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Abstract. In this paper, we focus on a linearly constrained composite minimization problem
involving a possibly nonsmooth and nonconvex objective function. Unlike the traditional con-
struction of the augmented Lagrangian function, we design a proximal-perturbed augmented
Lagrangian to develop a new Bregman-type alternating direction method of multipliers. Under
mild assumptions, we prove that the augmented Lagrangian sequence converges to the limit of
the objective function sequence, and the iterative sequence generated by our method converges
to a stationary point of the problem. The sublinear convergence rate of the primal residuals
is also analyzed. Comparative experiments on testing the linear equation problem, graph-
guided fused lasso problem and robust principal component analysis problem demonstrate the
efficiency and flexibility of the proposed method.

Keywords: nonconvex optimization, ADMM, Bregman distance, convergence complexity

Mathematics Subject Classification(2010): 65Y20; 90C26

1 Introduction

Let R,Rn and Rp×n be the sets of real numbers, n dimensional real column vectors, and p×n real
matrices, respectively. Let R+ and R++ be the sets of non-negative and positive real numbers,
respectively. The n-simplex set is defined as {x |

∑n
i=1 xi = 1,x = (x1, · · · , xn) ∈ Rn} and the

notation I denotes the identity matrix with proper dimension. The symbol ∇f(x) represents
the gradient of a differentiable function f at x, while the symbols ∥ · ∥ and ⟨·, ·⟩ stand for the
standard Euclidean norm and inner product, respectively. In this article, we aim to develop
an efficient first-order method for solving the following potentially nonsmooth and nonconvex
composite minimization problem

min
x∈Rn,y∈Rm

F (x,y) := f1(x) + f2(x) + g1(y) + g2(y) s.t. Ax+By = b, (1.1)
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where f1 : Rn → R∪{+∞} and g1 : Rm → R∪{+∞} are continuously differentiable functions
(possibly nonconvex) with Lf -Lipschitz gradient and Lg-Lipschitz gradient, respectively, f2
and g2 are proper lower semicontinuous functions (possibly nonsmooth), A ∈ Rp×n, B ∈ Rp×m

and b ∈ Rp are given. Problems adhering to the form of (1.1) arise in various scientific and
engineering fields. Here, we take two examples that can be reformulated into the form of (1.1):

◃ Example 1. Consider the nonnegative minimal norm solution to the linear equation
Ax + By = b, where y ∈ [0,d] and d is a given nonzero vector. This problem can be
modeled as the following linearly constrained minimization problem

min
1

2
∥x∥2 + ρ

2
∥y∥2 s.t. Ax+By = b,x ≥ 0,y ∈ [0,d]. (1.2)

By introducing the indicator functions of the set {x| x ≥ 0} and {y| y ∈ [0,d]}, the
above problem is converted into the case of (1.1) with{

f1(x) =
1
2∥x∥

2,
g1(y) =

ρ
2∥y∥

2,
f2(x) =

{
0, if x ≥ 0,
+∞, otherwise,

g2(y) =

{
0, if y ∈ [0,d],
+∞, otherwise.

◃ Example 2. Consider the graph-guided fused lasso problem

min
1

N

N∑
j=1

fj(x) + ρ1∥Ax∥1 +
ρ2
2
∥x∥2, (1.3)

where fj(x) =
1

1+exp(bjaTj x)
is the empirical loss on the feature-label pair (aj , bj) ∈ Rl ×

{−1, 1}, N is the data size, and ρ1, ρ2 are given regularization parameters. By introducing
an auxiliary variable y = Ax, this problem can be regarded as the case of (1.1) with
(B,b) = (−I,0), f1(x) =

1
N

∑N
j=1 fj(x), f2(x) =

ρ2
2 ∥x∥

2, and g2(y) = ρ1∥y∥1.

Beyond these examples, problem (1.1) also arises in compressed sensing [42], subspace clustering
[46] and so forth. Throughout this paper, the solution set of (1.1) is assumed to be nonempty,
and the proximity operators of f2 and g2 can be efficiently evaluated.

A benchmark method for solving linearly constrained minimization problems is the Aug-
mented Lagrangian Method (ALM) proposed by Hestenes [22] and Powell [35]. When applying
ALM to the problem (1.1), it proceeds via the following recursive iterations:{

(xk+1,yk+1) = arg min
x∈Rn,y∈Rm

Lβ(x,y,λk),

λk+1 = λk − β
(
Axk+1 +Byk+1 − b

)
,

where

Lβ(x,y,λ) = F (x,y) +
⟨
λ, Ax+By − b

⟩︸ ︷︷ ︸
L(x,y,λ)

+
β

2

∥∥Ax+By − b
∥∥2 (1.4)

denotes the standard augmented Lagrangian function of (1.1), λ denotes the Lagrange multi-
plier, and β > 0 is the penalty parameter for the equality constraints.

As a first-order method, ALM has attracted increasing attention due to its diverse ap-
plications in signal/image processing, statistical learning, machine learning, and so on. Many
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existing ALM-type methods were developed based on the classical augmented Lagrangian func-
tion, such as exact/inexact accelerated ALM [3, 24, 25, 30, 43] and stochastic ALM [4, 29] for
solving equality constrained convex optimization problems, proximal ALM [28] for solving
nonconvex optimization problems, and splitting versions of ALM [19, 20, 38] for solving multi-
block separable structured minimization problems. Recently, a double-proximal ALM [6] with
convergence guarantees was developed and shown to be efficient for several machine learning
problems. Work closely related to [6] includes the balanced ALM [21] and penalty dual-primal
ALM [36]. More recently, by introducing an auxiliary variable for (1.1), a new ALM was de-
veloped by Kim [27] based on a proximal-perturbed augmented Lagrangian function, and this
method was subsequently extended to tackle a broader class of nonconvex optimization prob-
lems with nonlinear equality constraints [26]. One effective approach to establish the global
convergence and sublinear convergence rate of ALM for convex minimization problems is to
use variational analysis to characterize both the saddle-point and the iterative sequence, c.f.
[4, 6, 36]. However, a practical technique to establish the convergence of ALM for nonconvex
optimization problems is to construct a potential function related to the associated Lagrange
function and then demonstrate the convergence by showing the monotonic decreasing property
of this potential function, c.f. [5, 25, 26, 31] to list a few.

When the objective function of optimization problems has composite structures such as (1.1),
the standard ALM cannot fully utilize these structures and hence cannot take full advantage
of the special properties of each component objective function. Consequently, solving the
involved subproblems becomes very difficult. An effective and practical approach to overcoming
such difficulty is the Alternating Direction Method of Multipliers (ADMM). For example,
Barber, et al. [8] developed a proximal ADMM with general penalty matrix and established
its convergence under the restricted strong convexity; Wang-Cai-Chen [40] proposed a globally
convergent preconditioned ADMM for solving (1.1) with (f1, g1) = (0, 0) and f2, g2 being convex
functions; Wang-Banerjee [39] extended the standard ADMM to Bregman ADMM:

xk+1 = arg min
x∈Rn

{
Lβ(x,yk,λk) + Bϕ1

(
x,xk

)}
,

yk+1 = arg min
y∈Rm

{
Lβ(xk+1,y,λk) + Bϕ2

(
y,yk

)}
,

λk+1 = λk − β
(
Axk+1 +Byk+1 − b

)
.

