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Abstract

This paper studies effective scenarios in Distributionally Robust Optimization (DRO) prob-

lems defined on a finite number of realizations (also called scenarios) of the uncertain parameters.

Effective scenarios are critical scenarios in DRO in the sense that their removal from the support

of the considered distributions alters the optimal value. Ineffective scenarios are those whose

removal do not alter the optimal value. In this paper, we first link the effectiveness of a scenario

to its worst-case probability being always positive or uniquely zero under a general distance-

based ambiguity set. We then narrow our focus to DROs with ambiguity sets formed via the

Wasserstein distance (denoted DRO-W), and we provide easy-to-check sufficient conditions to

identify the effectiveness of scenarios for this class of problems. When the Wasserstein distance

is equivalent to the total variation distance (i.e., when the transportation cost between scenar-

ios is zero if they are the same and one if they are different), the easy-to-check conditions for

DRO-W presented in this paper recover the ones presented in the literature for DRO formed via

the total variation distance as a special case. The numerical findings highlight the relationship

between scenario effectiveness and the attributes of the transportation cost between scenarios

that constitute the Wasserstein distance, revealing useful insights.

Keywords: Data-driven stochastic programming, distributionally robust optimization, Wasser-

stein distance, scenario analysis

1 Introduction

Distributionally Robust Optimization (DRO) has emerged as an alternative approach to traditional

Stochastic Optimization (SO) for modeling decision making problems under uncertainty. Unlike

traditional SO, DRO does not assume that the probability distribution of the underlying uncertainty

is known. Instead, it forms an ambiguity set of probability distributions that is believed to contain

the true distribution. This is especially useful for real-world problems where there is some data,

but not all is known. Then, DRO optimizes the worst-case expectation from this ambiguity set of

distributions. This way, DRO can effectively connect data with decision-making, addressing the

risk and uncertainty arising from the unknown or ambiguous underlying distribution of uncertainty.
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There are different ways to model the distributional ambiguity in DRO; see, e.g., the surveys [28,

41]. One common approach is moment-based, in which the ambiguity set contains all distributions

whose moments (typically the first and second moments) satisfy certain properties [e.g., 16, 47].

Another popular approach is distance-based, where the ambiguity set is constructed by considering

all probability distributions sufficiently close to a nominal probability distribution according to

some measure of similarity or distance between distributions. A number of such measures/distances

have been used, including the Prokhorov metric [19], ϕ-divergences [7, 5] (or specific cases of ϕ-

divergences such as the Kullback-Leibler divergence [12, 23], χ2 or modified χ2 distances [26, 37],

the total variation distance [25, 39]), and the Wasserstein distance [e.g., 20, 27, 36, 48, 33].

Starting with [36], there has been a significant growth in using the Wasserstein distance for

modeling the distributional ambiguity in DROs. While we avoid an extensive literature review

and direct the readers to [28, 41] for an in-depth exploration of the topic, we briefly mention that

DROs formed with the Wasserstein distance (denoted DRO-W for short) can be difficult to solve in

certain settings. Therefore, one line of work has focused on devising tractable reformulations [e.g.,

20, 51, 21, 9, 49], another has investigated solution algorithms [e.g., 31, 18] or bounding techniques

[e.g., 6, 14]. Others have studied DRO-W under chance constraints [e.g., 13] or in the presence

of decision rules [e.g., 10]. DRO-W has also been successfully applied to solve problems arising in

machine learning [e.g., 29, 30, 44] and energy systems [e.g., 50, 3], among others.

The focus of this paper is different from the aforementioned literature on DRO. Specifically,

it studies effective scenarios, which are the scenarios that cause a change in the optimal value

if removed from the support of the distributions in the ambiguity set. Ineffective scenarios can

be removed without causing a change in the optimal value (formal definitions will be provided

in Section 2.3). The study of effective scenarios can therefore be viewed as a type of sensitivity

analysis with respect to the support of the probability distributions considered in a DRO.

The concepts of effective and ineffective scenarios were first defined in [39], where such scenarios

were studied in detail for DROs formed via the total variation distance (denoted DRO-TV for short)

with finite support. Later, these concepts were extended to continuous distributions in the context

of newsvendor problems [40] and to multistage DRO problems under a finite stochastic process

[38]. Both of these works again mainly focused on DRO-TV. Under certain conditions such as

convex compact ambiguity sets and real-valued cost functions, DRO is equivalent to a risk-averse

SO with a coherent risk measure [4, 45]. In cases where such a risk equivalence holds, [45] related

the existence of ineffective scenarios to the corresponding risk measure of DRO not being strictly

monotone, and [2] used effective scenarios for scenario reduction in a class of risk-averse SO. We

note that related concepts of identifying important portions of a problem have appeared in other

fields such as machine learning [e.g., 1] and for other classes of optimization problems [e.g., 11]; we

refer the interested readers to the discussion in [38, Introduction].

The study of effective scenarios can yield multiple benefits. First, such a study reveals how the

uncertainties affect optimization, helping decision makers (DMs) gain insights into their problems.
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In multistage settings, it can also help reveal the time-dynamic aspects of critical uncertainties (for

instance, which data uncertainty is more critical in the short term versus in the long term) [38]. It

can direct DMs to collect more data around effective scenarios by alerting them to the importance

of such scenarios for their problems. Effective scenarios have also been used to size ambiguity sets

by relating effective scenarios to a DM’s risk aversion for a class of inventory problems [40].

Sets of ineffective scenarios, on the other hand, can help with problem-specific scenario reduc-

tion. This is different than classical scenario reduction methods in SO, which minimize a distance

between the original and the reduced probability distributions without using any other information

specific to the problem [e.g., 35, 17]. In contrast, effective/ineffective scenarios explicitly utilize the

specific problem’s structure and its solution to determine which scenarios alter the optimal value.

If a set of ineffective scenarios can be identified and removed from the problem, a much smaller

problem with the same optimal value can be obtained. Based on this idea, the authors of [2]

estimated the set of ineffective scenarios for problem-specific scenario reduction in risk-averse SO

problems with Conditional Value-at-Risk (CVaR) objectives. They also showed conditions under

which their estimated set of ineffective scenarios converge to the true set. In addition, examining

effective/ineffective scenarios might uncover solution methods that solve DROs with better effi-

ciency. As an example, [52] approximated the sets of effective and ineffective scenarios during a

decomposition algorithm for solving DRO-TV in order to accelerate the algorithm by focusing the

algorithm’s effort on the effective scenarios.

Despite the above potential benefits, except for several basic properties established in [39, 38, 45],

not much is known about effective/ineffective scenarios for general ambiguity sets outside of DRO-

TV or risk-averse SO optimizing CVaR. One of the main contributions of this paper is that, it

provides for the first time sufficient conditions on the optimal probabilities of DRO for a scenario to

be categorized as effective or ineffective for general distance-based ambiguity sets. Such conditions

can be immediately used for some DROs. For others, it provides a structured framework to study

effective scenarios. We adopt this new framework to study effective scenarios in DRO-W.

One way to assess the effectiveness of a scenario is to remove it from the support of the considered

distributions and solve the DRO problem again with this revised ambiguity set, and repeat this

process for all scenarios. While such a method is guaranteed to determine the effectiveness of all

scenarios, it is very costly. Therefore, easy-to-check conditions are desirable. The easy-to-check

conditions for DRO-TV established in [39] mainly rely on an analysis of the subgradients associated

with the objective function specific to DRO-TV (particularly, its equivalent risk-averse objective

function, which is a convex combination of CVaR and worst-case cost). We centralize and generalize

this analysis for convex DROs with general ambiguity sets defined on a finite support. This method

not only extends the generality of our findings but also streamlines the proof structure. Particularly,

this new framework removes the need to know the explicit form of the risk measure, which is often

difficult to determine. It allows us to establish easy-to-check sufficient conditions for effectiveness

of scenarios in DRO-W, whose induced risk measure is unknown.
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The easy-to-check conditions are computationally cheap. However, they may not be able to

determine the effectiveness of all scenarios. That said, in this paper, we uncover cases under which

the effectiveness of all scenarios in DRO-W can be verified by our proposed easy-to-check conditions.

It is well known that when the transportation cost between scenarios is one if the scenarios are

different and zero if they are the same, the Wassestein distance becomes equivalent to the total

variation distance. We show that the conditions established in this paper for DRO-W recover the

ones proposed in the literature for DRO-TV as a special case; thereby significantly generalizing the

results in [39]. Numerical results show that the proposed easy-to-check conditions often identify

the effectiveness of all or majority of scenarios. The numerical experiments also highlight how the

range and variability of the transportation cost between scenarios used to build the Wasserstein

distance can have an impact on the behavior DRO-W, revealing further insights.

The rest of this paper is outlined as follows. In Section 2, we present the class of DRO problems

considered in this study, review commonly used notation, and introduce background on DRO-W

and effective scenarios. Section 3 characterizes conditions on the optimal probability distributions

in general distance-based DROs sufficient to classify a scenario as effective or ineffective. Then,

Section 4 focuses on DRO-W and establishes easy-to-check conditions to identify the effectiveness

of scenarios for this class of problems. These easy-to-check conditions are shown to subsume the

earlier ones established for DRO-TV as a special case in Section 5. Section 6 presents the numerical

experiments, and Section 7 ends the paper with conclusions and discussion of future work.

2 Setting, Basic Notation, and Background

2.1 Problem Class

We consider convex DRO problems where the uncertainty is represented on a finite number of

realizations, called scenarios. The set of scenarios is denoted by Ω = {ω1, . . . , ω|Ω|}, where |B| is
the cardinality of a given set B. A generic scenario from this set is denoted by ωi, i = 1, 2, . . . , |Ω|,
or we simply use ω for this purpose. Throughout, we also use ωj , j = 1, . . . , |Ω| to denote a specific

scenario (e.g., an effective scenario) or generic scenario depending on the context. Decisions x

belong to a feasibility set X ⊂ Rdx (i.e., x ∈ X ), which is assumed to be a nonempty convex

compact set. DRO can then be formulated as

min
x∈X

{
f(x) := max

p∈P
Ep [h(x)]

}
, (1)

where, for a given x ∈ X , h(x) denotes a random variable that takes value hωi(x) for each scenario

ωi ∈ Ω. The so-called cost functions at scenario ωi ∈ Ω, hωi(·) : X → R, are assumed to be real-

valued and convex on an open set containing X . This implies that hωi(·) are Lipschitz continuous

[34, Theorem 1.26] and subdifferentiable [42, Theorem 23.4] on X for all ωi ∈ Ω. Continuity, along

with X being compact and |Ω| < ∞, implies that hωi(x) are bounded for every ωi ∈ Ω and there

exists a constant C <∞ such that |hωi(x)| < C for all x ∈ X , ωi ∈ Ω.
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Set P in DRO problem (1) denotes the ambiguity set of distributions (or simply the ambiguity

set), which is a subset of all probability distributions on Ω. We refer to the inner maximization

problem in (1) as the worst-case expected problem at x ∈ X . Here, p represents a probability vector,

with probability of scenario ωi ∈ Ω denoted as pωi . Throughout the paper, we adopt bold notation

to denote vectors or random variables that depend on scenarios ωi ∈ Ω like p and h(x). Because we

assume |Ω| <∞, the expectation in (1), taken with respect to p, can be written as
∑

ωi∈Ω pωihωi(x).

We refer to an optimal solution to the worst-case expected problem as a worst-case distribution

and denote it as p∗, where the components of p∗ represent the worst-case probability p∗ωi
at each

scenario ωi ∈ Ω. We suppress the dependence of p∗ on x for simplicity. Assuming P is nonempty,

DRO problem (1) satisfying the other assumptions stated above has a finite optimal value and

finite optimal solution achieved on X .

Before we review the Wasserstein distance, let us first introduce a general distance-based am-

biguity set. Let q denote a nominal distribution, with qωi representing the probability of scenario

ωi ∈ Ω. Such a nominal distribution can be obtained, for instance, by using historical data. Let

∆(p,q) denote a measure of similarity or distance between two distributions p and q. Then, a

distance-based ambiguity set is formed by

P :=

∆(p,q) ≤ ρ,
∑
ωi∈Ω

pωi = 1, pωi ≥ 0 ∀ωi ∈ Ω

 , (2)

where ρ is called the radius of the ambiguity set, also referred to as the level of robustness. As ρ

increases, DRO in (1) typically becomes more robust.

We end this section with notation that is frequently used throughout the paper. For a given

set F ⊆ Ω, we denote the total nominal probability of that set as q(F) :=
∑

ω∈F qω. Similarly, we

denote the total worst-case probability of set F as p∗(F) :=
∑

ω∈F p
∗
ω, where we again suppress the

dependence of p∗(F) on x for simplicity.

2.2 Background on DRO-W

The Wasserstein distance between two finitely supported distributions p and q on Ω, denoted

W (p,q), can be formulated as the following optimal transportation problem:

W (p,q) := min
γ≥0

 ∑
ωi,ωj∈Ω

cωiωjγωiωj :
∑
ωi∈Ω

γωiωj = pωj ∀ωj ∈ Ω,
∑
ωj∈Ω

γωiωj = qωi ∀ωi ∈ Ω

 ,

where γωiωj represents the probability mass that will be transported from scenario ωi to scenario

ωj , γ represents the vector containing all γωiωj , and cωiωj denotes the transportation cost of moving

probability mass from ωi to ωj . We assume the transportation cost cωiωj is a distance. That is,

it satisfies (i) cωiωi = 0 for all ωi ∈ Ω, (ii) positivity (i.e., cωiωj > 0 for all ωi, ωj ∈ Ω such that

ωi ̸= ωj), (iii) symmetry (i.e., cωiωj = cωjωi for all ωi, ωj ∈ Ω), and (iv) the triangular inequality
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(i.e., cωiωj ≤ cωiωk
+cωkωj for any ωi, ωj , ωk ∈ Ω). A common transportation cost between scenarios

is given by cωiωj = ||ξωi − ξωj ||η as the Lη norm (e.g., η = 1, 2,∞), where ξω denotes the vector of

random parameters’ realization for scenario ω. When the transportation cost is induced by a norm,

this results in the well-studied 1-Wasserstein distance [e.g., 27], also known as the Kantorovich

metric. We allow for more general transportation costs as long as they are distances, similar to

the Optimal Transport (OT) based ambiguity sets [e.g., 10], although the OT based ambiguity sets

can have more general transportation costs. Note that if the transportation cost is a distance, so

is W (p,q). As a special case, when the transportation costs are given by cωiωj = 1 if ωi ̸= ωj and

0 otherwise, the corresponding Wasserstein distance becomes the total variation distance.

