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Abstract. In this paper, we focus on a linearly constrained composite minimization prob-
lem whose objective function is possibly nonsmooth and nonconvex. Unlike the traditional
construction of augmented Lagrangian function, we provide a proximal-perturbed augment-
ed Lagrangian and then develop a new Bregman Alternating Direction Method of Multipliers
(ADMM). Under mild assumptions, we show that the novel augmented Lagrangian residual can
be bounded by the primal residuals plus a summable sequence. We further demonstrate that
the augmented Lagrangian sequence converges to the limitation of objective sequence, and the
iterative sequence converges to a stationary point of the problem. The sublinear convergence
rate of the primal residuals are also established.
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1 Introduction

The problem we are interested in this paper is the following potentially nonsmooth and non-
convex minimization problem

min
x∈Rn,y∈Rm

F (x, y) := f1(x) + f2(x) + g1(y) + g2(y) s.t. Ax+By = b, (1.1)

where f1 : Rn → R and g1 : Rm → R are continuously differentiable functions (possibly
nonconvex) with Lf -Lipschitz gradient and Lg-Lipschitz gradient respectively, f2(x) and g2(y)
are proper lower semicontinuous functions (possibly nonsmooth), A ∈ Rp×n, B ∈ Rp×m and
b ∈ Rp are given. Hereafter, the symbols R,Rn and Rp×n denote the sets of real numbers, n
dimensional real column vectors, and m× n real matrices, respectively, and the symbol ∇f(x)
denotes the gradient of differentiable function f at x. We use ∥ · ∥ and ⟨·, ·⟩ to denote the
standard Euclidean norm and inner product, respectively. Throughout this paper, the solution
set of the problem (1.1) is assumed to be nonempty.

A classical yet vital method for solving linearly constrained constrained problem in the form
of (1.1) is the Augmented Lagrangian Method (ALM) proposed by Hestenes [11] and Powell
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[19], and it recursively takes the following iterations:{
(xk+1, yk+1) = arg min

x∈Rn,y∈Rm
Lβ(x, y, λk),

λk+1 = λk − β
(
Axk+1 +Byk+1 − b

)
,

where

Lβ(x, y, λ) = F (x, y) +
⟨
λ,Ax+By − b

⟩︸ ︷︷ ︸
L(x,y,λ)

+
β

2

∥∥Ax+By − b
∥∥2 (1.2)

denotes the standard augmented Lagrangian function of (1.1), λ denotes the Lagrange multi-
plier, and β > 0 is the penalty parameter for the violation of the equality constraints.

As a first-order method, ALM has attracted increasing attention due to its applications in
signal/image processing, stochastic learning, machine learning and so forth. Most of existing
ALM-type methods were developed based on the classical augmented Lagrangian function,
such as exact/inexact accelerated ALM [9, 12, 13, 18, 23] and stochastic ALM [1, 17] for
solving equality constrained convex optimization problems, proximal ALM [16, 25] for solving
linearly constrained nonconvex optimization problems, and splitting versions of ALM [8, 10]
for solving multi-block separable structured minimization problems. Unlike using the tradi-
tional augmented Lagrangian function as in (1.2), a double-proximal ALM [3] were recently
developed with convergence guaranteed and had been demonstrated to be efficient for solving
some machine learning problems. Related to [3], a balanced ALM and a penalty dual-primal
ALM [20] were developed for solving the optimization problems in the form of (1.1) and its
multi-block extensions. More recently, by introducing an auxiliary variable for (1.1), a new
ALM was proposed by Kim [15] based on a proximal-perturbed augmented Lagrangian func-
tion, and this method was also extended to solve the nonconvex optimization problem with
nonlinear equality constraints [14]. One effective approach to establish the global convergence
and sublinear convergence rate of ALM for convex minimization problems is to use variation-
al analysis to characterize both the saddle-point of as well as the iterative sequence, see e.g.
[1, 3, 10, 20]. However, for the optimization problems whose objective function is possibly
nonconvex and nonsmooth, a practical yet useful technique is to construct a potential function
related to the associated Lagrange function and then show the convergence by showing the
monotonic decreasing property of potential function, we refer to [9, 13, 14, 25] for more details.