(1.5)

Here Bϕi
represents the Bregman distance [9] defined as

Bϕi

(
u,v

)
:= ϕi(u)− ϕi(v)−

⟨
∇ϕi(v),u− v

⟩
, i = 1, 2.

Since ϕi(·) is differentiable and convex, it is easy to check that Bϕi

(
u,v

)
is nonnegative and

Bϕi

(
u,v

)
≥ θi

2

∥∥u− v
∥∥2 if ϕi(·) is strongly convex with modulus θi > 0.

In fact, the Bregman distance includes a large number of useful loss functions such as logistic
loss, Euclidean distance and KL-divergence, see Table 1. This makes ADMM more general and
more flexible, allowing the resulting subproblems to be solved efficiently or even have a closed-
form solution. As demonstrated in [34, Proposition 3.5], the linearized proximal ADMM is
an instance of the Bregman ADMM when the distance generating functions ϕ1 and ϕ2 are
properly chosen. Hence, the Bregman ADMM contains various variants of ADMM, including
the classical ADMM, proximal ADMM, and linearized proximal ADMM. Besides, by a proper
choice of the Bregman distance, the resulting subproblems can be simplified as proximity
operators. For instance, if ϕ1 =

ν
2∥x∥

2− β
2 ∥Ax∥

2 with ν > β∥ATA∥, then the first subproblem
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Table 1: Several special instances of Bregman distance [1].
Domain ϕi(x) Bϕi

(
x,v

)
Appellation

R x2 (x− v)2 Squared loss
R+ x log x x log(xv )− (x− v)
[0, 1] x log x+ (1− x) log(1− x) x log(xv ) + (1− x) log( 1−x

1−v ) Logistic loss

R++ − log x x
v − log(xv )− 1 Itakura-Saito distance

Rn ∥x∥2 ∥x− v∥2 Squared Euclidean distance
Rn xTAx (x− v)TA(x− v) Mahalanobis distance

n-Simplex
∑n

j=1 xj log(xj)
∑n

j=1 xj log(
xj

vj
) KL-divergence

in (1.5) can be simplified as the proximity operator of f1 with known rk :

proxνf1(rk) = argmin{f1(x) +
ν

2
∥x− rk∥2},

while the subproblem in the standard ADMM can not be converted to the above form. For
more examples on the Bregman proximal step that admits a closed-form solution, we refer to [2,
Example 3]. Recently, Chen, et al. [13] demonstrated the convergence of the directly extended
ADMM for solving the three-block separable optimization problem whose objective function is
the sum of one weakly convex and two strongly convex functions. An efficient Bregman-style
ADMM [32] was also proposed for solving the problem (1.1) with (f2, g1) = (0, 0). In order
to take advantage of Bregman distance, an interesting question is: can we construct a distinct
augmented Lagrangian function so as to develop a new Bregman-based ADMM for the general
nonconvex and nonsmooth minimization problem (1.1)?

In this paper, motivated by the above question, we will propose a new ADMM-type method
based on the novel augmented Lagrangian constructed in [26]. We further establish the conver-
gence of the proposed method, with respect to both the corresponding augmented Lagrangian
sequence and the iterative residuals for primal variables and constraint violations. Key features
of our method are summarized in the subsequent section.

2 Development of 2P-ADMM

Inspired by the new Lagrangian-based first-order method [26, 27, 32], by introducing a similar
perturbation variable z ∈ Rp such that z = 0 where bold 0 denotes the zero vector, we
reformulate the problem (1.1) as the following double-constrained problem

min
x∈Rn,y∈Rm,z∈Rp

F (x,y) s.t. Ax+By − b = z, z = 0. (2.1)

Define the proximal-perturbed augmented Lagrangian of (2.1) as

Lβ(x,y,λ, z,µ) = F (x,y) +
⟨
λ, Ax+By − b− z

⟩
+

⟨
µ, z

⟩
+

α

2

∥∥z∥∥2 − σ

2

∥∥λ− µ
∥∥2, (2.2)

where λ,µ ∈ Rp are the Lagrange multipliers associated with the equality constraints, α > 0
is a penalty parameter, and σ > 0 denotes a proximal parameter.

To predigest discussions, we simply denote Lβ(x,y,λ, z,µ) by Lβ(w) withw = (x,y,λ, z,µ).
Comments on this new proximal-perturbed augmented Lagrangian function are given below:
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(i) Unlike the standard augmented Lagrangian (1.4), we exploit a proximal term σ
2 ∥λ−µ∥2

in (2.2), instead of the widely-used quadratic penalty for the constraint Ax+By−b = z,
to ensure the strong concavity of Lβ(w) w.r.t. the Lagrange multipliers λ (for fixed µ)
and µ (for fixed λ). This is helpful for simplifying the update of Lagrange multipliers.
Besides, minimizing Lβ(w) w.r.t. each primal variable can exploit the proximity operator
of f2(x) or g2(y), when adding a customized Bregman distance as the proximal term;

(ii) Because Lβ(w) is smooth and strongly convex about z, there exists a unique solution for
given (λ,µ). More specifically, by minimizing Lβ(w) w.r.t. z, we can derive

z(λ,µ) =
λ− µ

α
, (2.3)

which implies λ = µ at the unique solution z∗ = 0. By the relationship in (2.3), we thus
add the smoothing proximal term −β

2 ∥λ− µ∥2 to the Lagrangian in (2.2).

Now, plugging the certain relationship (2.3) into (2.2) results in

Lβ(w) = L(x,y,λ)− 1

2β

∥∥λ− µ
∥∥2 (2.4)

with β = α
1+ασ . Clearly, the function Lβ(w) is strongly concave about λ for given (x,y,µ). So

there exists a unique maximizer, denoted by λ(x,y,µ), namely,

λ(x,y,µ) = arg max
λ∈Rp

Lβ(w) = µ+ β(Ax+By − b).

Notice that directly minimizing Lβ(w) about the primal variables x and y is still challenging,
since it does not make full use of each nonsmooth objective function as well as the separable
structure of the problem. To tackle these obstacles, we first employ an approximation to Lβ(w)
as follows:

L̃β(w,v1,v2) : = f2(x) + g2(y) + Bϕ1

(
x,v1

)
+ Bϕ2

(
y,v2

)
+ L̄β(w) +

⟨
∇xL̄β(w),x− v1

⟩
+

⟨
∇yL̄β(w),y − v2

⟩
,

where L̄β(w) is the smooth part of Lβ(w), i.e.

L̄β(w) = f1(x) + g1(y) +
⟨
λ, Ax+By − b− z

⟩
+

⟨
µ, z

⟩
+

α

2

∥∥z∥∥2 − σ

2

∥∥λ− µ
∥∥2.

Based on the above preparations and the splitting idea with respect to primal variables x
and y, we propose a customized Proximal-Perturbed ADMM (2P-ADMM) whose framework is
described in Algorithm 2.1. In fact, both x-subproblem and y-subproblem update in parallel
since they can be simplified as

xk+1 = arg min
x∈Rn

{
f2(x) +

⟨
x− xk,∇f1(xk) +ATλk

⟩
+ Bϕ1

(
x,xk

)}
,

yk+1 = arg min
y∈Rm

{
g2(y) +

⟨
y − yk,∇g1(yk) +BTλk

⟩
+ Bϕ2

(
y,yk

)}
.

