A proximal-perturbed Bregman ADMM for solving nonsmooth
and nonconvex composite optimization *

Jianchao Bai T Xu Cui ¥ Zhie Wu 8

Abstract. In this paper, we focus on a linearly constrained composite minimization problem
involving a possibly nonsmooth and nonconvex objective function. Unlike the traditional con-
struction of the augmented Lagrangian function, we design a proximal-perturbed augmented
Lagrangian to develop a new Bregman-type alternating direction method of multipliers. Under
mild assumptions, we prove that the augmented Lagrangian sequence converges to the limit of
the objective function sequence, and the iterative sequence generated by our method converges
to a stationary point of the problem. The sublinear convergence rate of the primal residuals
is also analyzed. Comparative experiments on testing the linear equation problem, graph-
guided fused lasso problem and robust principal component analysis problem demonstrate the
efficiency and flexibility of the proposed method.
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1 Introduction

Let R, R™ and RP*™ be the sets of real numbers, n dimensional real column vectors, and pxn real
matrices, respectively. Let Ry and R, be the sets of non-negative and positive real numbers,
respectively. The n-simplex set is defined as {x | >, x; = 1,x = (z1,--- ,2,) € R"} and the
notation I denotes the identity matrix with proper dimension. The symbol V f(x) represents
the gradient of a differentiable function f at x, while the symbols || - || and (-, -) stand for the
standard Euclidean norm and inner product, respectively. In this article, we aim to develop
an efficient first-order method for solving the following potentially nonsmooth and nonconvex
composite minimization problem

min _ F(x,y) := fi(x) + f2(x) + g1(y) + g2(y) s.t. Ax+ By =b, (1.1)
x€R" yeR™
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where f1 : R" — RU{+o0} and ¢; : R™ — RU{+o00} are continuously differentiable functions
(possibly nonconvex) with L;-Lipschitz gradient and L,-Lipschitz gradient, respectively, fo
and go are proper lower semicontinuous functions (possibly nonsmooth), A € RP*" B € RP*™
and b € RP are given. Problems adhering to the form of (1.1) arise in various scientific and
engineering fields. Here, we take two examples that can be reformulated into the form of (1.1):

> FExample 1. Consider the nonnegative minimal norm solution to the linear equation

Ax + By = b, where y € [0,d] and d is a given nonzero vector. This problem can be
modeled as the following linearly constrained minimization problem

1
min x| + g||y||2 st. Ax+By=b,x>0,y € [0,d]. (1.2)

By introducing the indicator functions of the set {x| x > 0} and {y| y € [0,d]}, the
above problem is converted into the case of (1.1) with

=1x if x i
{fl(x)—Qll 1%, fg(x):{ 0, ifx>0, gQ(y):{ 0, ifyelo.d],

a(y) = Ellyl% +00, otherwise, +00, otherwise.

> FEzample 2. Consider the graph-guided fused lasso problem

N
. P2
min = > f5(x) + prllAx + ), (1.3)
j=1
where f;(x) = m is the empirical loss on the feature-label pair (a;,b;) € R! x
7%

{=1,1}, N is the data size, and p1, p2 are given regularization parameters. By introducing
an auxiliary variable y = Ax, this problem can be regarded as the case of (1.1) with

(B.b) = (-L,0), fi(x) = § 270, f5(x), fa(x) = B |x||%, and g2(y) = p1ly |-

Beyond these examples, problem (1.1) also arises in compressed sensing [42], subspace clustering
[46] and so forth. Throughout this paper, the solution set of (1.1) is assumed to be nonempty,
and the proximity operators of fs and go can be efficiently evaluated.

A benchmark method for solving linearly constrained minimization problems is the Aug-
mented Lagrangian Method (ALM) proposed by Hestenes [22] and Powell [35]. When applying
ALM to the problem (1.1), it proceeds via the following recursive iterations:

x€ER™ yeR™

{ (Xk-‘rlv Yk-f-l) = arg min ‘C,B(Xa Yy, Ak‘)v
Ait1 = A, — B(Axp41 + By — b)),

where

Ls(x,y,\) = F(x,y) + (A, Ax+ By — b) +§HAX + By — bH2 (1.4)

L(x,y,A)
denotes the standard augmented Lagrangian function of (1.1), A denotes the Lagrange multi-
plier, and 8 > 0 is the penalty parameter for the equality constraints.

As a first-order method, ALM has attracted increasing attention due to its diverse ap-
plications in signal/image processing, statistical learning, machine learning, and so on. Many



existing ALM-type methods were developed based on the classical augmented Lagrangian func-
tion, such as exact/inexact accelerated ALM [3, 24, 25, 30, 43] and stochastic ALM [4, 29] for
solving equality constrained convex optimization problems, proximal ALM [28] for solving
nonconvex optimization problems, and splitting versions of ALM [19, 20, 38] for solving multi-
block separable structured minimization problems. Recently, a double-proximal ALM [6] with
convergence guarantees was developed and shown to be efficient for several machine learning
problems. Work closely related to [6] includes the balanced ALM [21] and penalty dual-primal
ALM [36]. More recently, by introducing an auxiliary variable for (1.1), a new ALM was de-
veloped by Kim [27] based on a proximal-perturbed augmented Lagrangian function, and this
method was subsequently extended to tackle a broader class of nonconvex optimization prob-
lems with nonlinear equality constraints [26]. One effective approach to establish the global
convergence and sublinear convergence rate of ALM for convex minimization problems is to
use variational analysis to characterize both the saddle-point and the iterative sequence, c.f.
[4, 6, 36]. However, a practical technique to establish the convergence of ALM for nonconvex
optimization problems is to construct a potential function related to the associated Lagrange
function and then demonstrate the convergence by showing the monotonic decreasing property
of this potential function, c.f. [5, 25, 26, 31] to list a few.

When the objective function of optimization problems has composite structures such as (1.1),
the standard ALM cannot fully utilize these structures and hence cannot take full advantage
of the special properties of each component objective function. Consequently, solving the
involved subproblems becomes very difficult. An effective and practical approach to overcoming
such difficulty is the Alternating Direction Method of Multipliers (ADMM). For example,
Barber, et al. [8] developed a proximal ADMM with general penalty matrix and established
its convergence under the restricted strong convexity; Wang-Cai-Chen [40] proposed a globally
convergent preconditioned ADMM for solving (1.1) with (f1,¢1) = (0,0) and fa, g2 being convex
functions; Wang-Banerjee [39] extended the standard ADMM to Bregman ADMM:

Xp41 = arg )flelliRI}L {Ls(x, 1, A) + By, (x, %) },
Vi1 = arg min {Ls(xkr1. 5, Ak) + By, (v, ¥5) } (1.5)
Ait1 = A — B(AXk41 + Byks1 — b).

Here By, represents the Bregman distance [9] defined as
By, (u,v) :=¢i(u) — ¢5(v) — (Vgi(v),u—v), i=12.