When the objective function of optimization problems has separable structures and many
variables, such as (1.1), ALM does not make full use of these structures and hence could not take
advantage of the special properties of each component objective function. Consequently, solving
the involved subproblem of ALM becomes very difficult. An effective and practical approach
to overcome such difficulty is the Alternating Direction Method of Multipliers (ADMM) which
can be regarded as a splitting version of ALM. Although He, et al. [10] pointed out that the
multi-block ADMM can be rewritten as a Jacobian decomposition of ALM, both of these two
methods are based on the standard augmented Lagrangian function. A natrual question is: can
we construct a different augmented Lagrangian function to develop a new ADMM for solving
the nonconvex and nonsmooth minimization problem (1.1)?

In this paper, motivated by the above question, we will propose a new ADMM-type method
based on the similar way of constructing augmented Lagrangian as in [14]. We further establish
the convergence of the proposed method in terms of the corresponding augmented Lagrangian
sequence as well as the iterative residual with respect to primal variable and constraint violation.
More details on the features of our method are summarized in the forthcoming section.
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2 Development of 2P-ADMM

Inspired by the new Lagrangian-based first-order method [14, 15], by introducing a similar
perturbation variable z ∈ Rp such that z = 0, we reformulate the problem (1.1) into the
following equivalent double-constrained problem

min
x∈Rn,y∈Rm,z∈Rp

F (x, y) s.t. Ax+By − b = z, z = 0. (2.1)

Define the Proximal-Perturbed (2P) augmented Lagrangian of (2.1) as

Lβ(x, y, λ, z, µ) = F (x, y) +
⟨
λ,Ax+By − b− z

⟩
+

⟨
µ, z

⟩
+

α

2

∥∥z∥∥2 − σ

2

∥∥λ− µ
∥∥2, (2.2)

where λ, µ ∈ Rp are the Lagrange multipliers associated with the equality constraints, α > 0
is a penalty parameter and σ > 0 denotes a proximal parameter.

To predigest discussion, we simply denote Lβ(x, y, λ, z, µ) by Lβ(w) where w = (x, y, λ, z, µ).
Special comments are given regarding this new 2P augmented Lagrangian function:

(i) Unlike the standard augmented Lagrangian (1.2), we exploit a proximal term σ
2∥λ− µ∥2

in (2.2), in stead of the widely-used quadratic penalty for the constraint Ax+By−b = z,
to ensure the strongly concavity of Lβ(w) w.r.t. the Lagrange multipliers λ (for fixed
µ) and µ (for fixed λ). This technique is helpful for simplifying the update of Lagrange
multipliers. Besides, minimizing the new function Lβ(w) w.r.t. each primal variable
can enjoy the proximity operator of f2(x) or g2(y), when each subproblem exploits a
customized proximal term including the general Bregman distance;

(ii) Because Lβ(w) is smooth and strongly convex about z, there exists a unique solution for
given (λ, µ). More specifically, by minimizing Lβ(w) w.r.t. variable z, we can derive

z(λ, µ) =
λ− µ

α
, (2.3)

which implies λ = µ at the unique solution z∗ = 0. Based on the relationship in (2.3),
we thus add the smoothing proximal term −β

2 ∥λ− µ∥2 to the Lagrangian in (2.2).

Now, plugging the certain relationship (2.3) into (2.2) results in

Lβ(w) = L(x, y, λ)− 1

2β

∥∥λ− µ
∥∥2 (2.4)

with β = α
1+ασ . Clearly, the function Lβ(w) is strongly concave about λ for given (x, y, µ), so

there exists a unique maximizer, denoted by λ(x, y, µ), namely,

λ(x, y, µ) = arg max
λ∈Rp

Lβ(w) = µ+ β(Ax+By − b).