(2.5)

Hence, the fifth step regarding zk+1 does not work and can be removed when carrying out ex-
periments. Compared to the proximal term (i.e., squared Euclidean distance) in the proximal-
perturbed ALM [27], our proximal term in (2.5) is more general and 2P-ADMM can be extreme-
ly effective by properly choosing ϕi (see the sequel Figure 2 in experiments). The updating
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Input: α ≫ 1, σ ∈ (0, 1), β = α
1+ασ , r ∈ (0.9, 1), θ1 > Lf and θ2 > Lg.

Initialization: w0 = (x0,y0, z0,λ0,µ0) and δ0 ∈ (0, 1].
For k = 0, 1, 2, · · ·
1. xk+1 = arg min

x∈Rn

{
f2(x) +

⟨
x− xk,∇xL̄β(xk,yk,λk, zk,µk)

⟩
+ Bϕ1

(
x,xk

)}
;

2. yk+1 = arg min
y∈Rm

{
g2(y) +

⟨
y − yk,∇yL̄β(xk+1,yk,λk, zk,µk)

⟩
+ Bϕ2

(
y,yk

)}
;

3. µk+1 = µk + τk
(
λk − µk

)
with τk = δk

1+∥λk−µk∥2
;

4. λk+1 = µk+1 + β
(
Axk+1 +Byk+1 − b

)
;

5. zk+1 =
λk+1−µk+1

α ;

6. δk+1 = rδk;
End
Output (xk+1,yk+1).

Algorithm 2.1: Proximal-Perturbed ADMM (2P-ADMM) for solving (1.1).

formula of δk+1 implies δk = rkδ0. So, by the region r ∈ (0, 1) and δ0 ∈ (0, 1], we know the
sequence {δk} is summable. Due to this fact, the choice of τk can guarantee the boundedness
of {µk}, which in turn guarantees the boundedness of {λk}.

Remark 2.1 Consider the nonconvex optimization problem in [45], that is, problem (1.1) with
g2 = 0, B = I and f2 being the indicator function of a nonempty closed convex set X . For this
type of problem, by selecting ϕ2 =

1
2γ ∥y∥

2, our proposed method reduces to Alg. 2.2. Note that

the update of yk+1 obeys a gradient descent step, and the term ∇g1(yk)+BTλk is, in fact, the
gradient of the corresponding L(x,y,λ) at yk.

Input: α ≫ 1, σ ∈ (0, 1), β = α
1+ασ , r ∈ (0.9, 1), θ1 > Lf and 1/γ > Lg.

Initialization: w0 = (x0,y0,λ0,µ0) and δ0 ∈ (0, 1].
For k = 0, 1, 2, · · ·
1. xk+1 = argmin

x∈X

{⟨
x− xk,∇f1(xk) +ATλk

⟩
+ Bϕ1

(
x,xk

)}
;

2. yk+1 = yk − γ
[
∇g1(yk) +BTλk

]
;

3. µk+1 = µk + τk
(
λk − µk

)
with τk = δk

1+∥λk−µk∥2
;

4. λk+1 = µk+1 + β
(
Axk+1 + yk+1 − b

)
;

5. δk+1 = rδk;
End
Output (xk+1,yk+1).

Algorithm 2.2: A special case of the proximal-perturbed ADMM.

3 Convergence analysis

3.1 Technical preliminarily

In this subsection, we present several lemmas that will be used to analyze the convergence of
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both the augmented Lagrangian sequence given in (2.4) and the iterative sequence. Throughout
this paper, similar to [18], we make the following assumptions:

(A1) f̄1 = inf
x

{
f1(x)− 1

2Lf

∥∥∇f1(x)
∥∥2} > −∞ and ḡ1 = inf

y

{
g1(y)− 1

2Lg

∥∥∇g1(y)
∥∥2} > −∞;

(A2) lim
∥x∥→∞

inf f2(x) = +∞ and lim
∥y∥→∞

inf g2(y) = +∞.

Lemma 3.1 The sequences {µk} and {λk} generated by Algorithm 2.1 are bounded.

Proof. By the update of µk+1, we have

∥∥µk+1

∥∥ =
∥∥∥µ0+

k∑
i=0

τi
(
λi−µi

)∥∥∥ ≤ ∥µ0∥+
+∞∑
i=0

δi
∥λi − µi∥2 + 1

∥λi−µi∥ ≤ ∥µ0∥+
1

2

∞∑
i=0

δi < +∞,

which shows that the sequence {µk} is bounded since
∑∞

i=0 δi is convergent where δk+1 = rδk
and r ∈ (0.9, 1).

Besides, the update of µk+1 gives

λk =
1

τk
µk+1 +

(
1− 1

τk

)
µk,

which means λk is a combination of µk+1 and µk. Combine this relationship with the bound-
edness of {µk} to ensure that {λk} is a bounded sequence. �

The above lemma as well as the following lemma will be used to investigate some properties
of the iterative sequence {wk} generated by Algorithm 2.1.

Lemma 3.2 Let {µk} and {λk} be the sequences generated by Algorithm 2.1. Then, we have∥∥µk+1 − µk

∥∥2 ≤ δ2k
4
,

∥∥λk − µk

∥∥2 ≤ δk
τk

, (3.1)

and ∥∥λk+1 − λk

∥∥2 ≤ 2
∥∥λk+1 − µk+1

∥∥2 + 2
∥∥µk+1 − λk

∥∥2. (3.2)

Proof. By the way of updating µk+1 and λk+1, we have

∥∥µk+1 − µk

∥∥2 = τ2k
∥∥λk − µk

∥∥2 ≤ δ2k
∥λk − µk∥2 + 2 + 1

∥λk−µk∥2
≤

δ2k
4
,

where the first inequality uses the definition of τk and the last inequality follows from the fact
a+ b ≥ 2

√
ab for any a, b ≥ 0. Using the the definition of τk again, it holds that

τk
∥∥λk − µk

∥∥2 = δk

1 + 1
∥λk−µk∥2

≤ δk.

The result in (3.2) follows directly from the fact (a+ b)2 ≤ 2a2 + 2b2 for any a and b. �
By the update of τk, we know τk ∈ (0, 1) and it is a bounded sequence. Based on its lower

bound, next we provide some core properties related to {Lβ(wk)}, which further establishes
that both the iterative residual and the constraint residual converge to zero.
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Theorem 3.1 Let τ̄ > 0 be the lower bound of {τk} and {wk := (xk,yk,λk, zk,µk)} be the
sequence generated by Algorithm 2.1. Then, the following hold:

(i) The sequence {Lβ(wk+1)} defined in (2.4) satisfies

Lβ(wk+1) ≤ Lβ(wk)−
θ1 − Lf

2

∥∥xk+1 −xk

∥∥2 − θ2 − Lg

2

∥∥yk+1 −yk

∥∥2 + δk+1 + δk
βτ̄

; (3.3)

(ii) Under the assumptions (A1)-(A2), the sequence {Lβ(wk)} is convergent. Moreover,

lim
k→∞

∥∥wk+1 −wk

∥∥ = 0 and lim
k→∞

∥∥Axk+1 +Byk+1 − b
∥∥ = 0. (3.4)

Proof. To prove the assertion (i), we split Lβ(wk+1)− Lβ(wk) into three residuals:

Lβ(wk+1)− Lβ(wk) =Lβ(xk+1,yk, zk,λk,µk)− Lβ(xk,yk, zk,λk,µk)

+ Lβ(xk+1,yk+1, zk,λk,µk)− Lβ(xk+1,yk, zk,λk,µk)

+ Lβ(xk+1,yk+1, zk+1,λk+1,µk+1)− Lβ(xk+1,yk+1, zk,λk,µk).

