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Abstract

This work considers the nonconvex, nonsmooth problem of minimizing a composite objective
of the form f(g(x))+h(x) where the inner mapping g is a smooth finite summation or expectation
amenable to variance reduction. In such settings, prox-linear methods can enjoy variance-reduced
speed-ups despite the existence of nonsmoothness. We provide a unified convergence theory
applicable to a wide range of common variance-reduced vector and Jacobian constructions. Our
theory (i) only requires operator norm bounds on Jacobians (whereas prior works used potentially
much larger Frobenius norms), (ii) provides state-of-the-art high probability guarantees, and (iii)
allows inexactness in proximal computations.

1 Introduction
In this work, we consider nonsmooth, nonconvex problems

min
x∈Rn

Φ(x) := f(g(x)) + h(x) (1.1)

where f : Rm → R and h : Rn → R are convex functions and g : Rn → Rm is a differentiable mapping.
Note that although f is convex and g is smooth, their composition may be neither convex nor
smooth. This “convex-composite” optimization model is surprisingly versatile. As two classic
example applications,

• Nonlinear Programming. Consider minimizing an objective function h(x) subject to
functional constraints g(l)(x) ≤ 0 for l = 1 . . . m. Then letting g(x) = [g(1)(x), . . . , g(m)(x)]
and f(z) be either an indicator function for the nonpositive orthant or an exact penalty
f(z) = ∑m

i=1 C max{zi, 0} for sufficiently large C, any such nonlinear program can be cast in
the form (1.1). Of particular interest here are settings where each constraint g(l)(x) takes the
form of a summation 1

N

∑N
j=1 g

(l)
j (x) as occurs across machine learning tasks.

• Nonlinear Equation Solving/Regression. Consider a solving system of equations 0 =
g(x) := Eξ∼Dgξ(x), given only oracles for sampling from D and first-order queries about
individual samples gξ(x). If one measures solution quality in some norm f(z) = ∥z∥, minimizing
solution error takes the form (1.1). Any additional regularization can be additional modeled
by h(x), for example, setting h(x) = ∥x∥1.

We focus on reducing the number of first-order queries needed to elements of the finite summations
gi or expectations gξ as occur above. Our approach is based on leveraging two well-studied tools in
first-order optimization, discussed briefly below: variance reduction and prox-linear methods. This
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combination was recently considered by Zhang and Xiao [1] and Tran-Dinh et al. [2], motivating our
work.
Variance Reduction. Throughout, we assume g : Rn → Rm is either a finite sum

g(x) = 1
N

N∑
j=1

gj(x) (1.2)

or, more generally, an expectation
g(x) = Eξ∼D[gξ(x)], (1.3)

and that oracles for evaluating components gξ(·) and their Jacobian’s g′
ξ(·) are given. Given samples

ξ ∼ D, these oracle evaluations provide unbiased estimates of g(·) and g′(·). Variance reduction
techniques enable the construction of lower variance estimators where a high accuracy (large batch)
estimate only needs to be computed every τ iterations. For the most classic style of update, due
to [1, 3], every τ steps would use estimators of the formg̃0 = 1

A

∑
ξ∈A0 gξ(x0)

g̃i = 1
a

∑
ξ∈Ai

(
gξ(xi)− gξ(x0)

)
+ g̃0 ∀i = 1, . . . , τ − 1

(1.4)

where the batches Ai can be much smaller than A0. When g is given by a finite summation (1.2),
g̃0 could be computed exactly. At the cost of additional Jacobian evaluations g′

ξ(·), further refined
schemes have been considered [1, 4]

g̃i = 1
a

∑
ξ∈Ai

(
gξ(xi)− gξ(x0)− g′

ξ(x0)(xi − x0)
)

+ g̃0 + J̃0(xi − x0) (1.5)

where J̃0 is an unbiased estimate of g′(x0). Methods specifically targeting root-finding were recently
given by [5] and generalizing to allow relative smoothness by [6]. See the survey [7] for more
historical context.
Prox-linear Methods. Note a fundamental difficulty in (1.1) is that the composition of a
convex function f with a smooth function g may be nonconvex. In contrast, the composition of a
convex function with a linear function always remains convex. This motivates replacing g(·) by its
linearization g(xk) + g′(xk)(· − xk). Repeatedly minimizing this relaxed convex problem, with an
added proximal term, is known as the “prox-linear method” [8–13]

x+ = argmin
y∈Rn

{
f
(
g(x) + g′(x)(y − x)

)
+ h(y) + M

2 ∥y − x∥22
}

(1.6)

given some proximal parameter M > 0. If the above argmin is only computed approximately,
perhaps via some first-order method for convex optimization using (sub)gradients of f , we refer to
this as an “inexact prox-linear method”.

This prox-linear step provides a generalized notion of stationarity for composite nonsmooth,
nonconvex problems. Denote the generalized gradient at some x by

GM (x) := M(x− x+) ∈ ∂
(
f(g(x) + g′(x)(· − x)) + h

)
(x+) (1.7)

where x+ is defined as the exact prox-linear step (1.6). The optimality condition defining x+ in (1.6)
ensures GM (x) ∈ ∂ (f(g(x) + g′(x)(· − x)) + h) (x+). By the sum and chain rules of subdifferential
calculus, there exists λ ∈ ∂f(g(x) + g′(x)(x+ − x)) and ζ ∈ ∂h(x+) such that GM (x) = g′(x)λ + ζ.
Hence if ∥GM (x)∥ ≤ ϵ, then together λ, g′(x), and ζ provide a small subgradient certifying stationarity
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where each of these differential objects is taken at points near x. See the survey [14] for more
historical context on prox-linear methods and similar approximate notions of stationarity.
Our Contributions. We analyze variance-reduced, prox-linear methods, iteratingg̃k, J̃k ← Variance Reduced Estimates of g(xk), g′(xk)

xk+1 ← Approximate Minimizer of f
(
g̃k + J̃k(x− xk)

)
+ h(x) + M

2 ∥x− xk∥22.
(1.8)

We provide a unified theory for the oracle complexity with respect to evaluations of the vector gξ(·)
and its Jacobian g′

ξ(·), for a range of variance-reduced approaches to constructing g̃k and J̃k. Our
main theorem (Theorem 3.1) offers three main advances:

• Operator Norm Assumptions. Our theory only relies on uniform bounds on the variation
of Jacobians in operator norm of the form

∥g′
ξ(x)− g′

ξ(y)∥op ≤ Lg∥x− y∥2, and ∥g′
ξ(x)− g′(x)∥op ≤ σg′ . (1.9)

Prior works have instead used the Frobenius norm (see related work discussion below). As
a result, the “constants” in prior works may be up to a dimension-dependent factor of√

min{n, m} times larger than those considered here.

• A Pareto Frontier of State-of-the-Art Guarantees. Our theory provides guarantees that
various prox-linear methods produce a (ϵ, ∆)-h.p. stationary point, meaning with probability
1−∆, some xk has ∥GM (xk)∥22 ≤ ϵ. Depending on the relative cost of evaluating gξ and g′

ξ

evaluations in (1.3) or the relative size of 1/ϵ and N in (1.2), the best-known method varies.
See the many state-of-the-art corollaries in Section 3.1.

• Accounting of Inexact Proximal Computations. Our theory allows for inexact prox-
linear steps. Section 3.2 provides guarantees including the cost of subroutines. For example,
guarantees follow for doubly stochastic problems where f is also defined as an expectation,
requiring inexact minimization.

Outline. The remainder of this section discusses related work. Section 2 provides preliminaries
and introduces the general algorithm considered. Section 3 states our unified convergence theorem
and applies it to produce state-of-the-art guarantees for several variance-reduction schemes. Finally,
Section 4 provides our technical analysis.

1.1 Related Work

The setting (1.1) was recently addressed by two works [1, 2]. A key insight was their identification
that prox-linear methods can benefit from variance reduction despite the existence of nonsmoothness.
Although both of these prior works are motivated by bounds on operator norms of Jacobians, their
proof techniques relied on uniformly bounding Jacobian matrices in the Frobenius norm1. Our

1Both prior works [1, 2] rely on matrix generalizations of mean-squared error bounding lemmas typical to the
analysis of methods with stochastic gradient vectors (see [15, Lemma 1] and [16, Lemma 2] for the essential vector
arguments being generalized). At their core, such lemmas rely on a classic bias-variance decomposition: given a space
E with inner product ⟨·, ·⟩, a random variable Xξ ∈ E and some fixed Y ∈ E , one has

Eξ∥Xξ − Y ∥2
⟨·,·⟩ = ∥Eξ[Xξ] − Y ∥2

⟨·,·⟩ + Eξ∥Xξ − Eξ′ [Xξ′ ]∥2
⟨·,·⟩

where ∥ · ∥⟨·,·⟩ denotes the norm associated with the given inner product. In the space of matrices, one could apply
this reasoning with the trace inner product to relate Frobenius norms. However, such relationships do not hold for
norms without an associated inner product (e.g., matrix operator norms), and so prior works, even if not denoted,
require the potentially larger Frobenius norm.
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analysis relies only on operator norm bounds, closing this theoretical gap and offering improvements
by dimension-dependent factors. To make formal comparisons, denote our “constants” from
(1.9) as (Lg,op, σg′,op) and their parallels using the Frobenius norm as by (Lg,Frob, σg′,Frob). Note
Lg,op ≤ Lg,Frob and σg′,op ≤ σg′,Frob.

When g is given by a finite summation (1.2), Corollaries 3.13-3.17 show stationary points can be
reached with high probability using at most O(N + N4/5 Lg,op

ϵ ) evaluations of gj and g′
j , improving

prior expectation guarantees of O(N + N4/5 Lg,Frob
ϵ ).

When g is given by an expectation (1.3), prior works assuming stronger Frobenius norm bounds
proved O(σ2

g′,Frob/ϵ3/2) evaluations of g′
ξ(x) suffice to reach expected stationarity. Corollaries 3.6-3.10

of our unified, operator norm-based, variance-reduced theory achieve high probability stationarity
guarantees of O(σ2

g′,op/ϵ5/3). For example, this yields an improvement whenever σg′,Frob
σg′,op

≥ 1/ϵ1/12.

2 Preliminaries

First, we briefly summarize our basic notations. Let O(·) and Θ(·) denote their standard asymptotic
notations, both w.r.t ϵ → 0 and N → ∞. In addition, we use Θ̃ instead of Θ to omit the
multiplicative logarithmic terms in ϵ. For any distribution D, we denote its support by supp(D).
Throughout, ∥ · ∥2 is the 2-norm on Euclidean space and ∥ · ∥op is the spectral norm of a matrix.
We use several notions of Lipschitz continuity: A vector-valued function φ : Rn → Rm is l-Lipschitz
if ∥φ(x)− φ(y)∥2 ≤ l∥x− y∥2 for any x, y ∈ Rn, a matrix-valued function φ : Rn → Rm1×m2 is L-
Lipschitz if ∥φ(x)−φ(y)∥op ≤ L∥x−y∥2 for any x, y ∈ Rn. For a convex function φ : Rn → R∪{+∞},
a vector v ∈ Rn is a subgradient of φ at x0 ∈ Rn if φ(x) ≥ φ(x0) + ⟨v, x− x0⟩ for all x ∈ Rn. The
subdifferential of φ at x0, defined as the set of all subgradients of φ at x0, is denoted by ∂φ(x0).
For M ≥ 0, a function φ(x) is M -strongly convex if φ(x)− M

2 ∥x∥
2
2 is convex.

Throughout, we assume the following conditions hold for f, g, h defining (1.1):

1. The function f : Rm → R is convex and lf -Lipschitz.

2. For any ξ ∈ supp(D), the function gξ : Rn → Rm is lg,ξ-Lipschitz, and its Jacobian g′
ξ : Rn →

Rm×n is Lg,ξ-Lipschitz. In addition, lg := supξ∈supp(D) lg,ξ and Lg := supξ∈supp(D) Lg,ξ are
both finite.

3. The function h : Rn → R ∪ {+∞} is closed, convex, and proper.

The second condition above is under the general expectation setting of (1.3). If g is in the special
finite average form of (1.2), then it only requires the existence of finitely many Lipschitz constants
{lg,j , Lg,j : j = 1, ..., N}. The Lipschitz conditions of f , gξ, and g′

ξ give the following pair of facts.

Proposition 2.1. The function g is lg-Lipschitz and g′ is Lg-Lipschitz.

Proposition 2.2. For any x, y ∈ Rn,∣∣∣f(g(x))− f
(
g(y) + g′(y)(x− y)

)∣∣∣ ≤ lf Lg

2 ∥x− y∥22.

2.1 A General Variance Reduced Prox-Linear Method

Algorithm 1 presents the general method our unified theory covers. This method proceeds via two
nested loops. As inputs, we require a total number of outer iterations to be run K and a number
of iterations for each inner loop τ0, ..., τK−1. A typical variance-reduced method may compute an
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exact or high-accuracy estimate of g(x) and g′(x) once per outer loop while using cheaper estimates
at each inner loop.

As useful notations, let Στ = ∑K−1
k=0 τk denote the total number of iterations. For K ∈ N+ and

τ ∈ NK
+ , we define the index set I(K, τ ) = {(k, i) ∈ N2 : 0 ≤ k ≤ K − 1, 0 ≤ i ≤ τk− 1}. So I(K, τ )

corresponds to all the inner iterations in Algorithm 1. Algorithm 1 then proceeds following the
general pattern of (1.8) with the (k, i)-th iteration consists of an estimation step and an optimization
step, using a predefined estimator and solver as described below.

Algorithm 1: Generalized Variance Reduced, Inexact Prox-Linear Method
Input: Initialization x0

0, M > 0, Iteration bounds K,τ = (τ0, ..., τK−1), an estimation
method estimator(x, i; θ), a solver solver(s, ϵ, δ).

1 for k = 0, ..., K − 1 do
2 for i = 0, ..., τk − 1 do
3 Compute g̃k

i and J̃k
i using the predefined method, (g̃k

i , J̃k
i )← estimator(xk

i , i; θ).
4 Minimize sk

i (x) := f(g̃k
i + J̃k

i (x− xk
i )) + h(x) + M

2 ∥x− xk
i ∥22 by the known solver, and

get an inexact solution xk
i+1 ← solver(sk

i , ϵ, δ).
5 end for
6 Set xk+1

0 = xk
τk

.
7 end for

2.1.1 Estimation Step At each step (k, i), Algorithm 1 requires an estimator estimator(x, i; θ),
treated for now as a black-box, which produces stochastic estimates of g(xk

i ) and g′(xk
i ), denoted g̃k

i

and J̃k
i . As examples, see the several estimators (Est0)–(Est4) in Section 3.1.

As indicated by our notation, the estimator estimator(x, i; θ) is allowed to depend on i but
not k. For example, the most classic variance reduction [3] computes an exact (or high accuracy)
estimates of g(xk

0) and g′(xk
0) when i = 0 and then leverage these past estimates to cheaply estimate

g(xk
i ) and g′(xk

i ) when i > 0. This process is repeated at every outer iteration k. In particular,
the estimators considered here will have a “memory” of the most recent xk

0 and potentially the
component evaluations gξ and g′

ξ previously computed there. All additional parameters of estimator
are captured by θ, taken from some space Θ. For example, if estimator is some mini-batch method,
then θ contains the batch sizes used at each iteration.

For our guarantees to apply, we require abstract high probability bounds on the estimation
errors ∥g̃k

i − g(xk
i )∥2 and ∥J̃k

i − g′(xk
i )∥op that grow at most quadratically and linearly in ∥xk

i −xk
0∥2.

This is natural since as ∥xk
i − xk

0∥2 grows, any variance reduction scheme leveraging a memory of xk
0

ought to incur larger errors. Any additional constraints on the selection of the parameters θ are
captured by C(K, τ , ∆).