Note that directly minimizing Lβ(w) about the primal variables x and y is still challenging
since it does not make the full advantages of each nonsmooth objective function in (1.1) as
well as the sparable structure of the problem. To tackle these obstacles, we first employ an
approximation to Lβ(w) as the following

L̃β(w, v1, v2) : = f2(x) + g2(y) + Bϕ1

(
x, v1

)
+ Bϕ2

(
y, v2

)
+ L̄β(w) +

⟨
∇xL̄β(w), x− v1

⟩
+
⟨
∇yL̄β(w), y − v2

⟩
,
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where L̄β(w) is the smooth part of Lβ(w):

L̄β(w) = f1(x) + g1(y) +
⟨
λ,Ax+By − b− z

⟩
+

⟨
µ, z

⟩
+

α

2

∥∥z∥∥2 − σ

2

∥∥λ− µ
∥∥2,

and Bϕi
represents the Bregman distance [5, 24] defined as

Bϕi

(
x, v

)
:= ϕi(x)− ϕi(v)−

⟨
∇ϕi(v), x− v

⟩
, i = 1, 2,

for any x, v ∈ Rn. Here ϕi(·) is a continuously differentiable function with Lϕi
-Lipschitz

gradient and satisfies

Bϕi

(
x, v

)
≥ θi

2

∥∥x− v
∥∥2, i = 1, 2.

This type of proxima term (i.e., Bregman distance) is exploited to simplify the subproblems
when it is not easy to solve or does not admit a closed-form solution. A particular choice of
ϕi is ϕi(·) = θi

2 ∥ · ∥
2, which makes the Bregman distance becomes Bϕi

(
x, v

)
= θi

2

∥∥x− v
∥∥2 and

hence the modulus θi can be regarded as proximal parameter.

Input: α ≫ 1, σ ∈ (0, 1), β = α
1+ασ , r ∈ (0.9, 1), θ1 > Lf and θ2 > Lg.

Initialization: w0 = (x0, y0, z0, λ0, µ0) and δ0 ∈ (0, 1].
For k = 0, 1, · · ·
1. xk+1 = arg min

x∈Rn

{
f2(x) +

⟨
x− xk,∇xL̄β(xk, yk, λk, zk, µk)

⟩
+ Bϕ1

(
x, xk

)}
;

2. yk+1 = arg min
y∈Rm

{
g2(y) +

⟨
y − yk,∇yL̄β(xk+1, yk, λk, zk, µk)

⟩
+ Bϕ2

(
y, yk

)}
;

3. µk+1 = µk + τk
(
λk − µk

)
with τk = δk

1+∥λk−µk∥2
;

4. λk+1 = µk+1 + β
(
Axk+1 +Byk+1 − b

)
;

5. zk+1 =
λk+1−µk+1

α ;

6. δk+1 = rδk;
End
Output (xk+1, yk+1).

Algorithm 2.1: A Proximal-Perturbed Lagrangian Method (2P-ADMM)

Based on the above preliminaries and the splitting solving idea w.r.t. primal variables x and
y, we propose the following 2P-based Alternating Direction Method of Multipliers (2P-ADMM)
whose framework is described in Algorithm 2.1. In fact, both x-subproblem and y-subproblem
can be simplified as

xk+1 = arg min
x∈Rn

{
f2(x) +

⟨
x− xk,∇f1(xk) +ATλk

⟩
+ Bϕ1

(
x, xk

)}
,

yk+1 = arg min
y∈Rm

{
g2(y) +

⟨
y − yk,∇g1(yk) +BTλk

⟩
+ Bϕ2

(
y, yk

)}
.