According to the equivalent expression of the xk+1-subproblem as in (2.5), we have

f2(xk+1) +
⟨
∇f1(xk) +ATλk,xk+1 − xk

⟩
+ Bϕ1(xk+1,xk) ≤ f2(xk),

implying that

f2(xk+1)− f2(xk) +
⟨
ATλk,xk+1 − xk

⟩
≤

⟨
∇f1(xk),xk − xk+1

⟩
− θ1

2
∥xk+1 − xk∥2.

The last inequality together with the Lipschitz continuity of f1:

f1(xk+1)− f1(xk) ≤
⟨
∇f1(xk),xk+1 − xk

⟩
+

Lf

2

∥∥xk+1 − xk

∥∥2
gives

Lβ(xk+1,yk, zk,λk,µk)− Lβ(xk,yk, zk,λk,µk) = f1(xk+1)− f1(xk)

+ f2(xk+1)− f2(xk) +
⟨
ATλk,xk+1 − xk

⟩
≤ −

θ1 − Lf

2

∥∥xk+1 − xk

∥∥2. (3.5)

Similarly, the Lipschitz continuity of g1 yields

g1(yk+1)− g1(yk) ≤
⟨
∇g1(yk),yk+1 − yk

⟩
+

Lg

2

∥∥yk+1 − yk

∥∥2,
which, by using the following property from the yk+1-subproblem:

g2(yk+1)− g2(xk) +
⟨
BTλk,yk+1 − yk

⟩
≤

⟨
∇g1(yk),yk − yk+1

⟩
− θ2

2

∥∥yk+1 − yk

∥∥2,
gives

Lβ(xk+1,yk+1, zk,λk,µk)− Lβ(xk+1,yk, zk,λk,µk) ≤ −
θ2 − Lf

2

∥∥yk+1 − yk

∥∥2. (3.6)
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Notice that

Lβ(xk+1,yk+1, zk+1,λk+1,µk+1)− Lβ(xk+1,yk+1, zk,λk,µk)

=
⟨
λk+1 − λk, Axk+1 +Byk+1 − b

⟩
− 1

2β

∥∥λk+1 − µk+1

∥∥2 + 1

2β

∥∥λk − µk

∥∥2 (3.7)

and ∥∥λk − µk+1

∥∥2 = ∥∥λk − µk + µk − µk+1

∥∥2 = (1− τk)
2
∥∥λk − µk

∥∥2 ≤ ∥∥λk − µk

∥∥2. (3.8)

By using λk+1 − µk+1 = β(Axk+1 +Byk+1 − b), zk = 1
α(λk − µk), and applying the identity⟨

a− b, a
⟩
=

1

2
∥a− b∥2 + 1

2
∥a∥2 − 1

2
∥b∥2

with (a, b) = (λk+1 − µk+1,λk − µk+1) to (3.7), we further have

Lβ(xk+1,yk+1, zk+1,λk+1,µk+1)− Lβ(xk+1,yk+1, zk,λk,µk)

=
1

2β

∥∥λk+1 − λk

∥∥2 − 1

2β

∥∥µk+1 − λk

∥∥2 + 1

2β

∥∥λk − µk

∥∥2
(3.2)

≤ 1

β

∥∥λk+1 − µk+1

∥∥2 + 1

2β

∥∥µk+1 − λk

∥∥2 + 1

2β

∥∥λk − µk

∥∥2 (3.1),(3.8)

≤ δk+1 + δk
βτ̄

. (3.9)

So, combining the above inequalities (3.5),(3.6) and (3.9) yields the desired result (3.3).

To prove the result (ii), we first show that {wk} is bounded. It follows from (3.3) and the
conditions θ1 > Lf and θ2 > Lg that

Lβ(w0) +
δ0
βτ̄

k∑
j=0

(
rj+1 + rj

)
≥ Lβ(wk) +

δk+1 + δk
βτ̄

≥ Lβ(wk+1)

=F (xk+1,yk+1) +
⟨
λk+1, Axk+1 +Byk+1 − b

⟩
− 1

2β

∥∥λk+1 − µk+1

∥∥2
=F (xk+1,yk+1) +

1

β

⟨
λk+1,λk+1 − µk+1

⟩
− 1

2β

∥∥λk+1 − µk+1

∥∥2
=F (xk+1,yk+1) +

1

2β

∥∥λk+1

∥∥2 − 1

2β

∥∥µk+1

∥∥2
≥
(
f1(xk+1)−

1

2Lf

∥∥∇f1(xk+1)
∥∥2)+

(
g1(yk+1)−

1

2Lg

∥∥∇g1(yk+1)
∥∥2)

+ f2(xk+1) + g2(yk+1) +
1

2β

∥∥λk+1

∥∥2 − 1

2β

∥∥µk+1

∥∥2
≥f̄1 + ḡ1 + f2(xk+1) + g2(yk+1) +

1

2β

∥∥λk+1

∥∥2 − 1

2β

∥∥µk+1

∥∥2,
where the last inequality uses (A1). Then, combining the above relationship with (A2), Lemma
3.1 as well as r < 1, we conclude that both {xk} and {yk} are bounded. Consequently, the
whole sequence {wk} is bounded. Because {wk} is bounded, the sequence {Lβ(wk)} is also
bounded from below and there exists at least one limit point. Without loss of generality, let
{wkj} be a subsequence of {wk} and w∗ be its limit point. Then, the lower semicontinuity
of {Lβ(wk)} implies Lβ(w

∗) ≤ limj→∞ inf Lβ(wkj ) So, {Lβ(wkj )} is bounded from below and
hence is convergent.
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Let Lβ be the lower bound of {Lβ(wk)}. Then, by the result (3.3) again, we deduce

∞∑
k=0

(θ1 − Lf

2

∥∥xk+1−xk

∥∥2+ θ2 − Lg

2

∥∥yk+1−yk

∥∥2) ≤ Lβ(w0)−Lβ+
2δ0

βτ̄(1− r)
< +∞, (3.10)

where the last inequality holds by the fact

∞∑
k=0

δk ≤ δ0
1− r

< +∞. (3.11)

According to (3.10) and the conditions θ1 > Lf , θ2 > Lg, we deduce

lim
k→∞

∥∥xk+1 − xk

∥∥2 = 0, and lim
k→∞

∥∥yk+1 − yk

∥∥2 = 0.