Following the definition in Section 2.1, DRO-W is formulated as problem (1) where ∆(p,q) in

the ambiguity set (2) is replaced by W (p,q). Consequently, the worst-case expected problem of

(1) for DRO-W can be formulated as [18]

max
p≥0,γ≥0

∑
ωj∈Ω

pωjhωj (x) (3a)

s.t.
∑
ωi∈Ω

γωiωj − pωj = 0 ∀ωj ∈ Ω, (αωj ) (3b)

∑
ωj∈Ω

γωiωj = qωi ∀ωi ∈ Ω, (βωi) (3c)

∑
ωi∈Ω

∑
ωj∈Ω

cωiωjγωiωj ≤ ρ. (λ) (3d)

Observe that
∑

ωj∈Ω pωj = 1 in (2) is automatically satisfied by (3b) and (3c) because
∑

ωi∈Ω qωi =

1. From this point on, we refer to the radius ρ of DRO-W that appears in equation (3d) as

transportation budget or simply as budget. We denote the dual variables of the constraints (3b),

(3c), and (3d) under a fixed x ∈ X as αωj := αωj (x), βωi := βωi(x), and λ := λ(x), respectively,

and as usual we suppress the dependence on x. We denote α, β as their corresponding vector form.

2.3 Background on Effective Scenarios

Consider the class of convex DRO problems (1)–(2) introduced above. A set of scenarios is called

effective if the optimal value of DRO problem (1) changes when that set of scenarios is “removed”

from the problem. Therefore, to formally define effective scenarios, we first need to mathematically

describe the removal of scenarios.

By [39], removing a set of scenarios F ⊂ Ω from a DRO problem means restricting the ambiguity

set through constraints pωi = 0 for all ωi ∈ F . This means that such scenarios can no longer be in

the support of worst-case distributions. DRO problem with the restricted ambiguity set is called

the assessment problem of scenarios in F . Thus, the ambiguity set of the assessment problem is

given by PA(F) := P ∩ {pωi = 0 ∀ωi ∈ F}. Let Fc := Ω \ F . Then, the assessment problem can
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be written as

min
x∈X

fA(x;F) := max
p∈PA(F)

∑
ωi∈Fc

pωihωi(x)

 . (4)

If the ambiguity set of the assessment problem PA(F) is infeasible, we set fA(x;F) = −∞. This

can happen, for instance, when too many scenarios are removed so that it is no longer possible to

find a distribution sufficiently close to the nominal distribution.

Suppose x∗ solves (1) and x∗F solves (4). The assessment problem of scenarios in F , given in (4),

has a more restrictive ambiguity set PA(F) compared to the ambiguity set P of its corresponding

DRO given in (1). Therefore, for all x ∈ X , we have fA(x;F) ≤ f(x). Consequently, we expect

the optimal value of (4) to be always less than or equal to the optimal value of (1). If the optimal

value changes, however, we call such set of scenarios effective. A formal definition follows.

Definition 1 (Effective and Ineffective Scenarios [39]). A set of scenarios F ⊂ Ω is called ef-

fective if minx∈X f
A(x;F) < minx∈X f(x) and called ineffective if minx∈X f

A(x;F) = minx∈X f(x).

By the above definition, if PA(F) is infeasible, the set of scenarios F is trivially effective because

fA(x;F) = −∞.

3 Effective Scenarios in General Distance-Based Ambiguity Sets

Based on Definition 1 and the assessment problem (4), it may be tempting to think that a scenario

ωj with a positive worst-case probability (p∗ωj
> 0) is an effective scenario, while a scenario with zero

worst-case probability (p∗ωj
= 0) is an ineffective scenario. For instance, if p∗ωj

= 0, then it appears

that solving the assessment problem with the additional constraint pωj = 0 would not change

anything. However, this is not always the case. Section 2.1 in [39] provides a counterexample.

There are two main reasons for this counterintuitive outcome. First, the optimal decision x∗ of

problem (1) may not always be unique. Second, for a given x∗, the worst-case distribution p∗

may not be unique. In fact, in the case of DRO-TV, [39] shows the existence of multiple worst-

case probabilities p∗ is a necessary condition for having an effective scenario with zero worst-case

probability (p∗ωj
= 0) or an ineffective scenario with positive worst-case probability (p∗ωj

> 0). We

will revisit this below.

In this section, we expand and generalize the results in [39], which focused on DROs formed

with the total variation distance to DROs formed with a general distance-based ambiguity set. We

only make the following minimal assumption on the ambiguity sets.

Assumption A1. P given in (2) is nonempty and compact.

P being nonempty is a natural condition for DRO to be well defined; furthermore, P at a minimum

contains the nominal distribution by construction. P is also bounded by definition because it is a

subset of a probability simplex. Many widely used ambiguity sets are also closed. In particular,

the ambiguity sets of DRO-W and DRO-TV are all bounded and closed, hence compact.
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For general distance-based ambiguity sets, we study the relationship between effectiveness of a

scenario and its worst-case probability. Note that determination of whether a scenario is effective

or ineffective does not solely depend on the specific value of its worst-case probability, which may be

obtained by a numerical method. However, it is closely tied to the worst-case probability associated

with that scenario being always zero or positive among all possible worst-case distributions. To show

these results, below we focus on a particular optimal solution x∗ ∈ argminx∈X f(x) of the DRO

problem (1). The definition of effective scenarios does not depend on a given optimal solution.

However, a DM, after solving the DRO problem by their preferred method, obtains a solution

x∗ ∈ X . Because we are ultimately interested in identifying effective solutions easily—without

having to resolve the assessment problems for each scenario ωj ∈ Ω—as a post-optimality sensitivity

analysis on the scenarios, we focus on information from an obtained solution x∗ ∈ X to help with

this goal.

Let P∗ := P∗(x∗) denote the set of all optimal worst-case distributions p∗ in a DRO problem (1)

under an optimal solution x∗. That is, P∗ := argmaxp∈P Ep [h(x
∗)]. Like an optimal worst-case

distribution p∗, we suppress the dependence of set P∗ on x∗ for simplicity. Propositions 1 and 2

establish that the worst-case probability for a given scenario being always strictly positive or always

zero is sufficient to determine whether it is effective or ineffective, respectively.

Proposition 1. Consider the DRO problem (1)–(2) with Assumption A1. Suppose x∗ solves (1)–

(2), and consider scenario ωj ∈ Ω. If among all worst-case distributions p∗ ∈ P∗ at x∗ ∈ X , the

worst-case probability of scenario ωj is always positive, i.e., p∗ωj
> 0 for all p∗ ∈ P∗, then it is

effective.

Proof. For the sake of contradiction, suppose p∗ωj
> 0 for all p∗ ∈ P∗ but instead scenario ωj

is ineffective. With F = {ωj}, let x∗F solve (4). Then by PA(F) being more restrictive than

P, suboptimality of x∗ to (4), and similarly by suboptimality of x∗F to (1), we have fA(x∗F ;F) ≤
fA(x∗;F) ≤ f(x∗) ≤ f(x∗F ). This, combined with Definition 1, implies fA(x∗;F) = f(x∗). Suppose

p0 ∈ argmaxp∈PA(F) Ep [h(x
∗)]. Because PA(F) ⊂ P, we have p0 ∈ P. Then, fA(x∗;F) =∑

ωi∈Ω p
0
ωi
hωi(x

∗) = f(x∗) = maxp∈P Ep [h(x)] implies that p0 ∈ P∗. However, because p0 ∈
PA(F), it must have p0ωj

= 0, which forms a contradiction.

Note that Proposition 1 does not need the worst-case probability at scenario ωj , p
∗
ωj
, to be

unique at x∗.

Proposition 2. Consider the DRO problem (1)–(2) with Assumption A1. Suppose x∗ solves (1)–

(2), and consider scenario ωj ∈ Ω. If the worst-case probability of scenario ωj is uniquely zero, i.e.,

p∗ωj
= 0 for all p∗ ∈ P∗ at x∗ ∈ X , then it is ineffective. The union of any such scenarios is also

ineffective.

Proof. Suppose the set
{
ωj ∈ Ω : p∗ωj

= 0 ∀p∗ ∈ P∗
}

is nonempty, and let Fs be an arbitrary

nonempty subset of it. We will prove the result by first showing (a) f(x∗) = fA(x∗;Fs) and
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(b) ∂f(x∗) = ∂fA(x∗;Fs); then we will apply first-order optimality conditions to show (c) x∗ is an

optimal solution of the assessment problem at Fs, i.e., x
∗ ∈ argminx∈X fA(x;Fs). This, combined

with (a), shows that Fs is ineffective. Condition (a) is straightforward since
∑

ωj∈Fs
p∗ωj

= 0 under

all optimal solutions p∗ ∈ P∗. This also implies P∗ = argmaxp∈PA(Fs)

∑
ωi∈Fc

s
pωihωi(x

∗). Now

we show (b). Since P is nonempty compact and
∑

ωi∈Ω pωihωi(x
∗) is affine in p, by [22, Theorem

4.4.2], we have

∂f(x∗) = Conv

 ⋃
p∗∈P∗

∂
∑
ωi∈Ω

p∗ωi
hωi(x

∗)

 , (5)

where Conv(S) denotes the convex hull of set S. Now, for any p∗ ∈ P∗, we have ∂
∑

ωi∈Ω p
∗
ωi
hωi(x

∗) =∑
ωi∈Ω ∂p

∗
ωi
hωi(x

∗) by [42, Theorem 23.8] and also
∑

ωi∈Ω ∂p
∗
ωi
hωi(x

∗) =
∑

ωi∈Ω p
∗
ωi
∂hωi(x

∗) with

p∗ωi
≥ 0 because ∂hωi(x

∗) ̸= ∅ and bounded for all ωi ∈ Ω by our assumptions. Furthermore,∑
ωi∈Ω p

∗
ωi
∂hωi(x

∗) =
∑

ωi∈Ω\Fs
p∗ωi

∂hωi(x
∗) = ∂

∑
ωi∈Ω\Fs

p∗ωi
hωi(x

∗) by similar arguments and

definition of set Fs. Combining these with (5), we obtain

∂f(x∗) = Conv

 ⋃
p∗∈P∗

∂
∑

ωi∈Ω\Fs

p∗ωi
hωi(x

∗)

 = ∂fA(x∗;Fs).

The last equality above holds by another application of [22, Theorem 4.4.2] since PA(Fs) is

nonempty compact,
∑

ωi∈Ω pωi∈Ω\Fs
hωi(x

∗) is affine in p, and P∗ forms the set of optimal solu-

tions to the worst-case expected problem of the assessment problem at x∗. This completes (b).

Because x∗ is an optimal solution of minx∈X f(x), there exists s ∈ ∂f(x∗) = ∂fA(x
∗;Fs) such

that s(x−x∗) ≥ 0 for all x ∈ X . Then, by convexity of fA(x;Fs) in x, fA(x;Fs) ≥ fA(x
∗;Fs)+s(x−

x∗) ≥ fA(x
∗;Fs) for all x ∈ X . This shows that x∗ is also an optimal solution to the assessment

problem at Fs, minx∈X fA(x;Fs). Then, because f(x
∗) = fA(x

∗;Fs) by (a), the set of scenarios Fs

is ineffective by Definition 1. Since Fs is an arbitrary subset of
{
ωj ∈ Ω : p∗ωj

= 0, ∀p∗ ∈ P∗
}
, any

union of such scenarios is ineffective.

In general, it is possible to have scenarios that are individually ineffective, but when considered

together, they become effective. Proposition 2 shows that all scenarios ωj with uniquely zero worst-

case probabilities (i.e., p∗ωj
= 0, ∀p∗ ∈ P∗) are also collectively ineffective. If such scenarios can be

identified, they can be safely removed from the problem, resulting in a reduced-size problem that is

computationally more tractable; see, e.g., [2] for an application of this idea for scenario reduction.

Let us now consider the opposite cases of Propositions 1 and 2, i.e., when we observe an

effective scenario with zero worst-case probability (i.e., p∗ωj
= 0) or an ineffective scenario with

positive worst-case probability (i.e., p∗ωj
> 0). Theorem 5 of [39] shows that in DRO-TV, if scenario

ωj is a zero-probability effective scenario or a positive-probability ineffective scenario, then (i) the

worst-case expected problem in (1)–(2) has multiple worst-case distributions and (ii) there exists

at least one scenario ωi with the same cost as scenario ωj : hωi(x
∗) = hωj (x

∗). This result can be

partially extended to DROs under general ambiguity sets in the sense that, when such scenarios
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are observed, multiple worst-case distributions exist. However, in general, there may not be two

scenarios having the same cost. We will provide a counterexample with DRO-W in Section 4. We

present the generalized result in the following.

Proposition 3. Consider the DRO problem (1)–(2) with Assumption A1. Suppose x∗ solves (1)–

(2). If there exists a zero-probability effective scenario ωj (p∗ωj
= 0) or a positive-probability in-

effective scenario ωj (p∗ωj
> 0), then the worst-case expected problem at x∗ has multiple optimal

solutions.

Proof. First, consider an effective scenario ωj and p0 ∈ P∗ such that p0ωj
= 0. Then, there must

exist another optimal worst-case distribution, p1 ∈ P∗ such that p1ωj
> 0. Suppose not. Then,

p∗ωj
= 0 is unique among all p∗ ∈ P∗. This means ωj is ineffective by Proposition 2, which forms

a contradiction. Now consider an ineffective scenario ωj with p0 ∈ P∗ such that p0ωj
> 0. Then

there must exist at least one other optimal worst-case distribution, p1 ∈ P∗ such that p1ωj
= 0.

Suppose not. Similarly, this means for all p∗ ∈ P∗, p∗ωj
> 0. Proposition 1 then implies scenario ωj

must be effective, which is a contradiction. Therefore, under the conditions of the proposition, the

worst-case expected problem has multiple optima.

Let us now discuss the implications of these results. Propositions 1, 2, and 3 significantly

generalize the analysis in [39], from DROs formed via total variation distance to general distance-

based ambiguity sets. They can be very useful in some situations. For instance, some ϕ-divergences

are known to be incapable of popping scenarios [5]. This means that if a scenario ωj has zero nominal

probability, the resulting ambiguity set cannot admit any distributions with positive probability for

scenario ωj . Thus, any optimal solution must have p∗ωj
= 0, and by Proposition 2, such scenarios

can immediately be classified as ineffective without even solving the DRO problem. A similar

result exists for positive-nominal-probability scenarios and ϕ-divergences that cannot admit zero

probabilities for such scenarios in their ambiguity sets (called ‘cannot suppress scenarios’ [5], also

related to strictly monotone risk measures [45]); thus immediately providing effective scenarios.

As another example, if the optimal worst-case distribution at a given optimal solution x∗ can

be identified to be unique, then the worst-case probabilities being zero or positive automatically

determine the effectiveness of scenarios. In other cases, these results may be somewhat difficult to

use because determining unique or multiple optimal solutions, and in the case of multiple optima,

determining all multiple solutions, can be difficult. Nevertheless, they provide a framework to

identify the effectiveness of scenarios. They may also help uncover further structures present in

these problems and reveal further insights into the behavior of DROs. In particular, we are able to

use these results to identify the effectiveness of scenarios in DRO-W without needing to solve any

additional optimization (e.g., assessment) problems.