Since ¢;(-) is differentiable and convex, it is easy to check that By, (u,v) is nonnegative and
By, (u,v) = %

In fact, the Bregman distance includes a large number of useful loss functions such as logistic
loss, Euclidean distance and KL-divergence, see Table 1. This makes ADMM more general and
more flexible, allowing the resulting subproblems to be solved efficiently or even have a closed-
form solution. As demonstrated in [34, Proposition 3.5], the linearized proximal ADMM is
an instance of the Bregman ADMM when the distance generating functions ¢, and ¢ are
properly chosen. Hence, the Bregman ADMM contains various variants of ADMM, including
the classical ADMM, proximal ADMM, and linearized proximal ADMM. Besides, by a proper
choice of the Bregman distance, the resulting subproblems can be simplified as proximity
operators. For instance, if ¢; = % ||x||? — §||Ax||2 with v > B||AT A||, then the first subproblem

u— vH2 if ¢;(+) is strongly convex with modulus 6; > 0.




Table 1: Several special instances of Bregman distance [1].

Domain ¢i(x) By, (X, v) Appellation
R z? (x —v)? Squared loss
Ry zlogz rlog(?) — (v —v)
[0,1] zlogz + (1 —x)log(l —x) xlog(%)+ (1 — x)log(1=%) Logistic loss
Ryt —logx Z—log($)—1 Itakura-Saito distance
R" % [x —v|? Squared Euclidean distance
R™ x! Ax (x—v)TA(x — V) Mahalanobis distance
n-Simplex > =1 25 log(z;) d i1 T 10g(%) KL-divergence

in (1.5) can be simplified as the proximity operator of f; with known ry :
_ v
prox, s, (ri) = argmin{ f1 (x) + 5 [x — ¢ [},

while the subproblem in the standard ADMM can not be converted to the above form. For
more examples on the Bregman proximal step that admits a closed-form solution, we refer to [2,
Example 3]. Recently, Chen, et al. [13] demonstrated the convergence of the directly extended
ADMM for solving the three-block separable optimization problem whose objective function is
the sum of one weakly convex and two strongly convex functions. An efficient Bregman-style
ADMM [32] was also proposed for solving the problem (1.1) with (f2,91) = (0,0). In order
to take advantage of Bregman distance, an interesting question is: can we construct a distinct
augmented Lagrangian function so as to develop a new Bregman-based ADMM for the general
nonconvex and nonsmooth minimization problem (1.1)?

In this paper, motivated by the above question, we will propose a new ADMM-type method
based on the novel augmented Lagrangian constructed in [26]. We further establish the conver-
gence of the proposed method, with respect to both the corresponding augmented Lagrangian
sequence and the iterative residuals for primal variables and constraint violations. Key features
of our method are summarized in the subsequent section.

2 Development of 2P-ADMM

Inspired by the new Lagrangian-based first-order method [26, 27, 32|, by introducing a similar
perturbation variable z € RP such that z = 0 where bold 0 denotes the zero vector, we
reformulate the problem (1.1) as the following double-constrained problem

i F 1. A By —b = =0. 2.1
xeRﬂ,’&lﬁQ&’ZeRp (x,y) S X + by zZ, Z (2.1)

Define the proximal-perturbed augmented Lagrangian of (2.1) as

1%, (22)

Loy, A7) = Fxy) + (A Ax+ By —b—2) + (u,2) + 5 la]* = T A~

where A, p € RP are the Lagrange multipliers associated with the equality constraints, o > 0
is a penalty parameter, and o > 0 denotes a proximal parameter.

To predigest discussions, we simply denote Lg(x,y, A, z, u) by Lg(w) withw = (x,y, A, z, u).
Comments on this new proximal-perturbed augmented Lagrangian function are given below:



(i) Unlike the standard augmented Lagrangian (1.4), we exploit a proximal term $[|A — p||?
in (2.2), instead of the widely-used quadratic penalty for the constraint Ax+ By —b = z,
to ensure the strong concavity of Lg(w) w.r.t. the Lagrange multipliers A (for fixed p)
and p (for fixed A). This is helpful for simplifying the update of Lagrange multipliers.
Besides, minimizing £5(w) w.r.t. each primal variable can exploit the proximity operator
of fa(x) or g2(y), when adding a customized Bregman distance as the proximal term;

(ii) Because L£3(w) is smooth and strongly convex about z, there exists a unique solution for
given (X, p). More specifically, by minimizing L£g(w) w.r.t. z, we can derive

A—p
z(\, pn) = , (2.3)
o'
which implies A = p at the unique solution z* = 0. By the relationship in (2.3), we thus
add the smoothing proximal term —gH)\ — p||? to the Lagrangian in (2.2).

Now, plugging the certain relationship (2.3) into (2.2) results in
1 2
£5(W):L(X7Y>)‘)_%H)‘_MH (24)

with 8 = 3% Clearly, the function L£s(w) is strongly concave about X for given (x,y, p). So
there exists a unique maximizer, denoted by A(x,y, @), namely,

A(x,y, p) = arg max Lg(w) = pu+ B(Ax+ By — b).
A€RP

Notice that directly minimizing £3(w) about the primal variables x and y is still challenging,

since it does not make full use of each nonsmooth objective function as well as the separable

structure of the problem. To tackle these obstacles, we first employ an approximation to Lg(w)

as follows:

L‘,g(w, Vi, Vz) L= fQ(X) + gz(y) + B¢1 (X, Vl) + B¢S2 (Y7 V2)

+ La(w) + (VxLs(w),x — v1) + (VyLs(W),y — va),

where Lg(w) is the smooth part of Lg(w), i.e.
La(w) = [1(x) + 0u(y) + (A Ax + By = b —2) + (,2) + ||zl = T A~ "

Based on the above preparations and the splitting idea with respect to primal variables x
and y, we propose a customized Proximal-Perturbed ADMM (2P-ADMM) whose framework is
described in Algorithm 2.1. In fact, both x-subproblem and y-subproblem update in parallel
since they can be simplified as

Xpt1 = argirel]iRI}l {fg(x) + <x —xg, Vfi(xg) + AT)\k> + By, (x,xk)},

. (2.5)
Yi+1 = arg min {gz(y) + (¥ = ¥&: Vo1(y&) + BT Ak) + By, (v, V&) }
Hence, the fifth step regarding z;,1 does not work and can be removed when carrying out ex-
periments. Compared to the proximal term (i.e., squared Euclidean distance) in the proximal-
perturbed ALM [27], our proximal term in (2.5) is more general and 2P-ADMM can be extreme-
ly effective by properly choosing ¢; (see the sequel Figure 2 in experiments). The updating



Input: a > 1,0 € (0,1),8 = 13%5,7 € (0.9,1),01 > Ly and 65 > L,.
Initialization: wo = (X0, o, Zo, Ao, i) and dg € (0,1].
For k=0,1,2,---