Summarizing the inequalities in (3.1) over k = 0, 1, · · · ,∞ together with (3.11) shows

lim
k→∞

∥∥µk+1 − µk

∥∥2 = 0, and lim
k→∞

∥∥λk − µk

∥∥2 = 0. (3.12)

Combine the following relationship from (3.2):∥∥λk+1 − λk

∥∥2 ≤ 2
∥∥λk+1 − µk+1

∥∥2 + 4
(∥∥µk+1 − µk

∥∥2 + ∥∥µk − λk

∥∥2)
with (3.12) immediately ensures

lim
k→∞

∥∥λk+1 − λk

∥∥2 = 0. (3.13)

Besides, the update of zk+1 gives∥∥zk+1 − zk
∥∥2 ≤ 2

α2

(∥∥λk+1 − λk

∥∥2 + ∥∥µk+1 − µk

∥∥2),
which, by (3.13) and the first result in (3.12), further implies lim

k→∞
∥zk+1 − zk∥2 = 0. As a

result, combine this limitation and (3.12)-(3.13) to confirm the first result in (3.4). The second
result in (3.4) is clearly from lim

k→∞
∥λk − µk∥2 = 0 and the update of λk+1. �

3.2 Convergence and complexity

In the following, the distance from any point x to the set Ω is defined as dist(x,Ω) := inf x̄∈Ω ∥x−
x̄∥. Based on this definition, we first give an estimation on dist

(
0, ∂Lβ(wk+1)

)
by the iterative

residuals, and then analyze the convergence of the iterative sequence {wk+1}. Similar analysis
can be found in [7, 17, 18, 41]. For a proper lower semi-continuous function h, its (limiting-)
subdifferential [37, Definition 8.3 (b)] at x ∈ domh, denoted as ∂h(x), is defined as

∂h(x) :=
{
ν ∈ Rn : ∃xk → x, h(xk) → h(x),νk → ν with νk ∈ ∂̂h(xk)

}
,

where ∂̂h(x) denotes the regular subdifferential [37, Definition 8.3 (a)] of h at x given as

∂̂h(x) :=

{
ν ∈ Rn : lim inf

x̄→x,x̸̄=x

h(x̄)− h(x)− ⟨ν, x̄− x⟩
∥x̄− x∥

≥ 0

}
.
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Corollary 3.1 Let {wk = (vk, zk,µk)} be the sequence generated by Algorithm 2.1. Then, for
every k ≥ 0, the following hold:

(i) There exists a F ∗ such that

lim
k→∞

Lβ(wk+1) = lim
k→∞

L(vk+1) = lim
k→∞

F (xk+1,yk+1) = F ∗.

(ii) It holds that lim
k→∞

dist
(
0, ∂Lβ(wk+1)

)
= lim

k→∞
dist

(
0, ∂L(vk+1)

)
= 0.

Proof. Note that

F (xk+1,yk+1) = Lβ(wk+1)−
⟨
λk+1, Axk+1 +Byk+1 − b

⟩
+

1

2β

∥∥λk+1 − µk+1

∥∥2
= L(xk+1,yk+1,λk+1)−

⟨
λk+1, Axk+1 +Byk+1 − b

⟩
,

which ensures the conclusion (i) by the second item of Theorem 3.1 and (3.12).

The first-order optimality condition of xk+1-subproblem implies

0 ∈ ∂f2(xk+1) +∇f1(xk) +ATλk +∇ϕ1(xk+1)−∇ϕ1(xk).

Combining it with the reformulation (2.4) to have

exk+1 ∈ ∂xLβ(wk+1),

where exk+1 := ∇f1(xk+1) −∇f1(xk) +∇ϕ1(xk) −∇ϕ1(xk+1) + AT(λk+1 − λk). Similarly, we
have from the first-order optimality condition of yk+1-subproblem that

eyk+1 ∈ ∂yLβ(wk+1).

where eyk+1 := ∇g1(yk+1) − ∇g1(yk) + ∇ϕ2(yk) − ∇ϕ2(yk+1) + BT(λk+1 − λk). Besides, it
follows from λ-update that

∇λLβ(wk+1) = (Axk+1 +Byk+1 − b)− 1

β
(λk+1 − µk+1) = 0

and ∇µLβ(wk+1) = − 1
β (µk+1 − λk+1) := e

µ
k+1. Hence, the following relationship holds:

ek+1 :=
(
exk+1, e

y
k+1,0, e

µ
k+1

)
∈ ∂Lβ(wk+1).

Next, we simplify the computation of each component of ek+1. By the Lipschitz continuity
of f1 and ϕ1, we have∥∥exk+1

∥∥ ≤
∥∥∇f1(xk+1)−∇f1(xk)

∥∥+
∥∥∇ϕ1(xk+1)−∇ϕ1(xk)

∥∥+ ∥A∥
∥∥λk+1 − λk

∥∥
≤ (Lf + Lϕ1)

∥∥xk+1 − xk

∥∥+ ∥A∥
∥∥λk+1 − λk

∥∥.
Analogously, we have by the Lipschitz continuity of g1 and ϕ2 that∥∥eyk+1

∥∥ ≤
∥∥∇g1(yk+1)−∇g1(yk)

∥∥+
∥∥∇ϕ2(yk+1)−∇ϕ2(yk)

∥∥+ ∥B∥
∥∥λk+1 − λk

∥∥
≤ (Lg + Lϕ2)

∥∥yk+1 − yk

∥∥+ ∥B∥
∥∥λk+1 − λk

∥∥.
11



Combining the last two results, the equality ∥eµk+1∥ = 1
β∥λk+1 − µk+1∥ and the relationships

∂xLβ(wk+1) = ∂xL(vk+1), ∂yLβ(wk+1) = ∂yL(vk+1),

∂λLβ(wk+1) = ∂λL(vk+1)−
1

β
(λk+1 − µk+1),

to obtain

dist
(
0, ∂L(vk+1)

)
≤ dist

(
0, ∂Lβ(wk+1)

)
+

1

β

∥∥λk+1 − µk+1

∥∥
and

dist
(
0, ∂Lβ(wk+1)

)
≤

∥∥ek+1

∥∥ ≤ c
(∥∥xk+1−xk

∥∥+∥∥yk+1−yk

∥∥+∥∥λk+1−λk

∥∥+∥∥λk+1−µk+1

∥∥)
with c = max{Lf +Lϕ1 , Lg +Lϕ2 , ∥A∥+ ∥B∥, 1

β}. Then, we confirm the result (ii) by the first
equality in (3.4). �

Corollary 3.1 shows that the objective sequence of (1.1) is convergent, but it does not point
out the convergence of the iterative sequence as well as its convergence rate. In what follows,
we not only show that any limit point of {vk = (xk,yk,λk)} converges to a stationary point
of (1.1) as defined by (3.14), but also establish the sublinear convergence rate of the iterative
residuals of the primal variables. We say (x∗,y∗,λ∗) ∈ Rn × Rm × Rp is a stationary point of
(1.1) if 0 ∈ ∂L(x,y,λ), that is,

0 ∈ ∇f1(x
∗) + ∂f2(x

∗) +ATλ∗, 0 ∈ ∇g1(y
∗) + ∂g2(y

∗) +BTλ∗, Ax∗ +By∗ = b. (3.14)

Theorem 3.2 Let {wk = (vk, zk,µk)} be the sequence generated by Algorithm 2.1. Then,

(i) Any limit point v∗ of the sequence {vk} is a stationary point of (1.1);

(ii) For any integer k ≥ 1, there exist j ≤ k and ζ1, ζ2 > 0 such that∥∥xj+1 − xj

∥∥2 ≤ ζ0
ζ1(k + 1)

and
∥∥yj+1 − yj

∥∥2 ≤ ζ0
ζ2(k + 1)

,

where ζ0 = Lβ(w0)− Lβ + 2δ0
βτ̄(1−r) with Lβ being the lower bound of {Lβ(wk)}.