Assumption 2.3 (Abstract bounds for estimation errors). For a fixed estimator, there exist
five non-negative functions of (K, τ , θ, ∆), denoted as γ0, γ1, γ2, λ0, λ1, such that for any K ∈ N+,
τ ∈ NK

+ and ∆ ∈ (0, 1), there exists a set C(K, τ , ∆) ⊆ Θ such that for any θ ∈ C, with probability
at least 1−∆, the following two inequalities simultaneously hold for all (k, i) ∈ I(K, τ ):

∥g̃k
i − g(xk

i )∥2 ≤ γ0(K, τ , θ, ∆) + γ1(K, τ , θ, ∆)∥xk
i − xk

0∥2 + γ2(K, τ , θ, ∆)∥xk
i − xk

0∥22,

∥J̃k
i − g′(xk

i )∥op ≤ λ0(K, τ , θ, ∆) + λ1(K, τ , θ, ∆)∥xk
i − xk

0∥2.

The functions {γl}2l=0 and {λl}1l=0 may also depend on some quantities like m, n and the Lipschitz
constants lf , lg, Lg. Since these are all fixed constants, we omit them and only keep the algorithmic
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parameters (K, τ , θ, ∆) in the arguments of the functions. Again Section 3.1 provides specific
examples of estimator with explicit forms for the set C(K, τ , ∆) and functions {γl}2l=0, {λl}1l=0.

2.1.2 Optimization Step In the optimization step, we need to (inexactly) solve the subproblem
min sk

i (x). Formally, we assume access to a known solver, solver(s, ϵ, δ), that returns an inexact
solution xsol. Algorithm 1 uses solver in black-box fashion, only requiring the following assumption:

Assumption 2.4. For ϵ, δ > 0 and the problem minx s(x), with probability at least 1−δ, solver(s, ϵ, δ)
returns an ϵ-optimal solution xsol, i.e., s(xsol) ≤ infx s(x) + ϵ.

As possible instantiations of solver, we consider four example subroutines and provide bounds
on the resulting total oracle complexities with respect to f in Section 3.2.

3 Main Results
Given any estimator and solver satisfying Assumptions 2.3 and 2.4, our main result provides a general
set of conditions for algorithmic parameters which guarantees the production of an ϵ-stationary
point with high probability.

Theorem 3.1. Suppose Assumption 2.3 holds for estimator, and Assumption 2.4 holds for solver.
Assume Φ∗ := infx Φ(x) > −∞. Fix an M > 5lf Lg. For any ∆ ∈ (0, 1) and ϵ > 0, with probability
at least 1−∆, Algorithm 1’s iterates satisfy:

1
Στ

K−1∑
k=0

τk−1∑
i=0
∥GM (xk

i )∥22 ≤ ϵ,

provided the parameters K, τ , θ, ϵ, δ satisfy2

θ ∈ C(K, τ , ∆/2), (3.1)
δ ≤ ∆/(2Στ ), (3.2)
ϵ ≤ ϵ/(5 · 30M), (3.3)

Στ ≥ 5 · 30M(Φ(x0
0)− Φ∗)/ϵ, (3.4)

γ0(K, τ , θ, ∆/2) ≤ ϵ/(5 · 125lf M), (3.5)
λ2

0(K, τ , θ, ∆/2) ≤ Lgϵ/(5 · 95lf M), (3.6)
(1 + τmax)2γ2

1(K, τ , θ, ∆/2) ≤ Lgϵ/(5 · 525lf M), (3.7)
(1 + τmax)2γ2(K, τ , θ, ∆/2) ≤ 3Lg/50, (3.8)
(1 + τmax)2λ2

1(K, τ , θ, ∆/2) ≤ 3L2
g/38. (3.9)

3.1 Convergence Rate Corollaries for a Range of VR Schemes

Next we apply this result to several estimation schemes, providing optimized algorithmic parameters
(e.g., batch sizes, loop durations τk). These applications all amount to simple applications of
concentration inequalities to establish a lemma ensuring Assumption 2.3 and then calculations based
on Theorem 3.1 to provide optimized parameter selections and guarantees. Such sample calculations

2The τmax here denotes max{τ0, ..., τK−1}.
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deriving Corollaries 3.6-3.7 are given in Section 4.2. As all remaining derivations of corollaries are
effectively identical, they are omitted. An interested reader can find them in Appendix A.2.
The Mini-Batch Method. We first discuss a simple mini-batch method as a warm-up example.
At the (k, i)-th iteration, we generate an index set Ak

i of size A and another index set Bk
i of size B,

both by sampling from distribution D. Then we construct g̃k
i and J̃k

i using the sample mean over
the index sets, parameterized by θ = (A, B) ∈ N2

+. We can explicitly express this estimator for use
in Algorithm 1 as

estimator0(xk
i , i; θ) :

g̃k
i = 1

A

∑
ξ∈Ak

i
gξ(xk

i )
J̃k

i = 1
B

∑
ξ∈Bk

i
g′

ξ(xk
i ).

(Est0)

The construction above is for the expectation setting in (1.3). For the special finite average
case in (1.2), it reduces to sampling with replacement from {1, ..., N}, then g̃k

i = 1
A

∑
j∈Ak

i
gj(xk

i )
and J̃k

i = 1
B

∑
j∈Bk

i
g′

j(xk
i ). To control the estimation error of g̃k

i and J̃k
i , we need the following

assumption.

Assumption 3.2. There exist constants σg and σg′ such that for any ξ ∈ supp(D) and any x ∈ Rn,
∥gξ(x)− g(x)∥2 ≤ σg and ∥g′

ξ(x)− g′(x)∥op ≤ σg′.

Such uniform bounds suffice to ensure Assumption 2.3 holds for the above mini-batching estimator.
The following lemma provides explicit values for the associated set C(K, τ , ∆), and functions {γl}2l=0,
{λl}1l=0. This lemma follows as a consequence of standard concentration inequalities.

Lemma 3.3. Suppose Assumption 3.2 holds. If estimator(xk
i , i; θ) is defined by (Est0), where

θ = (A, B) and Θ = N2
+, then Assumption 2.3 holds with the following choices of C(K, τ , ∆), {γl}2l=0

and {λl}1l=0:

C(K, τ , ∆) =
{

(A, B) ∈ N2
+ : A ≥ 4

9 log
(2(m + 1)Στ

∆

)
, and B ≥ 4

9 log
(2(m + n)Στ

∆

)}
,

γ0(K, τ , θ, ∆) = 2σg√
A

√
log

(2(m + 1)Στ

∆

)
, λ0(K, τ , θ, ∆) = 2σg′

√
B

√
log

(2(m + n)Στ

∆

)
,

γ1 = γ2 = λ1 = 0.

Substituting the results of Lemma 3.3 into conditions (3.1)–(3.9), Theorem 3.1 provides con-
straints on the parameters K, τ , θ which guarantee minibatching produces a stationary point with
high probability. Furthermore, since (K, τ ) controls the number of iterations in Algorithm 1 and
θ = (A, B) determines the batch sizes at each evaluation, one can optimize their selection over this
feasible region. Directly doing so, the following corollary provides such optimized choices.

Corollary 3.4. Consider any ∆ ∈ (0, 1), M > 5lf Lg, and any sufficiently small ϵ > 0. Suppose
Assumption 2.4 holds for solver, Assumption 3.2 holds for g, infx Φ(x) > −∞, and estimator is
defined by (Est0). Set Στ = ⌈CΣ ·ϵ−1⌉, A = ⌈CA ·ϵ−2 · log(4(m+1)Στ

∆ )⌉, B = ⌈CB ·ϵ−1 · log(4(m+n)Στ

∆ )⌉,
δ ≤ ∆/(2Στ ), ϵ ≤ ϵ/(5 · 30M), where CΣ, CA, CB are some constants, then with probability at least
1−∆: (i) Algorithm 1’s iterates satisfy:

1
Στ

K−1∑
k=0

τk−1∑
i=0
∥GM (xk

i )∥22 ≤ ϵ,

and (ii) the oracle complexities for evaluations and Jacobians of inner components gξ(·) respectively
are at most

Θ̃
(
ϵ−3 log(1/∆)

)
and Θ̃

(
ϵ−2 log(1/∆)

)
.
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Note the two complexities Θ̃
(
ϵ−3 log(1/∆)

)
and Θ̃

(
ϵ−2 log(1/∆)

)
match the high probability

guarantees in [2]. Up to logarithm terms, our high probability results also agree with the expectation
results of [1]. In both cases, our theory improves prior Frobenius norm bounds to matrix operator
norms.

3.1.1 Expectation Case Methods Given g is defined as an expectation (1.3), we consider
two different variance reduced schemes below, following the forms of (1.4) and (1.5). Our unified
theorem’s guarantees for the first scheme requires fewer evaluations of g′

ξ while the second requires
fewer evaluations of gξ. As a result, both methods may be state-of-the-art depending on the relative
cost of these two operations.
Application of Standard Variance Reduction for Expectations. First, we consider the
variance-reduced estimator, defined in two cases, i = 0 and i > 0, as

estimator1(xk
i , i; θ) :



g̃k
0 = 1

A

∑
ξ∈Ak

0
gξ(xk

0)
J̃k

0 = 1
B

∑
ξ∈Bk

0
g′

ξ(xk
0)

g̃k
i = 1

a

∑
ξ∈Ak

i

(
gξ(xk

i )− gξ(xk
0)
)

+ g̃k
0

J̃k
i = 1

b

∑
ξ∈Bk

i

(
g′

ξ(xk
i )− g′

ξ(xk
0)
)

+ J̃k
0 .

(Est1)

This estimator simply applies the classic variance reduced update (1.4) independently to estimate
both gξ and g′

ξ: At the (k, i)-th iteration, we generate index sets Ak
i and Bk

i by sampling from
distribution D. At the start of each epoch, namely i = 0, the batch sizes are set to be |Ak

0| = A and
|Bk

0 | = B. We still use the sample mean to construct g̃k
0 and J̃k

0 , same as the mini-batch method. In
the case i > 0, we set |Ak

i | = a and |Bk
i | = b, with a < A and b < B. It is also worth noting that,

unlike the mini-batch method, estimator1 is history-dependent, since the construction of g̃k
i and

J̃k
i involves the past iterate xk

0.
In (Est1), the parameter of estimator1 is θ = (A, B, a, b) ∈ N4

+, which captures the batch sizes.
The set C(K, τ , ∆) and functions {γl}2l=0, {λl}1l=0 are given below.

Lemma 3.5. Suppose Assumption 3.2 holds. If estimator(xk
i , i; θ) is defined by (Est1), where

θ = (A, B, a, b) and Θ = N4
+, then Assumption 2.3 holds with

C(K, τ , ∆) =
{

(A, B, a, b) ∈ N4
+ : A, a ≥ 4

9 log
(2(m + 1)Στ

∆

)
, and B, b ≥ 4

9 log
(2(m + n)Στ

∆

)}
,

γ0(K, τ , θ, ∆) = 2σg√
A

√
log

(2(m + 1)Στ

∆

)
, γ1(K, τ , θ, ∆) = 4lg√

a

√
log

(2(m + 1)Στ

∆

)
, γ2 = 0,

λ0(K, τ , θ, ∆) = 2σg′
√

B

√
log

(2(m + n)Στ

∆

)
, λ1(K, τ , θ, ∆) = 4Lg√

b

√
log

(2(m + n)Στ

∆

)
.

Using Lemma 3.5 enables us to select the parameters K, τ , θ in Theorem 3.1 and analyze the
oracle complexities there yielding the following pair of results. Proofs of this lemma and both
resulting corollaries are given in Section 4.2.

Corollary 3.6 (Algorithmic guarantee). Consider any ∆ ∈ (0, 1), M > 5lf Lg, integer τ > 0, and
any sufficiently small ϵ > 0. Suppose Assumption 2.4 holds for solver, Assumption 3.2 holds for
function g, infx Φ(x) > −∞, estimator is defined by (Est1), and τ is restricted to the form τ0 =
· · · = τK−1 = τ . Set K = ⌈CΣ·ϵ−1

τ ⌉, A = ⌈CA · ϵ−2 · log(4(m+1)Kτ
∆ )⌉, B = ⌈CB · ϵ−1 · log(4(m+n)Kτ

∆ )⌉,
a = ⌈Ca · (1 + τ)2 · ϵ−1 · log(4(m+1)Kτ

∆ )⌉, b = ⌈Cb · (1 + τ)2 · log(4(m+n)Kτ
∆ )⌉, δ = ∆/(2Kτ),

8



ϵ = ϵ/(5 · 30M), where CΣ, CA, CB, Ca, Cb are some constants, then with probability at least 1−∆:
(i) Algorithm 1’s iterates satisfy:

1
Kτ

K−1∑
k=0

τ−1∑
i=0
∥GM (xk

i )∥22 ≤ ϵ,

and (ii) provided τ = O(ϵ−1), the oracle complexities for evaluations and Jacobians of inner
components gξ(·) respectively are at most

Θ̃
(
(ϵ−3τ−1 + ϵ−2τ2) log(1/∆)

)
(3.10)

and Θ̃
(
(ϵ−2τ−1 + ϵ−1τ2) log(1/∆)

)
. (3.11)

The oracle complexity upper bounds for evaluations and Jacobians in Corollary 3.6 can be
optimized through careful selection of the epoch length τ .

Corollary 3.7 (Optimized complexity bounds). The minimal asymptotic rates, with respect to τ , of
(3.10) and (3.11) are Θ̃(ϵ−8/3 log(1/∆)) and Θ̃(ϵ−5/3 log(1/∆)) respectively, which are simultaneously
achieved by setting τ = Θ(ϵ−1/3).

Comparing the two rates in Corollary 3.7 with those in Corollary 3.4 suggests the variance
reduced estimator estimator1 dominates the mini-batch method estimator0 in the sense that,
estimator1 achieves 1

Kτ

∑K
k=1

∑τ−1
i=0 ∥GM (xk

i )∥22 ≤ ϵ in high probability with less evaluations of gξ(·)
and g′

ξ(·).
Application of Modified Variance Reduction for Expectations. Next, we consider a modified
variance-reduced estimator that leverages Jacobian evaluations to provide a better estimate of the
value of gξ(x). Again we consider i = 0 and i > 0 with estimator2(xk

i , i; θ) defined as

g̃k
0 = 1

A

∑
ξ∈Ak

0
gξ(xk

0)
J̃k

0 = 1
B

∑
ξ∈Bk

0
g′

ξ(xk
0)

g̃k
i = 1

a

∑
ξ∈Ak

i

(
gξ(xk

i )− gξ(xk
0)− g′

ξ(xk
0)(xk

i − xk
0)
)

+ g̃k
0 + J̃k

0 (xk
i − xk

0)

J̃k
i = 1

b

∑
ξ∈Bk

i

(
g′

ξ(xk
i )− g′

ξ(xk
0)
)

+ J̃k
0 .

(Est2)

Here (Est2) applies a standard variance reduction update (1.4) to estimate the Jacobian and a first-
order corrected update (1.5) to estimate the value of g itself. Again this estimator is parameterized
by the four batch sizes θ = (A, B, a, b) ∈ N4

+. The following lemma characterizes this modified
scheme in terms of Assumption 2.3.

Lemma 3.8. Suppose Assumption 3.2 holds. If estimator(xk
i , i; θ) is defined by (Est2), where

θ = (A, B, a, b) and Θ = N4
+, then Assumption 2.3 holds with

C(K, τ , ∆) =
{

(A, B, a, b) ∈ N4
+ : A, a ≥ 4

9 log
(2(m + 1)Στ

∆

)
, and B, b ≥ 4

9 log
(2(m + n)Στ

∆

)}
,

γ0(K, τ , θ, ∆) = 2σg√
A

√
log

(2(m + 1)Στ

∆

)
, γ1(K, τ , θ, ∆) = λ0(K, τ , θ, ∆) = 2σg′

√
B

√
log

(2(m + n)Στ

∆

)
,

γ2(K, τ , θ, ∆) = 2Lg√
a

√
log

(2(m + 1)Στ

∆

)
, λ1(K, τ , θ, ∆) = 4Lg√

b

√
log

(2(m + n)Στ

∆

)
.