(2.5)

Hence, the fifth step in Algorithm 2.1 does on work and can be neglected when carrying out
experiments. The updating formula of δk+1 implies δk = rkδ0. By the region r ∈ (0, 1) and
δ0 ∈ (0, 1], we know the sequence {δk} is summable. Due to this fact, the choice of τk can
guarantee the boundedness of {µk}, which in turn guarantees the boundedness of {λk}.
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3 Convergence analysis

3.1 Technical preliminarily

In this subsection, we prepare several lemmas that will be used in the convergence analysis of
the augmented Lagrangian sequence as in (2.2)(equivalently (2.4)) and the iterative sequence.
Throughout this paper, similar to the assumptions in [2], we make the following assumptions:

(A1) f̄1 = inf
x

{
f1(x)− 1

2Lf

∥∥∇f1(x)
∥∥2} > −∞ and ḡ1 = inf

y

{
g1(y)− 1

2Lg

∥∥∇g1(y)
∥∥2} > −∞;

(A2) lim
∥x∥→∞

inf f2(x) = +∞ and lim
∥y∥→∞

inf g2(y) = +∞.

Lemma 3.1 Let {µk}, {zk} and {λk} be the sequences generated by Algorithm 2.1. Then,
these three sequences are bounded.

Proof. By the update of µk+1, we have

∥∥µk+1

∥∥ =
∥∥∥µ0+

k∑
i=0

τi
(
λi−µi

)∥∥∥ ≤ ∥u0∥+
+∞∑
i=0

δi
∥λi − µi∥2 + 1

∥λi−µi∥ ≤ ∥u0∥+
1

2

∞∑
i=0

δi < +∞,

which shows that the sequence {µk} is bounded. Combine the update of µk+1 and zk+1, we
have zk = 1

ατk
(µk+1−µk), which, by the boundedness of µk+1, shows that {zk} is also bounded.

Besides, the update of µk+1 gives

λk =
1

τk
µk+1 +

(
1− 1

τk

)
µk,

which means λk is a combination of µk+1 and µk. Combine this relationship with the bound-
edness of {µk} to ensure that {λk} is a bounded sequence. �

The above lemma as well as the following lemma will be used to investigate some properties
of the iterative sequence {w} generated by Algorithm 2.1.

Lemma 3.2 Let {µk} and {λk} be the sequences generated by Algorithm 2.1. Then, we have∥∥µk+1 − µk

∥∥2 ≤ δ2k
4
,

∥∥λk − µk

∥∥2 ≤ δk
τk

, (3.1)

and ∥∥λk+1 − λk

∥∥2 ≤ 2
∥∥λk+1 − µk+1

∥∥2 + 2
∥∥µk+1 − λk

∥∥2. (3.2)

Proof. By the way of updating µk+1 and λk+1, we have∥∥µk+1 − µk

∥∥2 = τ2k
∥∥λk − µk

∥∥2 ≤ δ2k
∥λk − µk∥2 + 2 + 1

∥λk−µk∥2
≤

δ2k
4
,

where the first inequality uses the definition of τk and the last inequality uses the fact that
a+ b ≥ 2

√
ab for any a, b ≥ 0. Using the the definition of τk again, it holds that

τk
∥∥λk − µk

∥∥2 = δk

1 + 1
∥λk−µk∥2

≤ δk.
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The result in (3.2) follows directly by the the fact (a+ b)2 ≤ 2a2 + 2b2 for any a and b. �
By the update of τk, we know τk ∈ (0, 1) which is a bounded sequence. Based on its lower

bound, next we provide some core properties related to the sequence {Lβ(wk)}, which further
establishes that both the iterative residual and the constraint residual converge to zero.

Theorem 3.1 Let τ̄ > 0 be the lower bound of {τk} and {wk := (xk, yk, λk, zk, µk)} be the
sequence generated by Algorithm 2.1. Then, the following hold:

(i) The sequence {Lβ(wk+1)} defined in (2.4) satisfies

Lβ(wk+1) ≤ Lβ(wk)−
θ1 − Lf

2

∥∥xk+1 − xk
∥∥2 − θ2 − Lg

2

∥∥yk+1 − yk
∥∥2 + δk+1 + δk

βτ̄
; (3.3)

(ii) Under the assumptions (A1)-(A2), the sequence {Lβ(wk)} is convergent. Moreover,

lim
k→∞

∥∥wk+1 − wk

∥∥ = 0 and lim
k→∞

∥∥Axk+1 +Byk+1 − b
∥∥ = 0. (3.4)

