponding upper bound for model (1), plus a gap from the

input lower bound z.

Next, we improve this upper bound. We store the best objective function value and the corre-

sponding (x, y) variables in Step 19. We repeat the process by selecting a new set of facilities in

the first phase. We do so by swapping the K < B selected facilities that have the lowest utilization

in the current solution with the K facilities that have the largest overall access among those that

are not yet selected. We make this swap clear in Steps 24 - 27 of Algorithm 1. We terminate

the algorithm when one of three conditions is reached: (i) the algorithm stalls and there is no

improvement in the best objective function values in N iterations, (ii) the time limit T is reached,

or (iii) the gap between the z and the best objective function values is lesser than an optimality

tolerance, ε. In all three cases, Algorithm 1 reports the best feasible solution and its corresponding

upper bound, the gap from the input lower bound, and the runtime.

Model (1) is infeasible if there is insufficient capacity to accommodate all the users. A sufficient

condition to ensure feasibility is ∑
i∈I Ui maxj∈J Pi,j ≤

∑
j∈J Cj ; similarly, a sufficient condition

to guarantee that model (1) is infeasible is ∑
i∈I Ui minj∈J Pi,j >

∑
j∈J Cj . However, the greedily

computed assignments in Algorithm 1 can fail to determine a feasible solution even if the capacities

13

of the selected facilities are sufficiently large. This can happen if, e.g., larger facilities are exhausted

in the earlier iterations. In this case, we ignore this assignment and proceed to the next iteration;

we do this in Step 11 of Algorithm 1.

14

Algorithm 1 A heuristic for greedy assignments of users to facilities
Input: an instance of model (1); a lower bound, z, for the instance of model (1); an integer K < B; T ; ε ≥ 0;

an integer N > 0; a procedure J̃ ← sort (m, j ∈ J, Aj) that outputs the indices of the decreasingly

sorted m largest values of the set Aj .

Output: a feasible solution, (x, y, u), of the input instance; an upper bound for the instance of model (1),

z̄; optimality gap, δ, of z̄ from z.

1: JB ← sort (B, j ∈ J, Cj); n← 0; h← FALSE.

2: while time ≤ T

3: Rj ← Cj , Ij ← ∅,∀j ∈ JB ; IA ← I.

4: while IA ̸= ∅

5: Mj ← ∅,∀j ∈ JB .

6: for i ∈ IA

7: j′ ← arg max{j∈JB :UiPi,j≤Rj}{Pi,j}.

8: Mj′ ←Mj′ ∪ {i}.

9: if Mj = ∅,∀j ∈ JB

10: n← n + 1.

11: go to Step 22.

12: for j ∈ JB : Mj ̸= ∅

13: IM ← sort (|Mj |, i ∈Mj , Pi,j).

14: for i ∈ IM

15: if Rj − UiPi,j ≥ 0

16: Rj ← Rj − UiPi,j ; IA ← IA \ {i}; Ij ← Ij ∪ {i}.

17: uj ←
∑

i∈I
UiPi,jxi,j

Cj
,∀j ∈ J ; h← TRUE.

18: if
∑

j∈J Cj(1− uj)2 < z̄

19: xi,j ← 1,∀i ∈ Ij , j ∈ JB , else xi,j ← 0; yj ← 1,∀j ∈ JB , else yj ← 0; z̄ ←
∑

j∈J Cj(1 − uj)2;

δ = z̄−z
z̄ .

20: else

21: n← n + 1.

22: if n = N or δ < ε

23: go to Step 29

24: JK ← sort (K, j ∈ JB ,−uj)

25: JB ← JB \ JK ; IA ← IA ∪ Ij ,∀j ∈ JK .

26: Qj ←
∑

i∈IA
UiPi,j ,∀j ∈ J \ JB .

27: JB ← JB∪ sort (K, j ∈ J \ JB , Qj).

28: Update time to the cumulative wall-clock time.

29: if h = TRUE

30: Return: x, y, u, z̄, δ, time.

31: else

32: Return: “No feasible solution constructed”.

15

4. Numerical Results

In this section, we perform numerical evaluations for the lower and upper bounds of Section 2

and Section 3, respectively. We carry out all computational experiments on two high performance

computing clusters with Intel Xeon E5-2643 v4 processors with 256 GB of RAM, Pyomo version

6.1.2 and Gurobi version 9.1.2; this setup is the same as in [9]. We create a pool of random instances

for our experiments for different values of |I| and |J |, and solve all instances with B = 0.7|J |. For

reference, the original work has |I| = 2,060 and |J | = 1, 394. The rest of our data is the same as

in [9]. We use a maximum time limit of T= 20,000 seconds for our experiments, and set the input

parameters K and N of Algorithm 1 to 0.98|B| and 20, respectively.