From this, we have the following two corollaries analyzing estimator2.
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Corollary 3.9 (Algorithmic guarantee). Consider any ∆ ∈ (0, 1), M > 5lf Lg, integer τ > 0,
and any sufficiently small ϵ > 0. Suppose Assumption 2.4 holds for solver, Assumption 3.2 holds
for function g, infx Φ(x) > −∞, estimator is defined by (Est2), and τ is restricted to the form
τ0 = · · · = τK−1 = τ . Set K = ⌈CΣ·ϵ−1

τ ⌉, A = ⌈CA · ϵ−2 · log(4(m+1)Kτ
∆ )⌉, B = ⌈CB · (1 + τ)2 · ϵ−1 ·

log(4(m+n)Kτ
∆ )⌉, a = ⌈Ca · (1+τ)4 · log(4(m+1)Kτ

∆ )⌉, b = ⌈Cb · (1+τ)2 · log(4(m+n)Kτ
∆ )⌉, δ = ∆/(2Kτ),

ϵ = ϵ/(5 · 30M), where CΣ, CA, CB, Ca, Cb are some constants, then with probability at least 1−∆:
(i) Algorithm 1’s iterates satisfy:

1
Kτ

K−1∑
k=0

τ−1∑
i=0
∥GM (xk

i )∥22 ≤ ϵ,

and (ii) provided τ = O(ϵ−1), the oracle complexities for evaluations and Jacobians of inner
components gξ(·) respectively are at most

Θ̃
(
(ϵ−3τ−1 + ϵ−1τ4) log(1/∆)

)
(3.12)

and Θ̃
(
(ϵ−2τ + ϵ−1τ4) log(1/∆)

)
. (3.13)

Corollary 3.10 (Optimized complexity bounds). (i) The minimal asymptotic evaluation complexity,
with respect to τ , of (3.12) is Θ̃(ϵ−13/5 log(1/∆)), achieved by setting τ = Θ(ϵ−2/5). In this case,
(3.13) is also Θ̃(ϵ−13/5 log(1/∆)). (ii) The minimal asymptotic Jacobian complexity, with respect to
τ , of (3.13) is Θ̃(ϵ−2 log(1/∆)), achieved at τ = Θ(1). In this case, (3.12) is Θ̃(ϵ−3 log(1/∆)).

Remark 3.11. We can compare the asymptotic rates in Corollary 3.10 with those in Corollary
3.7. Note that 13

5 < 8
3 and 5

3 < 2. So Corollary 3.10(i) suggests the optimized asymptotic evaluation
complexity bound of estimator2 is lower than that of estimator1. Corollary 3.10(ii) implies that
the asymptotic Jacobian complexity bound of estimator2 is always higher than the optimized bound
of estimator1. Hence neither method’s guarantee uniformly dominates the other. Depending on the
relative cost between evaluations and Jacobians, the best method varies.

3.1.2 Finite Average Case Methods Now we focus on the finite average setting in (1.2) and
consider the natural extensions of the above estimators. Again, we find neither one of these two
estimator’s guarantees dominates the other. In this case, which method’s guarantees are stronger
depends on the relative size of 1/ϵ and the number of summands N .
Application of Standard Variance Reduction for Finite Averages. First, we consider a
variant of estimator1, defined in two cases, i = 0 and i > 0, as

estimator3(xk
i , i; θ) :



g̃k
0 = 1

N

∑N
j=1 gj(xk

0) = g(xk
0)

J̃k
0 = 1

N

∑N
j=1 g′

j(xk
0) = g′(xk

0)
g̃k

i = 1
a

∑
j∈Ak

i

(
gj(xk

i )− gj(xk
0)
)

+ g̃k
0

J̃k
i = 1

b

∑
j∈Bk

i

(
g′

j(xk
i )− g′

j(xk
0)
)

+ J̃k
0 .

(Est3)

For each k = 1, ..., K, at the start of the k-th epoch, this estimator now constructs g̃k
0 and J̃k

0 exactly.
At the iterations with i > 0, we generate an index set Ak

i of size a and another index set Bk
i of size b,

both by sampling with replacement from {1, . . . , N}. Note since gj(xk
0) and g′

j(xk
0) are all evaluated

for all j ∈ {1, . . . , N}, one can store these in memory for use later in the construction of g̃k
i and J̃k

i .
So at the (k, i)-th iteration (for i > 0), the terms in {gj(xk

0) : j ∈ Ak
i } and {g′

j(xk
0) : j ∈ Bk

i } can be

10



simply called from the past data. Only the terms in {gj(xk
i ) : j ∈ Ak

i } and {g′
j(xk

i ) : j ∈ Bk
i }, namely

those involves xk
i , are needed to be evaluated. This estimator is parameterized by θ = (a, b) ∈ N2

+,
describing both batch sizes utilized. The set C(K, τ , ∆), and functions {γl}2l=0, {λl}1l=0 are given
below.

Lemma 3.12. If estimator(xk
i , i; θ) is defined by (Est3), where θ = (a, b) and Θ = N2

+, then
Assumption 2.3 holds with the following

C(K, τ , ∆) =
{

(a, b) ∈ N2
+ : a ≥ 4

9 log
(2(m + 1)Στ

∆

)
, b ≥ 4

9 log
(2(m + n)Στ

∆

)}
,

γ0 = γ2 = λ0 = 0, γ1(K, τ , θ, ∆) = 4lg√
a

√
log

(2(m + 1)Στ

∆

)
,

λ1(K, τ , θ, ∆) = 4Lg√
b

√
log

(2(m + n)Στ

∆

)
.

Just as done before, Lemma 3.12 and Theorem 3.1 provide recommendations for K, τ , θ and
enable analysis of resulting oracle complexities.

Corollary 3.13 (Algorithmic guarantee). Consider any ∆ ∈ (0, 1), M > 5lf Lg, integer τ > 0, and
any sufficiently small ϵ > 0. Suppose Assumption 2.4 holds for solver, infx Φ(x) > −∞, estimator
is defined by (Est3), and τ is restricted to the form τ0 = · · · = τK−1 = τ . Set K = ⌈CΣ·ϵ−1

τ ⌉,
a = ⌈Ca · (1 + τ)2 · ϵ−1 · log(4(m+1)Kτ

∆ )⌉, b = ⌈Cb · (1 + τ)2 · log(4(m+n)Kτ
∆ )⌉, δ = ∆/(2Kτ),

ϵ = ϵ/(5 · 30M), where CΣ, Ca, Cb are some constants, then with probability at least 1 − ∆: (i)
Algorithm 1’s iterates satisfy:

1
Kτ

K−1∑
k=0

τ−1∑
i=0
∥GM (xk

i )∥22 ≤ ϵ,

and (ii) the oracle complexities for evaluations and Jacobians of inner components gξ(·) respectively
are at most

Θ̃
(
N + ϵ−1τ3 + Nϵ−1τ−1 + ϵ−2τ2

)
(3.14)

and Θ̃
(
N + τ3 + Nϵ−1τ−1 + ϵ−1τ2

)
. (3.15)

Corollary 3.14 (Optimized complexity bounds). (i) The minimal asymptotic evaluation complexity,
with respect to τ , of (3.14) is Θ̃

(
N + ϵ−2 + N2/3ϵ−4/3

)
, achieved by setting τ = Θ

(
max{1, N1/3ϵ1/3}

)
.

In this case, (3.15) will become Θ̃
(
min{Nϵ−1, N + N2/3ϵ−4/3}

)
. (ii) The minimal asymptotic Jaco-

bian complexity, with respect to τ , of (3.15) is Θ̃
(
N + N2/3ϵ−1

)
, achieved by setting τ = Θ

(
N1/3

)
.

In this case, (3.14) becomes Θ̃
(
Nϵ−1 + N2/3ϵ−2

)
.

Application of Modified Variance Reduction for Finite Averages. Similarly, we can also
incorporate exact evaluation into estimator2. The modified estimator estimator4(xk

i , i; θ) is
defined in two cases, i = 0 and i > 0, as

g̃k
0 = 1

N

∑N
j=1 gj(xk

0) = g(xk
0)

J̃k
0 = 1

N

∑N
j=1 g′

j(xk
0) = g′(xk

0)
g̃k

i = 1
a

∑
j∈Ak

i

(
gj(xk

i )− gj(xk
0)− g′

j(xk
0)(xk

i − xk
0)
)

+ g̃k
0 + J̃k

0 (xk
i − xk

0)

J̃k
i = 1

b

∑
j∈Bk

i

(
g′

j(xk
i )− g′

j(xk
0)
)

+ J̃k
0 .

(Est4)
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This estimator is the natural generalization of (Est2) to utilize exact computations at the start
of each epoch. For estimator4, we have the following sequence of results, including choices of
C(K, τ , ∆), {γl}2l=0, {λl}1l=0, and algorithmic analysis.

Lemma 3.15. If estimator(xk
i , i; θ) is defined by (Est4), where θ = (a, b) and Θ = N2

+, then
Assumption 2.3 holds with the following

C(K, τ , ∆) =
{

(a, b) ∈ N2
+ : a ≥ 4

9 log
(2(m + 1)Στ

∆

)
, b ≥ 4

9 log
(2(m + n)Στ

∆

)}
,

γ0 = γ1 = λ0 = 0, γ2(K, τ , θ, ∆) = 2Lg√
a

√
log

(2(m + 1)Στ

∆

)
,

λ1(K, τ , θ, ∆) = 4Lg√
b

√
log

(2(m + n)Στ

∆

)
.

Corollary 3.16 (Algorithmic guarantee). Consider any ∆ ∈ (0, 1), M > 5lf Lg, integer τ > 0, and
any sufficiently small ϵ > 0. Suppose Assumption 2.4 holds for solver, infx Φ(x) > −∞, estimator
is defined by (Est4), and τ is restricted to the form τ0 = · · · = τK−1 = τ . Set K = ⌈CΣ·ϵ−1

τ ⌉,
a = ⌈Ca · (1+τ)4 · log(4(m+1)Kτ

∆ )⌉, b = ⌈Cb · (1+τ)2 · log(4(m+n)Kτ
∆ )⌉, δ = ∆/(2Kτ), ϵ = ϵ/(5 ·30M),

where CΣ, Ca, Cb are some constants, then with probability at least 1−∆: (i) Algorithm 1’s iterates
satisfy:

1
Kτ

K−1∑
k=0

τ−1∑
i=0
∥GM (xk

i )∥22 ≤ ϵ,

and (ii) the oracle complexities for evaluations and Jacobians of inner components gξ(·) respectively
are at most

Θ̃
(
N + τ5 + Nϵ−1τ−1 + ϵ−1τ4

)
(3.16)

and Θ̃
(
N + τ3 + Nϵ−1τ−1 + ϵ−1τ2

)
. (3.17)

Corollary 3.17 (Optimized complexity bounds). (i) The minimal asymptotic evaluation complexity,
with respect to τ , of (3.16) is Θ̃

(
N + N4/5ϵ−1

)
, achieved by setting τ = Θ

(
N1/5

)
. In this case,

(3.17) is also Θ̃
(
N + N4/5ϵ−1

)
. (ii) The minimal asymptotic Jacobian complexity, with respect to

τ , of (3.17) is Θ̃
(
N + N2/3ϵ−1

)
, achieved by setting τ = Θ

(
N1/3

)
. In this case, (3.16) becomes

Θ̃
(
N5/3 + N4/3ϵ−1

)
.

Remark 3.18. Similar to Remark 3.11, we can compare the asymptotic rates in Corollary 3.14 and
Corollary 3.17. The Jacobian complexity parts are the same in these two Corollaries, which is not a
surprise, because (3.15) and (3.17) have the same form. We focus on comparing the oracle complexity
for evaluations in the two Corollaries. The optimized asymptotic evaluation complexity bound for
estimator3 and estimator4 are Θ̃(N + N2/3ϵ−4/3 + ϵ−2) and Θ̃(N + N4/5ϵ−1) respectively.

There are two parameters N and ϵ here. Suppose N = Θ(ϵ−p). Then the previous two asymptotic
rates become Θ̃(ϵ−p3) and Θ̃(ϵ−p4), where p3 = max{p, 2

3p + 4
3 , 2}, p4 = max{p, 4

5p + 1}. Note that
p3 > p4, if p < 5

2
p3 < p4, if 5

2 < p < 5
p3 = p4, if p = 5

2 or p ≥ 5.
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So the optimized asymptotic evaluation complexity bound of estimator3 is strictly lower if 5
2 < p < 5,

and estimator4 has the lower one if p < 5
2 . This dichotomy suggests neither method’s guarantee

uniformly dominates the other. The best method varies depending on the relative rate between N
and the accuracy ϵ.

3.1.3 Methods with Randomized Epoch Durations As a last application, we showcase an
example application of Theorem 3.1 with random epoch durations τk, as were considered by prior
variance-reduced works like [3,17]. Consider the following general scheme to determine K and τ
given some Sτ : Sample τ0, τ1, ... independently from some distribution Dτ belonging to a parametric
distribution family {Dτ (·; τ+, θτ ) : (τ+, θτ ) ∈ N+ ×Θτ}. Then generate K and τ as{

K ← inf{N : ∑N
k=1 τk ≥ Sτ}

τ ← (τ1, ..., τK).
(3.18)

In (3.18), if Sτ is much larger than each τk, then ∑K−1
k=0 τk will be approximately equal to Sτ . To

make this relationship rigorous, we assume the following pair of conditions on the parametric family
of generating distribution where the integer parameter τ+ provides a bound on the size of each τk

and control via Cτ of its expected value.
Assumption 3.19. (i) The support of Dτ (·; τ+, θτ ) is a subset of {1, ..., τ+} for any (τ+, θτ ) ∈ N+×
Θτ . (ii) There exist a constant Cτ , such that CτEτ∼Dτ (·;τ+,θτ )[τ ] ≥ τ+ for any (τ+, θτ ) ∈ N+ ×Θτ .

The intuition behind Assumption 3.19(ii) is trying to connect this scheme of varying τk with
our previous theory of fixed τk. Consider a degenerated distribution D̃τ+ where τ ≡ τ+, then
Assumption 3.19(ii) controls the expectation ratio between D̃τ+ and Dτ (·; τ+, θτ ) by a constant
upper bound Cτ . This intuitively suggests that if we replace Dτ (·; τ+, θτ ) by D̃τ+ in (3.18) while
keeping Sτ unchanged, the returned K will increase at most by some constant factor. Indeed, we
can prove this holds with high probability, which leads to the following result.
Corollary 3.20 (Algorithmic guarantee for the scheme of varying τ). Consider any ∆ ∈ (0, 1), M >
5lf Lg and any sufficiently small ϵ > 0. Suppose estimator is defined by (Est1), (K, τ ) is generated
by (3.18), Assumption 2.4 holds for solver, Assumption 3.2 holds for function g, Assumption 3.19
holds for the generating distribution, and infx Φ(x) > −∞. Set τ+ = ⌈ϵ−1/3⌉, Sτ = ⌈CΣ · ϵ−1⌉,
A = ⌈CA ·ϵ−2 · log(5(m+1)Sτ

∆ )⌉, B = ⌈CB ·ϵ−1 · log(5(m+n)Sτ

∆ )⌉, a = ⌈Ca ·(1+τ+)2 ·ϵ−1 · log(5(m+1)Sτ

∆ )⌉,
b = ⌈Cb · (1 + τ+)2 · log(5(m+n)Sτ

∆ )⌉, δ = ∆
2(Sτ +τ+) , ϵ = ϵ/(5 · 30M), where CΣ, CA, CB, Ca, Cb are

some constants, then with probability at least 1−∆− exp(−Cpϵ−2/3):3 (i) Algorithm 1’s iterates
satisfy:

1
Στ

K−1∑
k=0

τk−1∑
i=0
∥GM (xk

i )∥22 ≤ ϵ,

and (ii) the oracle complexity for evaluations and Jacobians of inner components gξ(·) are at most
Θ̃(ϵ−8/3 log(1/∆)) and Θ̃(ϵ−5/3 log(1/∆)) respectively.