1. Xpyp1 = arg mln {f2 + (x — X, VxLa(Xks Yie» Mkes Zk, 11,) ) + By, (%, Xk)}

2. yi+1 = arg min {gz(.Y) (Y = Vs Vy Lo (Xt 1s Vs Nes 2y 1)) + Bos, (¥, 38) };
. 5

3. puggr =ty + k(A — pyy,) with LA e ) VT EE

4. Aps1 = pyq1 + B(AXpq1 + Bygs1 — b);

5. Zpy1 = 7k+1;“k+1 5

6. Op1 =70k

End

Output (Xp41,Yk+1)-

Algorithm 2.1: Proximal-Perturbed ADMM (2P-ADMM) for solving (1.1).

formula of 6,1 implies 6, = r*8y. So, by the region r € (0,1) and & € (0,1], we know the
sequence {0y} is summable. Due to this fact, the choice of 7, can guarantee the boundedness
of {p;,}, which in turn guarantees the boundedness of {Ax}.

Remark 2.1 Consider the nonconvex optimization problem in [45], that is, problem (1.1) with
go =0, B=1 and fs being the indicator function of a nonempty closed conver set X. For this
type of problem, by selecting ¢o = %HyHZ, our proposed method reduces to Alg. 2.2. Note that
the update of yr41 obeys a gradient descent step, and the term Vgy(yy) + BT A is, in fact, the
gradient of the corresponding L(x,y,\) at y.

Input: a > 1,0 € (0,1), 8 = 13%;,7 € (0.9,1),61 > Ly and 1/y > L,.
Initialization: wo = (x0, Yo, Ao, i¢) and dp € (0,1].
For k=0,1,2,---

1. Xpq1 =arg Hél/{(l {<X — Xg, V f1(xk) + ATAL) + By, (x,xx) } ;
X

2. yir1 =yr —Y[Var(yr) + BTA]; )

3. Mpy1 = Mg "‘Tk:()\k - Mk) with 73, = m;

4. Akt1 = Mgy + 5(AXk+1 + Yi+1 — b) ;

5. Ogs1 = rog;

End

Output (X1, Yet1)-

Algorithm 2.2: A special case of the proximal-perturbed ADMM.

3 Convergence analysis

3.1 Technical preliminarily

In this subsection, we present several lemmas that will be used to analyze the convergence of



both the augmented Lagrangian sequence given in (2.4) and the iterative sequence. Throughout
this paper, similar to [18], we make the following assumptions:

(Al) fl = lgf {fl(x) - ﬁHV,fl(X)HQ} > —o0 and g; = H}}f {gl<y) — i“vgl(}’)“Q} > —o0;

(A2) lim inf fo(x) = +oo and lim inf go(y) = 4o0.

lIx[[—=o0 llyll—o0

Lemma 3.1 The sequences {p;,} and {\;} generated by Algorithm 2.1 are bounded.
Proof. By the update of p; ,;, we have

+0o0o 5 1 o]
< Nl < Z 8 < ,
E ol + 3 g g el < Dol 3 < 4o

(= HMO+Z;E(>\¢—M¢)

which shows that the sequence {p;,} is bounded since Y ;2 d; is convergent where dj1 = 70y
and r € (0.9,1).

Besides, the update of p; | gives
1 1
Ap = —Hpy1 T (1 - *)Hk,
Tk Tk
which means Ay, is a combination of g, and p;. Combine this relationship with the bound-
edness of {p;} to ensure that {A;} is a bounded sequence. W

The above lemma as well as the following lemma will be used to investigate some properties
of the iterative sequence {wy} generated by Algorithm 2.1.

Lemma 3.2 Let {u} and {Ag} be the sequences generated by Algorithm 2.1. Then, we have

A 1)
et = Bl = 7 k— Mg = .
and ) ) )
Ak = Me|l” < 2)| Ak = e ||+ 2[ [t — M) (3.2)
Proof. By the way of updating gy, and Api1, we have
52 o

— )

letsr = el = 722 = a|” < ;
Ak — pgl|* + 2+ YA

where the first inequality uses the definition of 7, and the last inequality follows from the fact
a+ b > 2+vab for any a,b > 0. Using the the definition of 7 again, it holds that
O

14+ L
MRPYSTRE

Tk||>\k—ukH2= < O

The result in (3.2) follows directly from the fact (a + b)? < 2a% + 2b? for any a and b. B

By the update of 7, we know 71 € (0,1) and it is a bounded sequence. Based on its lower
bound, next we provide some core properties related to {L£z(wy)}, which further establishes
that both the iterative residual and the constraint residual converge to zero.



Theorem 3.1 Let 7 > 0 be the lower bound of {1} and {wy := (Xk, Yk, Ak, Zk, Uy)} be the
sequence generated by Algorithm 2.1. Then, the following hold:

(1) The sequence {La(Wiy1)} defined in (2.4) satisfies

(91—Lf
2

0, — L,
2

Ok41 + Op

T (3.3)

HYIc—I—l - Yk:H2 +

Ls(Wry1) < Lg(wy) — k11— x]|” —

(it) Under the assumptions (A1)-(A2), the sequence {Lg(Wy)} is convergent. Moreover,
lim HWk+1 — WkH =0 and lim HAka + Bypi1 — bH =0. (3.4)
k—o0 k—o00

Proof. To prove the assertion (i), we split Lg(wy41) — Lg(wy,) into three residuals:

Ls(Wit1) — La(Wi) =L(Xkt1, Vs By ks i) — L8(Xk, Yies Zier Ay Hy,)
+ Eﬁ(xk+17 Yi+1, 2k, A]ﬁ uk) - Eﬁ(xk+17 Y&, Zg, Akv l’l’k‘)
+ LXKkt 15 Vit 1> Zht 1, Mt 1> Mg 1) — L8(Xha 15 Yt 1, By Aks M-

According to the equivalent expression of the xji-subproblem as in (2.5), we have
Fo(xig1) + (Vf1(xx) + AT e, X1 — X)) + By (X1, Xx) < fa(x),

implying that

0
fo(xrr1) = fa(xr) + (AT Ak, Xpey1 — x5 < (Vf1(Xp), Xp — Xp1) — ElHXkJrl — x|

The last inequality together with the Lipschitz continuity of fi:

Ji(xeg1) — fr(xx) < (Vf1(Xp), Xpg1 — Xi) + %kaﬂ - XkH2

gives

L3(Xpt1, V> o, Moy ) — L8(Xne, Vi, Zhy My g) = f1(Xp1) — f1(x)
01 — L
! fHXk+1 —XkH2. (35)

+ fo(xpt1) — fa(xp) + (AT X, Xp1 — x5) < —

Similarly, the Lipschitz continuity of g; yields
L, )
91(Yrt1) — 91(7k) < (Vo1(¥r), Ye+1 — Vi) + ?H}%H -yl

which, by using the following property from the yj1-subproblem:

2
)

(%)
92(¥rs1) — 92(xx) + (BT Ae, yir1 — i) < (Vo1(¥), Yk — Yit1) — EQHYk+1 — ¥

gives

6, — Ly
2

2
ﬁﬁ(xk+1ayk+lazk7AkalJ’k) - £,8(Xk+17ykazk7Ak7lJ‘k) S - Hyk+1 - ka . (36)



Notice that

LXKkt 15 Yt 1> Zht 1, Mt 1> Bgr1) — LKkt 1, Yt 1, By Ak, uk)

1
:<)\k+1 — Ak, AXpq1 + Bygy1 — b> - ﬁHAkH :uk—&-lH + HAk - MkH (3.7)
and

H)\k—HkHH —H)\k—llk+lﬁk—lﬁk+1H (1 —7k) H)\k—MkH < H)‘k:_“kH . (3.8)

By using Ag1 — Myr1 = B(AXpr1 + Byg1 —b), 2 = = (A — py.), and applying the identity
1 1 1
(a—b,a) = 5”“ - b+ 5”“”2 - §HbH2
with (a,b) = (Ap41 — Mpi1, Ak — Hyy1) to (3.7), we further have
L5(Xpt15 Yt 15 2t 15 Mot 15 Ber1) — L£8(Xk41, Yt 15 2, Ak )

1 1 1
oM = Al = gl = Al g e = s
(3 D38) i1 +0
*Hml o QBHukH M+ 55 HAk S S 69)
So, combining the above inequalities (3.5),(3.6) and (3.9) yields the desired result (3.3).

To prove the result (ii), we first show that {w”} is bounded. It follows from (3.3) and the
conditions 61 > Ly and 62 > L, that

5

Op41 + O
BT

k
G2 2 () = Ly(w) + > Lo(Wii1)

Jj=0

\‘

1
=F (X415 Yit1) + (Ak+1, AXpy1 + Bypp1 — b) — %Hkkﬂ - Hk+1H2
1 1
:F(Xk—i-la}’k:-i-l) + B<>\k+17 Ak+1 — Hk+1> - %H)‘kﬂrl - Nk+1H2
1 1
=F(Xkt1,¥r+1) + @HMHHQ - %HMIHAHQ
1
(f1(xk+1 - —HVfl (xp+1) || ) (91(Yk+1) - iHvyl(YIHI)HQ)
g
1
+ fo(Xpt1) + g2(¥rt1) + %H)\lﬁ-lHZ - %HMHHZ
_ 1 1
>f1+ g1+ fo(Xet1) + g2(Yrs1) + %H)‘k-HHQ - %HM@HHQ?

where the last inequality uses (A1l). Then, combining the above relationship with (A2), Lemma
3.1 as well as r < 1, we conclude that both {x;} and {y} are bounded. Consequently, the
whole sequence {wy} is bounded. Because {wy} is bounded, the sequence {Lz(wy)} is also
bounded from below and there exists at least one limit point. Without loss of generality, let
{wy,} be a subsequence of {wy} and w* be its limit point. Then, the lower semicontinuity
of {Lg(wy)} implies Lg(w*) < lim; o inf Lg(wy;) So, {Ls(Wy,)} is bounded from below and
hence is convergent.



Let L be the lower bound of {£z(wy)}. Then, by the result (3.3) again, we deduce

o

th— Ly 9 03— L, 2 249
— - <L —L — 3.10
g%( 3 Hbows ="+ 2572 =3l *) < La(wo) =Lyt o < oo, (3.10)
where the last inequality holds by the fact
S 5
S o< —— <+ (3.11)
1—r
k=0
According to (3.10) and the conditions ¢y > Ly,0y > L, we deduce
. 2 . 2
lim ka+1 - ka =0, and lim Hyk+1 - ka =0.
k—o0 k—o0
Summarizing the inequalities in (3.1) over k =0, 1,--- , 00 together with (3.11) shows
. 2 . 2
1 — =0 d 1 Ak — = 0. 3.12
Jim (g — [T =0, and - lim A = gy (3.12)

Combine the following relationship from (3.2):

en = A < 2~ s P+ A — sl [~ M)

with (3.12) immediately ensures
lim || Arp1 — Axf? = 0. (3.13)
k—o0

Besides, the update of z;1 gives

2
e (= (LY VA L [Py [ B

a?
which, by (3.13) and the first result in (3.12), further implies klim zks1 — zxl|? = 0. As a
— 00

result, combine this limitation and (3.12)-(3.13) to confirm the first result in (3.4). The second
result in (3.4) is clearly from klim Ak — pil|* = 0 and the update of Apy;. B
—00

3.2 Convergence and complexity

In the following, the distance from any point x to the set € is defined as dist(x, Q) := infzcq ||[x—
x||. Based on this definition, we first give an estimation on dist (0, 0Lg(wy1)) by the iterative
residuals, and then analyze the convergence of the iterative sequence {wy,1}. Similar analysis
can be found in [7, 17, 18, 41]. For a proper lower semi-continuous function h, its (limiting-)
subdifferential [37, Definition 8.3 (b)] at x € domh, denoted as 0h(x), is defined as

Oh(x) := {I/ e R" : Ix* — x, h(xF) — h(x),v* — v with V¥ € éh(xk)} ,
where Oh(x) denotes the regular subdifferential [37, Definition 8.3 (a)] of h at x given as

Oh(x) := {I/ € R": liminf A(x) = hix) = (v, X = x) > 0} .

XX, XAX ||i — XH

10



Corollary 3.1 Let {wy = (v, zk, py,)} be the sequence generated by Algorithm 2.1. Then, for
every k > 0, the following hold:

(i) There exists a F* such that

lim Lg(wWpy1) = lim L(viyr) = Im F(Xpqr, yegr) = F7
k—o0 k—oo k—o0

(ii) It holds that kli_}r{.lo dist (0, 0Ls(Wg+1)) m dist (0,0L(vj41)) = 0.

=1
k—o0
Proof. Note that
1 2
F(Xp41,Yr41) = Lo(Wiy1) — (M1, AXpy1 + Bygy1 —b) + %HAIH—I — py1 ]

= L(Xp41, Yit1, Mot 1) — (Aks1, AXpp1 + Bygy1 — b),

which ensures the conclusion (i) by the second item of Theorem 3.1 and (3.12).