Proof. For any limit point w∗ = (v∗, z∗,µ∗) of the sequence {wk}, it follows from the second
conclusion of Corollary 3.1, together with the definition of the limiting-subdifferential ∂L(v∗)
and the definition of the stationary point in (3.14), that the conclusion (i) holds.

Secondly, for any k > 0, we have from (3.3) and (3.11) that

k∑
j=0

(θ1 − Lf

2

∥∥xj+1 − xj

∥∥2 + θ2 − Lg

2

∥∥yj+1 − yj

∥∥2) ≤ Lβ(w0)− Lβ +
2δ0

βτ̄(1− r)
= ζ0,

which indicates that there exists a j ≤ k such that∥∥xj+1 − xj

∥∥2 ≤ ζ0
(k + 1)(θ1 − Lf )

and
∥∥yj+1 − yj

∥∥2 ≤ ζ0
(k + 1)(θ2 − Lg)

.

These inequalities with ζ1 = θ1 − Lf > 0, ζ2 = θ2 − Lg > 0 confirm the conclusion (ii). �
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4 Numerical experiments

In this section, we investigate the performance of our proposed algorithm for solving three
problems with artificial data or real data. All experiments are implemented in MATLAB
R2021b (64-bit) and performed on a PC with Windows 11 operating system, with an AMD
Ryzen 9 7945HX CPU and 16GB RAM.

4.1 Linear equation problem

Consider the linear equation problem (1.2) with ρ = 0.001 and d being the vector of ones. It can
be verified that the assumptions (A1)-(A2) hold. In this experiment, the coefficient matrices
A and B are set as tridiagonal matrices, since tridiagonal systems frequently arise in practical
applications involving discretized differential equations. More specifically, we generate A, B
and b by the following codes:

v1 = randn(1,m); u1 = randn(1,m-1); l1 = randn(1,m-1);

A = diag(v1) + diag(u1, 1) + diag(1l, -1);

v2 = randn(1,m); u2 = randn(1,m-1); l2 = randn(1,m-1);

B = diag(v2) + diag(u2, 1) + diag(l2, -1);

w1 = rand(m, 1); w2 = rand(m, 1); b = A*w1+B*w2;

By selecting ϕi(·) = θi
2 ∥ · ∥2 in both x-subproblem and y-subproblem, the Bregman distance

reduces to Bϕi

(
·, ·k

)
= θi

2

∥∥·−·k
∥∥2 and hence the modulus θi plays the role of proximal parameter.

Applying Algorithm 2.1 (2P-ADMM) to this problem involves two core iterations:{
xk+1 = PRn

+

[
xk − 1

θ1

(
xk +ATλk

)]
,

yk+1 = P[0,d]

[
yk − 1

θ2

(
ρyk +BTλk

)]
,

where PRn
+
(xk) denotes the projection of xk onto Rn

+(the set of n-dimensional nonnegative
vectors). The constraint violation error and the relative objective error are defined as

Equ err(k) = ∥Axk +Byk − b∥ and Obj err(k) =
|F (xk,yk)− F ∗|

max{F ∗, 1}
,

respectively, where F ∗ denotes an approximate optimal objective function value obtained by
running Algorithm 2.1 for more than 105 iterations. With the initial point (x0, y0) randomly
drawn from the standard Gaussian and (λ0,µ0) = (0,0), all algorithms are terminated when
the stopping condition Equ err(k) < tol or Iter > 5000, where “Iter” denotes the total number
of iterations and the tolerance tol is set as 10−5 in the forthcoming experiments.

Next, we investigate how the parameters (α, σ, r, δ0) affect the performance of our 2P-
ADMM. We first fix the free parameter α as 103, then change other distinctively constrained
parameters (σ, r, δ0) to investigate their effects on 2P-ADMM. Table 2 reports some numerical
results of 2P-ADMM with different parameters (σ, r, δ0) for solving problem (1.2) with dimen-
sion p = 300, where “Time” denotes the CPU time in seconds and the bold value denotes the
smallest one. We can observe from Table 2 that:

• For the parameters (σ, r, δ0), the reported results in each column of Equ err and Obj err
are nearly the same when two parameters are fixed and only one parameter is allowed to
change;
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Table 2: Numerical results of 2P-ADMM for solving (1.2) with different (σ, r, δ0).

Parameters Iter Time Equ err Obj err

σ(r = 1− 10−7, δ0 = 0.5)

0.5 2983 0.09 9.986e-6 4.619e-6

0.6 3178 0.10 9.963e-6 3.692e-6

0.7 3332 0.10 9.767e-6 2.931e-6

0.8 3470 0.10 9.979e-6 2.568e-6

0.9 3674 0.11 9.550e-6 2.036e-6

r(σ = 0.5, δ0 = 0.5)

1− 10−3 5000 0.14 2.588e-4 4.371e-6

1− 10−5 3006 0.09 9.942e-6 4.500e-6

1− 10−7 2983 0.09 9.986e-6 4.619e-6

1− 10−9 2983 0.09 9.956e-6 4.622e-6

1− 10−11 2983 0.09 9.956e-6 4.622e-6

δ0(σ = 0.5, r = 1− 10−7)

0.1 4949 0.14 9.997e-6 3.075e-6

0.3 3543 0.11 9.988e-6 2.345e-6

0.5 2983 0.09 9.986e-6 4.619e-6

0.7 2796 0.08 9.791e-6 5.829e-6

0.9 2908 0.09 9.664e-6 5.124e-6

• With the increase of the parameter σ, both the iteration number and the CPU time tend
to increase; with the increase of the parameter r, both the iteration number and the CPU
time tend to decrease; with the increase of the parameter δ0, both the iteration number
and the CPU time decrease firstly and then increase.

Reported results of Table 2 indicate that the choice of (σ, r, δ0) could have a great effect on
the performance of 2P-ADMM, and it seems that setting (σ, r, δ0) = (0.5, 1− 10−11, 0.7) would
be a reasonable choice for solving (1.2) and these values will be set as default values in the
forthcoming experiments.

In what follows, we carry out some comparative experiments about 2P-ADMM and the
existing algorithms SALM psils and SALM psilsf proposed in [23]. The involved parameters of
SALM psils and SALM psilsf are set as ρ = 0.1, s = 10−5, β = 10, L0 = β∥BTB∥+ 0.001 and
Hy

k ≡ λI + β∥BTB∥. Figure 1 depicts the convergence curves of Equ err(k) and Obj err(k)
against the iteration numbers. Table 3 reports some numerical results, where the notation
“/” indicates that it reaches the maximum iteration numbers. As illustrated in Figure 1, 2P-
ADMM initially performs worse than SALM psils and SALM psilsf in terms of Obj err, but it
eventually outperforms these two methods. Numerical results in Table 3 not only show that
our 2P-ADMM requires fewer iterations and CPU time, but also demonstrate its robustness
even for a significantly large penalty value α = 108.