Note the two complexities here, Θ̃(ϵ−8/3 log(1/∆)) and Θ̃(ϵ−5/3 log(1/∆)), match the bounds
in Corollary 3.7. Note the probability bound of 1 −∆ − exp(−Cpϵ−2/3) slightly differs from the
1−∆ in Corollary 3.6. So Corollary 3.20 recovers the oracle complexities of fixed epoch duration
setting, despite an exponentially small setback in probability guarantee. We used estimator1 as an
example to illustrate the idea of randomizing epoch duration. Similar scheme can also be applied to
all of the other estimators discussed in previous sections.

3Here Cp is also a constant.
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3.2 On the Computational Costs of Solver Subroutines

To provide a complete accounting for the computational cost of a variance reduced method, one
ought to additionally consider the cost of (inexactly) computing proximal steps, i.e., evaluating
solver. A prox-linear step is required at every iteration of Algorithm 1. Hence by Theorem 3.1,
Στ = O(1/ϵ) (inexact) solves are needed.

For example, if f is sufficiently simple, one may be able to exactly minimize sk
i , setting

solver(s, ϵ̄, δ̄) = argmin sk
i . For example, the subproblem for nonlinear regression problems with

f(z) = ∥z∥22 is least squares minimization, which can be solved exactly as a linear system. Alterna-
tively, if f(z) = maxj=1...m zj , then (1.6) is a quadratic program of dimension m. Hence, the total
cost of Algorithm 1’s proximal solves is O(1/ϵ) (inexact) linear system or quadratic program solves,
respectively. As a second example, if f has uniformly Lf -Lipschitz gradient, a linearly convergent
(accelerated) gradient method can be applied to each strongly convex proximal subproblem sk

i . The
resulting total number of gradient oracle calls to f is then O

(
1
ϵ log(1/ϵ)

)
.

As a more interesting example, consider a doubly stochastic composite problem

min
x

Eζfζ(Eξgξ(x)) + h(x).

Given only samples of ζ and ξ, one cannot directly construct unbiased estimators of subgradients of
Eζfζ(Eξgξ(x)), preventing the application of many direct stochastic first-order methods. See [18,19].
Regardless, if each fζ is uniformly lf -Lipschitz, a stochastic proximal subgradient method can be
applied to minimize the subproblem sk

i . After O (1/ϵ̄) steps, an ϵ̄-minimizer can be guaranteed [20].
Hence the total number of subgradient oracle calls needed to f at most O

(
1/ϵ2) . Noting we measure

stationarity by the gradient norm squared, this agrees with the subgradient method’s nonsmooth,
nonconvex O(1/ϵ4) rate [21] when unbiased subgradients are available.

4 Analysis

Recall that the objective function is Φ(x) = f(g(x)) + h(x). The standard prox-linear method may
consider a linearized proximal subproblem with the following objective function at each iteration:

lki (x) := f
(
g(xk

i ) + g′(xk
i )(x− xk

i )
)

+ h(x) + M

2 ∥x− xk
i ∥22.

In our algorithm, we replace g(xk
i ) and g′(xk

i ) with stochastic estimates g̃k
i and J̃k

i , resulting in the
following stochastic linearized objective function at each iteration:

sk
i (x) := f

(
g̃k

i + J̃k
i (x− xk

i )
)

+ h(x) + M

2 ∥x− xk
i ∥22.

Since lki (x) and sk
i (x) are M -strongly convex, they have unique minimizers, denoted

x̂k
i+1 := arg min lki (x), and x̃k

i+1 := arg min sk
i (x).

Noting lki (x) is the objective function of prox-linear step in (1.6), by the definition in (1.7), our
measure of stationarity at the iterate xk

i is ∥GM (xk
i )∥2 = M∥xk

i − x̂k
i+1∥2.

4.1 Proofs for our Main Unified Convergence Theorem

In this part, we will prove a sequence of lemmas leading to the unified theory in Theorem 4.7.
Our main result, Theorem 3.1, is a consequence of Theorem 4.7. Here we give an overview of our
analysis.
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We first prove three lemmas only depending on the basic setting of prox-linear methods, without
the specific assumptions for estimator or solver. Lemma 4.1 is a useful result that upper bounds
the prox-linear error. The upper bound involves the estimation error terms ∥g̃k

i − g(xk
i )∥2 and

∥J̃k
i − g′(xk

i )∥op. Lemma 4.2 provides a one-step property for xk
i , x̂k

i+1 and x̃k
i+1. In particular, it

upper bounds the distance ∥x̂k
i+1−xk

i ∥2 by ∥x̃k
i+1−xk

i ∥2 and the estimation error terms. Lemma 4.3
provides a descent property for the objective function Φ, though only between Φ(x̃k

i+1) and Φ(xk
i ).

To apply this inductively, we require a descent between Φ(xk
i+1) and Φ(xk

i ). Assumption 2.4 for
solver enables us to relate xk

i+1 to x̃k
i+1 with high probability. Lemma 4.4 uses this to give such a

descent property. Lemma 4.5 ultimate combines our results to give an upper bound for ∥x̂k
i+1−xk

i ∥2,
which is proportional to ∥GM (xk

i )∥2. Assumption 2.3 for estimator then allows us to uniformly
bound error terms with high probability, formalized in Lemma 4.6. Applying a careful induction
with the upper bound in Lemma 4.6 to cancel accumulated terms ∥xk

i − xk
0∥2 and ∥xk

i+1 − xk
i ∥2

suffices to give our ultimate result in Theorem 4.7, an upper bound for 1
Στ

∑K−1
k=0

∑τk−1
i=0 ∥GM (xk

i )∥22.
Lemma 4.1. For any (k, i) ∈ I(K, τ ), the following holds for any x:∣∣∣f(g̃k

i + J̃k
i (x− xk

i )
)
− f

(
g(xk

i ) + g′(xk
i )(x− xk

i )
)∣∣∣

≤ lf∥g̃k
i − g(xk

i )∥2 + lf
2Lg
∥J̃k

i − g′(xk
i )∥2op + lf Lg

2 ∥x− xk
i ∥22.

Proof of Lemma 4.1. Applying in order the Lipschitz continuity of f , triangle inequality, operator
norm definition, and bounding a · b by 1

2Lg
a2 + Lg

2 b2 yields∣∣∣f(g̃k
i + J̃k

i (x− xk
i )
)
− f

(
g(xk

i ) + g′(xk
i )(x− xk

i )
)∣∣∣

≤ lf∥g̃k
i + J̃k

i (x− xk
i )− g(xk

i )− g′(xk
i )(x− xk

i )∥2
≤ lf∥g̃k

i − g(xk
i )∥2 + lf∥J̃k

i (x− xk
i )− g′(xk

i )(x− xk
i )∥2

≤ lf∥g̃k
i − g(xk

i )∥2 + lf∥J̃k
i − g′(xk

i )∥op · ∥x− xk
i ∥2

≤ lf∥g̃k
i − g(xk

i )∥2 + lf
2Lg
∥J̃k

i − g′(xk
i )∥2op + lf Lg

2 ∥x− xk
i ∥22.

Lemma 4.2. For any (k, i) ∈ I(K, τ ),(
M

2 −
lf Lg

2

)
∥x̂k

i+1 − xk
i ∥22 ≤ 2lf∥g̃k

i − g(xk
i )∥2 + lf

Lg
∥J̃k

i − g′(xk
i )∥2op +

(
M + lf Lg

2

)
∥x̃k

i+1 − xk
i ∥22.

Proof of Lemma 4.2. Recall that x̂k
i+1 and x̃k

i+1 are the minimizers of the M -strongly convex func-
tions lki (x) and sk

i (x) respectively. So lki (x̃k
i+1) ≥ lki (x̂k

i+1) + M
2 ∥x̃

k
i+1 − x̂k

i+1∥22 and sk
i (x̂k

i+1) ≥
sk

i (x̃k
i+1) + M

2 ∥x̂
k
i+1 − x̃k

i+1∥22, i.e.

f
(
g(xk

i ) + g′(xk
i )(x̃k

i+1 − xk
i )
)

+ h(x̃k
i+1) + M

2 ∥x̃
k
i+1 − xk

i ∥22

≥ f
(
g(xk

i ) + g′(xk
i )(x̂k

i+1 − xk
i )
)

+ h(x̂k
i+1) + M

2 ∥x̂
k
i+1 − xk

i ∥22 + M

2 ∥x̃
k
i+1 − x̂k

i+1∥22

and

f
(
g̃k

i + J̃k
i (x̂k

i+1 − xk
i )
)

+ h(x̂k
i+1) + M

2 ∥x̂
k
i+1 − xk

i ∥22

≥ f
(
g̃k

i + J̃k
i (x̃k

i+1 − xk
i )
)

+ h(x̃k
i+1) + M

2 ∥x̃
k
i+1 − xk

i ∥22 + M

2 ∥x̂
k
i+1 − x̃k

i+1∥22.
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Summing the two inequalities above, we get

M∥x̂k
i+1 − x̃k

i+1∥22 ≤ f(g(xk
i ) + g′(xk

i )(x̃k
i+1 − xk

i ))− f(g̃k
i + J̃k

i (x̃k
i+1 − xk

i ))
+ f(g̃k

i + J̃k
i (x̂k

i+1 − xk
i ))− f(g(xk

i ) + g′(xk
i )(x̂k

i+1 − xk
i )).

(4.1)

Let x = x̃k
i+1 and x̂k

i+1 in Lemma 4.1 respectively, we have

f
(
g(xk

i ) + g′(xk
i )(x̃k

i+1 − xk
i )
)
− f

(
g̃k

i + J̃k
i (x̃k

i+1 − xk
i )
)

≤ lf∥g̃k
i − g(xk

i )∥2 + lf
2Lg
∥J̃k

i − g′(xk
i )∥2op + lf Lg

2 ∥x̃
k
i+1 − xk

i ∥22,
(4.2)

and

f
(
g̃k

i + J̃k
i (x̂k

i+1 − xk
i )
)
− f

(
g(xk

i ) + g′(xk
i )(x̂k

i+1 − xk
i )
)

≤ lf∥g̃k
i − g(xk

i )∥2 + lf
2Lg
∥J̃k

i − g′(xk
i )∥2op + lf Lg

2 ∥x̂
k
i+1 − xk

i ∥22.
(4.3)

Combining (4.1), (4.2), and (4.3) yields

M∥x̂k
i+1− x̃k

i+1∥22 ≤ 2lf∥g̃k
i − g(xk

i )∥2 + lf
Lg
∥J̃k

i − g′(xk
i )∥2op + lf Lg

2 ∥x̃
k
i+1− xk

i ∥22 + lf Lg

2 ∥x̂
k
i+1− xk

i ∥22.

Then noting that ∥x̂k
i+1 − x̃k

i+1∥22 ≥ −∥x̃k
i+1 − xk

i ∥22 + 1
2∥x̂

k
i+1 − xk

i ∥22 gives the claim.

Lemma 4.3. For any (k, i) ∈ I(K, τ ),

Φ(x̃k
i+1) ≤ Φ(xk

i )− (M − lf Lg)∥x̃k
i+1 − xk

i ∥22 + 2lf∥g̃k
i − g(xk

i )∥2 + lf
2Lg
∥J̃k

i − g′(xk
i )∥2op.

Proof of Lemma 4.3. By strong convexity, sk
i (xk

i ) ≥ sk
i (x̃k

i+1) + M
2 ∥x̃

k
i+1 − xk

i ∥22, i.e.

sk
i (xk

i ) ≥ f(g̃k
i + J̃k

i (x̃k
i+1 − xk

i )) + h(x̃k
i+1) + M∥x̃k

i+1 − xk
i ∥22. (4.4)

By Lipschitz continuity of f ,

sk
i (xk

i )− Φ(xk
i ) = f(g̃k

i ) + h(xk
i )− f(g(xk

i ))− h(xk
i ) ≤ lf∥g̃k

i − g(xk
i )∥2. (4.5)

From (4.4) and (4.5), we have

Φ(xk
i ) + lf∥g̃k

i − g(xk
i )∥2 ≥ f(g̃k

i + J̃k
i (x̃k

i+1 − xk
i )) + h(x̃k

i+1) + M∥x̃k
i+1 − xk

i ∥22. (4.6)

Let x = x̃k
i+1 and y = xk

i in Proposition 2.2,

Φ(x̃k
i+1)− h(x̃k

i+1) = f(g(x̃k
i+1)) ≤ f

(
g(xk

i ) + g′(xk
i )(x̃k

i+1 − xk
i )
)

+ lf Lg

2 ∥x̃
k
i+1 − xk

i ∥22. (4.7)

Combining (4.6) and (4.7), we have

Φ(x̃k
i+1) ≤ h(x̃k

i+1) + f
(
g(xk

i ) + g′(xk
i )(x̃k

i+1 − xk
i )
)

+ lf Lg

2 ∥x̃
k
i+1 − xk

i ∥22

≤ Φ(xk
i ) + lf∥g̃k

i − g(xk
i )∥2 +

(
lf Lg

2 −M

)
∥x̃k

i+1 − xk
i ∥22

+ f
(
g(xk

i ) + g′(xk
i )(x̃k

i+1 − xk
i )
)
− f

(
g̃k

i + J̃k
i (x̃k

i+1 − xk
i )
)
.

(4.8)

16



By Lemma 4.1,

f
(
g(xk

i ) + g′(xk
i )(x̃k

i+1 − xk
i )
)
− f

(
g̃k

i + J̃k
i (x̃k

i+1 − xk
i )
)

≤ lf∥g(xk
i )− g̃k

i ∥2 + lf
2Lg
∥g′(xk

i )− J̃k
i ∥2op + lf Lg

2 ∥x̃
k
i+1 − xk

i ∥22.
(4.9)

Finally, combining (4.8) and (4.9) gives the claim.

Lemma 4.4. Suppose Assumption 2.4 holds for solver, then for an arbitrary (k, i) ∈ I(K, τ ), the
following holds with probability at least 1− δ:

Φ(xk
i+1)− Φ(xk

i ) ≤ ϵ−
(

M

2 − lf Lg

)
∥xk

i+1 − xk
i ∥22 −

(
M

2 − 2lf Lg

)
∥x̃k

i+1 − xk
i ∥22

+ 4lf∥g̃k
i − g(xk

i )∥2 + 3lf
2Lg
∥J̃k

i − g′(xk
i )∥2op.