Proof. To prove the assertion (i), we split Lβ(wk+1)− Lβ(wk) into three residuals:

Lβ(wk+1)− Lβ(wk) =Lβ(xk+1, yk, zk, λk, µk)− Lβ(xk, yk, zk, λk, µk) (3.5)

+ Lβ(xk+1, yk+1, zk, λk, µk)− Lβ(xk+1, yk, zk, λk, µk) (3.6)

+ Lβ(xk+1, yk+1, zk+1, λk+1, µk+1)− Lβ(xk+1, yk+1, zk, λk, µk). (3.7)

According to the equivalent expression of xk+1-subproblem as in (2.5), we have

f2(xk+1) +
⟨
∇f1(xk) +ATλk, xk+1 − xk

⟩
+ Bϕ1(xk+1, xk) ≤ f2(xk),

implying that

f2(xk+1)− f2(xk) +
⟨
ATλk, xk − xk+1

⟩
≤

⟨
∇f1(xk), xk − xk+1

⟩
− θ1

2
∥xk+1 − xk∥2,

which, by using the Lipchitz continuity of f1:

f1(xk+1)− f1(xk) ≤
⟨
∇f1(xk), xk+1 − xk

⟩
+

Lf

2

∥∥xk+1 − xk
∥∥2

gives

Lβ(xk+1, yk, zk, λk, µk)− Lβ(xk, yk, zk, λk, µk) = f1(xk+1)− f1(xk)

+ f2(xk+1)− f2(xk) +
⟨
ATλk, xk+1 − xk

⟩
≤ −

θ1 − Lf

2

∥∥xk+1 − xk
∥∥2. (3.8)

Similarly, the Lipchitz continuity of g1 yields

g1(yk+1)− g1(yk) ≤
⟨
∇g1(yk), yk+1 − yk

⟩
+

Lg

2

∥∥yk+1 − yk
∥∥2,

which, by using the following property from the yk+1-subproblem:

g2(yk+1)− g2(xk) +
⟨
BTλk, yk+1 − yk

⟩
≤

⟨
∇g1(yk), yk − yk+1

⟩
− θ2

2

∥∥yk+1 − yk
∥∥2,
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gives

Lβ(xk+1, yk+1, zk, λk, µk)− Lβ(xk+1, yk, zk, λk, µk) ≤ −
θ2 − Lf

2

∥∥yk+1 − yk
∥∥2. (3.9)

Notice that

Lβ(xk+1, yk+1, zk+1, λk+1, µk+1)− Lβ(xk+1, yk+1, zk, λk, µk)

=
⟨
λk+1 − λk, Axk+1 +Byk+1 − b

⟩
− 1

2β

∥∥λk+1 − µk+1

∥∥2 + 1

2β

∥∥λk − µk

∥∥2 (3.10)

and ∥∥λk − µk+1

∥∥2 = ∥∥λk − µk + µk − µk+1

∥∥2 = (1− τk)
2
∥∥λk − µk

∥∥2 ≤ ∥∥λk − µk

∥∥2. (3.11)

By using λk+1 − µk+1 = β(Axk+1 +Byk+1 − b), zk = 1
α(λk − µk), and applying the identity

⟨
a− b, a

⟩
=

1

2
∥a− b∥2 + 1

2
∥a∥2 − 1

2
∥b∥2

with (a, b) = (λk+1 − µk+1, λk − µk+1) to (3.10), we have

Lβ(xk+1, yk+1, zk+1, λk+1, µk+1)− Lβ(xk+1, yk+1, zk, λk, µk)

=
1

2β

∥∥λk+1 − λk

∥∥2 − 1

2β

∥∥µk+1 − λk

∥∥2 + 1

2β

∥∥λk − µk

∥∥2
(3.2)

≤ 1

β

∥∥λk+1 − µk+1

∥∥2 + 1

2β

∥∥µk+1 − λk

∥∥2 + 1

2β

∥∥λk − µk

∥∥2 (3.1),(3.11)

≤ δk+1 + δk
βτ̄

. (3.12)

So, combining the above inequalities (3.8),(3.9) and (3.12) yields the desired result (3.3).