Finally, we remark that in our experiments presented in Section 6, we never encountered a case

where there is an easily identifiable unique solution to the worst-case expected problem of DRO-W

given in (3). In fact, the obtained solutions were always degenerate (with a large number of nonbasic
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variables with zero reduced costs), which makes identifying unique/multiple optima more difficult.

For instance, determining uniqueness of an optimal solution in such cases can be viewed equivalent

to solving an optimization problem [8, p.130]. In the case of multiple optima, by Propositions 1 and

2, one also needs to determine if the worst-case probabilities are always positive or not. One could

potentially resort to minimizing/maximizing pω for all ω ∈ Ω with an additional constraint setting

the objective function equal to the optimal value, but this is even more demanding than solving the

assessment problems. In what follows, we exploit the structure of the worst-case expected problem

of DRO-W given in (3) to determine the effectiveness of scenarios in a relatively efficient manner.

4 Effective Scenarios in DRO-W

For the rest of the paper, we narrow our focus to DRO-W. We first present notation and a cate-

gorization that will be used to identify the effectiveness of scenarios for this class of DRO. Then

we present conditions to identify effective scenarios based on Propositions 1 and 2. We assume all

scenarios in DRO-W have positive nominal probabilities, i.e., qωj > 0 for all ωj ∈ Ω.

4.1 Categories with Respect to Probability Mass Inflows

Recall the transportation variables γωiωj in worst-case expected problem of DRO-W given in (3). If

γωiωj > 0, then there is an inflow of probability mass into scenario ωj from scenario ωi. If γωiωi > 0,

this is an inflow into scenario ωi from itself. To provide a categorization of scenarios with respect to

their inflows, we examine the dual of (3). Because we study easy-to-check conditions at an optimal

solution, from this point on, we focus on the worst-case expected problem of DRO-W (3) at an

optimal solution x∗ ∈ X to DRO-W. The dual of (3) can then be written as

min
λ≥0,α,β

ρλ+
∑
ωi∈Ω

qωiβωi (6a)

s.t. − αωj ≥ hωj (x
∗) ∀ωi ∈ Ω, (pωj ) (6b)

αωj + βωi + λcωiωj ≥ 0 ∀ωi, ωj ∈ Ω, (γωiωj ) (6c)

where the primal decisions p, γ become the dual variables of the constraints (6b) and (6c), respec-

tively. Both the primal problem (3) and its dual (6) always have feasible solutions. Therefore, both

have finite optimal solutions and their optimal values are identical. As before, we use superscript
∗ to denote an optimal dual solution to (6) such as λ∗, α∗ and β∗ at x∗ ∈ X . Our analysis specifi-

cally focuses on the optimal dual variable λ∗ := λ∗(x∗) corresponding to the transportation budget

constraint (3d). We denote by Λ∗ := Λ∗(x∗) the set of all optimal dual solutions λ∗ to (6) at x∗. As

before, we suppress the dependence of Λ∗, λ∗, α∗ and β∗ on x∗ for simplicity. Combining (6b) and

(6c), we have β∗ωi
≥ hωj (x

∗) − λ∗cωiωj , for all ωj ∈ Ω for a given ωi. Since problem (6) minimizes

qωiβωi with qωi > 0, we have at an optimal solution β∗ωi
= maxω{hω(x∗)− λ∗cωiω}. This motivates

us to define the following sets.
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The set A(ωi, λ
∗) := A(ωi, λ

∗, x∗) := argmaxω{hω(x∗)− λ∗cωiω} denotes the set of scenarios ω

that maximizes the value of hω(x
∗)−λ∗cωiω for a given scenario ωi at a given dual optimal solution

λ∗. This represents the set of scenarios that can be a destination for the nominal probability mass

transferred out of scenario ωi. Furthermore, let M(ωj , λ
∗) := M(ωj , λ

∗, x∗) := {ωi ∈ Ω : ωj ∈
A(ωi)} represent the set of scenarios that scenario ωj is a potential destination of at a given dual

optimal solution λ∗. Note that ωi ∈ M(ωj , λ
∗) if and only if ωj ∈ A(ωi, λ

∗). While both sets

A(ωi, λ
∗) and M(ωj , λ

∗) depend on x∗, for simplicity of presentation, we suppress this dependence

from the notation as well.

At a given optimal solution x∗ ∈ X and a corresponding optimal dual λ∗, we define a partition

of the scenario set Ω into the following subsets (using the shortcuts N for Never a destination, U

for Unique destination, and M for Multiple destinations):

• ΩN (x∗, λ∗) := {ωj ∈ Ω : M(ωj , λ
∗) = ∅}, i.e., set of scenarios that are never a destination

for probability mass inflows;

• ΩU (x
∗, λ∗) := {ωj ∈ Ω : A(ωi, λ

∗) = {ωj} for at least one ωi ∈ Ω}, i.e., set of scenarios that

are a unique destination for probability mass inflow for at least one scenario;

• ΩM (x∗, λ∗) := {ωj ∈ Ω : M(ωj , λ
∗) ̸= ∅ and {ωj} ⊊ A(ωi, λ

∗) for all ωi ∈ M(ωj , λ
∗)}, i.e.,

set of scenarios that are always one of the multiple destinations for probability mass inflow

from other scenarios.

Figure 1 shows an example of this partition with the set of scenarios Ω = {ω1, ω2, ω3}, where an

edge pointing from ωi to ωj means ωi ∈ M(ωj , λ
∗) or equivalently ωj ∈ A(ωi, λ

∗) at the given

x∗ and its corresponding optimal dual λ∗, indicating potential inflows into scenario ωj . In this

example, ΩN (x∗, λ∗) = {ω2}, ΩU (x
∗, λ∗) = {ω1} and ΩM (x∗, λ∗) = {ω3}.

ω1

ω2

ω3

ω1

ω2

ω3

A(ω1, λ
∗) = {ω1}

A(ω2, λ
∗) = {ω1}

A(ω3, λ
∗) = {ω1, ω3}

M(ω1, λ
∗) = {ω1, ω2, ω3}

M(ω2, λ
∗) = ∅

M(ω3, λ
∗) = {ω3}

ΩN = {ω2}
ΩU = {ω1}
ΩM = {ω3}

Figure 1: An example of the partition of the scenario set Ω = {ω1, ω2, ω3} given a fixed λ∗. An
edge pointing from ωi to ωj means ωi ∈ M(ωj , λ

∗) or equivalently ωj ∈ A(ωi, λ
∗) at a given x∗.

4.2 Easy-to-Check Conditions for DRO-W

Based on the above partition of Ω, we first provide in this section a summary of easy-to-check

conditions for identifying effective and ineffective scenarios in DRO-W. We will discuss details and

12



present the proofs in later sections.

First observe that when ρ = 0, the ambiguity set contains only the nominal distribution and the

worst-case distribution must be the same as the nominal distribution because we assume positivity

in the transportation costs cωiωj . Then, all scenarios are effective by Proposition 1. Therefore,

for the rest of this section, we assume we are not in the trivial case of ρ = 0; i.e., we assume

ρ > 0. Furthermore, to simplify the statements of the below theorems, for any ωi ∈ ΩN (x∗, λ∗) ∪
ΩM (x∗, λ∗), we use the notation cλ

∗
ωi

:= minωj∈A(ωi,λ∗)\{ωi} cωiωj . That is, cλ
∗

ωi
denotes the smallest

positive unit transportation cost from scenario ωi to any ωj ∈ A(ωi, λ
∗), excluding the case ωj = ωi

if ωi ∈ A(ωi, λ
∗) (because cωiωi = 0). We are now ready to present the easy-to-check conditions.

Theorem 1 (Easy-to-check conditions for effective scenarios). Consider the worst-case expected

problem of DRO-W (3) at an optimal solution x∗ ∈ X with a given optimal dual variable λ∗ :=

λ∗(x∗) corresponding to constraint (3d). Scenario ωj is effective if any of the following conditions

hold:

(i) ρ < cωjωi · qωj for all ωi ∈ Ω \ {ωj};

(ii) ωj ∈ ΩU (x
∗, λ∗);

(iii) ωj ∈ ΩM (x∗, λ∗) and ρ−
∑

ωk∈ΩN (x∗,λ∗) qωk
· cλ∗

ωk
< qωj · cλ

∗
ωj
.

Theorem 2 (Easy-to-check conditions for ineffective scenarios). Consider the worst-case expected

problem of DRO-W (3) as described in Theorem 1. Scenario ωj is ineffective if any of the following

conditions hold:

(i) ωj ∈ ΩN (x∗, λ∗);

(ii) ωj ∈ ΩM (x∗, λ∗) and p∗(ΩM (x∗, λ∗)) = 0; also, for any scenario ωi ∈ ΩM (x∗, λ∗)∪ΩN (x∗, λ∗),

one of the following conditions hold: (a) A(ωi, λ
∗) \ {ωi} is a singleton, or (b) hω(x

∗) is

the same for all ω ∈ A(ωi, λ
∗) \ {ωi}, or (c) γ∗ωiω = 0 for any ω ∈ A(ωi, λ

∗) satisfying

ω /∈ argmaxω′∈A(ωi,λ∗) hω′(x∗).

Furthermore, the union of any of the ineffective scenarios identified by (i)–(ii) above is ineffective.

Theorems 1 and 2 mainly consider the effectiveness of a single scenario. In addition, Theorem 2

establishes that any union of ineffective scenarios identified by Theorem 2 is also effective, which

is not generally true of ineffective scenarios.

The above conditions, while relatively easy, are not computationally free to check. Conditions

stated in Theorem 1(ii)–(iii) and Theorem 2 require one sorting for each scenario to determine

the sets ΩN (x∗, λ∗),ΩU (x
∗, λ∗) and ΩM (x∗, λ∗), thus resulting in a O(|Ω|2log(|Ω|)) complexity.

Condition 1(i) can be checked a priori, using only the problem parameters. That said, these

conditions are still significantly cheaper than solving the individual assessment problems for all

scenarios ωj ∈ Ω; they avoid solving any additional optimization problems.
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As discussed earlier, the partition ΩN (x∗, λ∗), ΩU (x
∗, λ∗) and ΩM (x∗, λ∗)—and hence the ma-

jority of the conditions stated in Theorems 1 and 2—depends on a given value of λ∗. However, the

effectiveness of scenarios should in principle not depend on a particular λ∗ ∈ Λ∗ (see Definition 1).

In Sections 4.3–4.4 below, we will show that if any of the above conditions is satisfied at a given λ∗,

we are able to identify the effectiveness of a scenario at all λ∗ ∈ Λ∗. As such, the above conditions

avoid the computational cost of finding all dual optimal solutions.

The remainder of this section is organized as follows. Section 4.3 investigates the worst-case

distribution p∗ at a fixed dual optimal solution λ∗. Next, Section 4.4 studies the changes to the

partition ΩN (x∗, λ∗), ΩU (x
∗, λ∗), and ΩM (x∗, λ∗) under varying values of optimal dual solutions in

the set Λ∗. Section 4.5 then proves the main results presented above. Finally, Section 4.6 discusses

the implications of these results and establishes further details on the multiple optimal λ∗ case.

Particularly, it turns out, when Λ∗ is not a singleton set, the conditions stated in Theorems 1 and

2 identify the effectiveness of all scenarios in Ω. This is not always the case when there is a unique

optimum λ∗; however, our computational results show that these conditions can also identify the

effectiveness of all or majority of the scenarios in this case.

4.3 Results for a Fixed λ∗

Let us begin by discussing the worst-case probability distribution for a fixed dual optimal value

λ∗. Note that for a fixed λ∗, we may have multiple (or unique) primal optimal solutions (p∗,γ∗)

to problem (3). We first state three simple but important lemmas that are routinely used.

Lemma 1. Consider the worst-case expected problem of DRO-W (3) as described in Theorem 1.

If ωj /∈ A(ωi, λ
∗) for a given scenario ωi, then we must have γ∗ωiωj

= 0 at that λ∗.

Proof. We show this by contradiction. Suppose γ∗ωiωj
> 0. Then, by complementary slackness,

β∗ωi
= −α∗

ωj
− λ∗cωiωj . Also, since p∗ωj

≥ γ∗ωiωj
> 0 by constraint (3b), using complementary

slackness again, we obtain −α∗
ωj

= hωj (x
∗). Therefore, β∗ωi

= hωj (x
∗)−λ∗cωiωj . Because, β

∗
ωi

must

satisfy (6c) for all scenarios, this means scenario ωj must belong to the set A(ωi, λ
∗), which results

in a contradiction.

Lemma 2. Consider the worst-case expected problem of DRO-W (3) as described in Theorem 1.

If ωj ∈ A(ωi, λ
∗) for any scenario ωi ̸= ωj, then we must have ωj ∈ A(ωj , λ

∗) at that λ∗.

Proof. Suppose ωj /∈ A(ωj , λ
∗); instead, suppose ωk ∈ A(ωj , λ

∗) for some scenario ωk ̸= ωj . Then,

we have hωk
(x∗) − λ∗cωjωk

> hωj (x
∗). Also, since ωj ∈ A(ωi, λ

∗) for a scenario ωi ̸= ωj , we

have hωj (x
∗) − λ∗cωiωj ≥ hωk

(x∗) − λ∗cωiωk
. When λ∗ > 0, combining the two inequalities gives

cωiωj + cωjωk
< cωiωk

, which is a contradiction to the triangular inequality. When λ∗ = 0, by

combining the inequalities we get hωk
(x∗) > hωk

(x∗), which is impossible.

From Lemma 2, we know that if ωj ∈ ΩM (x∗, λ∗), we must have ωj ∈ A(ωj , λ
∗). However, it is

possible to say more when ωj ∈ ΩU (x
∗, λ∗), which is presented below.
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Lemma 3. Consider the worst-case expected problem of DRO-W (3) as described in Theorem 1.

If scenario ωj ∈ ΩU (x
∗, λ∗), we must have A(ωj , λ

∗) = {ωj} at that λ∗.

Proof. If A(ωj , λ
∗) = {ωj}, then ωj ∈ ΩU (x

∗, λ∗) and the proposition is automatically satisfied.

Otherwise, by Lemma 2, we have ωj ∈ A(ωj , λ
∗). We now show A(ωj , λ

∗) is a singleton set. Since

ωj ∈ ΩU (x
∗, λ∗), let {ωj} = A(ωi, λ

∗) for some ωi ̸= ωj . Then, we have hωj (x
∗)−λ∗cωiωj > hω(x

∗)−
λ∗cωiω for any ω ̸= ωj . Suppose set A(ωj , λ

∗) also contains ωk. This means hωk
(x∗) − λ∗cωjωk

=

hωj (x
∗). When λ∗ > 0, combining the two, we get cωiωj + cωjωk

< cωiωk
, which is a contradiction

to the triangular inequality. When λ∗ = 0, on the other hand, we get hωj (x
∗) > hωj (x

∗), which is

impossible.