With probability at least 1− δΣτ , the inequality above holds for all (k, i) ∈ I(K, τ ).
Proof of Lemma 4.4. Fix an arbitrary (k, i) ∈ I(K, τ ). We can split Φ(xk

i+1)− Φ(xk
i ) into the sum

of three parts:

Φ(xk
i+1)− Φ(xk

i ) =
[
sk

i (xk
i+1)− sk

i (x̃k
i+1)

]
+
[
(Φ− sk

i )(xk
i+1)− (Φ− sk

i )(x̃k
i+1)

]
+
[
Φ(x̃k

i+1)− Φ(xk
i )
]

.
(4.10)

By Lemma 4.3,

Φ(x̃k
i+1)− Φ(xk

i ) ≤ (lf Lg −M)∥x̃k
i+1 − xk

i ∥22 + 2lf∥g̃k
i − g(xk

i )∥2 + lf
2Lg
∥J̃k

i − g′(xk
i )∥2op. (4.11)

By Assumption 2.4, there exists a subset Ek,i of the whole probability space, such that P(Ek,i) ≥ 1−δ,
and the following inequality holds on Ek,i:

sk
i (xk

i+1)− sk
i (x̃k

i+1) ≤ ϵ. (4.12)

Then it remains to deal with (Φ− sk
i )(xk

i+1)− (Φ− sk
i )(x̃k

i+1). Note that (Φ− sk
i )(x) = f(g(x))−

f(g̃k
i + J̃k

i (x− xk
i ))− M

2 ∥x− xk
i ∥22, so

(Φ− sk
i )(xk

i+1)− (Φ− sk
i )(x̃k

i+1)

= f(g(xk
i+1))− f

(
g̃k

i + J̃k
i (xk

i+1 − xk
i )
)
− M

2 ∥x
k
i+1 − xk

i ∥22

− f(g(x̃k
i+1)) + f

(
g̃k

i + J̃k
i (x̃k

i+1 − xk
i )
)

+ M

2 ∥x̃
k
i+1 − xk

i ∥22

≤
∣∣∣f(g(xk

i+1))− f
(
g̃k

i + J̃k
i (xk

i+1 − xk
i )
)∣∣∣− M

2 ∥x
k
i+1 − xk

i ∥22

+
∣∣∣f(g(x̃k

i+1)) + f
(
g̃k

i + J̃k
i (x̃k

i+1 − xk
i )
)∣∣∣+ M

2 ∥x̃
k
i+1 − xk

i ∥22.

(4.13)

Let y = xk
i in Proposition 2.2, and combine it with Lemma 4.1, we get the following inequality for

any x:

|f(g(x))− f(g̃k
i + J̃k

i (x− xk
i ))| ≤

∣∣∣f(g(x))− f
(
g(xk

i ) + g′(xk
i )(x− xk

i )
)∣∣∣

+
∣∣∣f(g(xk

i ) + g′(xk
i )(x− xk

i )
)
− f

(
g̃k

i + J̃k
i (x− xk

i )
)∣∣∣

≤ lf∥g̃k
i − g(xk

i )∥2 + lf
2Lg
∥J̃k

i − g′(xk
i )∥2op + lf Lg∥x− xk

i ∥22.

(4.14)
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Let x = xk
i+1 and x̃k

i+1 in (4.14) respectively, and plug into (4.13),

(Φ− sk
i )(xk

i+1)− (Φ− sk
i )(x̃k

i+1)

≤ 2lf∥g̃k
i − g(xk

i )∥2 + lf
Lg
∥J̃k

i − g′(xk
i )∥2op +

(
lf Lg −

M

2

)
∥xk

i+1 − xk
i ∥22 +

(
lf Lg + M

2

)
∥x̃k

i+1 − xk
i ∥22.

(4.15)

Finally, on the set Ek,i, we can use (4.11), (4.12), and (4.15) to upper bound the three parts on the
right side of (4.10) :

Φ(xk
i+1)− Φ(xk

i )
= sk

i (xk
i+1)− sk

i (x̃k
i+1) + (Φ− sk

i )(xk
i+1)− (Φ− sk

i )(x̃k
i+1) + Φ(x̃k

i+1)− Φ(xk
i )

≤ ϵ +
(

lf Lg −
M

2

)
∥xk

i+1 − xk
i ∥22 +

(
2lf Lg −

M

2

)
∥x̃k

i+1 − xk
i ∥22

+ 4lf∥g̃k
i − g(xk

i )∥2 + 3lf
2Lg
∥J̃k

i − g′(xk
i )∥2op.

The inequality above holds for all (k, i) ∈ I(K, τ ) on the set ∩(k,i)∈I(K,τ )Ek,i, which has probability
at least 1− δΣτ by a simple union bound.

Lemma 4.5. Suppose Assumption 2.4 holds for solver. If M > 5lf Lg, then with probability at
least 1− δΣτ , the following holds for all (k, i) ∈ I(K, τ ):

2M

5 ∥x̂
k
i+1 − xk

i ∥22 ≤ 12ϵ + 12
(
Φ(xk

i )− Φ(xk
i+1)

)
+ 50lf∥g̃k

i − g(xk
i )∥2

+ 19 lf
Lg
∥J̃k

i − g′(xk
i )∥2op − 12

(
M

2 − lf Lg

)
∥xk

i+1 − xk
i ∥22.

Proof of Lemma 4.5. M > 5lf Lg implies M
2 −

lf Lg

2 > 2M
5 . Then from Lemma 4.2, we have

2M

5 ∥x̂
k
i+1 − xk

i ∥22 ≤ 2lf∥g̃k
i − g(xk

i )∥2 + lf
Lg
∥J̃k

i − g′(xk
i )∥2op +

(
M + lf Lg

2

)
∥x̃k

i+1 − xk
i ∥22. (4.16)

By Lemma 4.4, there exists a subset E of the whole probability space, such that P(E) ≥ 1− δΣτ ,
and the following inequality holds for all (k, i) ∈ I(K, τ ) on E :(

M

2 − lf Lg

)
∥xk

i+1 − xk
i ∥22 +

(
M

2 − 2lf Lg

)
∥x̃k

i+1 − xk
i ∥22

≤ ϵ + Φ(xk
i )− Φ(xk

i+1) + 4lf∥g̃k
i − g(xk

i )∥2 + 3lf
2Lg
∥J̃k

i − g′(xk
i )∥2op.

(4.17)

Note that 12(M
2 − 2lf Lg) > M + lf Lg

2 , we can multiply (4.17) by 12 and combine with (4.16) to get
the claim for all (k, i) ∈ I(K, τ ) on E , with probability at least 1− δΣτ .

Lemma 4.6. Suppose Assumption 2.3 holds for estimator, and Assumption 2.4 holds for solver.
Fix an M > 5lf Lg. Then for any K ∈ N+, τ ∈ NK

+ , ∆ ∈ (0, 1), θ ∈ C(K, τ , ∆), and an arbitrary
set of positive reals {α(k,i) > 0 : (k, i) ∈ I(K, τ )}, with probability at least 1− δΣτ −∆, the following
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holds for all (k, i) ∈ I(K, τ ):
2M

5 ∥x̂
k
i+1 − xk

i ∥22 ≤ 12ϵ + 12
(
Φ(xk

i )− Φ(xk
i+1)

)
− 12

(
M

2 − lf Lg

)
∥xk

i+1 − xk
i ∥22

+
(

50lf γ0(K, τ , θ, ∆) + 25lf α(k,i)γ1(K, τ , θ, ∆) + 38 lf
Lg

λ2
0(K, τ , θ, ∆)

)

+
(

50lf γ2(K, τ , θ, ∆) + 25lf γ1(K, τ , θ, ∆)
α(k,i)

+ 38 lf
Lg

λ2
1(K, τ , θ, ∆)

)
∥xk

i − xk
0∥22.

Proof of Lemma 4.6. As a shorthand, we use γl, λl for γl(·, ·, ·, ·), λl(·, ·, ·, ·) as the arguments are
clear from context. Note that M > 5lf Lg, then by Lemma 4.5, there exists a subset E1 of the
whole probability space, such that P(E1) ≥ 1 − δΣτ , and the following inequality holds for all
(k, i) ∈ I(K, τ ) on E1:

2M

5 ∥x̂
k
i+1 − xk

i ∥22 ≤ 12ϵ + 12
(
Φ(xk

i )− Φ(xk
i+1)

)
+ 50lf∥g̃k

i − g(xk
i )∥2

+ 19 lf
Lg
∥J̃k

i − g′(xk
i )∥2op − 12

(
M

2 − lf Lg

)
∥xk

i+1 − xk
i ∥22.

(4.18)

By Assumption 2.3, there exists a subset E2 of the whole probability space, such that P(E2) ≥ 1−∆,
and the following two inequalities hold for all (k, i) ∈ I(K, τ ) on E2:

∥g̃k
i − g(xk

i )∥2 ≤ γ0 + γ1∥xk
i − xk

0∥2 + γ2∥xk
i − xk

0∥22,

∥J̃k
i − g′(xk

i )∥op ≤ λ0 + λ1∥xk
i − xk

0∥2.

Then the next two inequalities also hold for all (k, i) ∈ I(K, τ ) on E2:

∥g̃k
i − g(xk

i )∥2 ≤ (γ0 +
α(k,i)γ1

2 ) + (γ2 + γ1
2α(k,i)

)∥xk
i − xk

0∥22, (4.19)

∥J̃k
i − g′(xk

i )∥2op ≤ 2λ2
0 + 2λ2

1∥xk
i − xk

0∥22, (4.20)
where the α(k,i) in (4.19) can be arbitrary positive real number. Use (4.19) and (4.20) to upper
bound ∥g̃k

i − g(xk
i )∥2 and ∥J̃k

i − g′(xk
i )∥2op in (4.18) on the set E1 ∩ E2:

2M

5 ∥x̂
k
i+1 − xk

i ∥22 ≤ 12ϵ + 12
(
Φ(xk

i )− Φ(xk
i+1)

)
− 12

(
M

2 − lf Lg

)
∥xk

i+1 − xk
i ∥22

+ (50lf γ0 + 25lf α(k,i)γ1 + 38 lf
Lg

λ2
0) + (50lf γ2 + 25lf γ1

α(k,i)
+ 38 lf

Lg
λ2

1)∥xk
i − xk

0∥22,

for all (k, i) ∈ I(K, τ ) on E1 ∩ E2, which has probability at least 1− δΣτ −∆.

Theorem 4.7. Suppose Assumption 2.3 holds for estimator, and Assumption 2.4 holds for solver.
Fix an M > 5lf Lg. If some K ∈ N+, τ ∈ NK

+ , ∆ ∈ (0, 1) and θ ∈ C(K, τ , ∆) satisfy
50(1 + τmax)2γ2(K, τ , θ, ∆) ≤ 3Lg and 38(1 + τmax)2λ2

1(K, τ , θ, ∆) ≤ 3L2
g (4.21)

where τmax = max{τ0, ..., τK−1}, then the following holds with probability at least 1− δΣτ −∆:

1
Στ

K−1∑
k=0

τk−1∑
i=0
∥GM (xk

i )∥22

≤ 30Mϵ + 30M
Φ(x0

0)− Φ(xK
0 )

Στ
+ 125Mlf γ0(K, τ , θ, ∆)

+ 525M
lf
Lg

(1 + τmax)2γ2
1(K, τ , θ, ∆) + 95M

lf
Lg

λ2
0(K, τ , θ, ∆).

(4.22)
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Proof of Theorem 4.7. As a shorthand, we use γl, λl for γl(·, ·, ·, ·), λl(·, ·, ·, ·) as the arguments are
clear from context. For each k = 0, ..., K − 1, we define a sequence of numbers c(k,0), ..., c(k,τk) in
the following backward recursion way: First let c(k,τk) = 0. For i = τk − 1, ..., 0, we define

c(k,i) = (1 + 1
τk

)c(k,i+1) + dk, where dk := 50lf γ2 + 3lf Lg

(1 + τk)2 + 38 lf
Lg

λ2
1.

Then c(k,i) + τkdk = (1 + 1
τk

)(c(k,i+1) + τkdk), from which we get c(k,i) = τkdk(1 + 1
τk

)τk−i− τkdk. By
the fact dk ≥ 0 and c(k,τk) = 0, we also have 0 = c(k,τk) ≤ c(k,τk−1) ≤ · · · ≤ c(k,0).

By letting α(k,i) = αk := 25γ1
3Lg

(1 + τk)2 in Lemma 4.6, there exists a subset E of the whole
probability space, such that P(E) ≥ 1−δΣτ−∆, and the inequality below holds for all (k, i) ∈ I(K, τ )
on E :

2M

5 ∥x̂
k
i+1 − xk

i ∥22 ≤ 12ϵ + 12
(
Φ(xk

i )− Φ(xk
i+1)

)
− 12(M

2 − lf Lg)∥xk
i+1 − xk

i ∥22

+ (50lf γ0 + 25lf αkγ1 + 38 lf
Lg

λ2
0) + dk∥xk

i − xk
0∥22.

(4.23)

Using the fact that 12(M
2 − lf Lg) ≥ 18lf Lg ≥ (1 + τk)c(k,1) ≥ (1 + τk)c(k,i+1) for all i = 0, ..., τk− 1,4

we have

−12(M

2 − lf Lg)∥xk
i+1 − xk

i ∥22 ≤ −(1 + τk)c(k,i+1)∥xk
i+1 − xk

i ∥22

≤ −c(k,i+1)∥xk
i+1 − xk

0∥22 + (1 + 1
τk

)c(k,i+1)∥xk
i − xk

0∥22
(4.24)

for all (k, i) ∈ I(K, τ ). Combining (4.23) and (4.24) leads to

2M

5 ∥x̂
k
i+1 − xk

i ∥22 = 12ϵ + 12
(
Φ(xk

i )− Φ(xk
i+1)

)
− c(k,i+1)∥xk

i+1 − xk
0∥22

+ c(k,i)∥xk
i − xk

0∥22 + (50lf γ0 + 25lf αkγ1 + 38 lf
Lg

λ2
0)

for all (k, i) ∈ I(K, τ ) on E . Then we can fix an arbitrary k, let i range over 0, ..., τk − 1 and take
the sum. So the following holds for all k = 0, ..., K − 1 on E :

2M

5

τk−1∑
i=0
∥x̂k

i+1 − xk
i ∥22

≤ 12τkϵ + 12
(
Φ(xk

0)− Φ(xk
τk

)
)
− c(k,τk)∥xk

τk
− xk

0∥22

+ c(k,0)∥xk
0 − xk

0∥22 + τk(50lf γ0 + 25lf αkγ1 + 38 lf
Lg

λ2
0)

= 12τkϵ + 12
(
Φ(xk

0)− Φ(xk+1
0 )

)
+ τk(50lf γ0 + 25lf αkγ1 + 38 lf

Lg
λ2

0),

4It remains to check 18lf Lg ≥ (1+τk)c(k,1) in this claim. By the recursion formula, c(k,1) = τkdk(1+ 1
τk

)τk−1−τkdk <

eτkdk − τkdk < 2τkdk. So (1 + τk)c(k,1) < 2(1 + τk)2dk ≤ 18lf Lg, where the last step is from (4.21):

(1 + τk)2dk = (1 + τk)2
(

50lf γ2 + 3lf Lg

(1 + τk)2 + 38 lf

Lg
λ2

1

)
≤ 3lf Lg + 3lf Lg + 3lf Lg.
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where the last step is because c(k,τk) = 0, and xk+1
0 = xk

τk
(see Algorithm 1). Finally, we sum over

k = 0, ..., K − 1, and use the fact that αk = 25γ1
3Lg

(1 + τk)2 ≤ 25γ1
3Lg

(1 + τmax)2: On E , we have

2M

5

K−1∑
k=0

τk−1∑
i=0
∥x̂k

i+1 − xk
i ∥22 ≤ 12Στ · ϵ + 12

(
Φ(x0

0)− Φ(xK
0 )
)

+ Στ

(
50lf γ0 + 210 lf

Lg
(1 + τmax)2γ2

1 + 38 lf
Lg

λ2
0

)
.

Multiplying 5M/(2Στ ) on both sides completes the proof.

Proof of Theorem 3.1. Replace ∆ by ∆/2 in Theorem 4.7, then Theorem 4.7 requires (3.1), and
(4.21) becomes (3.8), (3.9). Under conditions (3.3)–(3.7), the 5 terms on the right hand side of
(4.22) are all at most ϵ/5. In addition, suppose (3.2) holds, i.e., Στ δ ≤ ∆/2, then the probability
bound in Theorem 4.7 becomes 1−∆. Therefore, under conditions (3.1)–(3.9), Theorem 4.7 gives

1
Στ

∑K−1
k=0

∑τk−1
i=0 ∥GM (xk

i )∥22 ≤ ϵ with probability at least 1−∆.