To investigate the impact of Bregman distance on the performance of 2P-ADMM, we next
select ϕi(x) =

∑
xj log(xj) for either x-subprobem or y-subprobem as toy examples, making

the Bregman distance becomes KL divergence. Here, xj denotes the j-th entry of x. It is easy
to check that each subproblem of 2P-ADMM still admits a closed-form solution. We conduct
comparative experiments in four cases
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Figure 1: Comparison curves of different algorithms for (1.2) with different (m,n, p).
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Table 3: Numerical results of different algorithms for (1.2).

Size Parameters 2P-ADMM(α = 103)

p θ1 θ2 Iter Time Equ err Obj err

100 3.02e+1 3.04e+1 2029 0.02 9.979e-6 5.000e-5

200 3.57e+1 3.55e+1 2464 0.03 9.981e-6 3.439e-5

300 3.77e+1 3.75e+1 2509 0.08 9.922e-6 8.672e-5

400 4.45e+1 4.18e+1 3111 0.15 9.965e-6 1.801e-5

500 3.53e+1 3.53e+1 3104 0.23 9.777e-6 5.321e-5

600 2.47e+1 2.45e+1 3282 0.35 9.999e-6 4.892e-5

Size Parameters 2P-ADMM(α = 108)

p θ1 θ2 Iter Time Equ err Obj err

100 3.02e+1 3.04e+1 2028 0.02 9.982e-6 5.008e-5

200 3.57e+1 3.55e+1 2461 0.03 9.993e-6 3.453e-5

300 3.77e+1 3.75e+1 2507 0.07 9.811e-6 8.682e-5

400 4.45e+1 4.18e+1 3108 0.15 9.973e-6 1.815e-5

500 3.53e+1 3.53e+1 3104 0.22 9.763e-6 5.321e-5

600 2.47e+1 2.45e+1 3274 0.34 9.998e-6 4.917e-5

Size Parameter SALM psils

p L0 Iter Time Equ err Obj err

100 1.94e+2 / 2.69 2.263e-1 9.666e-2

200 2.13e+2 / 14.63 3.250e-1 1.169e-1

300 2.29e+2 / 29.08 4.255e-1 1.110e-1

400 1.97e+2 / 54.11 5.128e-1 1.267e-1

500 1.56e+2 / 79.49 5.644e-1 1.146e-1

600 1.93e+2 / 131.03 6.138e-1 1.119e-1

Size Parameter SALM psilsf

p L0 Iter Time Equ err Obj err

100 1.94e+2 / 2.73 2.263e-1 9.666e-2

200 2.13e+2 / 14.80 3.250e-1 1.169e-1

300 2.29e+2 / 29.57 4.255e-1 1.110e-1

400 1.97e+2 / 52.94 5.128e-1 1.267e-1

500 1.56e+2 / 80.91 5.644e-1 1.146e-1

600 1.93e+2 / 132.20 6.138e-1 1.119e-1
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• 2P-ADMM-I: Bϕi

(
v,vk

)
= θi

2

∥∥v − vk

∥∥2 for the x-subproblem with v := x but for the
y-subproblem with v := y;

• 2P-ADMM-II: Bϕ1

(
x,xk

)
= θ1

2

∥∥x−xk

∥∥2 for the x-subproblem and Bϕ2

(
y,v

)
=

∑
yj log(

yj
vj
)

for the y-subproblem with v := yk;

• 2P-ADMM-III: Bϕ1

(
x,v

)
=

∑
xj log(

xj

vj
) for the x-subproblem with v := xk and Bϕ2

(
y,yk

)
=

θ2
2

∥∥y − yk

∥∥2 for the y-subproblem;

• 2P-ADMM-IV: Bϕ1

(
x,v

)
=

∑
xj log(

xj

vj
) for the x-subproblem with v := xk and Bϕ2

(
y,v

)
=∑

yj log(
yj
vj
) for the y-subproblem with v := yk.

Figure 2 depicts the convergence curves of both Equ err(k) and Obj err(k) against the it-
eration numbers with problem size (m,n, p) = (300, 300, 300). As illustrated in Figure 2, the
selection of Bregman distances exerts a significant influence on the performance of 2P-ADMM:
2P-ADMM-II achieves the best performance, and 2P-ADMM-I performs slightly worse than
2P-ADMM-II but better than other two types. This verifies that the selection of Bregman
distance has an important effect on the numerical performance of 2P-ADMM.
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Figure 2: Comparison of different 2P-ADMM for (1.2) with (m,n, p) = (300, 300, 300).

4.2 Graph-guided fused lasso problem

Consider an equivalent form of the graph-guided fused lasso problem (1.3):

minF (x,y) :=
1

N

N∑
j=1

fj(x) + ρ1∥y∥1 +
ρ2
2
∥x∥2 s.t. Ax− y = 0. (4.1)

Here, A = [G; I] is a matrix encoding the feature sparsity pattern, and G is the sparsity pattern
of the graph that is obtained by sparse inverse covariance estimation [16]. Applying 2P-ADMM

to (4.1) with Bϕi

(
·, ·k

)
= θi

2

∥∥ · − ·k
∥∥2, the resulting subproblems read xk+1 =
θ1

ρ2+θ1

[
xk − 1

θ1

(
∇f1(xk) +ATλk

)]
,

yk+1 = Shrink
(
yk + λk

θ2
, ρ1θ2

)
,

(4.2)
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where Shrink(,) denotes the soft shrinkage operator and can be evaluated by the MATLAB
built-in function wthresh.

Our 2P-ADMM using parameters (σ, r, δ0) = (0.5, 1− 10−7, 0.5) and α ∈ {103, 108} is com-
pared to the following existing algorithms for solving (4.1) with public datasets a2a (30,296
samples, 123 features), a8a (9,865 samples, 123 features) and a9a (16,281 samples, 123 features):

• Linearized Symmetric Proximal ADMM (LSPADMM, [14]) with parameter τ = −0.1 and
other parameters as suggested by [14, Assumption 3.1 (v)];

• Two-step Linear Inertial ADMM (TLIADMM, [15]) with tuned penalty parameter β =
20, while maintaining other parameters as suggested on [15, Page 15];

• Linearized ADMM with parameters set to the lower bound specified in [33, Theorem 1]
plus an offset of 0.001.

Besides, the regularization parameters are set as ρ1 = ρ2 = 10−6. All algorithms are termi-
nated when reaching a given budget CPU time. Similar stopping criterion can be found in [4].
To measure the performance of an algorithm, we plot the loss and the maximum of the rela-
tive objective error and the constraint error, that is Opt err(k)=max(Obj err(k), Equ err(k)),
against the CPU time.

As different datasets correspond to different Lipschitz constants, we use tuned parameters
(θ1, θ2) = (45, 18) for the a2a dataset, (θ1, θ2) = (44, 20) for the a8a dataset, and (θ1, θ2) =
(42.5, 5) for the a9a dataset. Figure 3 shows the convergence results of loss and Opt err by
the aforementioned methods. It can be seen from Figure 3 that 2P-ADMM initially performs
worse than other methods during the beginning iterations, but it eventually outperforms other
comparison algorithms. Besides, the results further demonstrate the robustness of 2P-ADMM
with respect to the penalty parameter α, which verifies the conclusion in Section 4.1.