The implications of Lemmas 1–3 with respect to the partition ΩN (x∗, λ∗), ΩU (x
∗, λ∗), ΩM (x∗, λ∗)

are as follows. (i) If ωj ∈ ΩN (x∗, λ∗), then we must have γ∗ωiωj
= 0 for all ωi ∈ Ω at every primal opti-

mal solution at that λ∗. Also, ωj /∈ A(ωj , λ
∗). (ii) If ωj ∈ ΩM (x∗, λ∗), then we have ωj ∈ A(ωj , λ

∗)

and also we must have at least one other scenario ωk ̸= ωj belonging to the set A(ωj , λ
∗); i.e.,

ωk ∈ A(ωj , λ
∗). In this case, when λ∗ > 0, hωk

(x∗) > hωj (x
∗) because hωj (x

∗) = hωk
(x∗)−λ∗cωjωk

.

On the other hand, when λ∗ = 0, hωk
(x∗) = hωj (x

∗) = sup[h(x∗)] := supω∈Ω hω(x
∗). (iii) Finally,

when ωj ∈ ΩU (x
∗, λ∗), we must have A(ωj , λ

∗) = {ωj} and γ∗ωjωj
= qωj at every optimal solution

at that λ∗. We will use these results as the foundation of our proofs in the rest of this section.

As discussed before, for a fixed λ∗, we may have multiple or unique (p∗, γ∗). Propositions

4–7 below identify portions of the worst-case probabilities p∗ that must be always zero or positive

among all possible optimal (p∗,γ∗) at that λ∗. For scenarios in ΩN (x∗, λ∗) and ΩU (x
∗, λ∗), the

results readily follow from above, which we present first.

Proposition 4. Consider the worst-case expected problem of DRO-W (3) as described in Theo-

rem 1. Any scenario ωj ∈ ΩN (x∗, λ∗) must have p∗ωj
= 0 at that λ∗.

Proof. By Lemma 1, we must have γ∗ωiωj
= 0 for all ωi ∈ Ω at all optimal solutions to (3). Therefore,

we must also have p∗ωj
=

∑
ωi∈Ω γ

∗
ωiωj

= 0.

Proposition 5. Consider the worst-case expected problem of DRO-W (3) as described in Theo-

rem 1. Any scenario ωj ∈ ΩU (x
∗, λ∗) must have p∗ωj

> 0 at that λ∗.

Proof. By Lemma 3, A(ωj) = {ωj}. Therefore, by Lemma 1, we must have γ∗ωjωi
= 0 for all

ωi ̸= ωj . Then, by constraints (3b) and (3c), we have p∗ωj
≥ γ∗ωjωj

> 0.

We now discuss the case when ωj ∈ ΩM (x∗, λ), which is more complicated. We begin with a

lemma that will be useful to study this case, followed by a result (Proposition 6) which provides a

set of conditions such that all scenarios in ΩM (x∗, λ∗) always have zero worst-case probabilities.

Lemma 4. Consider the worst-case expected problem of DRO-W (3) as described in Theorem 1.

Suppose λ∗ > 0. Then, for any scenario ωi ∈ Ω, the highest-cost scenarios in A(ωi, λ
∗) must belong

to ΩU (x
∗, λ∗), where the cost of scenario ω is given by hω(x

∗).
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Proof. When ωi ∈ ΩU (x
∗, λ∗), because A(ωi, λ

∗) = {ωi} is a singleton, the result is automatically

satisfied. Now let ωi ∈ ΩN (x∗, λ∗) ∪ ΩM (x∗, λ∗). For the sake of contradiction, let ωj ∈ A(ωi, λ
∗)

with ωj ∈ argmaxω′∈A(ωi,λ∗) hω′(x∗) but ωj ∈ ΩM (x∗, λ∗). Note that ωj /∈ ΩN (x∗, λ∗) because

ωj ∈ A(ωi, λ
∗). Then, since ωj ∈ ΩM (x∗, λ∗), there must be another scenario ωs ∈ A(ωj , λ

∗)

satisfying hωs(x
∗)− λ∗cωjωs = hωj (x

∗) and because λ∗ > 0, we have hωs(x
∗) > hωj (x

∗). Also, since

ωj ∈ A(ωi, λ
∗), we have hωj (x

∗)− λ∗cωiωj ≥ hωs(x
∗)− λ∗cωiωs . Then, by these and the triangular

inequality, we get cωiωj + cωjωs = cωiωs . This indicates that hωj (x
∗)− λ∗cωiωj = hωs(x

∗)− λ∗cωiωs

and so ωs ∈ A(ωi, λ
∗). This causes a contradiction to ωj being the highest-cost scenario in A(ωi, λ

∗)

because hωs(x
∗) > hωj (x

∗).

Proposition 6. Consider the worst-case expected problem of DRO-W (3) as described in Theo-

rem 1. All scenarios ωj ∈ ΩM (x∗, λ∗) must have p∗ωj
= 0 at that λ∗ if both of the below condi-

tions hold simultaneously: (i) p∗(ΩM (x∗, λ∗)) = 0, and (ii) for any scenario ωi ∈ ΩM (x∗, λ∗) ∪
ΩN (x∗, λ∗), one of the following conditions hold: (a) A(ωi, λ

∗) \ {ωi} is a singleton, or (b) hω(x
∗)

is the same for all ω ∈ A(ωi, λ
∗) \ {ωi}, or (c) γ∗ωiω = 0 for any ω ∈ A(ωi, λ

∗) such that

ω /∈ argmaxω′∈A(ωi,λ∗) hω′(x∗). In this case, λ∗ > 0.

Proof. If λ∗ = 0, A(ωk, λ
∗) only contains the highest-cost scenarios for any ωk ∈ Ω. Then either

ΩM (x∗, λ∗) is empty and we have nothing to show or ΩM (x∗, λ∗) contains all the highest-cost

scenarios. In the latter case, ΩU (x
∗, λ∗) is empty; therefore by Lemma 1 and constraint (3c), for

any ωk ∈ Ω, we must have γωkωj > 0 for some ωj ∈ ΩM (x∗, λ∗). Thus, condition (i) cannot be

satisfied. So, the conditions of the proposition can only be satisfied when λ∗ > 0.

Now suppose λ∗ > 0. By (i), there exists an optimal solution to (3), denoted (p∗,(0),γ∗,(0)),

that satisfies γ
∗,(0)
ωiωj = 0 for all ωj ∈ ΩM (x∗, λ∗) and all ωi ∈ Ω. Furthermore by (ii), for all ωi ∈ Ω,

γ
∗,(0)
ωiω > 0 only happens when ω has the highest cost among all scenarios in A(ωi, λ

∗).

Let us fix an arbitrary ωj ∈ ΩM (x∗, λ∗). In the subsequent discussion, we will show that at any

optimal solution to (3), γ∗ωlωj
= 0 must always hold for all ωl ∈ Ω. Thus, at any optimal solution,

we must have p∗ωj
= 0. Let 0 < ε ≤ min{γ∗,(0)ωiωs : γ

∗,(0)
ωiωs > 0, ∀ωi ∈ Ω,∀ωs ∈ Ω}. Now, compared

to (p∗,(0),γ∗,(0)), where γ
∗,(0)
ωiωj = 0 for all ωi ∈ Ω, we want to move to another optimal solution,

denoted (p(1),γ(1)), where γ
(1)
ωlωj = ε > 0 for some ωl ∈ Ω with ωj ∈ A(ωl, λ

∗). In this solution,

p
(1)
ωj ≥ ε > 0. Note that ωl /∈ ΩU (x

∗, λ∗) because if ωl ∈ ΩU (x
∗, λ∗), then A(ωl, λ

∗) = {ωl} and so

we must have γ∗ωlωj
= 0 by Lemma 1. So, ωl ∈ ΩN (x∗, λ∗) ∪ΩM (x∗, λ∗). Observe that we can pick

ωl = ωj ; so there exists at least one such ωl to construct (p(1),γ(1)). In either case, we must have

another scenario ωk such that {ωj , ωk} ⊆ A(ωl, λ
∗), hωk

(x∗) > hωj (x
∗), and ωk ∈ ΩU (x

∗, λ∗) by

Lemma 4 satisfying γ
∗,(0)
ωlωk > 0 by condition (ii). We already know the existence of at least one such

scenario ωk if ωl ∈ ΩM (x∗, λ∗) (see the paragraph after the proof of Lemma 3). If ωl ∈ ΩN (x∗, λ∗),

then if A(ωl, λ
∗) = {ωj}, this means that ωj ∈ ΩU (x

∗, λ∗), which contradicts with ωj ∈ ΩM (x∗, λ∗).

So, such a scenario ωk also exists if ωl ∈ ΩN (x∗, λ∗).

Because constraint (3c) must be satisfied at ωl, in order to have γ
(1)
ωlωj = ε = ε + γ

∗,(0)
ωlωj > 0,
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we must take ε mass away from γ
∗,(0)
ωlω for scenarios ω that have the highest-cost in A(ωl, λ

∗) by

condition (ii). Without loss of generality, let γ
(1)
ωlωk = γ

∗,(0)
ωlωk − ε. If all other components of γ(1) are

left the same as γ∗,(0), then the resulting (p(1),γ(1)) would constitute a feasible but suboptimal

solution. In this case, p
(1)
ωj = p

∗,(0)
ωj + ε, p

(1)
ωk = p

∗,(0)
ωk − ε, and all other p

(1)
ω are the same as p

∗,(0)
ω .

Then, constraints (3b) and (3c) are satisfied. To see why (3d) is satisfied, first note that because

hωk
(x∗) > hωj (x

∗), {ωk, ωj} ⊆ A(ωl, λ
∗), and λ∗ > 0, we have cωlωk

> cωlωj . So, the left-hand side

of constraint (3d) is ε · (cωlωk
− cωlωj ) less in the resulting (p(1),γ(1)) than that in (p∗,(0),γ∗,(0)).

It is also suboptimal because the objective function value (3a) with the resulting (p(1),γ(1)) is

ε · (hωk
(x∗)− hωj (x

∗)) > 0 less than that of (p∗,(0),γ∗,(0)).

To get the same optimal value with (p(1),γ(1)), we have to compensate for the loss in the objec-

tive (ε · (hωk
(x∗)− hωj (x

∗) > 0). This means some probability mass in other parts of (p∗,(0),γ∗,(0))

should be transferred from lower-cost scenario(s) to higher cost scenario(s) while obeying all con-

straints of (3). By Lemma 1, under a fixed λ∗, such transfers must happen between scenarios

with different costs but those that belong to the same A(ωs, λ
∗) for some ωs ∈ Ω. Note that

ωs /∈ ΩU (x
∗, λ∗) because otherwise A(ωs, λ

∗) = {ωs}. Now, if ωs = ωl, we must change (p(1),γ(1))

to (p∗,(0),γ∗,(0)) to compensate for the loss in the objective because condition (ii) indicates that,

in (p∗,(0),γ∗,(0)), there does not exist a scenario ωu ̸= ωj that is not a highest-cost scenario among

A(ωs, λ
∗) with γ

∗,(0)
ωlωu > 0. If ωs ̸= ωl, such a scenario ωs cannot exist. This is similarly because

condition (ii) indicates that in (p∗,(0),γ∗,(0)), there does not exist a scenario ωu that is not a

highest-cost scenario among A(ωs, λ
∗) with γ

∗,(0)
ωsωu > 0. This means we cannot compensate for the

loss in the objective for (p(1),γ(1)) and therefore it is not optimal. As the above holds for any

chosen ωl, p
∗
ωj

must be zero at λ∗. Because ωj ∈ ΩM (x∗, λ∗) was chosen arbitrarily, p∗ωj
= 0 for all

ωj ∈ ΩM (x∗, λ∗).

Proposition 6 provides a number of conditions that must be satisfied so that all ωj ∈ ΩM (x∗, λ∗)

have uniquely zero worst-case probabilities, p∗ωj
= 0, at all primal optimal solutions at that λ∗.

However, even when these conditions are not met, we are able to deduce additional information

for some scenarios in ΩM (x∗, λ∗) by looking at the remaining transportation budget. Specifi-

cally, we know from Lemma 1 that for any ωi ∈ ΩN (x∗, λ∗), we must have γ∗ωiωi
= 0, and

by constraint (3c), we also must have
∑

ω∈A(ωi,λ∗) γ
∗
ωiω = qωi . This means that there exists

a positive minimum transportation cost to satisfy constraint (3c). If we subtract such mini-

mum transportation costs for every ωi ∈ ΩN (x∗, λ∗) from the right-hand side of (3d), and the

remaining transportation budget is not sufficient to move all probability mass from a scenario

ωj ∈ ΩM (x∗, λ∗), then ωj must have a positive worst-case probability at λ∗. Observe that for

any scenario ωi ∈ ΩU (x
∗, λ∗), because A(ωi, λ

∗) = {ωi}, we have γ∗ωiωi
= qωi and this does not

contribute to the transportation cost because cωiωi = 0. Proposition 7 formalizes this discussion.

Recall the notation cλ
∗

ωi
= minωj∈A(ωi,λ∗)\{ωi} cωiωj .
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Proposition 7. Consider the worst-case expected problem of DRO-W (3) as described in The-

orem 1. Let ρr be the minimum transportation budget needed to move all probability mass from

scenarios in ΩN (x∗, λ∗) at λ∗, that is, ρr =
∑

ωi∈ΩN (x∗,λ∗) qωi · cλ
∗

ωi
. Any scenario ωj ∈ ΩM (x∗, λ∗)

satisfying ρ− ρr < qωj · cλ
∗

ωj
must have p∗ωj

> 0 at that λ∗.

Proof. At a fixed λ∗, (3d) can be reformulated as∑
ωi∈ΩN (x∗,λ∗)

∑
ωk∈A(ωi,λ∗) cωiωk

γωiωk
+

∑
ωi∈ΩM (x∗,λ∗)

∑
ωk∈A(ωi,λ∗) cωiωk

γωiωk
≤ ρ by Lemma 1.

Since
∑

ωi∈ΩN (x∗,λ∗)

∑
ωk∈A(ωi,λ∗) cωiωk

γ∗ωiωk
≥ ρr,

∑
ωi∈ΩM (x∗,λ∗)

∑
ωk∈A(ωi,λ∗) cωiωk

γ∗ωiωk
≤ ρ − ρr

must hold for any γ∗ at λ∗. Now consider scenario ωj ∈ ΩM (x∗, λ∗) satisfying ρ − ρr < qωj · cλ
∗

ωj
.