4.2 Sample Derivations of Corollaries 3.6 and 3.7

We provide the direct calculations of the claimed guarantees for estimator1 discussed in Section 3.1.
To do this, we first introduce a needed concentration inequality (Section 4.2.1) and technical bounds
related to establishing estimator1 satisfies Assumption 2.3 (Section 4.2.2). From these calculations,
Corollaries 3.6 and 3.7 both follow (Section 4.2.3). The derivations of the remaining corollaries in
Section 3.1 are deferred to Appendix A.2.

4.2.1 Concentration Inequality

Lemma 4.8 (Matrix Bernstein). Let X1, ..., Xn be independent random matrices of common
dimension d1 × d2. Assume E[Xk] = 0 and ∥Xk∥op ≤ L for each k = 1, ..., n where L is some
constant. If n ≥ 4

9 log
(

d1+d2
δ

)
for some δ ∈ (0, 1), then

∥∥∥∥∥ 1
n

n∑
k=1

Xk

∥∥∥∥∥
op

≤ 2L√
n

√
log

(
d1 + d2

δ

)

holds with probability at least 1− δ.

Proof of Lemma 4.8. Using a classic Matrix Bernstein bound (see [22]), one has

P

∥∥∥∥∥
n∑

k=1
Xk

∥∥∥∥∥
op

≥ t

 ≤ (d1 + d2) · exp
(
−t2/2

V + Lt/3

)
, (4.25)

where V := max
{∥∥∥∑n

k=1 E
[
XkXT

k

]∥∥∥
op

,
∥∥∥∑n

k=1 E
[
XT

k Xk

]∥∥∥
op

}
. By some basic properties,

∥∥∥∥∥
n∑

k=1
E
[
XkXT

k

]∥∥∥∥∥
op

≤
n∑

k=1
E
∥∥∥XkXT

k

∥∥∥
op
≤

n∑
k=1

E
[∥∥Xk

∥∥
op ·

∥∥XT
k

∥∥
op

]
≤ nL2.
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Similarly,
∥∥∥∑n

k=1 E
[
XT

k Xk

]∥∥∥
op
≤ nL2. So the V defined above is at most nL2. Consequently,

P

∥∥∥∥∥
n∑

k=1
Xk

∥∥∥∥∥
op

≥ t

 ≤ (d1 + d2) · exp
(
−t2/2

V + Lt/3

)
≤ (d1 + d2) · exp

(
−t2/2

nL2 + Lt/3

)

for any t ≥ 0. With t = 2L

√
n log

(
d1+d2

δ

)
, note that 2

3Lt = 4L2

3

√
n log

(
d1+d2

δ

)
≤ 2nL2, where

the last step is from the assumption that n ≥ 4
9 log

(
d1+d2

δ

)
. The claim then follows directly

from (4.25).

4.2.2 Technical Bounds for Estimators

Proposition 4.9. Suppose Assumption 3.2 holds. For an arbitrary fixed pair (k, i) ∈ I(K, τ ) and
any δ ∈ (0, 1), assume g̃k

i and J̃k
i are constructed by (Est0). (i) If A ≥ 4

9 log
(

m+1
δ

)
, then the

following holds with probability at least 1− δ,∥∥∥g̃k
i − g(xk

i )
∥∥∥

2
≤ 2σg√

A

√
log

(
m + 1

δ

)
;

(ii) If B ≥ 4
9 log

(
m+n

δ

)
, then the following holds with probability at least 1− δ,

∥∥∥J̃k
i − g′(xk

i )
∥∥∥

op
≤

2σg′
√

B

√
log

(
m + n

δ

)
.

Proof of Proposition 4.9. We first prove part (i). From the construction of g̃k
i in (Est0), g̃k

i −g(xk
i ) =

1
A

∑
ξ∈Ak

i

(
gξ(xk

i )− g(xk
i )
)
. Suppose Ak

i = {ξ1, ..., ξA}, then ξ1, ..., ξA are independently drawn from
distribution D. For each r = 1, ..., A, denote Yr = gξr (xk

i )− g(xk
i ). So g̃k

i − g(xk
i ) = 1

A

∑A
r=1 Yr.

Use xk
i to denote the sequence of iterates {x0

0, x0
1, ..., xk

i } in the rest of this proof. Then if
conditioning on xk

i , all the randomness at the (k, i)-th iteration comes from the sampling of
Ak

i . So Y1, ..., YA are independent conditioning on xk
i . Since g = Eξ∼D[gξ], we immediately have

E[Yr|xk
i ] = 0. By Assumption 3.2, σg is a constant upper bound of ∥Yr∥2. Note Yr is an m × 1

matrix, ∥Yr∥op = ∥Yr∥2. Then we can apply Lemma 4.8 to Y1, ..., YA (conditioning on xk
i ): if

A ≥ 4
9 log(m+1

δ ) for some δ ∈ (0, 1), then

P
(
∥g̃k

i − g(xk
i )∥2 ≥ t | xk

i

)
≤ δ

where t = 2σg√
A

√
log

(
m+1

δ

)
. This implies the unconditional probability is also upper bounded by δ,5

i.e.,
P
(
∥g̃k

i − g(xk
i )∥2 ≥ t

)
≤ δ

which finishes the proof for part (i).
The proof for part (ii) is similar. Suppose Bk

0 = {ξ′
1, ..., ξ′

B}, and denote Zr = g′
ξ′

r
(xk

i )− g′(xk
i ) for

each r = 1, ..., B. Then J̃k
i − g′(xk

i ) = 1
B

∑B
r=1 Zr. Applying Lemma 4.8 to Z1, ..., ZB (conditioning

on xk
i ) finishes the proof, since ∥Zr∥op ≤ σg′ .

5To see this, we can rewrite all the probabilities as the expectations of corresponding indicator functions, then use
the law of total expectation. Let I = 1 if ∥g̃k

i − g(xk
i )∥2 ≥ t, and I = 0 otherwise. It follows that

P
(∥∥g̃k

i − g(xk
i )
∥∥

2
≥ t
)

= E [I] = E
[
E
[
I | xk

i
]]

= E
[
P
(∥∥g̃k

i − g(xk
i )
∥∥

2
≥ t | xk

i
)]

≤ E [δ] = δ.
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Proposition 4.10. For an arbitrary fixed pair (k, i) ∈ I(K, τ ) and any δ ∈ (0, 1), if g̃k
i is constructed

by (Est1) or (Est3), and a ≥ 4
9 log

(
m+1

δ

)
, then the following holds with probability at least 1− δ:

∥∥∥g̃k
i − g(xk

i )
∥∥∥

2
≤
∥∥∥g̃k

0 − g(xk
0)
∥∥∥

2
+ 4lg√

a

√
log

(
m + 1

δ

)
∥xk

i − xk
0∥2.

Proof of Proposition 4.10. Noting that g̃k
i −g(xk

i ) =
(
g̃k

0 − g(xk
0)
)

+ 1
a

∑a
r=1 Yr where Yr = gξr (xk

i )−
gξr (xk

0)−g(xk
i )+g(xk

0) for each r = 1, ..., a, it suffices to bound ∥∑a
r=1 Yr∥2 and then apply the triangle

inequality. The claimed bound then follows directly from Lemma 4.8 as ∥Yr∥op ≤ 2lg∥xk
i −xk

0∥2.

Proposition 4.11. For an arbitrary fixed pair (k, i) ∈ I(K, τ ) and any δ ∈ (0, 1), if J̃k
i is

constructed by any method among (Est1), (Est2), (Est3), (Est4), and b ≥ 4
9 log

(
m+n

δ

)
, then the

following holds with probability at least 1− δ:∥∥∥J̃k
i − g′(xk

i )
∥∥∥

op
≤
∥∥∥J̃k

0 − g′(xk
0)
∥∥∥

op
+ 4Lg√

b

√
log

(
m + n

δ

)
∥xk

i − xk
0∥2.

Proof of Proposition 4.11. Noting that J̃k
i − g′(xk

i ) =
(
J̃k

0 − g′(xk
0)
)

+ 1
b

∑b
r=1 Zr where Zr =

g′
ξr

(xk
i ) − g′

ξr
(xk

0) − g′(xk
i ) + g′(xk

0) for each r = 1, ..., b, it suffices to bound ∥∑b
r=1 Zr∥op and

then apply the triangle inequality. The claimed bound then follows directly from Lemma 4.8 as
∥Zr∥op ≤ 2Lg∥xk

i − xk
0∥2.

4.2.3 Proofs of Corollaries 3.6 and 3.7 Using the technical propositions above, we can prove
the lemmas and corollaries for estimator1 claimed in Section 3.1.

Proof of Lemma 3.5. For any K ∈ N+, τ ∈ NK
+ and ∆ ∈ (0, 1), let δ = ∆

2Στ
. By Proposition 4.9, for

an arbitrary k ∈ {0, ..., K − 1}, any A ≥ 4
9 log

(
m+1

δ

)
and any B ≥ 4

9 log
(

m+n
δ

)
, the following two

inequalities hold with probability at least 1− 2δ,∥∥∥g̃k
0 − g(xk

0)
∥∥∥

2
≤ 2σg√

A

√
log

(
m + 1

δ

)
,
∥∥∥J̃k

0 − g′(xk
0)
∥∥∥

op
≤

2σg′
√

B

√
log

(
m + n

δ

)
. (4.26)

By Proposition 4.10, for an arbitrary (k, i) ∈ I(K, τ ) and any a ≥ 4
9 log

(
m+1

δ

)
, the following holds

with probability at least 1− δ:∥∥∥g̃k
i − g(xk

i )
∥∥∥

2
≤
∥∥∥g̃k

0 − g(xk
0)
∥∥∥

2
+ 4lg√

a

√
log

(
m + 1

δ

)
∥xk

i − xk
0∥2. (4.27)

By Proposition 4.11, for an arbitrary (k, i) ∈ I(K, τ ) and any b ≥ 4
9 log

(
m+n

δ

)
, the following holds

with probability at least 1− δ:∥∥∥J̃k
i − g′(xk

i )
∥∥∥

op
≤
∥∥∥J̃k

0 − g′(xk
0)
∥∥∥

op
+ 4Lg√

b

√
log

(
m + n

δ

)
∥xk

i − xk
0∥2. (4.28)

Let C(K, τ , ∆) = {(A, B, a, b) ∈ N4
+ : A, a ≥ 4

9 log(2(m+1)Στ

∆ ), and B, b ≥ 4
9 log(2(m+n)Στ

∆ )}. Then
for any (A, B, a, b) ∈ C(K, τ , ∆), by using a union probability bound, (4.26), (4.27) and (4.28) hold
for all (k, i) ∈ I(K, τ ) with probability at least 1− 2Στ δ. Note that 1− 2Στ δ = 1−∆, so we can set
γ0(K, τ , θ, ∆) = 2σg√

A

√
log(2(m+1)Στ

∆ ), γ1(K, τ , θ, ∆) = 4lg√
a

√
log(2(m+1)Στ

∆ ), γ2 = 0, λ0(K, τ , θ, ∆) =
2σg′√

B

√
log(2(m+n)Στ

∆ ) and λ1(K, τ , θ, ∆) = 4Lg√
b

√
log(2(m+n)Στ

∆ ) to satisfy Assumption 2.3.
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Proof of Corollary 3.6. We can obtain the explicit form of C(K, τ , ∆), {γl}2l=0 and {λl}1l=0 from
Lemma 3.5, and plug them into Theorem 3.1. Then by Theorem 3.1, to get 1

Kτ

∑K−1
k=0

∑τ−1
i=0 ∥GM (xk

i )∥22 ≤
ϵ with probability at least 1−∆, we need δ ≤ ∆/(2Kτ), ϵ ≤ ϵ/(5·30M), and the following inequalities:

A, a ≥ 4
9 log

(
4(m+1)Kτ

∆

)
, and B, b ≥ 4

9 log
(

4(m+n)Kτ
∆

)
Kτ ≥ 5 · 30M(Φ(x0

0)− Φ∗)/ϵ

2σg√
A

√
log

(
4(m+1)Kτ

∆

)
≤ ϵ/(5 · 125lf M)

4σ2
g′

B log
(

4(m+n)Kτ
∆

)
≤ Lgϵ/(5 · 95lf M)

(1 + τ)2 16l2g
a log

(
4(m+1)Kτ

∆

)
≤ Lgϵ/(5 · 525lf M)

(1 + τ)2 16L2
g

b log
(

4(m+n)Kτ
∆

)
≤ 3L2

g/38

which reduce to 

Kτ ≥ CΣ · ϵ−1

A ≥ CA · ϵ−2 · log
(

4(m+1)Kτ
∆

)
B ≥ CB · ϵ−1 · log

(
4(m+n)Kτ

∆

)
a ≥ Ca · (1 + τ)2 · ϵ−1 · log

(
4(m+1)Kτ

∆

)
b ≥ Cb · (1 + τ)2 · log

(
4(m+n)Kτ

∆

)
providing that 1/ϵ is sufficiently large. Here CΣ, CA, CB, Ca, Cb are some constants.

For any positive integer τ , let K = ⌈CΣ·ϵ−1

τ ⌉, A = ⌈CA · ϵ−2 · log(4(m+1)Kτ
∆ )⌉, B = ⌈CB · ϵ−1 ·

log(4(m+n)Kτ
∆ )⌉, a = ⌈Ca ·(1+τ)2 ·ϵ−1 ·log(4(m+1)Kτ

∆ )⌉, b = ⌈Cb ·(1+τ)2 ·log(4(m+n)Kτ
∆ )⌉, then the con-

ditions above hold for sufficiently small ϵ. So Theorem 3.1 guarantees that 1
Kτ

∑K−1
k=0

∑τ−1
i=0 ∥GM (xk

i )∥22 ≤
ϵ with probability at least 1−∆.

In (Est1), at the (k, 0)-th iteration, we evaluate gξ(·) for A times and g′
ξ(·) for B times. At the

(k, i)-th iteration (with i > 0), we evaluate gξ(·) for 2a times and g′
ξ(·) for 2b times. Supposing

τ = O(ϵ−1), the oracle complexity for evaluations of gξ(·) is

KA + 2K(τ − 1)a ≤ KA + 2Kτa = Θ̃
(
(ϵ−3τ−1 + ϵ−2τ2) log(1/∆)

)
,

and the oracle complexity for evaluations of Jacobians g′
ξ(·) is

KB + 2K(τ − 1)b ≤ KB + 2Kτb = Θ̃
(
(ϵ−2τ−1 + ϵ−1τ2) log(1/∆)

)
.

Proof of Corollary 3.7. Suppose τ = Θ(ϵ−β) for some β ≥ 0. Then (3.10) can be simplified as

Θ̃((ϵ−3τ−1 + ϵ−2τ2) log(1/∆)) = Θ̃(ϵ− max{3−β,2+2β} log(1/∆)),

and (3.11) can be simplified as

Θ̃((ϵ−2τ−1 + ϵ−1τ2) log(1/∆)) = Θ̃(ϵ− max{2−β,1+2β} log(1/∆)).

The asymptotic rates for two bounds are both minimized by β = 1
3 . At τ = Θ(ϵ−1/3), the two

bounds become Θ̃(ϵ−8/3 log(1/∆)) and Θ̃(ϵ−5/3 log(1/∆)) respectively.
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A Derivations of Remaining Corollaries

A.1 More Concentration Inequality and Technical Bounds

Lemma A.1 (Hoeffding’s inequality). Let Y1, ..., Yn be independent random variables bounded by
ai ≤ Yi ≤ bi. Then for any t ≥ 0, Sn = ∑n

i=1 Yn has

P (Sn ≤ E[Sn]− t) ≤ exp
(
− 2t2∑n

i=1(bi − ai)2

)
.

Proof of Lemma A.1. This is a restatement of Hoeffding’s inequality [23].