4.3 Robust principal component analysis problem

The robust principal component analysis problem, which arises from video surveillance and
face recognition [6, 11], aims to decompose a data matrix C ∈ Rm×n into a low-rank matrix
X and a sparse matrix Y containing outliers and corrupt data. Generally speaking, ∥X∥∗ (the
sum of its singular values) and ∥Y ∥1 (the sum of its absolute values) are used to characterize
the low-rank matrix and sparse matrix, respectively. Similar to the technique of reformulating
the compressed sensing problem [42], this paper will replace the sparse term ∥Y ∥1 by the l1-l2
norm in the form of ∥ · ∥1 − ∥ · ∥2F , resulting in the following relaxed model:

min
X,Y ∈Rm×n

{
∥X∥∗ + ρ(∥Y ∥1 − ∥Y ∥2F )

}
s.t. X + Y = C, (4.3)

where the weight parameter typically takes ρ = 1/
√

max(m,n). Clearly, problem (4.3) is a
special case of (1.1) with (A,B,b) = (I, I, C), f2(X) = ∥X∥∗, g2(Y ) = ρ∥Y ∥1 and g1(Y ) =

−ρ∥Y ∥2F , hence our 2P-ADMM can be applied to solve it. By choosing Bϕi

(
·, ·k

)
= θi

2

∥∥ ·−·k
∥∥2
F
,

the resulting subproblems read{
Xk+1 = Ukdiag

(
max

{
σk
i − 1

θ1
, 0
})

V T
k ,

Yk+1 = Shrink
(
Yk+

2ρYk−Λk
θ2

, ρ
θ2

)
,

(4.4)
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Figure 3: Comparison curves of different algorithms for solving (1.3) on public datasets.
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where Uk ∈ Rm×r and Vk ∈ Rn×r are obtained by the singular value decomposition: Xk− Λk
θ1

=

UkΣkV
T
k with Σk = diag

(
σk
1 , σ

k
1 , · · · , σk

r

)
.

Now, we apply our 2P-ADMM and the following three well-established algorithms to solve
the problem (4.3) on the Yale B database1 which consists of cropped and aligned images of 38
individuals under 9 poses and 64 lighting conditions:

• Standard ADMM with the penalty parameter mn
4∥C∥1 according to [10, Page 109];

• Proximal Linearized ADMM (PL-ADMM, [44]) with the above same penalty parameter,
the unit relaxation parameter and Qk = θI with θ = 24 according to [44, Page 4];

• Inertial Proximal ADMM (IPADMM, [12]) with the suggested penalty parameter on [12,
Page 16], but with the tuned parameters ρk = 1.4 and Qk = θI with θ = 24 since these
settings lead to better performance than the original setting;

• Two-step Inertial ADMM (TIADMM, [15]) with involved parameters tuned as β = 3,
t = 0.625 and ρk1 = τk1 = ρk2 = τk2 = 1.5, since these settings result in better performance
than the original setting.

We choose parameters (σ, r, δ0) = (0.5, 1 − 10−7, 0.5), α ∈ {103, 108} and θ1 = θ2 = 2 for 2P-
ADMM. Starting from the same initial feasible points (Λ0,M0, Y0) = (X0,0, C −X0), all the
above algorithms are terminated when the following stopping criteria are satisfied:

Opt err(k) := max

{
∥Xk+1 −Xk∥F + ∥Yk+1 − Yk∥F

∥Xk∥F + ∥Yk∥F + 1
,
∥C −Xk+1 − Yk+1∥F

∥C∥F

}
< ϵ

or the maximal iteration exceeds 10000, where ϵ is a given tolerance and X0 is obtained by the
truncated singular value decomposition:

X0 = F(:,1:l)Sigma(1:l,1:l)N(:,1:l) where [F,Sigma,N]=svd(D,’econ’);l=2.

Similar initialization and stopping criteria can be found in [6].

Table 4 reports some comparative results under different tolerance. Figure 4 shows the
comparative convergence curve of Opt err(k) against the number of iterations and the CPU
time under different tolerance ϵ. The original columns of C, along with the low-rank and sparse
components decomposed by different algorithms under ϵ = 10−5, are shown in Figure 5. We
can see from Table 4 and Figure 4 that 2P-ADMM outperforms all comprative methods in
terms of the iteration numbers and the CPU time. Moreover, it can effectively fill in occluded
regions of the images, corresponding to shadows. In the low-rank component X as shown in
Figure 5, shadows under different lighting conditions are removed and filled in with the most
consistent low-rank features from the eigenfaces. Similar to the conclusions in Section 4.1 and
Section 4.2, the results further demonstrate the robustness of 2P-ADMM with respect to the
penalty parameter α.

5 Concluding remarks

Starting from the very beginning of algorithm design, this paper presents a novel proximal-
perturbed augmented Lagrangian and then develops a corresponding Bregman-type alternating

1Available at http://vision.ucsd.edu/∼iskwak/ExtYaleDatabase/ExtYaleB.html.
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Table 4: Numerical results of different algorithms for the problem (4.3).

ϵ Methods Iter Time rank(X) Opt err(end)

2P-ADMM(α = 103) 1023 36.97 25 9.99e-5

2P-ADMM(α = 108) 1023 36.67 25 9.99e-5

10−4 ADMM 1296 43.88 23 9.99e-5

PL-ADMM 1167 41.53 23 9.99e-5

IPADMM 1164 41.91 24 9.99e-5

TIADMM 1261 48.70 23 9.99e-5

2P-ADMM(α = 103) 4535 171.80 25 9.99e-6

2P-ADMM(α = 108) 4535 159.13 25 9.99e-6

10−5 ADMM 5484 174.40 25 9.99e-6

PL-ADMM 4938 173.77 25 9.99e-6

IPADMM 4907 171.87 25 9.99e-6

TIADMM 5285 194.50 25 9.99e-6
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Figure 4: Comparison results of different algorithms for solving (4.3) on Yale B database.
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Figure 5: Output of different algorithms for the 4th(rows 1-3), 18th(rows 4-6) and 46th(rows
7-9) images on the Yale B database. From left to right: 2P-ADMM(α = 103), 2P-ADMM(α =
108), ADMM, PL-ADMM, IPADMM, TIADMM, respectively.
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direction method of multipliers (2P-ADMM) for solving a family of linearly constrained non-
convex composite minimization problems. Under mild assumptions, we theoretically establish
that any limitation point of the iterative sequence generated by 2P-ADMM converges to a
stationary point of the problem. The sublinear convergence rate of this 2P-ADMM is also
established in terms of the iterative residual. A series of comparison experiments on testing
the linear equation problem with artificial data, the graph-guided fused lasso problem and the
robust principal component analysis problem with public datasets validate that the proposed
algorithm outperforms several well-established algorithms. In the future work, we will focus
on extending the proposed method to some stochastic versions and inexact versions for solving
multi-block composite nonconvex optimization problems.
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