To prove the result (ii), we first show that {wk} is bounded. It follows from (3.3) together
with the conditions θ1 > Lf and θ2 > Lg that

Lβ(w0) +
δ0
βτ̄

k∑
j=0

(
rj+1 + rj

)
≥ Lβ(wk) +

δk+1 + δk
βτ̄

≥ Lβ(wk+1)

=F (xk+1, yk+1) +
⟨
λk+1, Axk+1 +Byk+1 − b

⟩
− 1

2β

∥∥λk+1 − µk+1

∥∥2
=F (xk+1, yk+1) +

1

β

⟨
λk+1, λk+1 − µk+1

⟩
− 1

2β

∥∥λk+1 − µk+1

∥∥2
=F (xk+1, yk+1) +

1

2β

∥∥λk+1

∥∥2 − 1

2β

∥∥µk+1

∥∥2
≥
(
f1(xk+1)−

1

2Lf

∥∥∇f1(xk+1)
∥∥2)+

(
g1(yk+1)−

1

2Lg

∥∥∇g1(yk+1)
∥∥2)

+ f2(xk+1) + g2(yk+1) +
1

2β

∥∥λk+1

∥∥2 − 1

2β

∥∥µk+1

∥∥2
≥f̄1 + ḡ1 + f2(xk+1) + g2(yk+1) +

1

2β

∥∥λk+1

∥∥2 − 1

2β

∥∥µk+1

∥∥2,
where the last inequality uses (A1). Then, combining the above relationship with (A2), Lemma
3.1 as well as r < 1, we conclude that both {xk} and {yk} are bounded. Consequently, the
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whole sequence {wk} is bounded. Because {wk} is bounded, the sequence {Lβ(wk)} is also
bounded from below and there exists at least one limit point. Without loss of generality, let
{wkj} be a subsequence of {wk} and w∗ be its limit point. Then, the lower semicontinuity
of {Lβ(wk)} implies Lβ(w

∗) ≤ limj→∞ inf Lβ(wkj ) So, {Lβ(wkj )} is bounded from below and
hence is convergent.

Let Lβ be the lower bound of {Lβ(wk)}. Then, by the result (3.3) again, we deduce

∞∑
k=0

(θ1 − Lf

2

∥∥xk+1−xk
∥∥2+ θ2 − Lg

2

∥∥yk+1−yk
∥∥2) ≤ Lβ(w0)−Lβ+

2δ0
βτ̄(1− r)

< +∞, (3.13)

where the last inequality holds by the fact

∞∑
k=0

δk ≤ δ0
1− r

< +∞. (3.14)

Then, it follows from (3.13) together with the condition θ1 > Lf and θ2 > Lg that

lim
k→∞

∥∥xk+1 − xk
∥∥2 = 0, and lim

k→∞

∥∥yk+1 − yk
∥∥2 = 0. (3.15)

Summarizing the inequalities in (3.1) over k = 0, 1, · · · ,∞ together with (3.14) shows

lim
k→∞

∥∥µk+1 − µk

∥∥2 = 0, and lim
k→∞

∥∥λk − µk

∥∥2 = 0. (3.16)

Combine the following relationship from (3.2):∥∥λk+1 − λk

∥∥2 ≤ 2
∥∥λk+1 − µk+1

∥∥2 + 4
(∥∥µk+1 − µk

∥∥2 + ∥∥µk − λk

∥∥2)
with (3.16) immediately ensures

lim
k→∞

∥∥λk+1 − λk

∥∥2 = 0. (3.17)

Besides, the update of zk+1 gives∥∥zk+1 − zk
∥∥2 ≤ 2

α2

(∥∥λk+1 − λk

∥∥2 + ∥∥µk+1 − µk

∥∥2),
which, by (3.17) and the first result in (3.16), further implies lim

k→∞
∥zk+1−zk∥2 = 0. As a results,

combine this limitation and (3.16)-(3.17) to confirm the first result in (3.4). The second result
in (3.4) is clearly from lim

k→∞
∥λk − µk∥2 = 0 and the update of λk+1. �

3.2 Convergence and convergence rate

In the following, the distance from any point x to the set Ω is defined as dist(x,Ω) := inf x̄∈Ω ∥x−
x̄∥. Based on this definition, we first give an estimation on dist