Proposition A.2. For an arbitrary fixed pair (k, i) ∈ I(K, τ ) and any δ ∈ (0, 1), if g̃k
i is constructed

by (Est2) or (Est4), and a ≥ 4
9 log

(
m+1

δ

)
, then the following holds with probability at least 1− δ:

∥∥∥g̃k
i − g(xk

i )
∥∥∥

2
≤
∥∥∥g̃k

0 − g(xk
0)
∥∥∥

2
+
∥∥∥J̃k

0 − g′(xk
0)
∥∥∥

op
∥xk

i − xk
0∥2 + 2Lg√

a

√
log

(
m + 1

δ

)
∥xk

i − xk
0∥22.

Proof of Proposition A.2. The proof is similar to the proofs in Section 4.2.2. Suppose Ak
i =

{ξ1, ..., ξa}, and denote Yr = gξr (xk
i )− gξr (xk

0)− g′
ξr

(xk
0)(xk

i − xk
0)− g(xk

i ) + g(xk
0) + g′(xk

0)(xk
i − xk

0)
for each r = 1, ..., a. Then we have

g̃k
i − g(xk

i ) =
(
g̃k

0 − g(xk
0)
)

+
(
J̃k

0 − g′(xk
0)
)

(xk
i − xk

0) + 1
a

a∑
r=1

Yr. (A.1)

Use xk
i to denote the sequence of iterates {x0

0, x0
1, ..., xk

i } in the rest of this proof. Then Y1, ..., Ya

are independent conditioning on xk
i , and E[Yr|xk

i ] = 0. By the setting in Section 2 and Proposition
2.1, g′

ξr
(·) and g′(·) are both Lg-Lipschitz, which implies ∥gξr (xk

i )− gξr (xk
0)− g′

ξr
(xk

0)(xk
i − xk

0)∥2 ≤
Lg

2 ∥x
k
i − xk

0∥22 and ∥g(xk
i )− g(xk

0)− g′(xk
0)(xk

i − xk
0)∥2 ≤ Lg

2 ∥x
k
i − xk

0∥22. So Lg∥xk
i − xk

0∥22 is an upper
bound of ∥Yr∥2. Applying Lemma 4.8 to Y1, ..., Ya (conditioning on xk

i ) and following a similar
proof as Proposition 4.9, we have∥∥∥∥∥1

a

a∑
r=1

Yr

∥∥∥∥∥
2
≤ 2Lg√

a
∥xk

i − xk
0∥22

√
log

(
m + 1

δ

)
with probability at least 1− δ. Combining it with (A.1) completes the proof.
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A.2 Proofs of Remaining Corollaries

Using the technical Propositions from Section 4.2.2 and Appendix A.1, we can prove the Lemmas
and Corollaries for estimator0 and estimator2–estimator4.
Proofs for estimator0.

Proof of Lemma 3.3. For any K ∈ N+, τ ∈ NK
+ and ∆ ∈ (0, 1), let δ = ∆

2Στ
. By Proposition 4.9,

for an arbitrary (k, i) ∈ I(K, τ ), any A ≥ 4
9 log

(
m+1

δ

)
and any B ≥ 4

9 log
(

m+n
δ

)
, the following two

inequalities hold with probability at least 1− 2δ,

∥∥∥g̃k
i − g(xk

i )
∥∥∥

2
≤ 2σg√

A

√
log

(
m + 1

δ

)
,
∥∥∥J̃k

i − g′(xk
i )
∥∥∥

op
≤

2σg′
√

B

√
log

(
m + n

δ

)
. (A.2)

Let C(K, τ , ∆) = {(A, B) ∈ N4
+ : A ≥ 4

9 log(2(m+1)Στ

∆ ), and B ≥ 4
9 log(2(m+n)Στ

∆ )}. Then for any
(A, B) ∈ C(K, τ , ∆), by using a union probability bound, (A.2) holds for all (k, i) ∈ I(K, τ )
with probability at least 1 − 2Στ δ. Note that 1 − 2Στ δ = 1 −∆, so we can set γ0(K, τ , θ, ∆) =
2σg√

A

√
log(2(m+1)Στ

∆ ), λ0(K, τ , θ, ∆) = 2σg′√
B

√
log(2(m+n)Στ

∆ ) and γ1 = γ2 = λ1 = 0 to satisfy Assump-
tion 2.3.

Proof of Corollary 3.4. We can obtain the explicit form of C(K, τ , ∆), {γl}2l=0 and {λl}1l=0 from
Lemma 3.3, and plug them into Theorem 3.1. Then by Theorem 3.1, to get 1

Στ

∑K−1
k=0

∑τk−1
i=0 ∥GM (xk

i )∥22 ≤
ϵ with probability at least 1−∆, we need δ ≤ ∆/(2Στ ), ϵ ≤ ϵ/(5·30M), and the following inequalities:

A ≥ 4
9 log

(
4(m+1)Στ

∆

)
, and B ≥ 4

9 log
(

4(m+n)Στ

∆

)
Στ ≥ 5 · 30M(Φ(x0

0)− Φ∗)/ϵ

2σg√
A

√
log

(
4(m+1)Στ

∆

)
≤ ϵ/(5 · 125lf M)

4σ2
g′

B log
(

4(m+n)Στ

∆

)
≤ Lgϵ/(5 · 95lf M)

which reduces to 
Στ ≥ CΣ · ϵ−1

A ≥ CA · ϵ−2 · log
(

4(m+1)Στ

∆

)
B ≥ CB · ϵ−1 · log

(
4(m+n)Στ

∆

)
providing that 1/ϵ is sufficiently large. Here CΣ, CA, CB are some constants.

Let Στ = ⌈CΣ ·ϵ−1⌉, A = ⌈CA ·ϵ−2 ·log(4(m+1)Στ

∆ )⌉, B = ⌈CB ·ϵ−1 ·log(4(m+n)Στ

∆ )⌉, then the condi-
tions above hold for sufficiently small ϵ. So Theorem 3.1 guarantees that 1

Στ

∑K−1
k=0

∑τk−1
i=0 ∥GM (xk

i )∥22 ≤
ϵ with probability at least 1−∆.

In (Est0), at the (k, i)-th iteration, we evaluate gξ(·) for A times and g′
ξ(·) for B times. Then

the oracle complexity for evaluations of gξ(·) is

Στ A = Θ(ϵ−1) · Θ̃
(
ϵ−2 log(1/∆)

)
= Θ̃

(
ϵ−3 log(1/∆)

)
,

and the oracle complexity for evaluations of Jacobians g′
ξ(·) is

Στ B = Θ(ϵ−1) · Θ̃
(
ϵ−1 log(1/∆)

)
= Θ̃

(
ϵ−2 log(1/∆)

)
.
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Proofs for estimator2.

Proof of Lemma 3.8. For any K ∈ N+, τ ∈ NK
+ and ∆ ∈ (0, 1), let δ = ∆

2Στ
. By Proposition 4.9, for

an arbitrary k ∈ {0, ..., K − 1}, any A ≥ 4
9 log

(
m+1

δ

)
and any B ≥ 4

9 log
(

m+n
δ

)
, the following two

inequalities hold with probability at least 1− 2δ,

∥∥∥g̃k
0 − g(xk
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∥∥∥

2
≤ 2σg√

A

√
log
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m + 1

δ

)
,
∥∥∥J̃k

0 − g′(xk
0)
∥∥∥

op
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2σg′
√

B

√
log

(
m + n

δ

)
. (A.3)

By Proposition A.2, for an arbitrary (k, i) ∈ I(K, τ ) and any a ≥ 4
9 log

(
m+1

δ

)
, the following holds

with probability at least 1− δ:

∥∥∥g̃k
i − g(xk
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+
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(A.4)

By Proposition 4.11, for an arbitrary (k, i) ∈ I(K, τ ) and any b ≥ 4
9 log

(
m+n

δ

)
, the following holds

with probability at least 1− δ:

∥∥∥J̃k
i − g′(xk

i )
∥∥∥

op
≤
∥∥∥J̃k

0 − g′(xk
0)
∥∥∥

op
+ 4Lg√

b

√
log

(
m + n

δ

)
∥xk

i − xk
0∥2. (A.5)

Let C(K, τ , ∆) = {(A, B, a, b) ∈ N4
+ : A, a ≥ 4

9 log(2(m+1)Στ

∆ ), and B, b ≥ 4
9 log(2(m+n)Στ

∆ )}. Then
for any (A, B, a, b) ∈ C(K, τ , ∆), by using a union probability bound, (A.3), (A.4) and (A.5) hold
for all (k, i) ∈ I(K, τ ) with probability at least 1 − 2Στ δ. Note that 1 − 2Στ δ = 1 − ∆, so we
can set γ0(K, τ , θ, ∆) = 2σg√

A

√
log(2(m+1)Στ
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∆ ) to satisfy Assumption
2.3.

Proof of Corollary 3.9. We can obtain the explicit form of C(K, τ , ∆), {γl}2l=0 and {λl}1l=0 from
Lemma 3.8, and plug them into Theorem 3.1. Then by Theorem 3.1, to get 1

Kτ
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∑τ−1
i=0 ∥GM (xk

i )∥22 ≤
ϵ with probability at least 1−∆, we need δ ≤ ∆/(2Kτ), ϵ ≤ ϵ/(5·30M), and the following inequalities:
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9 log
(

4(m+n)Kτ
∆

)
Kτ ≥ 5 · 30M(Φ(x0

0)− Φ∗)/ϵ

2σg√
A

√
log

(
4(m+1)Kτ

∆

)
≤ ϵ/(5 · 125lf M)

4σ2
g′

B log
(

4(m+n)Kτ
∆

)
≤ Lgϵ/(5 · 95lf M)

(1 + τ)2 4σ2
g′

B log
(

4(m+n)Kτ
∆

)
≤ Lgϵ/(5 · 525lf M)

(1 + τ)2 2Lg√
a

√
log

(
4(m+1)Kτ

∆

)
≤ 3Lg/50

(1 + τ)2 16L2
g

b log
(

4(m+n)Kτ
∆

)
≤ 3L2

g/38

28



So it reduces to 

Kτ ≥ CΣ · ϵ−1

A ≥ CA · ϵ−2 · log
(

4(m+1)Kτ
∆

)
B ≥ CB · (1 + τ)2 · ϵ−1 · log

(
4(m+n)Kτ

∆

)
a ≥ Ca · (1 + τ)4 · log

(
4(m+1)Kτ

∆

)
b ≥ Cb · (1 + τ)2 · log

(
4(m+n)Kτ

∆

)
providing that 1/ϵ is sufficiently large. Here CΣ, CA, CB, Ca, Cb are some constants.

For any positive integer τ , let K = ⌈CΣ·ϵ−1

τ ⌉, A = ⌈CA·ϵ−2·log(4(m+1)Kτ
∆ )⌉, B = ⌈CB ·(1+τ)2·ϵ−1·

log(4(m+n)Kτ
∆ )⌉, a = ⌈Ca ·(1+τ)4 · log(4(m+1)Kτ

∆ )⌉, b = ⌈Cb ·(1+τ)2 · log(4(m+n)Kτ
∆ )⌉, then the condi-

tions above hold for sufficiently small ϵ. So Theorem 3.1 guarantees that 1
Kτ

∑K−1
k=0

∑τ−1
i=0 ∥GM (xk

i )∥22 ≤
ϵ with probability at least 1−∆.

In (Est2), at the (k, 0)-th iteration, we evaluate gξ(·) for A times and g′
ξ(·) for B times. At the

(k, i)-th iteration (with i > 0), we evaluate gξ(·) for 2a times and g′
ξ(·) for a + 2b times. Suppose

τ = O(ϵ−1), then the oracle complexity for evaluations of gξ(·) is

KA + 2K(τ − 1)a ≤ KA + 2Kτa = Θ̃
(
(ϵ−3τ−1 + ϵ−1τ4) log(1/∆)

)
,

and the oracle complexity for evaluations of Jacobians g′
ξ(·) is

KB + K(τ − 1)(a + 2b) ≤ KB + Kτa + 2Kτb = Θ̃
(
(ϵ−2τ + ϵ−1τ4) log(1/∆)

)
.

Proof of Corollary 3.10. Suppose τ = Θ(ϵ−β) for some β ≥ 0. Then (3.12) can be simplified as

Θ̃
(
(ϵ−3τ−1 + ϵ−1τ4) log(1/∆)

)
= Θ̃(ϵ− max{3−β,1+4β} log(1/∆)), (A.6)

and (3.13) can be simplified as

Θ̃
(
(ϵ−2τ + ϵ−1τ4) log(1/∆)

)
= Θ̃(ϵ− max{2+β,1+4β} log(1/∆)). (A.7)

(A.6) is minimized by β = 2
5 . When β = 2

5 ,(A.6) and (A.7) are Θ̃(ϵ−13/5 log(1/∆)). (A.7) is minimized
by β = 0. When β = 0, (A.7) becomes Θ̃(ϵ−2 log(1/∆)) and (A.6) becomes Θ̃(ϵ−3 log(1/∆)).

Proofs for estimator3.

Proof of Lemma 3.12. We have g̃k
0 = g(xk

0) and J̃k
0 = g′(xk

0) from (Est3). For any K ∈ N+, τ ∈ NK
+

and ∆ ∈ (0, 1), let δ = ∆
2Στ

. By Proposition 4.10, for an arbitrary (k, i) ∈ I(K, τ ) and any
a ≥ 4

9 log
(
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δ

)
, the following holds with probability at least 1− δ:
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2
≤ 4lg√

a

√
log

(
m + 1

δ

)
∥xk

i − xk
0∥2. (A.8)

By Proposition 4.11, for an arbitrary (k, i) ∈ I(K, τ ) and any b ≥ 4
9 log
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)
, the following holds

with probability at least 1− δ:
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Let C(K, τ , ∆) = {(a, b) ∈ N2
+ : a ≥ 4

9 log(2(m+1)Στ

∆ ), b ≥ 4
9 log(2(m+n)Στ

∆ )}. Then for any (a, b) ∈
C(K, τ , ∆), by using a union probability bound, (A.8) and (A.9) hold for all (k, i) ∈ I(K, τ ) with
probability at least 1 − 2Στ δ. Note that 1 − 2Στ δ = 1 − ∆, so we can set γ0 = γ2 = λ0 = 0,
γ1(K, τ , θ, ∆) = 4lg√

a

√
log(2(m+1)Στ

∆ ) and λ1(K, τ , θ, ∆) = 4Lg√
b

√
log(2(m+n)Στ

∆ ) to satisfy Assumption
2.3.

Proof of Corollary 3.13. We can obtain the explicit form of C(K, τ , ∆), {γl}2l=0 and {λl}1l=0 from
Lemma 3.12, and plug them into Theorem 3.1. Then by Theorem 3.1, to get 1

Kτ

∑K−1
k=0

∑τ−1
i=0 ∥GM (xk

i )∥22 ≤
ϵ with probability at least 1−∆, we need δ ≤ ∆/(2Kτ), ϵ ≤ ϵ/(5·30M), and the following inequalities:

a ≥ 4
9 log
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which reduces to 
Kτ ≥ CΣ · ϵ−1

a ≥ Ca · (1 + τ)2 · ϵ−1 · log
(

4(m+1)Kτ
∆

)
b ≥ Cb · (1 + τ)2 · log

(
4(m+n)Kτ

∆

)
providing that 1/ϵ is sufficiently large. Here CΣ, Ca, Cb are some constants.