The first-order optimality condition of xj41-subproblem implies
0 € Ofo(xp41) + Vi(xi) + AT A + Vi (xp41) — Vo (xp).
Combining it with the reformulation (2.4) to have
€1 € OxLp(Wit1),

where €| 1= Vf1(xp1) = V1(xx) + Vo1 (x) = Vo (xx11) + AT(Arp1 — Ag). Similarly, we
have from the first-order optimality condition of yji-subproblem that

€)1 € OyLp(Wiy1).

where €] | = Vg1(yr+1) — Vai1(yx) + Va(yr) — V2(yk+1) + BT (Ak+1 — Ax). Besides, it
follows from A-update that

1
VALs(Wit1) = (AXp+1 + Byg41 —b) — B(Ak+1 — 1) =0

and VyLg(Wry1) = —%(ukﬂ — Ait1) i= egﬂ. Hence, the following relationship holds:

Ckt+1 i (eZ‘HveZH»Oveéil) € 0L (Wit1)-

Next, we simplify the computation of each component of e;;. By the Lipschitz continuity
of f1 and ¢1, we have

el < IVAxRr1) = VAR || + [ Vor(xar1) = Veu (xi) || + [[All]| Ars1 — Axl]
< (Lg + Loy || %kt — %k || + DAl Aes1 — Ae]|-

Analogously, we have by the Lipschitz continuity of g; and ¢o that

et 1]l < [[Vor1(yre1) — Var(yn)|| + [ Vo2 (yre1) — Voalyr)|| + 1Bl Ak — Ae|
< (Lg + Lgy)||Vi41 — il + I BI|| Aes1 — e -

11



Combining the last two results, the equality Heg = %H)\kﬂ — pi41|| and the relationships

axﬁﬁ(wkﬂ) = 8xL(Vk+1)a 8y£5(Wk+1) = ayL(Vk+1)7

1

ONLp(Wit1) = O\L(Vit1) ﬁ()‘k—i—l — Hpy1),

to obtain )
dist (0, 8L(Vk+1)) < dist (0, aﬁﬁ(Wk+1)) + BH)\k-i_l — ’J’k+1H

and
dist (0,0L5(Wk+1)) < ||ers1|| < e(|[xp41 =%k ||+ [[yrsr =¥l + || M1 = Xe || + [ Aot — s |])

with ¢ = max{L¢ + Ly,, Ly + Lg,, || Al + || B, %} Then, we confirm the result (ii) by the first
equality in (3.4). W

Corollary 3.1 shows that the objective sequence of (1.1) is convergent, but it does not point
out the convergence of the iterative sequence as well as its convergence rate. In what follows,
we not only show that any limit point of {vy = (xx, yx, Ax)} converges to a stationary point
of (1.1) as defined by (3.14), but also establish the sublinear convergence rate of the iterative
residuals of the primal variables. We say (x*,y*,A") € R™ x R™ x RP is a stationary point of
(1.1) if 0 € OL(x,y, A), that is,

0 € Vii(x") +0f2(x*) + ATA*, 0 € Vgi(y*) +dg2(y*) + BTA*, Ax* + By* =b. (3.14)
Theorem 3.2 Let {wy = (vi,zk, i)} be the sequence generated by Algorithm 2.1. Then,
(i) Any limit point v* of the sequence {vy} is a stationary point of (1.1);
(ii) For any integer k > 1, there exist j < k and (1,2 > 0 such that

o
G(k+1)

o

and HYj+1 - }’jH2 < m7

)41 — x5 <

where (o = Lg(wo) — Lg + % with Lg being the lower bound of {Ls(wy)}.
Proof. For any limit point w* = (v*,z*, u*) of the sequence {wy}, it follows from the second
conclusion of Corollary 3.1, together with the definition of the limiting-subdifferential OL(v*)
and the definition of the stationary point in (3.14), that the conclusion (i) holds.

Secondly, for any k > 0, we have from (3.3) and (3.11) that

0y —

L 2
5 Iyjen — ya‘HQ) < Lg(wo) — L + -

pr(l—r)

(91 ;Lf\ = (o,

b 2
}Xj+1 — XjH +
7=0

which indicates that there exists a j < k such that

Co

2 o
S G+ 10— Ly)

k+1)(02 — Lg)

2
and |lyj41 -y < (
These inequalities with (1 =61 — Ly > 0,{o = 62 — Ly > 0 confirm the conclusion (ii). W
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4 Numerical experiments

In this section, we investigate the performance of our proposed algorithm for solving three
problems with artificial data or real data. All experiments are implemented in MATLAB
R2021b (64-bit) and performed on a PC with Windows 11 operating system, with an AMD
Ryzen 9 7945HX CPU and 16GB RAM.

4.1 Linear equation problem

Consider the linear equation problem (1.2) with p = 0.001 and d being the vector of ones. It can
be verified that the assumptions (A1)-(A2) hold. In this experiment, the coefficient matrices
A and B are set as tridiagonal matrices, since tridiagonal systems frequently arise in practical
applications involving discretized differential equations. More specifically, we generate A, B
and b by the following codes:

vl = randn(1,m); ul = randn(1,m-1); 11 = randn(1,m-1);
A = diag(vl) + diag(ul, 1) + diag(1l, -1);

v2 = randn(1,m); u2 = randn(1,m-1); 12 = randn(1,m-1);
B = diag(v2) + diag(u2, 1) + diag(12, -1);

wl = rand(m, 1); w2 = rand(m, 1); b = A*xwl+B*w2;

By selecting ¢;(-) = %H -||? in both x-subproblem and y-subproblem, the Bregman distance

reduces to By, (-7 : k) = % }.— ‘k H2 and hence the modulus 6; plays the role of proximal parameter.
Applying Algorithm 2.1 (2P-ADMM) to this problem involves two core iterations:

{ Xk+1 = P[Ri [Xk — % (Xk + ATAk)],
Yit+1 = Ploa) [yx — %(P}% + BTA)],

where Pgn (x;) denotes the projection of x; onto R (the set of n-dimensional nonnegative
vectors). The constraint violation error and the relative objective error are defined as

F — F*

Equ_err(k) = ||[Ax; + Byr — b|| and Obj_err(k) = | S::;(?]’j")*, 0 ’,
respectively, where F* denotes an approximate optimal objective function value obtained by
running Algorithm 2.1 for more than 10° iterations. With the initial point (x¢, yo) randomly
drawn from the standard Gaussian and (Ao, pg) = (0, 0), all algorithms are terminated when
the stopping condition Equ_err(k) < tol or Iter > 5000, where “Iter” denotes the total number

of iterations and the tolerance tol is set as 107° in the forthcoming experiments.

Next, we investigate how the parameters (a,o,r,dg) affect the performance of our 2P-
ADMM. We first fix the free parameter a as 103, then change other distinctively constrained
parameters (o, r,dg) to investigate their effects on 2P-ADMM. Table 2 reports some numerical
results of 2P-ADMM with different parameters (o, r,dy) for solving problem (1.2) with dimen-
sion p = 300, where “Time” denotes the CPU time in seconds and the bold value denotes the
smallest one. We can observe from Table 2 that:

e For the parameters (o,r,d), the reported results in each column of Equ_err and Obj_err
are nearly the same when two parameters are fixed and only one parameter is allowed to
change;
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Table 2: Numerical results of 2P-ADMM for solving (1.2) with different (o, r,dp).