(
0, ∂Lβ(wk+1)

)
by the iterative

residuals, and then analyze the convergence of the iterative sequence {w} and its convergence
rate. Similar analysis can be found in e.g. [4, 6, 7, 22]. Hereafter, 0 stands for a zero vector with
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proper dimensions. For a proper lower semi-continuous function h, its (limiting-) subdifferential
[21, Definition 8.3 (b)] at x ∈ domh, denoted as ∂h(x), is defined as

∂h(x) :=
{
ν ∈ Rn : ∃xk → x, h(xk) → h(x), νk → ν with νk ∈ ∂̂h(xk)

}
, (3.18)

where ∂̂h(x) denotes the regular subdifferential [21, Definition 8.3 (a)] of h at x given as

∂̂h(x) :=

{
ν ∈ Rn : lim inf

x̄→x,x̄ ̸=x

h(x̄)− h(x)− ⟨ν, x̄− x⟩
∥x̄− x∥

≥ 0

}
.

Corollary 3.1 Let {wk = (vk, zk, µk)} be the sequence generated by Algorithm 2.1. Then, for
every k ≥ 0, the following hold:

(i) There exists a F ∗ such that

lim
k→∞

Lβ(wk+1) = lim
k→∞

L(vk+1) = lim
k→∞

F (xk+1, yk+1) = F ∗.

(ii) It holds that lim
k→∞

dist
(
0, ∂Lβ(wk+1)

)
= dist

(
0, ∂L(vk+1)

)
= 0.

Proof. Note that

F (xk+1, yk+1) = Lβ(wk+1)−
⟨
λk+1, Axk+1 +Byk+1 − b

⟩
+

1

2β

∥∥λk+1 − µk+1

∥∥2
= L(xk+1, yk+1, λk+1)−

⟨
λk+1, Axk+1 +Byk+1 − b

⟩
,

which ensures the conclusion (i) by the second item of Theorem 3.1, and (3.16).

The first-order optimality condition of xk+1-subproblem implies

0 ∈ ∂f2(xk+1) +∇f1(xk) +ATλk +∇ϕ1(xk+1)−∇ϕ1(xk).

Combining it with the reformulation (2.4) to have

exk+1 ∈ ∂xLβ(wk+1),

where exk+1 := ∇f1(xk+1) − ∇f1(xk) + ∇ϕ1(xk) − ∇ϕ1(xk+1) + AT(λk+1 − λk). Similarly, we
have from the first-order optimality condition of yk+1-subproblem that

eyk+1 ∈ ∂yLβ(wk+1).

where eyk+1 := ∇g1(yk+1)−∇g1(yk)+∇ϕ2(yk)−∇ϕ2(yk+1)+BT(λk+1−λk). Besides, it follows
from the λ-update that

∇λLβ(wk+1) = (Axk+1 +Byk+1 − b)− 1

β
(λk+1 − µk+1) = 0

and ∇µLβ(wk+1) = − 1
β (µk+1 − λk+1) := eµk+1. Hence, the following relationship holds:

ek+1 :=
(
exk+1, e

y
k+1,0, e

µ
k+1

)
∈ ∂Lβ(wk+1).