Table 1 presents our results. The first row includes 10% of the original number of |I| and |J |,

and the remaining rows contain progressively 10% more |I| and |J | values. For comparison, we solve

model (1) naively; i.e., without any of the computational enhancements suggested in [9]. Instances

with at least 60% of the original |I| and |J | values could not be generated by a naive solution

method; i.e., beyond 1,236 users and 836 facilities. Thus, five out of the ten instances could not

even be generated by the naive solution method.

In Table 1, the “Gap” columns denote the respective optimality gaps; here, the “Naive” gap

denotes the MIP gap reported by Gurobi, and the “Algorithm” gap denotes the gap between the

best solution of Algorithm 1 and Theorem 1. Thus, the “Algorithm” gap provides a provable

optimality guarantee for Algorithm 1. To further test the performance of Algorithm 1, we compare

its best solution with that reported by the naive solution method. The “Guarantee” column provides

the gap between these two quantities. A comparison of these two guarantees demonstrates that

Algorithm 1 achieves results that are at most 6% away from the optimal. The analytical bounds by

Theorem 1 demonstrate a provable optimality guarantee of at most 11%; note that this guarantee is

conservative. On average, Algorithm 1 with Theorem 1 provides a provable optimality gap of 9.8%.

These results demonstrate that Algorithm 1 is well-suited for cases where computing a solution

directly is computationally expensive. The naive solution method could only solve a single instance

to optimality within this time limit.

For the “Time”, “Overall access” and “CVw” columns in Table 1, ∆ denotes the relative im-

provement of Algorithm 1 as compared to the naive solution method. As evidenced by the “Time”

columns, the computational effort required by Algorithm 1 is minimal. Algorithm 1 solves the

16

largest instance to an under 10% provably-optimal gap in less than a minute, however the naive

solution method is unable to even generate the instance in 20,000 seconds. This again demonstrates

that Algorithm 1 is well-suited for cases where computing a solution directly is computationally

expensive. The naive solution method could only solve a single instance to optimality within the

time limit.

To measure the quality of a feasible solution, we use two metrics. For the users, i ∈ I, we

define the overall access as 100
∑

j∈J

∑
i∈I

UiPi,jxi,j∑
i

Ui
. For the facilities, j ∈ J , we define the weighted

coefficient of variation, CVw =
√

V arw(u)
ūw

; here, ūw =
∑

j∈JO
Cjuj∑

j∈JO
Cj

and V arw(u) =
∑

j∈JO
Cj(uj−ūw)2∑

j∈JO
Cj

are the weighted average and weighted variance of the utilization of open facilities, respectively,

and JO = {j ∈ J : yj = 1} is the set of open facilities in a feasible solution. For a rationale

of these metrics, see [9]. Then, as our results in Table 1 inform, the overall access achieved by

Algorithm 1 slightly exceeds that obtained by the naive solution method for the five instances that

can be generated. However, this increased access comes at a price of suboptimality measured by a

reduction in proportional fairness. The CVw, see the last three columns of Table 1, is about 40%

more for the solutions of Algorithm 1 than those by the naive solution method. We mention again

that our numbers are conservative underestimates since model (1) is not solved to optimality.

17

Instance Gap [%] Time [s] Overall access [%] CVw [%]

|I| |J | Naive Algorithm Guarantee Naive Algorithm ∆ Naive Algorithm ∆ Naive Algorithm ∆

206 139 7.5 1.7 25.2 0.7 97.1% 64.3 64.6 0.5% 22.7 31.9 -40.3%

412 279 1.9 8.3 4.1 T 1.9 100.0% 63.2 63.3 0.1% 22.2 31.3 -41.4%

618 418 3.1 10.8 5.7 T 3.9 100.0% 60.6 60.8 0.3% 22.6 32.7 -44.7%

824 558 3.5 10.7 5.6 T 6.3 100.0% 61.6 61.7 0.1% 23.5 31.8 -35.5%

1,030 697 3.6 11.0 5.9 T 9.9 100.0% 59.0 59.1 0.1% 24.4 33.3 -36.6%

1,236 836 - 9.6 - ∞ 14.2 - - 61.5 - - 32.1 -

1,442 976 - 10.1 - ∞ 19.2 - - 59.6 - - 32.7 -

1,648 1,115 - 10.7 - ∞ 25.8 - - 59.5 - - 34.1 -

1,854 1,255 - 9.7 - ∞ 31.2 - - 59.8 - - 32.9 -

2,060 1,394 - 9.6 - ∞ 39.2 - - 60.3 - - 33.9 -

Table 1: Comparison of the computational performance of Algorithm 1 (“Algorithm”) and the naive solu-

tion method (“Naive”) for model (1). The “∆” columns denote the relative difference between Naive and

Algorithm. The ∆ values in the “Overall access” and “CVw" columns are calculated corresponding to the

best feasible solution from the naive solution method; here, a positive ∆ suggests Algorithm 1 provides an

improvement over the naive solution method. The “Gap" columns provide the MIP gap reported by Gurobi

for the naive solution method and the the gap reported by Algorithm 1, respectively, while the “Guarantee”

column denotes the conservative gap between the upper bound reported by Algorithm 1 and the lower bound

reported by the naive method. A blank denotes the instance is solved to optimality, while “-" denotes the

instance could not be constructed naively due to a lack of memory. Entries marked with “T" in the “Time"

columns denote the maximum time limit is reached. For details, see Section 4.