Parameters Tter Time Equ_err Obj_err
o(r=1-10"7,5p = 0.5)

0.5 2983 0.09 9.986e-6 4.619e-6
0.6 3178 0.10 9.963e-6 3.692¢-6
0.7 3332 0.10 9.767e-6 2.931e-6
0.8 3470 0.10 9.979e-6 2.568e-6
0.9 3674 0.11 9.550e-6 2.036e-6
r(oc =0.5,00 = 0.5)

1-1073 5000 0.14 2.588e-4 4.371e-6
1-107° 3006 0.09 9.942e-6 4.500e-6
1-107" 2983 0.09 9.986e-6 4.619e-6
1-107"° 2983 0.09 9.956e-6 4.622¢-6
1—1071" 2983 0.09 9.956e-6 4.622¢-6
do(c =0.5,r=1-10"7)

0.1 4949 0.14 9.997e-6 3.075e-6
0.3 3543 0.11 9.988e-6 2.345e-6
0.5 2983 0.09 9.986e-6 4.619¢-6
0.7 2796 0.08 9.791e-6 5.829¢-6
0.9 2908 0.09 9.664e-6 5.124e-6

e With the increase of the parameter o, both the iteration number and the CPU time tend
to increase; with the increase of the parameter r, both the iteration number and the CPU
time tend to decrease; with the increase of the parameter dg, both the iteration number
and the CPU time decrease firstly and then increase.

Reported results of Table 2 indicate that the choice of (o,7,dp) could have a great effect on
the performance of 2P-ADMM, and it seems that setting (o, 7, ) = (0.5,1— 1071, 0.7) would
be a reasonable choice for solving (1.2) and these values will be set as default values in the
forthcoming experiments.

In what follows, we carry out some comparative experiments about 2P-ADMM and the
existing algorithms SALM _psils and SALM _psilsf proposed in [23]. The involved parameters of
SALM psils and SALM _psilsf are set as p = 0.1, s = 107, 8 = 10, Lo = 3||BT B|| + 0.001 and
HY? = M + B||BTB||. Figure 1 depicts the convergence curves of Equ_err(k) and Obj_err(k)
against the iteration numbers. Table 3 reports some numerical results, where the notation
“/” indicates that it reaches the maximum iteration numbers. As illustrated in Figure 1, 2P-
ADMM initially performs worse than SALM _psils and SALM _psilsf in terms of Obj_err, but it
eventually outperforms these two methods. Numerical results in Table 3 not only show that
our 2P-ADMM requires fewer iterations and CPU time, but also demonstrate its robustness
even for a significantly large penalty value o = 108,

To investigate the impact of Bregman distance on the performance of 2P-ADMM, we next
select ¢;(x) = ) x;log(z;) for either x-subprobem or y-subprobem as toy examples, making
the Bregman distance becomes KL divergence. Here, x; denotes the j-th entry of x. It is easy
to check that each subproblem of 2P-ADMM still admits a closed-form solution. We conduct
comparative experiments in four cases

14



(m, n, p)=(100, 100, 100)

(m, n, p)=(300, 300, 300)

5000

5000

5000

10 - - 10 - : -
—©—2P-ADMM(a = 1) —©—2P-ADMM{a = 1)
ﬁ — O+ -2P-ADMM(a = 10%) ﬂ — O -2P-ADMM(a = 10%)
- SALM psils -~ SALM psils
10° | wee e SALM psilsf 10° \ <o SALM psilsf
\ \
i \
10t ‘& e e e S 10t ‘& f’*”"‘“*“*“*“*““*‘""“*“’*“
f
PR g I\
g g
o 10° o 10?
e} o} i
|
10° 10° =
I
10* 10*
105 L L L L 5 L L L L
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000
Iter Iter
, (m, n, p)=(100, 100, 100) , (mn, 1, p)=(300, 300, 300)
10 - : - - 10 - : - -
—©—2P-ADMM(a = 10) —©—2P-ADMM(a = 10%)
p - o -2P-ADMM(a = 109 T - -2P-ADMM(a = 10%)
10 ALM.psils -~ SALM.psils
.- SALM psilsf SALM psilst
10°
10° Al Ayl A i e ey
PN N N N N VR S S N W W\
A e e e
£ 10t =
3 3 102
=) =)
= 102 &
10%
10*
104
10 . 0 . . 10 . . . .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000
Iter Iter
| (m, n, p)=(200, 200, 200) | (m, , p)=(400, 400, 400)
10 T T T T 10° T T T T
—©—2P-ADMM(a = 1) —©— 2P-ADMM(a = 10%)
ﬁ - O -2P-ADMM(a = 10°) - O -2P-ADMM(a = 10°)
o — -~ SALM psils oﬁ — -~ SALM.psils
10 <A SALM psilst 10 ! <A SALM psilst
\
i \\
10 ‘x P e S S S S S 0 IA"—A~+—A~A~A~A~A~A~A~&—A~-
i/ i
g Y 5
2102 i
ey =
e} o
10°
10*
10° . . . . 10° . . . .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000
Iter Iter
5 (m, n, p)=(200, 200, 200) , (m, n, p)=(400, 400, 400)
10 - : - - 10 - : - -
—©—2P-ADMM(a = 10) —©—2P-ADMM(a = 10)
y -0 -2P-ADMM(a = 109 ¢ -0 -2P-ADMM(a = 109
10 SALM psils 10 -
.- SALM psilsf
e | I
e S S L
£ 10t
g
g
M 107
10°
10*
10% L g L L 5 L L L
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iter Iter

Obj_err

Obj_err

(m, n, p)=(500, 500, 500)

—©—2P-ADMM(a = 10°)
— O -2P-ADMM(a = 10%)
— <y~ SALM psils
<A SALM psilst

e S o o S
i

5 . . . .
0
0 1000 2000 3000 4000 5000
Iter
. (m, n, p)=(500, 500, 500)
10 T T T T
¢ —©— 2P-ADMM(a = 10%)
- o -2P-ADMM(a = 10%)
- ALM psils
- SALM.psilsf
TR N N N D D S W N
R I e e
102
10*
10° . . . .
0 1000 2000 3000 4000 5000
Iter
(m, n, p)=(600, 600, 600)
10t r v v r
—©— 2P-ADMM(a = 10%)
- O -2P-ADMM(a = 10%)
-~ SALM psils
104 \ <veAcee SALM psilst
\
10 ;,A—~A--A~¢—~4r—~¢r—~4*—~br-é~-¢*+'¢~
1
102
10°
10*
105 . . . .
0 1000 2000 3000 4000 5000
Iter
o (m, n, p)=(600, 600, 600)
—— 2P-ADMM(a = 107)
- O -2P-ADMM(a = 10°)
100 -SALM.psils
- SALM.psilsf
10"
102
10°
10*
o . . o .
0 1000 2000 3000 4000 5000

Iter

Figure 1: Comparison curves of different algorithms for (1.2) with different (m,n, p).
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Table 3: Numerical results of different algorithms for (1.2).