For any positive integer τ , let K = ⌈CΣ·ϵ−1

τ ⌉, a = ⌈Ca · (1 + τ)2 · ϵ−1 · log(4(m+1)Kτ
∆ )⌉, b =

⌈Cb · (1 + τ)2 · log(4(m+n)Kτ
∆ )⌉. Then the conditions above are satisfied, so Theorem 3.1 guarantees

that 1
Kτ

∑K−1
k=0

∑τ−1
i=0 ∥GM (xk

i )∥22 ≤ ϵ with probability at least 1−∆.
In (Est3), at the (k, 0)-th iteration, we evaluate gj(·) for N times and g′

j(·) for N times. At the
(k, i)-th iteration (with i > 0), we evaluate gj(·) for a times and g′

j(·) for b times. So the oracle
complexity for evaluations of gξ(·) is

KN + K(τ − 1)a ≤ K(N + τ · a) ≤ (1 + CΣ
τϵ

) · (N + Θ̃(ϵ−1τ3))

= Θ̃
(
N + ϵ−1τ3 + Nϵ−1τ−1 + ϵ−2τ2

)
,

and the oracle complexity for evaluations of Jacobians g′
ξ(·) is

KN + K(τ − 1)b ≤ K(N + τ · b) ≤ (1 + CΣ
τϵ

) · (N + Θ̃(τ3))

= Θ̃
(
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)
.

Proof of Corollary 3.14. Note that τ ≥ 1, so

N + ϵ−1τ3 + Nϵ−1τ−1 + ϵ−2τ2 ≥ N + ϵ−2τ2 ≥ N + ϵ−2 ≥ 0.

We also have

N + ϵ−1τ3 + Nϵ−1τ−1 + ϵ−2τ2 ≥ max{Nϵ−1τ−1, ϵ−2τ2} ≥ N2/3ϵ−4/3 ≥ 0

Combine the two inequalities above, the rate in (3.14) is at least Θ̃
(
max{N + ϵ−2, N2/3ϵ−4/3}

)
=

Θ̃
(
N + ϵ−2 + N2/3ϵ−4/3

)
. We claim that it can be attained by τ = Θ

(
max{1, N1/3ϵ1/3}

)
. We

consider the following two subcases under this choice of τ :
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• If N = O(ϵ−1), then τ = Θ(1), (3.14) becomes Θ̃
(
N + ϵ−1 + Nϵ−1 + ϵ−2) = Θ̃

(
ϵ−2) =

Θ̃
(
N + N2/3ϵ−4/3 + ϵ−2

)
, and (3.15) becomes Θ̃

(
N + 1 + Nϵ−1 + ϵ−1) = Θ̃

(
Nϵ−1)

= Θ̃
(
min{Nϵ−1, N + N2/3ϵ−4/3}

)
.

• If N = Ω(ϵ−1), then τ = Θ(N1/3ϵ1/3), (3.14) becomes Θ̃
(
N + N2/3ϵ−4/3

)
= Θ̃

(
N + N2/3ϵ−4/3 + ϵ−2

)
,

and (3.15) becomes Θ̃
(
N + Nϵ + N2/3ϵ−4/3 + N2/3ϵ−1/3

)
= Θ̃

(
N + N2/3ϵ−4/3

)
= Θ̃

(
min{Nϵ−1, N + N2/3ϵ−4/3}

)
.

By the two subcases above, when τ = Θ
(
max{1, N1/3ϵ1/3}

)
, (3.14) attains the aforementioned

minimal asymptotic rate, and (3.15) becomes Θ̃
(
min{Nϵ−1, N + N2/3ϵ−4/3}

)
, which finishes the

proof of part (i).
Next, we consider minimizing the asymptotic rate of (3.15). Note that τ ≥ 0 and Nϵ−1τ−1 +

ϵ−1τ2 ≥ max{Nτ−1, τ2}ϵ−1 ≥ N2/3ϵ−1, so we have N+τ3+Nϵ−1τ−1+ϵ−1τ2 ≥ N+N2/3ϵ−1 ≥ 0. So
the rate in (3.15) is at least Θ̃

(
N + N2/3ϵ−1

)
. When τ = Θ

(
N1/3

)
, (3.15) attains Θ̃

(
N + N2/3ϵ−1

)
,

and (3.14) becomes Θ̃
(
N + Nϵ−1 + N2/3ϵ−1 + N2/3ϵ−2

)
= Θ̃

(
Nϵ−1 + N2/3ϵ−2

)
.

Proofs for estimator4.

Proof of Lemma 3.15. We have g̃k
0 = g(xk

0) and J̃k
0 = g′(xk

0) from (Est4). For any K ∈ N+, τ ∈ NK
+

and ∆ ∈ (0, 1), let δ = ∆
2Στ

. By Proposition A.2, for an arbitrary (k, i) ∈ I(K, τ ) and any
a ≥ 4

9 log
(

m+1
δ

)
, the following holds with probability at least 1− δ:

∥∥∥g̃k
i − g(xk

i )
∥∥∥

2
≤ 2Lg√

a

√
log

(
m + 1

δ

)
∥xk

i − xk
0∥22. (A.10)

By Proposition 4.11, for an arbitrary (k, i) ∈ I(K, τ ) and any b ≥ 4
9 log

(
m+n

δ

)
, the following holds

with probability at least 1− δ:
∥∥∥J̃k

i − g′(xk
i )
∥∥∥

op
≤ 4Lg√

b

√
log

(
m + n

δ

)
∥xk

i − xk
0∥2. (A.11)

Let C(K, τ , ∆) = {(a, b) ∈ N2
+ : a ≥ 4

9 log(2(m+1)Στ

∆ ), b ≥ 4
9 log(2(m+n)Στ

∆ )}. Then for any (a, b) ∈
C(K, τ , ∆), by using a union probability bound, (A.10) and (A.11) hold for all (k, i) ∈ I(K, τ )
with probability at least 1− 2Στ δ. Note that 1− 2Στ δ = 1−∆, so we can set γ0 = γ1 = λ0 = 0,
γ2(K, τ , θ, ∆) = 2Lg√

a

√
log(2(m+1)Στ

∆ ) and λ1(K, τ , θ, ∆) = 4Lg√
b

√
log(2(m+n)Στ

∆ ) to satisfy Assumption
2.3.

Proof of Corollary 3.16. We can obtain the explicit form of C(K, τ , ∆), {γl}2l=0 and {λl}1l=0 from
Lemma 3.15, and plug them into Theorem 3.1. Then by Theorem 3.1, to get 1

Kτ

∑K−1
k=0

∑τ−1
i=0 ∥GM (xk

i )∥22 ≤
ϵ with probability at least 1−∆, we need δ ≤ ∆/(2Kτ), ϵ ≤ ϵ/(5·30M), and the following inequalities:

a ≥ 4
9 log

(
4(m+1)Kτ

∆

)
, and b ≥ 4

9 log
(

4(m+n)Kτ
∆

)
Kτ ≥ 5 · 30M(Φ(x0

0)− Φ∗)/ϵ

(1 + τ)2 2Lg√
a

√
log

(
4(m+1)Kτ

∆

)
≤ 3Lg/50

(1 + τ)2 16L2
g

b log
(

4(m+n)Στ

∆

)
≤ 3L2

g/38
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So it reduces to 
Kτ ≥ CΣ · ϵ−1

a ≥ Ca · (1 + τ)4 · log
(

4(m+1)Kτ
∆

)
b ≥ Cb · (1 + τ)2 · log

(
4(m+n)Kτ

∆

)
where CΣ, Ca, Cb are some constants.

For any positive integer τ , let K = ⌈CΣ·ϵ−1

τ ⌉, a = ⌈Ca · (1 + τ)4 · log(4(m+1)Kτ
∆ )⌉, b = ⌈Cb ·

(1 + τ)2 · log(4(m+n)Kτ
∆ )⌉. Then the conditions above are satisfied, so Theorem 3.1 guarantees that

1
Kτ

∑K−1
k=0

∑τ−1
i=0 ∥GM (xk

i )∥22 ≤ ϵ with probability at least 1−∆.
In (Est4), at the (k, 0)-th iteration, we evaluate gj(·) for N times and g′

j(·) for N times. At the
(k, i)-th iteration (with i > 0), we evaluate gj(·) for a times and g′

j(·) for b times. So the oracle
complexity for evaluations of gξ(·) is

KN + K(τ − 1)a ≤ K(N + τ · a) ≤ (1 + CΣ
τϵ

) · (N + Θ̃(τ5))

= Θ̃
(
N + τ5 + Nϵ−1τ−1 + ϵ−1τ4

)
,

and the oracle complexity for evaluations of Jacobians g′
ξ(·) is

KN + K(τ − 1)b ≤ K(N + τ · b) ≤ (1 + CΣ
τϵ

) · (N + Θ̃(τ3))

= Θ̃
(
N + τ3 + Nϵ−1τ−1 + ϵ−1τ2

)
.

Proof of Corollary 3.17. Note that Nϵ−1τ−1 + ϵ−1τ4 ≥ N4/5ϵ−1, so we have N + τ5 + Nϵ−1τ−1 +
ϵ−1τ4 ≥ N + N4/5ϵ−1 ≥ 0. So the rate in (3.16) is at least Θ̃

(
N + N4/5ϵ−1

)
. When τ = Θ

(
N1/5

)
,

(3.16) attains Θ̃
(
N + N4/5ϵ−1

)
and (3.17) is also Θ̃

(
N + N4/5ϵ−1

)
.

Similarly, by the fact Nϵ−1τ−1 + ϵ−1τ2 ≥ N2/3ϵ−1, we have N + τ3 + Nϵ−1τ−1 + ϵ−1τ2 ≥
N + N2/3ϵ−1 ≥ 0. So the rate in (3.17) is at least Θ̃

(
N + N2/3ϵ−1

)
. When τ = Θ

(
N1/3

)
, (3.17)

attains Θ̃
(
N + N2/3ϵ−1

)
and (3.16) becomes Θ̃

(
N5/3 + N4/3ϵ−1

)
.

A.3 Proof for Randomized Epoch Durations

Proof of Corollary 3.20. We first analyze part (i) in a similar way as the proof of Corollary 3.6. Use
the explicit form of C(K, τ , ∆), {γl}2l=0 and {λl}1l=0 from Lemma 3.5, and plug them into Theorem
3.1. Then by Theorem 3.1, to get 1

Στ

∑K−1
k=0

∑τk−1
i=0 ∥GM (xk

i )∥22 ≤ ϵ with probability at least 1−∆,
we need

δ ≤ ∆/(2Στ ) and ϵ ≤ ϵ/(5 · 30M) (A.12)
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and the following inequalities:

A, a ≥ 4
9 log

(
4(m+1)Στ

∆

)
, and B, b ≥ 4

9 log
(

4(m+n)Στ

∆

)
Στ ≥ 5 · 30M(Φ(x0

0)− Φ∗)/ϵ

2σg√
A

√
log

(
4(m+1)Στ

∆

)
≤ ϵ/(5 · 125lf M)

4σ2
g′

B log
(

4(m+n)Στ

∆

)
≤ Lgϵ/(5 · 95lf M)

(1 + τmax)2 16l2g
a log

(
4(m+1)Στ

∆

)
≤ Lgϵ/(5 · 525lf M)

(1 + τmax)2 16L2
g

b log
(

4(m+n)Στ

∆

)
≤ 3L2

g/38

(A.13)

By (3.18) and Assumption 3.19, the constructed τ satisfies τmax ≤ τ+ and Sτ ≤ Στ ≤ Sτ + τ+. So
the choices δ = ∆

2(Sτ +τ+) and ϵ = ϵ/(5 · 30M) imply (A.12), and the following inequalities suffice to
imply (A.13): 

Sτ ≥ CΣ · ϵ−1

A ≥ CA · ϵ−2 · log
(

4(m+1)(Sτ +τ+)
∆

)
B ≥ CB · ϵ−1 · log

(
4(m+n)(Sτ +τ+)

∆

)
a ≥ Ca · (1 + τ+)2 · ϵ−1 · log

(
4(m+1)(Sτ +τ+)

∆

)
b ≥ Cb · (1 + τ+)2 · log

(
4(m+n)(Sτ +τ+)

∆

)
(A.14)

providing that 1/ϵ is sufficiently large. Here CΣ, CA, CB, Ca, Cb are some constants.
Let τ+ = ⌈ϵ−1/3⌉, Sτ = ⌈CΣ · ϵ−1⌉, A = ⌈CA · ϵ−2 · log(5(m+1)Sτ

∆ )⌉, B = ⌈CB · ϵ−1 · log(5(m+n)Sτ

∆ )⌉,
a = ⌈Ca · (1 + τ+)2 · ϵ−1 · log(5(m+1)Sτ

∆ )⌉, b = ⌈Cb · (1 + τ+)2 · log(5(m+n)Sτ

∆ )⌉, then (A.14) holds for
sufficiently small ϵ. So part (i) of Corollary 3.20 holds with probability at least 1−∆ by choosing
these parameters.

In the rest of the proof, we analyze part (ii) of Corollary 3.20. We need to provide a high
probability upper bound on K. For any positive integer M , (3.18) implies that K > M if and
only if ∑M−1

k=0 τk < Sτ , so P(K > M) = P
(∑M−1

k=0 τk < Sτ

)
. Note that the random variables

{τk} are independent and bounded between [0, τ+], so we can use Hoeffding’s Inequality. Denote
µτ := Eτ∼Dτ (·;τ+,θτ )[τ ]. By Lemma A.1, for any t ≥ 0,

P
(

M−1∑
k=0

τk ≤Mµτ − t

)
≤ exp

(
− 2t2

Mτ2
+

)
. (A.15)

Let M = ⌈2Cτ Sτ
τ+
⌉. By Assumption 3.19, µτ > 0 and Cτ µτ ≥ τ+ > 0, so M ≥ 2Cτ Sτ

τ+
≥ 2Sτ

µτ
> Sτ

µτ
.

Let t = Mµτ − Sτ ≥ 0 in (A.15), then we get

P(K > M) = P
(

M−1∑
k=0

τk < Sτ

)
≤ P

(
M−1∑
k=0

τk ≤ Sτ

)
≤ exp

(
−2(Mµτ − Sτ )2

Mτ2
+

)
. (A.16)

Note that the mapping ϕ(x) = 1
x(xµτ − Sτ )2 is increasing on the interval [Sτ

µτ
, +∞), so ϕ(M) ≥

ϕ(2Cτ Sτ
τ+

), which further implies

exp
(
−2(Mµτ − Sτ )2

Mτ2
+

)
≤ exp

− 2
(2Cτ Sτ

τ+
)τ2

+

(2Cτ Sτ

τ+
µτ − Sτ

)2


= exp
(
− Sτ

Cτ τ+

(2Cτ µτ

τ+
− 1

)2
)
≤ exp

(
− Sτ

Cτ τ+

) (A.17)
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where the last step is because 2Cτ µτ

τ+
−1 ≥ 1. By (A.16) and (A.17), P(K > ⌈2Cτ Sτ

τ+
⌉) ≤ exp

(
− Sτ

Cτ τ+

)
.

So K ≤ ⌈2Cτ Sτ
τ+
⌉ = Θ(ϵ−2/3) with probability at least 1− exp(− Sτ

Cτ τ+
) ≥ 1− exp(−Cpϵ−2/3) for some

constant Cp.
In (Est1), at the (k, 0)-th iteration, we evaluate gξ(·) for A times and g′

ξ(·) for B times. At the
(k, i)-th iteration (with i > 0), we evaluate gξ(·) for 2a times and g′

ξ(·) for 2b times. On the high
probability set where K = O(ϵ−2/3), the oracle complexity for evaluations of gξ(·) is

KA + 2(Στ −K)a ≤ KA + 2Στ · a ≤ KA + 2(Sτ + τ+)a = Õ(ϵ−8/3 log(1/∆)),

and the oracle complexity for evaluations of Jacobians g′
ξ(·) is

KB + 2(Στ −K)b ≤ KB + 2Στ · b ≤ KB + 2(Sτ + τ+)b = Õ(ϵ−5/3 log(1/∆)).

Using a union probability bound for part (i) and part (ii), they hold simultaneously with probability
at least 1−∆− exp(−Cpϵ−2/3), which finishes the proof.
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