Recall ωj ∈ A(ωj , λ
∗), and note that constraint (3c) for ωj is equivalent to

∑
ωk∈A(ωj ,λ∗) γωjωk

= qωj

by Lemma 1. Since qωj > 0, γ∗ωjωj
> 0 must hold. Otherwise,

∑
ωk∈A(ωj ,λ∗)\{ωj} cωjωk

γ∗ωjωk
> ρ−ρr

and γ∗ is infeasible to (3d). Thus, we must have p∗ωj
≥ γ∗ωjωj

> 0 at λ∗.

This concludes the results for a fixed λ∗. We next study the case when Λ∗ is not a singleton.

4.4 Results for Multiple λ∗

4.4.1 Changes in Categories

We first discuss how the categorization of a given scenario changes within the partition ΩN (x∗, λ∗),

ΩU (x
∗, λ∗), and ΩM (x∗, λ∗) when there are multiple optimal dual solutions λ∗ corresponding to

constraint (3d). For problems we consider, the set of dual solutions Λ∗ is bounded. Therefore, we

have Λ∗ = [λ∗min, λ
∗
max] with λ

∗
max > 0. Also, in this case, λ∗min is the so-called right shadow price

of constraint (3d) and λ∗max is the left shadow price of constraint (3d); see [46, Theorem 5.6.2].

The right shadow price of (3d), λ∗min, is defined as the rate at which the optimal objective function

value of (3) increases by a small positive perturbation of the right-hand side of (3d); i.e., when ρ

is changed to ρ+ ε for some small ε > 0. Similarly, the left shadow price of (3d), λ∗max, is defined

as the rate at which the optimal value decreases by a negative perturbation of the right-hand side

of (3d); i.e., when ρ is changed to ρ− ε for some small ε > 0. Recall also that the optimal value of

(3), as a function of ρ, is a piecewise linear concave function. At a point where two “pieces” of this

function intersect, there are multiple optimal λ∗ and the right/left shadow prices are the slopes of

the corresponding pieces [46, Theorem 5.4.2 and Figure 5.16]. Note that the worst-case expected

problem (3) does not become infeasible (recall ρ > 0) or unbounded when the right-hand side of

(3d) is perturbed by a small amount in our setting.

We begin with Lemmas 5 and 6, which form the foundation of all results in this section.

Lemma 5. Consider the worst-case expected problem of DRO-W (3) as described in Theorem 1.

Let the set of optimal dual solutions corresponding to constraint (3d) be Λ∗ := Λ∗(x∗) = [λ∗min, λ
∗
max]

with 0 ≤ λ∗min < λ∗max. Consider any (p∗,γ∗) that solve (3) at the given x∗ and λ∗ ∈ Λ∗. Then, for

any ωi, ωj ∈ Ω such that γ∗ωiωj
> 0 (ωi, ωj can be the same),

hωj (x
∗)−hωk

(x∗)

cωiωj−cωiωk
≥ λ∗max must happen

for any ωk ∈ Ω such that hωk
(x∗) < hωj (x

∗) and cωiωk
< cωiωj .

18



Proof. For the sake of contradiction, assume there exists ωi, ωj , ωk such that hωk
(x∗) < hωj (x

∗)

and cωiωk
< cωiωj but

hωj (x
∗)−hωk

(x∗)

cωiωj−cωiωk
= λ0 < λ∗max. Then, if we decrease the right-hand side

of constraint (3d) by a small ε > 0 such that ε
cωiωj−cωiωk

= δ < γ∗ωiωj
, we can have another set

of primal feasible solutions to (3), denoted (p1,γ1), such that p1ωj
= p∗ωj

− δ, γ1ωiωj
= γ∗ωiωj

− δ,

p1ωk
= p∗ωk

+ δ, γ1ωiωk
= γ∗ωiωk

+ δ, and all other components of (p1,γ1) are the same as (p∗,γ∗).

Then, in p1, compared to p∗, the objective function value of (3) decreases by ε · λ0. By Theorem

5.6.2 of [46] and the fact that (p1,γ1) is a feasible but not necessarily optimal solution at ρ+ ε, we

have λ∗max ≤ λ0, which results in a contradiction.

Lemma 6. Consider the setting of the worst-case expected problem of DRO-W (3) with the notation

described in Lemma 5. Then, for any ωi, ωj ∈ Ω such that γ∗ωiωj
> 0 (ωi, ωj can be the same),

hωk
(x∗)−hωj (x

∗)

cωiωk
−cωiωj

≤ λ∗min must happen for any ωk ∈ Ω such that hωk
(x∗) > hωj (x

∗).

Proof. Since γ∗ωiωj
> 0, by Lemma 1, ωj ∈ A(ωi, λ

∗). Therefore, we must have both cωiωk
>

cωiωj and λ∗ > 0 because hωk
(x∗) > hωj (x

∗). Otherwise, if λ∗ = 0, since hωk
(x∗) > hωj (x

∗),

ωj /∈ A(ωi, λ
∗). Else, if λ∗ > 0, we have hωk

(x∗) − λ∗cωiωk
> hωj (x

∗) − λ∗cωiωj , which means

again ωj /∈ A(ωi, λ
∗). Now for the sake of contradiction, assume there exists ωi, ωj , ωk such that

hωk
(x∗) > hωj (x

∗) but
hωk

(x∗)−hωj (x
∗)

cωiωk
−cωiωj

= λ0 > λ∗min. Then, if we increase the right-hand side of

constraint (3d) by a small ε > 0 such that ε
cωiωk

−cωiωj
= δ < γ∗ωiωj

, we can have another set

of primal feasible solutions to (3), denoted (p1,γ1), such that p1ωj
= p∗ωj

− δ, γ1ωiωj
= γ∗ωiωj

− δ,

p1ωk
= p∗ωk

+ δ, γ1ωiωk
= γ∗ωiωk

+ δ, and all other components of (p1,γ1) are the same as (p∗,γ∗).

Then, in p1, compared to p∗, the objective function value of (3) increases by ε · λ0. By Theorem

5.6.2 of [46] and the fact that (p1,γ1) is a feasible but not necessarily optimal solution of ρ− ε, we

have λ∗min ≥ λ0, which results in a contradiction.

Armed with the above two lemmas, we now show how the categorization of a scenario belonging

to ΩN (x∗, λ∗), ΩU (x
∗, λ∗), or ΩM (x∗, λ∗) for a fixed λ∗ changes as λ∗ varies in Propositions 8, 9,

and 10, respectively.

Proposition 8. Let Λ∗ = [λ∗min, λ
∗
max] with 0 ≤ λ∗min < λ∗max be the set of optimal dual solutions

to (3d) in the worst-case expected problem of DRO-W (3) at an optimal solution x∗ ∈ X . Given

λ∗1 ∈ Λ∗, for any ωi ∈ ΩN (x∗, λ∗1), all the following conditions hold:

(i) For any λ∗2 ∈ Λ∗ such that λ∗2 < λ∗1, ωi ∈ ΩN (x∗, λ∗2);

(ii) If there exists a λ∗2 ∈ Λ∗ such that ωi ∈ ΩM (x∗, λ∗2), then λ
∗
2 = λ∗max;

(iii) For any λ∗2 ∈ Λ∗, ωi /∈ ΩU (x
∗, λ∗2).

Proof. We first show part (i). Since ωi ∈ ΩN (x∗, λ∗1), there must exist a scenario ωj ∈ A(ωi, λ
∗
1) such

that hωj (x
∗)− λ∗1cωiωj > hωi(x

∗). This results in hωj (x
∗)− λ∗2cωiωj > hωj (x

∗)− λ∗1cωiωj > hωi(x
∗),
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which means ωi /∈ A(ωi, λ
∗
2). Then by Lemma 2, ωi ∈ ΩN (x∗, λ∗2); see also the paragraph after the

proof of Lemma 3. Now we show parts (ii) and (iii). From part (i), we have λ∗2 > λ∗1 ≥ 0. Also,

since ωi ∈ ΩN (x∗, λ∗1) and qωi > 0, there must exist an optimal (p∗,γ∗) at λ∗1 where γ∗ωiωj
> 0 for

some scenario ωj ∈ A(ωi, λ
∗
1). From the proof of part (i), we also have hωj (x

∗) > hωi(x
∗). Then by

Lemma 5,
hωj (x

∗)−hωi (x
∗)

cωiωj
≥ λ∗max. Now, if ωi ∈ ΩM (x∗, λ∗2), we have hωi(x

∗) ≥ hωj (x
∗) − λ∗2cωiωj .

This means λ∗2 ≥ hωj (x
∗)−hωi (x

∗)

cωiωj
≥ λ∗max and hence λ∗2 = λ∗max, which shows part (ii). On the

other hand, if ωi ∈ ΩU (x
∗, λ∗2), from Lemma 3, {ωi} = A(ωi, λ

∗
2). Therefore we have hωi(x

∗) >

hωj (x
∗) − λ∗2cωiωj . This means λ∗2 >

hωj (x
∗)−hωi (x

∗)

cωiωj
≥ λ∗max, which forms a contradiction. This

shows part (iii).

Proposition 9. Consider the conditions of Proposition 8. Given λ∗1 ∈ Λ∗, for any ωi ∈ ΩU (x
∗, λ∗1),

all the following conditions hold:

(i) For any λ∗2 ∈ Λ∗ such that λ∗2 > λ∗1, ωi ∈ ΩU (x
∗, λ∗2);

(ii) If there exists a λ∗2 ∈ Λ∗ such that ωi ∈ ΩM (x∗, λ∗2), then λ
∗
2 = λ∗min;

(iii) For any λ∗2 ∈ Λ∗, ωi /∈ ΩN (x∗, λ∗2).

Proof. We only need to show parts (i) and (ii) because part (iii) is indicated by Proposition 8(iii).

(i) Since ωi ∈ ΩU (x
∗, λ∗1), by Lemma 3, {ωi} = A(ωi, λ

∗
1). This combined with λ∗2 > λ∗1 indicates

that hωi(x
∗) > hωj (x

∗) − λ∗1cωiωj > hωj (x
∗) − λ∗2cωiωj for any ωj ∈ Ω \ {ωi}. This means {ωi} =

A(ωi, λ
∗
2) and hence ωi ∈ ΩU (x

∗, λ∗2). (ii) From part (i), we know λ∗2 < λ∗1. When λ∗2 = 0,

then λ∗2 = λ∗min. Now let λ∗2 > 0. Since ωi ∈ ΩM (x∗, λ∗2), there exists a scenario ωj satisfying

hωi(x
∗) = hωj (x

∗) − λ∗2cωiωj and hωj (x
∗) > hωi(x

∗). This means
hωj (x

∗)−hωi (x
∗)

cωiωj
= λ∗2. Also, we

have {ωi} = A(ωi, λ
∗
1). This means there must exist an optimal (p∗,γ∗) at λ∗1 where γ∗ωiωi

> 0. By

Lemma 6,
hωj (x

∗)−hωi (x
∗)

cωiωj
≤ λ∗min must hold and therefore we have λ∗2 =

hωj (x
∗)−hωi (x

∗)

cωiωj
= λ∗min.

Proposition 10. Consider the conditions of Proposition 8. Given λ∗1 ∈ Λ∗ and the set ΩM (x∗, λ∗1),

all the following conditions hold:

(i) ΩM (x∗, λ∗1) = ∅ for any λ∗1 ∈
(
λ∗min, λ

∗
max

)
;

(ii) If scenario ωi ∈ ΩM (x∗, λ∗max), then ωi ∈ ΩN (x∗, λ∗1) for any λ∗1 ∈ Λ∗ \ {λ∗max};

(iii) If scenario ωi ∈ ΩM (x∗, λ∗min), then ωi ∈ ΩU (x
∗, λ∗1) for any λ∗1 ∈ Λ∗ \ {λ∗min}.

Proof. We only need to show part (i) because, given part (i), part (ii) is indicated by Propo-

sition 8(ii) and part (iii) is indicated by Proposition 9(ii). Let scenario ωi ∈ ΩM (x∗, λ∗1) for

some λ∗1. Since qωi > 0, there must exist an optimal (p∗,γ∗) at λ∗1 where either γ∗ωiωi
> 0 or

γ∗ωiωj
> 0 for some scenario ωj ∈ A(ωi, λ

∗
1) such that hωj (x

∗) > hωi(x
∗). If γ∗ωiωi

> 0, from

Lemma 6, we have
hωj (x

∗)−hωi (x
∗)

cωiωj
≤ λ∗min. On the other hand, if γ∗ωiωj

> 0, from Lemma 5, we have
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hωj (x
∗)−hωi (x

∗)

cωiωj
≥ λ∗max. Note that both γ∗ωiωi

> 0 and γ∗ωiωj
> 0 cannot happen simultaneously;

otherwise λ∗max ≤ λ∗min (but we have λ∗min < λ∗max). Also, since {ωi, ωj} ⊆ A(ωi, λ
∗
1), we have

hωi(x
∗) = hωj (x

∗) − λ∗1cωiωj , which means λ∗1 =
hωj (x

∗)−hωi (x
∗)

cωiωj
. Therefore, either λ∗1 = λ∗min or

λ∗1 = λ∗max must happen.

Table 1 summarizes the results of Propositions 8–10. Given Λ∗ = [λ∗min, λ
∗
max] and any λ∗mid ∈

(λ∗min, λ
∗
max), scenarios ωj ∈ ΩN (x∗, λ∗mid) must still belong to ΩN (x∗, λ∗) at any λ∗ ∈ Λ∗ \ {λ∗max}

including λ∗ = λ∗min. At λ∗max, these scenarios can either still belong to ΩN (x∗, λ∗max) or switch to

ΩM (x∗, λ∗max). On the other hand, scenarios ωj ∈ ΩU (x
∗, λ∗mid) must still belong to ΩU (x

∗, λ∗) at

any λ∗ ∈ Λ∗\{λ∗min} including λ∗ = λ∗max. At λ
∗
min, these scenarios can either belong to ΩU (x

∗, λ∗min)

or switch to ΩM (x∗, λ∗min). Finally, ΩM (x∗, λ∗mid) is always an empty set.

λ∗
min λ∗

mid ∈ (λ∗
min, λ

∗
max) λ∗

max

ΩN(x
∗, λ∗

min) ΩN(x
∗, λ∗

mid) ΩN(x
∗, λ∗

max)

ΩM(x∗, λ∗
min) ∅ ΩM(x∗, λ∗

max)

ΩU(x
∗, λ∗

min) ΩU(x
∗, λ∗

mid) ΩU(x
∗, λ∗

max)

Table 1: How categorization of a scenario into sets Ωc(x
∗, λ∗), c = N,M,U changes as λ∗ changes

(summary of Propositions 8–10).