Size Parameters 2P-ADMM(a = 10?)
P 01 02 Iter Time Equerr Obj.err
100 3.02e+1 3.04e+1 2029 0.02 9.979¢-6 5.000e-5
200 3.57e+1 3.55e+1 2464 0.03 9.981e-6 3.439%e-5
300 3.77e+1 3.75e+1 2509 0.08 9.922e-6 8.672e-5
400 4.45e+1 4.18e+1 3111  0.15 9.965e-6 1.801e-5
500 3.53e+1 3.53e+1 3104 0.23 9.777e-6 5.321e-5
600 2.47e+1 2.45e+1 3282 0.35 9.999e-6 4.892e-5
Size Parameters 2P-ADMM (o = 10%)
P 0, 0 Iter Time Equeerr Obj_err
100  3.02e+1 3.04e+1 2028 0.02 9.982¢-6 5.008¢e-5
200 3.57e+1 3.55e+1 2461 0.03 9.993e-6 3.453e-5
300 3.77e+1 3.75e+1 2507 0.07 9.811e-6 8.682e-5
400 4.45e+1 4.18e+1 3108 0.15 9.973e-6 1.815e-5
500 3.53e+1 3.53e+1 3104 0.22 9.763e-6 5.321e-5
600 2.47e+1 2.45e+1 3274 0.34 9.998e-6 4.917e-5
Size Parameter SALM _psils
P Ly Iter Time Equerr Obj_err
100 1.94e+2 / 2.69  2.263e-1 9.666e-2
200  2.13e+2 / 14.63  3.250e-1  1.169e-1
300 2.29e+2 / 29.08  4.255e-1 1.110e-1
400 1.97e+2 / 54.11 5.128e-1 1.267e-1
500 1.56e+2 / 79.49  5.644e-1 1.146e-1
600 1.93e+2 /  131.03 6.138¢-1 1.119e-1
Size Parameter SALM psilsf
P Ly Iter Time Equ.err Obj_err
100 1.94e+2 / 273 2.263e-1 9.666e-2
200  2.13e+2 / 14.80  3.250e-1  1.169e-1
300  2.29e+2 / 29.57  4.255e-1 1.110e-1
400 1.97e+2 / 52.94  5.128e-1 1.267e-1
500 1.56e+2 / 80.91  5.644e-1 1.146e-1
600 1.93e+2 /13220 6.138¢-1 1.119e-1
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v — kaz for the x-subproblem with v := x but for the

e 2P-ADMM-I: By, (v,vk) = %
y-subproblem with v :=y;

e 2P-ADMM-IL: By, (x xk =3 Hx ka for the x-subproblem and By, (y, ) .Y log(g—j)
for the y-subproblem with v := yy;

e 2P-ADMM-IIL: By, (x, V) >oxj log( ) for the x-subproblem with v := x;, and By, (y Yk)
2 ly - kaZ for the y-subproblem;

e 2P-ADMM-1IV: By, (x,v) = > z;jlog(3: ) for the x-subproblem with v := x;, and By, (y,v) =
oY log(g—;) for the y-subproblem Wlth V=Y.

Figure 2 depicts the convergence curves of both Equ_err(k) and Obj_err(k) against the it-
eration numbers with problem size (m,n,p) = (300,300, 300). As illustrated in Figure 2, the
selection of Bregman distances exerts a significant influence on the performance of 2P-ADMM.:
2P-ADMM-II achieves the best performance, and 2P-ADMM-I performs slightly worse than
2P-ADMM-II but better than other two types. This verifies that the selection of Bregman
distance has an important effect on the numerical performance of 2P-ADMM.

, (m, n, p)=(300, 300, 300) . (m, n, p)=(300, 300, 300)
2P-ADMM-T

2P-ADMM-1I
2P-ADMM-IIT
2P-ADMM-1V | §

2
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2P-ADMM-II
2P-ADMM-IIT
2P-ADMM-IV

Obj_err

104 F

10710 L L L L 106 L L L L
(0] 1000 2000 3000 4000 5000 o] 1000 2000 3000 4000 5000
Iter

Iter

Figure 2: Comparison of different 2P-ADMM for (1.2) with (m,n,p) = (300, 300, 300).

4.2 Graph-guided fused lasso problem

Consider an equivalent form of the graph-guided fused lasso problem (1.3):

2

min F(x,y) Z x) +p1lyll + —||x\|2 st. Ax—y=0. (4.1)

Here, A = [G; 1] is a matrix encoding the feature sparsity pattern, and G is the sparsity pattern
of the graph that is obtained by sparse inverse covariance estimation [16]. Applying 2P-ADMM

to (4.1) with By, (-, k) = % =k H2, the resulting subproblems read

Xkt+1 = pfflgl {Xk — o (VA(x) + AT)\k)}, (4.2)

Vi1 = Shrink(yi + 35, 52),
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where Shrink(,) denotes the soft shrinkage operator and can be evaluated by the MATLAB
built-in function wthresh.

Our 2P-ADMM using parameters (o, 7,d9) = (0.5,1 — 1077,0.5) and o € {103,10%} is com-
pared to the following existing algorithms for solving (4.1) with public datasets a2a (30,296
samples, 123 features), a8a (9,865 samples, 123 features) and a9a (16,281 samples, 123 features):

e Linearized Symmetric Proximal ADMM (LSPADMM,, [14]) with parameter 7 = —0.1 and
other parameters as suggested by [14, Assumption 3.1 (v)];

e Two-step Linear Inertial ADMM (TLIADMM, [15]) with tuned penalty parameter § =
20, while maintaining other parameters as suggested on [15, Page 15];

e Linearized ADMM with parameters set to the lower bound specified in [33, Theorem 1]
plus an offset of 0.001.

Besides, the regularization parameters are set as p; = ps = 1076, All algorithms are termi-
nated when reaching a given budget CPU time. Similar stopping criterion can be found in [4].
To measure the performance of an algorithm, we plot the loss and the maximum of the rela-
tive objective error and the constraint error, that is Opt_err(k)=max(Obj_err(k), Equ_err(k)),
against the CPU time.

As different datasets correspond to different Lipschitz constants, we use tuned parameters
(01,02) = (45,18) for the a2a dataset, (01,62) = (44,20) for the a8a dataset, and (61,602) =
(42.5,5) for the a9a dataset. Figure 3 shows the convergence results of loss and Opt_err by
the aforementioned methods. It can be seen from Figure 3 that 2P-ADMM initially performs
worse than other methods during the beginning iterations, but it eventually outperforms other
comparison algorithms. Besides, the results further demonstrate the robustness of 2P-ADMM
with respect to the penalty parameter «, which verifies the conclusion in Section 4.1.