5. Conclusions

Motivated by a recently proposed facility location problem with a quadratic objective function

that is computationally challenging to solve, we propose a heuristic that provides an upper bound

as well as derive a theoretical lower bound. Specifically, we are interested in bounds since the

model is computationally difficult to generate even without proceeding to a solution method. Both

of our bounds are obtained without requiring the solution of any optimization model. Computing

lower bounds for a minimization problem are important for the convergence of a branching-based

algorithm. However, while upper bounds are available relatively easily from feasible solutions,

good quality lower bounds are harder to obtain. Analytical bounds are rarely available for any

mathematical optimization models. However, the analytical nature of the lower bound we present

18

makes it simple to evaluate; computational results demonstrate its merit despite this simplicity.

The upper bound is a simple greedy heuristic that employs a lower bound as input to determine

an optimality gap; again, our numerical results demonstrate significant savings in computational

effort. Future work could determine improved lower and upper bounds by studying whether the

proposed model is submodular. Another direction of work is the development of such analytical

lower bounds for the generalized quadratic facility location problem.

Declarations of interest: none.

Acknowledgements

The authors gratefully acknowledge the compute resources and support provided by the Erlan-

gen Regional Computing Center (RRZE).

References

[1] Bomze, I.M., Locatelli, M., Tardella, F., 2007. New and old bounds for standard quadratic optimization:

Dominance, equivalence and incomparability. Mathematical Programming 115, 31–64. doi:10.1007/

s10107-007-0138-0.

[2] Burer, S., Vandenbussche, D., 2006. A finite branch-and-bound algorithm for nonconvex quadratic

programming via semidefinite relaxations. Mathematical Programming 113, 259–282. doi:10.1007/

s10107-006-0080-6.

[3] Farahani, R.Z., Hekmatfar, M. (Eds.), 2009. Facility location: Concepts, models, algorithms and case

studies. Contributions to Management Science, Physica-Verlag Heidelberg, Heidelberg. doi:10.1007/

978-3-7908-2151-2.

[4] Jain, K., Mahdian, M., Saberi, A., 2002. A new greedy approach for facility location problems, in:

Proceedings of the 34th Annual ACM Symposium on the Theory of Computing, pp. 731–740. doi:10.

1145/509907.510012.

[5] Jena, S.D., Cordeau, J.F., Gendron, B., 2017. Lagrangian heuristics for large-scale dynamic facility

location with generalized modular capacities. INFORMS Journal on Computing 29, 388–404. doi:10.

1287/ijoc.2016.0738.

[6] Nowak, I., 1999. A new semidefinite programming bound for indefinite quadratic forms over a simplex.

Journal of Global Optimization 14, 357–364. doi:10.1023/A:1008315627883.

19

http://dx.doi.org/10.1007/s10107-007-0138-0
http://dx.doi.org/10.1007/s10107-007-0138-0
http://dx.doi.org/10.1007/s10107-006-0080-6
http://dx.doi.org/10.1007/s10107-006-0080-6
http://dx.doi.org/10.1007/978-3-7908-2151-2
http://dx.doi.org/10.1007/978-3-7908-2151-2
http://dx.doi.org/10.1145/509907.510012
http://dx.doi.org/10.1145/509907.510012
http://dx.doi.org/10.1287/ijoc.2016.0738
http://dx.doi.org/10.1287/ijoc.2016.0738
http://dx.doi.org/10.1023/A:1008315627883

[7] Polyak, B.T., 1987. Introduction to optimization. Translations Series in Mathematics and Engineering,

Optimization Software, New York.

[8] Risanger, S., Singh, B., Morton, D., Meyers, L.A., 2021. Selecting pharmacies for COVID-19 testing to

ensure access. Health Care Management Science 24, 330–338. doi:10.1007/s10729-020-09538-w.

[9] Schmitt, C., Singh, B., 2024. Quadratic optimization models for balancing preferential access and

fairness: Formulations and optimality conditions. INFORMS Journal on Computing doi:10.1287/

ijoc.2022.0308.

[10] Shor, N.Z., 1968. The rate of convergence of the generalized gradient descent method. Cybernetics and

Systems Analysis 4, 79–80. doi:10.1007/BF01073933.

20

http://dx.doi.org/10.1007/s10729-020-09538-w
http://dx.doi.org/10.1287/ijoc.2022.0308
http://dx.doi.org/10.1287/ijoc.2022.0308
http://dx.doi.org/10.1007/BF01073933

	Introduction
	An Analytical Lower Bound
	A Fast Greedy Upper Bound
	Numerical Results
	Conclusions