4.4.2 Results at Smallest and Largest λ∗

Before we present the proofs of Theorems 1–2, we first show two additional results that form a bridge

between the conclusions for multiple λ∗ in Section 4.4.1 and those for a fixed λ∗ in Section 4.3,

focusing on λ∗max and λ∗min. Specifically, Proposition 11 shows that all scenarios belonging to

ΩN (x∗, λ∗) for some λ∗ ∈ Λ∗ \ {λ∗max} but switch to ΩM (x∗, λ∗) at λ∗ = λ∗max satisfy Proposition 6

at λ∗max. Similarly, Proposition 12 shows that any scenarios belonging to ΩU (x
∗, λ∗) for some

λ∗ ∈ Λ∗ \ {λ∗min} and switch to ΩM (x∗, λ∗) at λ∗ = λ∗min satisfy Proposition 7 at λ∗min.

Proposition 11. Let Λ∗ = [λ∗min, λ
∗
max] with 0 ≤ λ∗min < λ∗max be the set of the optimal dual

solutions to (3d) in the worst-case expected problem of DRO-W (3) at an optimal solution x∗ ∈ X .

All scenarios ωj such that ωj ∈ ΩN (x∗, λ∗) at all λ∗ ∈ [λ∗min, λ
∗
max) and ωj ∈ ΩM (x∗, λ∗) at

λ∗ = λ∗max satisfy the conditions of Proposition 6 and thus have p∗ωj
= 0 at λ∗max.

Proof. From Proposition 10(ii), all scenarios in ΩM (x∗, λ∗max) must belong to ΩN (x∗, λ∗) for λ∗min ≤
λ∗ < λ∗max. We first show at λ∗max, Proposition 6(i) must be satisfied. For the sake of contradiction,

suppose p∗ωj
> 0 at λ∗max for some ωj ∈ ΩM (x∗, λ∗max). Then, by (3b) and Lemma 1, there must

be a scenario ωi such that ωj ∈ A(ωi, λ
∗
max) and γ∗ωiωj

> 0 at λ∗max. Also, by Lemma 4, there

must be a scenario ωk ∈ ΩU (x
∗, λ∗max) satisfying ωk ∈ A(ωi, λ

∗
max) and hωk

(x∗) > hωj (x
∗). Also,

since {ωj , ωk} ⊆ A(ωi, λ
∗
max), we have hωk

(x∗) − λ∗maxcωiωk
= hωj (x

∗) − λ∗maxcωiωj , which means
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λ∗max =
hωk

(x∗)−hωj (x
∗)

cωiωk
−cωiωj

. Also, since γ∗ωiωj
> 0, by Lemma 6, we have

hωk
(x∗)−hωj (x

∗)

cωiωk
−cωiωj

≤ λ∗min. This

means λ∗min = λ∗max, which forms a contradiction to λ∗min < λ∗max. Following the same logic, for any

ωi ∈ ΩN (x∗, λ∗max) ∪ ΩM (x∗, λ∗max), if there exists {ωs, ωk} ⊆ A(ωi, λ
∗
max) with hωk

(x∗) > hωs(x
∗),

we must have γ∗ωiωs
= 0; otherwise we get λ∗min = λ∗max. This shows Proposition 6(ii) must also be

satisfied at λ∗max, and therefore p∗ωj
= 0 must happen.

Proposition 12. Let Λ∗ = [λ∗min, λ
∗
max] with 0 ≤ λ∗min < λ∗max be the set of the optimal dual

solutions to (3d) in the worst-case expected problem of DRO-W (3) at an optimal solution x∗ ∈ X .

All scenarios ωj such that ωj ∈ ΩU (x
∗, λ∗) at all λ∗ ∈ (λ∗min, λ

∗
max] and ωj ∈ ΩM (x∗, λ∗) at λ∗ = λ∗min

satisfy the conditions of Proposition 7 and thus have p∗ωj
> 0 at λ∗min.

Proof. Consider any λ∗ satisfying λ∗min < λ∗ < λ∗max. We first show that given any ωi ∈ ΩN (x∗, λ∗),

for any ωk ∈ A(ωi, λ
∗) and any ωs ∈ A(ωi, λ

∗
min), we must have hωs(x

∗) ≥ hωk
(x∗) and cωiωs ≥ cωiωk

.

Let ωu be one of the highest-cost scenarios in A(ωi, λ
∗). Since λ∗ > 0, cωiωu ≥ cωiωk

for any

ωk ∈ A(ωi, λ
∗). Then any scenario ωl such that hωl

(x∗) < hωu(x
∗) will not belong to A(ωi, λ

∗
min).

The reason is the following. First, if cωiωl
≥ cωiωu , we have hωl

(x∗) − λ∗mincωiωl
< hωu(x

∗) −
λ∗mincωiωu . So we have ωl /∈ A(ωi, λ

∗
min). Second, if cωiωl

< cωiωu , because ωu ∈ A(ωi, λ
∗), we have

hωl
(x∗) − λ∗cωiωl

≤ hωu(x
∗) − λ∗cωiωu . This indicates hωl

(x∗) − λ∗mincωiωl
< hωu(x

∗) − λ∗mincωiωu .

So again ωl /∈ A(ωi, λ
∗
min). Now instead consider any scenario ωl such that hωl

(x∗) ≥ hωu(x
∗).

Then, it is impossible to have hωl
(x∗) ≥ hωu(x

∗) but cωiωl
< cωiωu . Otherwise we have hωl

(x∗) −
λ∗cωiωl

> hωu(x
∗) − λ∗cωiωu and ωu /∈ A(ωi, λ

∗), which is a contradiction. In the remaining case

(i.e., hωl
(x∗) ≥ hωu(x

∗) and cωiωl
≥ cωiωu), we are not able to say if ωl ∈ A(ωi, λ

∗
min) hold but in

any case, for any ωs ∈ A(ωi, λ
∗
min), we must have hωs(x

∗) ≥ hωu(x
∗) and cωiωs ≥ cωiωu .

At λ∗, by Proposition 10(i), ΩM (x∗, λ∗) = ∅. Also, since λ∗max > λ∗ > 0, constraint (3d) holds

with equality. Therefore, constraint (3d) can be reformulated at λ∗ as ρ =
∑

ωi∈ΩN (x∗,λ∗)

∑
ωk∈A(ωi,λ∗)

cωiωk
γ∗ωiωk

. Then,

ρ =
∑

ωi∈ΩN (x∗,λ∗)

∑
ωk∈A(ωi,λ∗)

cωiωk
γ∗ωiωk

≤
∑

ωi∈ΩN (x∗,λ∗)

qωi · max
ωk∈A(ωi,λ∗)

cωiωk

=
∑

ωi∈ΩN (x∗,λ∗
min)

qωi · max
ωk∈A(ωi,λ∗)

cωiωk

≤
∑

ωi∈ΩN (x∗,λ∗
min)

qωi · min
ωk∈A(ωi,λ∗

min)
cωiωk

= ρr,

where the first inequality holds because
∑

ωk∈A(ωi,λ∗) γ
∗
ωiωk

= qωi (see (3c) and Lemma 1), the next

equality holds because ΩN (x∗, λ∗min) = ΩN (x∗, λ∗) for λ∗min < λ∗ < λ∗max (see Proposition 8(i)), and

the last inequality holds because of the earlier result shown in the proof.

This means ρr = ρ at λ∗min. Therefore, any scenario ωj ∈ ΩM (x∗, λ∗min) satisfies Proposition 7 be-

cause qωj > 0. Moreover, because ρr = ρ and constraint (3c) must be satisfied at ωj ∈ ΩM (x∗, λ∗min),

we have γ∗ωjωj
= qωj at λ∗min. This means p∗ωj

≥ q∗ωj
> 0 at λ∗min by constraint (3b).
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4.5 Proof of Main Results

We are now ready to present the proofs of Theorems 1 and 2.

Proof of Theorem 1. (i) Let c = minΩ\{ωj} cωjωi . Since ρ < cωjωiqωj for any ωi ∈ Ω \ {ωj} we

have ρ < cqωj . We now show p∗ωj
is always positive and so effective by Proposition 1. Suppose

not; i.e., there exists an optimal solution p∗ to (3) such that p∗ωj
= 0. Then, in this solution, we

have γ∗ωjωj
= 0 by (3b). Furthermore, by constraint (3c),

∑
ωi∈Ω\{ωj} γ

∗
ωjωi

= qωj . As a result,∑
ωi∈Ω\{ωj} cωjωiγ

∗
ωjωi

≥
∑

ωi∈Ω\{ωj} γ
∗
ωjωi

· c = c · qωj > ρ. This means (3d) is violated and results

in a contradiction.

(ii) When Λ∗ is a singleton, part (ii) is a direct result of Proposition 5 and Proposition 1.

Now we discuss the case when Λ∗ is not a singleton. At any λ̄∗ ∈ Λ∗, if ωj ∈ ΩU (x
∗, λ̄∗), from

Proposition 9, either ωj ∈ ΩU (x
∗, λ∗) for all λ∗ ∈ Λ∗, or ωj ∈ ΩU (x

∗, λ∗) for any λ∗ > λ∗min and

ωj ∈ ΩM (x∗, λ∗min). If ωj ∈ ΩU (x
∗, λ∗) for all λ∗ ∈ Λ∗, Proposition 5 shows p∗ωj

> 0 at every

λ∗ ∈ Λ∗, and hence ωj is effective by Proposition 1. If ωj ∈ ΩU (x
∗, λ∗) for any λ∗ > λ∗min and

ωj ∈ ΩM (x∗, λ∗min), Proposition 5 shows p∗ωj
> 0 at every λ∗ > λ∗min, while Proposition 12 shows

p∗ωj
> 0 at λ∗ = λ∗min. Therefore, ωj is effective by Proposition 1.

(iii) When Λ∗ is a singleton, part (iii) is a direct result of Proposition 7 and then Proposition 1.

Now we discuss the case when Λ∗ is not a singleton. By Propositions 10, 11 and 12, part (iii) can

only happen when λ∗ = λ∗min, where Proposition 7 shows p∗ωj
> 0. Also by Proposition 10(iii),

ωj ∈ ΩU (x
∗, λ∗) at any λ∗ > λ∗min and Proposition 5 shows p∗ωj

> 0 at every λ∗ > λ∗min. Therefore

ωj is effective by Proposition 1.

Proof of Theorem 2. (i) When Λ∗ is a singleton, part (i) is a direct result of Proposition 4 and

Proposition 2. Now we discuss the case when Λ∗ is not a singleton. At any λ̄∗ ∈ Λ∗, if ωj ∈
ΩN (x∗, λ̄∗), from Proposition 8, either ωj ∈ ΩN (x∗, λ∗) all any λ∗ ∈ Λ∗, or ωj ∈ ΩN (x∗, λ∗) for any

λ∗ < λ∗max and ωj ∈ ΩM (x∗, λ∗max). If ωj ∈ ΩN (x∗, λ∗) for all λ∗ ∈ Λ∗, Proposition 4 shows p∗ωj
= 0

at every λ∗ ∈ Λ∗ and hence ωj is effective by Proposition 2. If ωj ∈ ΩN (x∗, λ∗) for any λ∗ < λ∗max

and ωj ∈ ΩM (x∗, λ∗max), Proposition 4 shows p∗ωj
= 0 at every λ∗ < λ∗max, while Proposition 11

shows p∗ωj
= 0 at λ∗ = λ∗max. Therefore ωj is ineffective by Proposition 2.

(ii) When Λ∗ is a singleton, part (ii) is a direct result of Proposition 6 and Proposition 2.

Now we discuss the case when Λ∗ is not a singleton. By Propositions 10, 11 and 12, part (ii) can

only happen when λ∗ = λ∗max, where Proposition 6 shows p∗ωj
= 0. Also by Proposition 10(ii),

ωj ∈ ΩN (x∗, λ∗) at any λ∗ < λ∗max, and Proposition 4 shows p∗ωj
= 0 at every λ∗ < λ∗max. Therefore

ωj is ineffective by Proposition 2.

(iii) From the proof of (i)–(ii), all scenarios being identified as ineffective are identified by

Proposition 2. Therefore they are collectively ineffective by Proposition 2.
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4.6 Discussion

The above results imply that when Λ∗ is not a singleton set, i.e., when there are multiple optimal

λ∗, we can identify the effectiveness of all scenarios. By Proposition 10, ΩM (x∗, λ∗) is an empty set

for all λ∗ ∈ (λ∗min, λ
∗
max) and we only have ΩU (x

∗, λ∗) and ΩN (x∗, λ∗). These scenarios are effective

and ineffective, respectively by Theorem 1(ii) and Theorem 2(i). The scenarios that switch from

ΩN (x∗, λ∗) for λ∗ ∈ [λ∗min, λ
∗
max) to ΩM (x∗, λ∗) at λ∗ = λ∗max are fully captured by condition (ii) in

Theorem 2 (see Proposition 11) and hence remain ineffective. Similarly, scenarios that switch from

ΩU (x
∗, λ∗) for λ∗ ∈ (λ∗min, λ

∗
max] to ΩM (x∗, λ∗) at λ∗ = λ∗min are fully captured by condition (iii) in

Theorem 1 (see Proposition 12) and hence remain effective. We formalize this in Corollary 1.

Corollary 1. When Λ∗ is not a singleton, Theorems 1 and 2 identify the effectiveness of all

scenarios in Ω.

However, when Λ∗ is singleton, i.e., when there is a unique optimal λ∗ (which constitutes

majority of the cases), while the conditions in Theorem 1(iii) and Theorem 2(ii) help us identify

the effectiveness of some scenarios in ΩM (x∗, λ∗), they may not be able to identify all scenarios. In

our numerical results, these conditions perform quite successfully even in these cases.

Another case when the effectiveness of all scenarios can be identified by the proposed conditions

is whenever ΩM (x∗, λ∗) is an empty set, which may also happen when there is a unique λ∗ (in

addition to multiple optimal λ∗, e.g., at all λ∗mid ∈ (λ∗min, λ
∗
max)). Our numerical experiments show

that this case can occur occasionally. Before presenting the numerical experiments, we first compare

the results of this paper to those that were obtained for DRO-TV in [39].

5 Comparison between DRO-W and DRO-TV

Recall that when the transportation costs in DRO-W are defined as cωiωj = 1 if ωi ̸= ωj and 0

otherwise, DRO-W becomes equivalent to DRO-TV. In this section, we examine Theorems 1–2 with

this definition of transportation costs and show their equivalence to the easy-to-check conditions

proposed in [39] for DRO-TV. To begin, let us provide a brief overview of DRO-TV and revisit the

conditions proposed in [39].