4.3 Robust principal component analysis problem

The robust principal component analysis problem, which arises from video surveillance and
face recognition [6, 11], aims to decompose a data matrix C' € R™*™ into a low-rank matrix
X and a sparse matrix Y containing outliers and corrupt data. Generally speaking, || X, (the
sum of its singular values) and ||Y||; (the sum of its absolute values) are used to characterize
the low-rank matrix and sparse matrix, respectively. Similar to the technique of reformulating
the compressed sensing problem [42], this paper will replace the sparse term [|Y||; by the l;-l2
norm in the form of || - ||y — || - [|%, resulting in the following relaxed model:

- x|, Y= || t. X+Y=¢C, 4.3
comin {IXH+p(Y I = 1Y IR} s (4.3)

where the weight parameter typically takes p = 1/y/max(m,n). Clearly, problem (4.3) is a
special case of (1.1) with (A, B,b) = (I,L1,C), f2(X) = || X|«, 52(Y) = p||Y |1 and ¢:1(Y) =

—p|Y||%, hence our 2P-ADMM can be applied to solve it. By choosing By, (', k) = % Tk HQF’
the resulting subproblems read
{ Xi41 = Ugdiag (maxiaf — %,O}) VkT, (4.4)
Vi1 = Shrink (Y, +22=0e 2,
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where Uy € R™*" and Vj, € R™*" are obtained by the singular value decomposition: X — Ae —

01
UpXiV,] with ) = diag (U’f, ok, .. ,Uf).
Now, we apply our 2P-ADMM and the following three well-established algorithms to solve

the problem (4.3) on the Yale B database! which consists of cropped and aligned images of 38
individuals under 9 poses and 64 lighting conditions:

e Standard ADMM with the penalty parameter 4I?gIL|1 according to [10, Page 109];

e Proximal Linearized ADMM (PL-ADMM, [44]) with the above same penalty parameter,
the unit relaxation parameter and Qy = 01 with § = 24 according to [44, Page 4];

e Inertial Proximal ADMM (IPADMM, [12]) with the suggested penalty parameter on [12,
Page 16], but with the tuned parameters pr = 1.4 and Q) = 01 with 6§ = 24 since these
settings lead to better performance than the original setting;

e Two-step Inertial ADMM (TIADMM, [15]) with involved parameters tuned as § = 3,
t = 0.625 and p§ = 7F = p§ = 7% = 1.5, since these settings result in better performance

than the original setting.

We choose parameters (o,7,d9) = (0.5,1 — 1077,0.5),a € {103,10%} and 6; = 6, = 2 for 2P-
ADMM. Starting from the same initial feasible points (Ao, Mo, Yy) = (Xo,0,C — X)), all the
above algorithms are terminated when the following stopping criteria are satisfied:

1 Xkt — Xillp + 1Yo = Yellp 1C — X1 — Yk+1||F} <
I Xellp + 1Ykl +1 ’ 1C|r

or the maximal iteration exceeds 10000, where € is a given tolerance and X is obtained by the
truncated singular value decomposition:

Opt_err(k) :== max{

Xo=F(:,1:1)Sigma(1:1,1:1)N(:,1:1) where [F,Sigma,N]=svd(D, ’econ’) ;1=2.

Similar initialization and stopping criteria can be found in [6].

Table 4 reports some comparative results under different tolerance. Figure 4 shows the
comparative convergence curve of Opt_err(k) against the number of iterations and the CPU
time under different tolerance €. The original columns of C, along with the low-rank and sparse
components decomposed by different algorithms under ¢ = 107>, are shown in Figure 5. We
can see from Table 4 and Figure 4 that 2P-ADMM outperforms all comprative methods in
terms of the iteration numbers and the CPU time. Moreover, it can effectively fill in occluded
regions of the images, corresponding to shadows. In the low-rank component X as shown in
Figure 5, shadows under different lighting conditions are removed and filled in with the most
consistent low-rank features from the eigenfaces. Similar to the conclusions in Section 4.1 and
Section 4.2, the results further demonstrate the robustness of 2P-ADMM with respect to the
penalty parameter .

5 Concluding remarks

Starting from the very beginning of algorithm design, this paper presents a novel proximal-
perturbed augmented Lagrangian and then develops a corresponding Bregman-type alternating

! Available at http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html.
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Table 4: Numerical results of different algorithms for the problem (4.3).

€ Methods Iter  Time rank(X) Opt_err(end)
2P-ADMM(a = 10%) 1023 36.97 25 9.99e-5
2P-ADMM(a = 10%) 1023 36.67 25 9.99e-5
10~* ADMM 1206 43.88 23 9.99e-5
PL-ADMM 1167  41.53 23 9.99¢-5
IPADMM 1164  41.91 24 9.99e-5
TIADMM 1261  48.70 23 9.99¢-5
2P-ADMM(a = 10%) 4535 171.80 25 9.99¢-6
2P-ADMM(a = 10%) 4535 159.13 25 9.99¢-6
10> ADMM 5484 174.40 25 9.99e-6
PL-ADMM 4938  173.77 25 9.99¢-6
[PADMM 4907  171.87 25 9.99¢-6
TIADMM 5285  194.50 25 9.99¢-6
10° " " .
—=—==2P-ADMM(a = 10°) 200 |- | I 2P-ADMM (o = 10%) 1005
---------- 2P-ADMM(a = 10%) [ 2P-ADMM(a = 10%)
10" | ol - B
TIADMM 160 | g TIADMM
140
° 120 -
£
= 100
80 [
60 [
sl 370 37 439 415 419
== 20
10-50 10‘00 20‘00 30‘00 \\Zoroo 5000 6000 0 le-4 Te-s
Iter €

Figure 4: Comparison results of different algorithms for solving (4.3) on Yale B database.
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Figure 5: Output of different algorithms for the 4th(rows 1-3), 18th(rows 4-6) and 46th(rows
7-9) images on the Yale B database. From left to right: 2P-ADMM(a = 10%), 2P-ADMM (o =
10%), ADMM, PL-ADMM, IPADMM, TIADMM, respectively.
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direction method of multipliers (2P-ADMM) for solving a family of linearly constrained non-
convex composite minimization problems. Under mild assumptions, we theoretically establish
that any limitation point of the iterative sequence generated by 2P-ADMM converges to a
stationary point of the problem. The sublinear convergence rate of this 2P-ADMM is also
established in terms of the iterative residual. A series of comparison experiments on testing
the linear equation problem with artificial data, the graph-guided fused lasso problem and the
robust principal component analysis problem with public datasets validate that the proposed
algorithm outperforms several well-established algorithms. In the future work, we will focus
on extending the proposed method to some stochastic versions and inexact versions for solving
multi-block composite nonconvex optimization problems.
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