9



Next, we simplify the computation of each component of ek+1. By the Lipschitz continuity
of f1 and ϕ1, we have∥∥exk+1

∥∥ ≤
∥∥∇f1(xk+1)−∇f1(xk)

∥∥+
∥∥∇ϕ1(xk+1)−∇ϕ1(xk)

∥∥+ ∥A∥
∥∥λk+1 − λk

∥∥
≤ (Lf + Lϕ1)

∥∥xk+1 − xk
∥∥+ ∥A∥

∥∥λk+1 − λk

∥∥.
Analogously, we have by the Lipschitz continuity of g1 and ϕ2 that∥∥eyk+1

∥∥ ≤
∥∥∇g1(yk+1)−∇g1(yk)

∥∥+
∥∥∇ϕ2(yk+1)−∇ϕ2(yk)

∥∥+ ∥B∥
∥∥λk+1 − λk

∥∥
≤ (Lg + Lϕ2)

∥∥yk+1 − yk
∥∥+ ∥B∥

∥∥λk+1 − λk

∥∥.
Combining the last two results, the equality ∥eµk+1∥ = 1

β∥λk+1 − µk+1∥ and the relationships
∂xLβ(wk+1) = ∂xL(vk+1), ∂yLβ(wk+1) = ∂yL(vk+1),

∂λLβ(wk+1) = ∂xL(vk+1)−
1

β
(λk+1 − µk+1),

to obtain

dist
(
0, ∂L(vk+1)

)
≤ dist

(
0,Lβ(wk+1)

)
+

1

β

∥∥λk+1 − µk+1

∥∥
and

dist
(
0, ∂Lβ(wk+1)

)
≤

∥∥ek+1

∥∥ ≤ c
(∥∥xk+1 − xk

∥∥+ ∥∥yk+1 − yk
∥∥+ ∥∥λk+1 − λk

∥∥+ ∥∥λk+1 −µk+1

∥∥)
with c = max{Lf +Lϕ1 , Lg +Lϕ2 , ∥A∥+ ∥B∥, 1

β}. Then, we confirm the result (ii) by the first
equality in (3.4). �

Corollary 3.1 shows that the objective sequence of (1.1) is convergent, but it does not point
the convergence of the iterative sequence as well as its convergence rate. In what follows, we
not only show that any limit point of {vk = (xk, yk, λk)} converges to a stationary point of
(1.1) as defined by (3.19), but also establishes the sublinear convergence rate of the iterative
residuals of the primal variables. We say (x∗, y∗, λ∗) ∈ Rn × Rm × Rp is a stationary point of
(1.1) if 0 ∈ ∂L(x, y, λ), that is,

0 ∈ ∇f1(x
∗) + ∂f2(x

∗) +ATλ∗, 0 ∈ ∇g1(y
∗) + ∂g2(y

∗) +BTλ∗, Ax∗ +By∗ = b. (3.19)

Theorem 3.2 Let {wk = (vk, zk, µk)} be the sequence generated by Algorithm 2.1. Then,

(i) Any limit point v∗ of the sequence {vk} is a stationary point of (1.1);

(ii) For any integer k ≥ 1, there exist j ≤ k and ζ1, ζ1 > 0 such that∥∥xj+1 − xj
∥∥2 ≤ ζ0

ζ1(k + 1)
and

∥∥yj+1 − yj
∥∥2 ≤ ζ0

ζ2(k + 1)
,

where ζ0 = Lβ(w0)− Lβ + 2δ0
βτ̄(1−r) with Lβ being the lower bound of {Lβ(wk)}.

Proof. For any limit point w∗ = (v∗, z∗, µ∗) of the sequence {wk}, it follows from the second
conclusion of Corollary 3.1 together with the definition of the limiting-subdifferential ∂L(v∗)
and the definition of (3.19) that the conclusion (i) holds.
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Secondly, for any k > 0, we have from (3.3) and (3.14) that

k∑
j=0

(θ1 − Lf

2

∥∥xj+1 − xj
∥∥2 + θ2 − Lg

2

∥∥yj+1 − yj
∥∥2) ≤ Lβ(w0)− Lβ +

2δ0
βτ̄(1− r)

= ζ0,

which indicates that there exists a j ≤ k such that∥∥xj+1 − xj
∥∥2 ≤ ζ0

(k + 1)(θ1 − Lf )
and

∥∥yj+1 − yj
∥∥2 ≤ ζ0

(k + 1)(θ2 − Lg)
.

These inequalities with ζ1 = θ1 − Lf > 0, ζ2 = θ2 − Lg > 0 confirms the conclusion (ii). �
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