5.1 Review of Effective Scenarios in DRO-TV

DRO-TV is formulated as the DRO problem (1) with the ambiguity set P defined as

PTV =

p :
∑
ωi∈Ω

1

2
|pωi − qωi | ≤ ρ,

∑
ωi∈Ω

pωi = 1,p ≥ 0

 . (7)

Above, the total variation distance between p and q,
∑

ωi∈Ω
1
2 |pωi − qωi |, is at most 1. Therefore,

the radius ρ typically has a value between 0 and 1. For any ρ ≥ 1, DRO-TV is equivalent to a
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traditional robust problem of minimizing the worst-case cost.

For a given x ∈ X , it is well known that the optimal value of the worst-case expected problem

of DRO-TV, i.e., f(x) in (1), is equivalent to a convex combination of supremum and Conditional

Value-at-Risk (CVaR) at level ρ taken with respect to the nominal distribution q [25]:

f(x) = ρ sup[h(x)] + (1− ρ)CVaRρ[h(x)],

where CVaRρ[h(x)] := infη

{
η + 1

1−ρE [(h(x)− η)+]
}

and (·)+ = max{0, ·}. By convention,

CVaR0[h(x)] = E [h(x)] =
∑

ωi∈Ω qωihωi(x) and CVaR1[h(x)] = sup[h(x)] = supωi∈Ω hωi(x). For

a fixed η ∈ R and a fixed x ∈ X , we define the cumulative distribution function of h(x) as

Ψ(x, η) :=
∑

{ωi:hωi (x)≤η} qωi . Also, given ζ ∈ [0, 1], let VaRζ [h(x)] denote the left-side ζ-quantile

of h(x), which is referred to as the Value-at-Risk (VaR) of h(x) at level ζ: VaRζ [h(x)] := inf{η :

Ψ(x, η) ≥ ζ} [43]. Again by convention, VaR0[h(x)] = −∞ and VaR1[h(x)] = sup[h(x)].

[39] defines the following sets that partition the scenario set Ω (while these sets are defined in

[39] for a given x ∈ X , we present them below for a given optimal solution of DRO-TV, x∗ ∈ X ):

• Ω1(x
∗) := {ω ∈ Ω : hω(x

∗) < VaRρ[h(x
∗)]}, i.e., the set of scenarios with costs strictly below

VaRρ[h(x
∗)];

• Ω2(x
∗) := {ω ∈ Ω : hω(x

∗) = VaRρ[h(x
∗)]}, i.e., the set of scenarios with costs at VaRρ[h(x

∗)];

• Ω3(x
∗) := {ω ∈ Ω : VaRρ[h(x

∗)] < hω(x
∗) < sup[h(x∗)]}, i.e., the set of scenarios with costs

strictly between VaRρ[h(x
∗)] and sup[h(x∗)];

• Ω4(x
∗) := {ω ∈ Ω : hω(x

∗) = sup[h(x∗)]}, i.e., the set of scenarios with highest costs at x∗.

At x∗, an optimal dual variable corresponding to the first constraint in (7) in the worst-case

expected problem of DRO-TV is given by [39]

λ∗TV = sup[h(x∗)]−VaRρ[h(x
∗)]. (8)

Note that λ∗TV corresponds to λ∗ in DRO-W, the dual of constraint (3d). As before, we suppress

the dependence of λ∗TV on x∗ for simplicity. When λ∗TV = 0, then sup[h(x∗)] = VaRρ[h(x
∗)] and

Ω2(x
∗) = Ω4(x

∗). In this case, we also have Ω3(x
∗) = ∅. Therefore, when λ∗TV = 0, we only have

the categories Ω1(x
∗) and Ω4(x

∗). Otherwise when λ∗TV > 0, we have all four possible categories:

Ω1(x
∗), Ω2(x

∗), Ω3(x
∗), and Ω4(x

∗).

Theorems 3–5 below restate the easy-to-check conditions categorizing effective and ineffective

scenarios in DRO-TV from [39], adapted to our setting.

Theorem 3 (Theorem 2 in [39] with q > 0). Suppose (x∗,p∗) solves DRO-TV, and let λ∗TV be

defined as in (8). When λ∗TV > 0, scenario ωj is effective if any the following conditions hold: (i)
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qωj > ρ, (ii) ωj ∈ Ω3(x
∗), (iii) Ω2(x

∗) = {ωj} and p∗ωj
> 0, or (iv) ωj ∈ Ω4(x

∗). When λ∗TV = 0,

scenario ωj is effective if condition (i) or (v) Ω4(x
∗) = {ωj} holds.

Theorem 4 (Theorem 1 in [39] with q > 0). Consider the notation defined for DRO-TV in The-

orem 3. Further, consider a scenario ωj with qωj ≤ ρ. When λ∗TV > 0, scenario ωj is ineffective

if any of the following conditions hold: (i) ωj ∈ Ω1(x
∗) or (ii) ωj ∈ Ω2(x

∗) and
∑

ω∈Ω2(x∗) p
∗
ωj

= 0.

When λ∗TV = 0, scenario ωj is ineffective if condition (i) holds.

Before presenting the next result, let us define some additional notation. For a set of scenarios

F ⊆ Ω, recall q(F) =
∑

ωi∈F qωi and now define ρF := ρ−q(F)
1−q(F) . Also, for fixed η ∈ R and fixed x∗ ∈

X , recall the cumulative distribution function of h(x∗), Ψ(x∗, η) =
∑

{ωi:hωi (x
∗)≤η} qωi , and now de-

fine ψ|Fc(x∗, η) as the conditional version of Ψ(x∗, η). That is, Ψ|Fc(x∗, η) :=
∑

ωi∈Fc∩{ω:hω(x∗)≤η} qωi|Fc ,

where qωi|Fc =
qωi

1−q(F) is the probability of scenario ωi conditioned on Fc. Finally, let inf{η :

Ψ|Fc(x∗, η) ≥ ρF} be the VaR of h(x∗) at level 0 ≤ ρF ≤ 1 conditioned on Fc, denoted by

VaRρF [h(x
∗)|Fc]. Note that if q(F) ≤ ρ ≤ 1, we have 0 ≤ ρF ≤ 1.

Theorem 5 (Theorem 3 in [39]). Consider the notation defined for DRO-TV in Theorem 3. Sup-

pose scenario ωj ∈ Ω2(x
∗) cannot be categorized by Theorem 3 or 4. Then, scenario ωj is effective

if both conditions hold: (i) VaRρF [h(x
∗)|Fc] < VaRρ[h(x

∗)] and (ii) either there exists a scenario

ωi satisfying VaRρF [h(x
∗)|Fc] < hωi(x

∗) < VaRρ[h(x
∗)] or Ψ|Fc

(
x∗,VaRρ[h(x

∗)]
)
> ρF .

5.2 Equivalence of Easy-to-Check Conditions

In this section, we show that the two sets of easy-to-check conditions—the ones proposed in Section

4.2 and the ones in [39] summarized in Section 5.1—are the same when DRO-W is constructed to

be equivalent to DRO-TV by the appropriate transportation costs cωiωj . We first discuss the case

when Λ∗ = {λ∗} is a singleton.

Unique optimal λ∗. In this case, the unique λ∗ of the equivalent DRO-W is equal to λ∗TV defined

in (8). In Lemma 7 below, we establish relationships between the two partitions of Ω under a unique

λ∗. Recall that we assume ρ > 0.

Lemma 7. Suppose the transportation costs in DRO-W are defined as cωiωj = 1 if ωi ̸= ωj, and

cωiωj = 0 otherwise. Let x∗ be an optimal solution of DRO-W (or, DRO-TV), and let λ∗ = λ∗TV

given in (8) be the unique optimal dual solution corresponding to (3d) (equivalently the first con-

straint in (7)) in the worst-case expected problem of DRO-W (or, DRO-TV). Recall the partitions of

Ω defined for DRO-W
(
ΩN (x∗, λ∗), ΩU (x

∗, λ∗), ΩM (x∗, λ∗)
)
and for DRO-TV

(
Ω1(x

∗)–Ω4(x
∗)
)
.

(i) When λ∗ = 0, Ω1(x
∗) = ΩN (x∗, λ∗). Furthermore, Ω4(x

∗) is a singleton if and only if

Ω4(x
∗) = ΩU (x

∗, λ∗), and in this case ΩM (x∗, λ∗) = ∅. Otherwise, if Ω4(x
∗) is not a single-

ton, then Ω4(x
∗) = ΩM (x∗, λ∗) and ΩU (x

∗, λ∗) = ∅.
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(ii) When λ∗ > 0, Ω1(x
∗) = ΩN (x∗, λ∗), Ω2(x

∗) = ΩM (x∗, λ∗), Ω3(x
∗) ∪ Ω4(x

∗) = ΩU (x
∗, λ∗). In

addition, for a scenario ωj ∈ Ω2(x
∗) ∪ Ω3(x

∗), we have M(ωj) = {ωj}, and for a scenario

ωj ∈ Ω4(x
∗), we have M(ωj) = Ω1(x

∗) ∪ Ω2(x
∗) ∪ {ωj}.

Proof. (i) When λ∗ = 0, we have VaRρ[h(x
∗)] = sup[h(x∗)]. Recall that in this case only Ω1(x

∗)

and Ω4(x
∗) exist. For any scenario ωi, A(ωi, λ

∗) can only contain scenarios in Ω4(x
∗) because

with λ∗ = 0, A(ωi, λ
∗) = argmaxω{hω(x∗)}. Therefore, Ω1(x

∗) = ΩN (x∗, λ∗). Now let us show if

Ω4(x
∗) = ΩU (x

∗, λ∗), then Ω4(x
∗) is a singleton; i.e., Ω4(x

∗) = {ωj} for some ωj ∈ Ω. For the sake

of contradiction, suppose Ω4(x
∗) = ΩU (x

∗, λ∗) but Ω4(x
∗) contains more than one scenario. Then

any scenario ωk ∈ Ω4(x
∗) with ωk ̸= ωj will also satisfy ωk ∈ A(ωi, λ

∗) for all ωi ∈ Ω. This means

ωk ∈ ΩM (x∗, λ∗), which is a contradiction to Ω4(x
∗) = ΩU (x

∗, λ∗). This also means when Ω4(x
∗)

is not a singleton, Ω4(x
∗) = ΩM (x∗, λ∗) and ΩU (x

∗, λ∗) = ∅. On the other hand, if Ω4(x
∗) = {ωj},

then {ωj} = argmaxω{hω(x)} and hence {ωj} = A(ωi, λ
∗) for all ωi ∈ Ω. Therefore, by definition,

Ω4(x
∗) = ΩU (x

∗, λ∗) and ΩM (x∗, λ∗) = ∅.

(ii) When λ∗ > 0, λ∗ = sup[h(x∗)] − VaRρ[h(x
∗)] > 0. Plugging in this value of λ∗ and

using the fact that cωiωj = 1 if ωi ̸= ωj and 0 otherwise, we obtain the following for A(ωi, λ
∗) =

argmaxω{hω(x∗) − λ∗cωiω}. If ωi ∈ Ω1(x
∗), then A(ωi, λ

∗) = Ω4(x
∗). If ωi ∈ Ω2(x

∗), then

A(ωi, λ
∗) = Ω4(x

∗) ∪ {ωi}. If ωi ∈ Ω3(x
∗), then A(ωi, λ

∗) = {ωi}, and finally if ωi ∈ Ω4(x
∗),

we again have A(ωi, λ
∗) = {ωi}. Therefore, based on these, we obtain ΩN (x∗, λ∗) = Ω1(x

∗),

ΩM (x∗, λ∗) = Ω2(x
∗) and ΩU (x

∗, λ∗) = Ω3(x
∗)∪Ω4(x

∗). The other statements can also be derived

similarly form the above.

We now formally present the equivalence of the two sets of easy-to-check conditions—Theorems

1–2 for DRO-W and Theorems 3–5 for DRO-TV—under a unique optimal λ∗.

Proposition 13. Consider the DRO-W setting as described in Lemma 7. Then,

(a) Theorem 3(i) is equivalent to Theorem 1(i);

(b) Theorem 3(ii), (iv), and (v) combined are equivalent to Theorem 1(ii);

(c) Theorem 4(i) is equivalent to Theorem 2(i);

(d) Theorem 4(ii) is equivalent to Theorem 2(ii);

(e) Theorem 3(iii) and Theorem 5 combined are equivalent to Theorem 1(iii).

Proof. Recall the notation q(F) :=
∑

ω∈F qω and p∗(F) :=
∑

ω∈F p
∗
ω for a given subset F ⊆ Ω.

We first show parts (a) to (d) by arguing that the conditions in their respective theorems are

equivalent. Part (a) holds because cωiωj = 1 if ωi ̸= ωj and cωiωj = 0 if ωi = ωj . Now we show part

(b) starting with λ∗ = 0 case. When λ∗ = 0 and Ω4(x
∗) = {ωj}, we must have {ωj} = ΩU (x

∗, λ∗)

by Lemma 7(i). On the other hand, when λ∗ > 0, by Lemma 7(ii), we have Ω3(x
∗) ∪ Ω4(x

∗) =

ΩU (x
∗, λ∗). For parts (c) and (d), note that Theorem 4 considers scenarios ωj with qωj ≤ ρ. We have
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shown in part (a) that the complement of this condition (qωj > ρ) is equivalent to Theorem 1(i).

Any scenario that satisfies the condition in 1(i) cannot satisfy the conditions in Theorem 2. This is

because if ωj ∈ ΩN (x∗, λ∗) or ωj ∈ ΩM (x∗, λ∗) and p∗(ΩM (x∗, λ∗)) = 0, then moving all probability

masses out of ωj will violate the constraint (3d). Therefore, we automatically only consider scenarios

with qωj ≤ ρ in Theorem 2. Then, part (c) is implied by Lemma 7 because Ω1(x
∗) = ΩN (x∗, λ∗)

always holds regardless λ∗ = 0 or λ∗ > 0. For part (d), we only need to consider λ∗ > 0. Since

in this case Ω2(x
∗) = ΩM (x∗, λ∗) by Lemma 7, condition (ii) in Theorem 4 is exactly the same

as the first condition of Theorem 2(ii). Also, for all ωj ∈ ΩN (x∗, λ∗), A(ωj , λ
∗) contains only

the highest-cost scenarios, which must be in ΩU (x
∗, λ∗) by Lemma 4. For all ωj ∈ ΩM (x∗, λ∗),

A(ωj , λ
∗) contains all the largest-cost scenarios and itself. Since p∗(ΩM (x∗, λ∗)) = 0, we have

γ∗ωiωj
= 0 for any ωi ∈ ΩN (x∗, λ∗)∪ΩM (x∗, λ∗) by constraint (3b). This means that at least one of

the three conditions in 2(ii) will automatically be satisfied for every ωi ∈ ΩN (x∗, λ∗) ∪ ΩM (x∗, λ∗)

in DRO-TV. This shows part (d).

Finally, let us show part (e). For this part, we only need to consider λ∗ > 0 or λ∗ = 0 and

Ω4(x
∗) is not a singleton. Otherwise, when λ∗ = 0 and Ω4(x

∗) = {ωj} is a singleton, by Lemma 7(i),

Ω4(x
∗) = ΩU (x

∗, λ∗). Recall Ω2(x
∗) = Ω4(x

∗) when λ∗ = 0. In this case, Theorem 3(v) and

Theorem 1(ii) identify ωj as an effective scenario, while Theorem 4(i) and Theorem 2(i) identify

all scenarios except ωj as ineffective scenarios. Now let us consider the case when λ∗ > 0 or the

case when λ∗ = 0 and Ω4(x
∗) is not a singleton. By Lemma 7, we have Ω2(x

∗) = ΩM (x∗, λ∗) when

λ∗ > 0 and Ω2(x
∗) = Ω4(x

∗) = ΩM (x∗, λ∗) when λ∗ = 0. Also, from Lemma 7, the transfer of

probability masses from Ω1(x
∗) to Ω4(x

∗) incurs positive transportation costs. Because cωiωj = 1

if ωi ̸= ωj , this transportation cost collectively equals q(Ω1(x
∗)). For the rest of the proof, let

us denote F = {ωj} ⊆ Ω2(x
∗) = ΩM (x∗, λ∗). We now show the conditions in Theorem 5 and

Theorem 1(iii) are identical by arguing that they imply each other. Suppose the condition in

Theorem 1(iii) holds. This condition is equivalent to ρ− q(Ω1(x
∗)) < qωj . This means q(Ω1(x∗))

1−qωj
>

ρ−qωj

1−qωj
= ρF . Thus, not all scenarios ωi ∈ Ω1(x

∗) have costs hωi(x
∗) below VaRρF [h(x

∗)|Fc]

in the assessment problem (cf. Proposition 5 in [39]). Therefore, by the definition of Ω1(x
∗)

we have VaRρF [h(x
∗)|Fc] < VaRρ[h(x

∗)]. Besides, if there does not exist a scenario ωi such

that VaRρF [h(x
∗)|Fc] < hωi(x

∗) < VaRρ[h(x
∗)] with positive nominal probability qωi > 0, we

have Ψ|Fc(x∗,VaRρ[h(x
∗)]) = q(Ω1(x∗))

1−qωj
>

ρ−qωj

1−qωj
= ρF . This shows that Theorem 1(iii) implies

Theorem 5. Now, suppose the conditions in Theorem 5 hold. When Theorem 5(i) holds and there

is not a scenario ωi satisfying VaRρF [h(x
∗)|Fc] < hωi(x

∗) < VaRρ[h(x
∗)] with positive nominal

probability qωi > 0, then Ψ|Fc(x∗,VaRρ[h(x
∗)]) = q(Ω1(x∗))

1−qωj
. Therefore, Ψ|Fc(x∗,VaRρ[h(x

∗)]) >

ρF means q(Ω1(x∗))
1−qωj

>
ρ−qωj

1−qωj
= ρF and hence ρ − q(Ω1(x

∗)) < qωj , which is the condition in

Theorem 1(iii). Alternatively, when Theorem 5(i) holds and there exists a scenario ωi satisfying

VaRρF [h(x)|Fc] < hωi(x
∗) < VaRρ[h(x

∗)] with qωi > 0, not all scenarios in Ω1(x
∗) are below

VaRρF [h(x)|Fc] in the assessment problem. Thus we have ρF =
ρ−qωj

1−qωj
< q(Ω1(x∗))

1−qωj
, which also
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implies ρ− q(Ω1(x
∗)) < qωj .

Finally, as a special case, when Ω2(x
∗) is a singleton and λ∗ > 0, we show that Theorem 3(iii)

and Theorem 1(iii) are identical by arguing that they imply each other. Suppose Theorem 3(iii)

holds; that is, {ωj} = Ω2(x
∗) and p∗ωj

> 0. Then, we must have ρ−q(Ω1(x
∗)) < qωj . Otherwise, any

solution to the worst-case expected problem, p1, satisfying p1ωj
= 0, p1(Ω4(x

∗)) = p1(Ω4(x
∗))+p∗ωj

,

and p1ω = p∗ω for the remaining scenarios ω ∈ Ω\(Ω4(x
∗)∪{ωj}) will be feasible and will give a better

objective function value, which is a contradiction to p∗ being the optimal worst-case distribution.

Now suppose Theorem 1(iii) holds with {ωj} = ΩM (x∗, λ∗) and ρ− q(Ω1(x
∗)) < qωj . Then by [39,

Proposition 4], we have p∗ωj
> 0.

The proof of Proposition 13 reveals that a scenario ωj satisfying the conditions of Theorem 3(iii)

will also satisfy the conditions of Theorem 5, but the reverse is not necessarily true. In DRO-TV,

Theorem 5 is invoked to identify the effectiveness of additional scenarios that are not captured

by Theorem 3(iii), whereas in DRO-W, Theorem 1(iii) identifies all such scenarios. That is why

condition (e) of Proposition 13 lists both Theorem 3(iii) and Theorem 5 jointly.

Multiple optimal λ∗. Let us now discuss when there are multiple optimal λ∗, i.e., Λ∗ =

[λ∗min, λ
∗
max] with 0 ≤ λ∗min < λ∗max. Then, the scenarios belonging to sets ΩN (x∗, λ∗), ΩU (x

∗, λ∗)

and ΩM (x∗, λ∗) can change sets at different values of λ∗, but the scenarios belonging to Ω1(x
∗)–

Ω4(x
∗) remain consistent. Therefore, Lemma 7 and Proposition 13 do not hold for all λ∗ ∈ Λ∗.

That said, the two sets of easy-to-check conditions are still equivalent. The key to this equivalence

is that, when there are multiple optimal λ∗, the specific λ∗TV given in (8) is in fact the largest

possible λ∗ at x∗; that is, λ∗TV = λ∗max. We formalize these below.

Proposition 14. Suppose the transportation costs in DRO-W are defined as cωiωj = 1 if ωi ̸= ωj,

and cωiωj = 0 otherwise. Let x∗ be an optimal solution of DRO-W (or, DRO-TV). Let Λ∗ =

[λ∗min, λ
∗
max] with 0 ≤ λ∗min < λ∗max be the set of optimal dual solutions corresponding to (3d)

(equivalently the first constraint in (7)) in the worst-case expected problem of DRO-W (or, DRO-

TV), and let λ∗TV be defined as in (8). Recall the partitions of Ω defined for DRO-W
(
ΩN (x∗, λ∗),

ΩU (x
∗, λ∗), ΩM (x∗, λ∗)

)
and for DRO-TV

(
Ω1(x

∗)–Ω4(x
∗)
)
. Then,

(a) p∗(Ω2(x
∗)) = 0 and λ∗max = λ∗TV = sup[h(x∗)]−VaRρ[h(x

∗)];

(b) Both Theorems 1–2 and Theorems 3–5 identify the effectiveness of all scenarios.

Proof. (a) We first show that for any λ̂ ∈ Λ∗, we have λ̂ ≤ sup[h(x∗)] − VaRρ[h(x
∗)]. Recall by

definition of VaRρ[h(x
∗)], we have ρ ≤

∑
ω∈Ω1(x∗)∪Ω2(x∗) qω. For the sake of contradiction, let λ̂ ∈ Λ∗

but suppose λ̂ > sup[h(x∗)]− VaRρ[h(x
∗)]. Then, we have ΩU (x

∗, λ̂) ⊇ Ω2(x
∗) ∪ Ω3(x

∗) ∪ Ω4(x
∗).

So, by Lemma 3 and Lemma 1, we must have γ∗ωjωj
= qωj for any ωj ∈ Ω2(x

∗) ∪ Ω3(x
∗) ∪ Ω4(x

∗).

This means the left-hand side of constraint (3d) is at most
∑

ωj∈Ω1(x∗) qωj < ρ. This in turn means
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constraint (3d) is not binding and by complementary slackness, λ̂ = 0, which is a contradiction.

Therefore, for any λ∗ ∈ Λ∗, λ∗ ≤ sup[h(x∗)]−VaRρ[h(x
∗)] must hold.

We now show ρ =
∑

ω∈Ω1(x∗)∪Ω2(x∗) qω when there are multiple optimal λ∗, i.e., when Λ∗ =

[λ∗min, λ
∗
max] with λ∗min < λ∗max. By [39, Proposition 4], this is equivalent to p∗(Ω2(x

∗)) = 0.

Suppose instead ρ <
∑

ω∈Ω1(x∗)∪Ω2(x∗) qω. Then, we must have γ∗ωjωj
> 0 for some ωj ∈ Ω2(x

∗).

If not, the total transportation cost spent will be more than
∑

ω∈Ω1(x∗)∪Ω2(x∗) qω, which violates

constraint (3d). Note that the sets Ω1(x
∗) and Ω2(x

∗) are not affected by the particular value of

λ∗. So, this must hold at all values of λ∗ ∈ Λ∗. Now, pick an arbitrary λ∗ ∈ Λ∗. By Lemma 1, we

must have ωj ∈ A(ωj , λ
∗) at that λ∗ ∈ Λ∗. This means λ∗ = sup[h(x∗)]−VaRρ[h(x

∗)]. Otherwise,

hωj (x
∗) < hωk

(x∗) − λ∗cωjωk
for some ωk ∈ Ω4(x

∗) and so ωj cannot be in A(ωj , λ
∗). So, our

arbitrarily chosen λ∗ ∈ Λ∗ uniquely equals sup[h(x∗)] − VaRρ[h(x
∗)], which is a contradiction to

λ∗min < λ∗max and a contradiction to this holding at all λ∗ ∈ Λ∗.

Since λ∗ ≤ sup[h(x∗)] − VaRρ[h(x
∗)], we only need to show sup[h(x∗)] − VaRρ[h(x

∗)] ∈
[λ∗min, λ

∗
max]. Let λ̄ = sup[h(x∗)] − VaRρ[h(x

∗)]. Then, ΩN (x∗, λ̄) = Ω1(x
∗), ΩM (x∗, λ̄) = Ω2(x

∗),

and ΩU (x
∗, λ̄) = Ω3(x

∗) ∪Ω4(x
∗). Let ωk be any scenario in Ω4(x

∗). The following characterizes a

primal and dual feasible solution to (3) at λ̄ with the same objective function value; hence show-

ing λ̄ is an optimal dual solution. For all ωj ∈ Ω1(x
∗), p∗ωj

= 0, γ∗ωjωk
= qωj , γ

∗
ωjω = 0 for any

ω ̸= ωk, γ
∗
ωωj

= 0 for all ω ∈ Ω, αωj = −hωj (x
∗), and βωj = hωk

(x∗) − λ̄. For all ωj ∈ Ω2(x
∗),

p∗ωj
= 0, γ∗ωjωk

= qωj , γ
∗
ωjω = 0 for any ω ̸= ωk, γ

∗
ωωj

= 0 for all ω ∈ Ω, αωj = −hωj (x
∗), and

βωj = hωk
(x∗)−λ̄. For all ωj ∈ Ω3(x

∗), p∗ωj
= qωj , γ

∗
ωjωj

= qωj , γ
∗
ωjω = 0 for any ω ̸= ωj , γ

∗
ωωj

= 0 for

any ω ̸= ωj , αωj = −hωj (x
∗), and βωj = hωj (x

∗). For all ωj ∈ Ω4(x
∗)\{ωk}, p∗ωj

= qωj , γ
∗
ωjωj

= qωj ,

γ∗ωjω = 0 for any ω ̸= ωj , γ
∗
ωωj

= 0 for any ω ̸= ωj , αωj = −hωj (x
∗), and βωj = hωj (x

∗). Finally,

p∗ωk
= qωk

+
∑

ω∈Ω1(x∗)∪Ω2(x∗) qω = qωk
+ ρ, γ∗ωkωk

= qωk
, γ∗ωkω

= 0 for any ω ̸= ωk, γ
∗
ωωk

= 0 for

any ω ̸= ωk, αωk
= −hωk

(x∗), and βωk
= hωk

(x∗). Given
∑

ω∈Ω1(x∗)∪Ω2(x∗) qω = ρ, the objective

function value of both primal and dual problems equal
∑

ωj∈Ω3(x∗) hωj (x
∗)+(ρ+ q(Ω4(x

∗))hωk
(x∗).

This means λ̄ = λ∗max.

(b) By (a), using a version of Lemma 7 and Proposition 13 at λ∗max = sup[h(x∗)]−VaRρ[h(x
∗)],

we can show the equivalence of Theorems 1–2 and 3–5 at λ∗max. Note that not all conditions will

be activated at λ∗max. By the results in Section 4.4, the effectiveness of any scenario identified by

Theorems 1–2 at λ∗max will be the same at all λ∗ ∈ Λ∗. Corollary 1 then concludes the proof.

Proposition 14 shows that when there are multiple optimal λ∗ in DRO-TV, the effectiveness of

all scenarios are identified and p∗(Ω2(x
∗)) = 0, further refining the results in [39] in this special

case. Specifically, under multiple optimal λ∗ and assuming qωj ≤ ρ for all ωj , Theorem 4(i)–(ii)

identify the scenarios in Ω1(x
∗) and Ω2(x

∗) as ineffective and Theorem 3(ii) and (iv) identify the

scenarios in Ω3(x
∗) and Ω4(x

∗) as effective. These conditions correspond to Theorem 2(i)–(ii) and

Theorem 1(ii) at λ∗max = λ∗TV in DRO-W. At different λ∗ ∈ Λ∗, alternate conditions in Theorems

1–2 can be activated, but in all cases, the effectiveness of all scenarios will be identified in the

multiple optima case.
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5.3 Results in DRO-TV that do not hold in DRO-W

Under DRO-TV, Theorem 5 of [39] shows that when we observe an effective scenario with zero

worst-case probability (i.e., p∗ω = 0) or an ineffective scenario with positive worst-case probability

(i.e., p∗ω > 0), there exist multiple optimal solutions to the worst-case expected problem at x∗ and

that there will be at least two scenarios ωi and ωj ̸= ωi having the same cost, i.e., hωi(x
∗) = hωj (x

∗).

While the existence of multiple optima is generally true (shown in Proposition 3 in Section 3), having

at least two scenarios with the same cost is not. In the following, we provide a counterexample

showing this part of Theorem 5 of [39] does not hold for DRO-W.

Example 1 (Part of Theorem 5 in [39] does not hold for DRO-W). Consider the worst-case

expected problem of DRO-W with |Ω| = 3 scenarios, where the random parameter corresponding to

each scenario ωi takes the values ξωi = i for i = 1, 2, 3. Suppose the transportation cost is given

by cωiωj = |ξωi − ξωj |, the nominal probabilities by q = (0.05 0.05 0.9), and the transportation

budget is set to ρ = 0.05. Further, suppose the cost functions are defined as hωi(x) = ξωi for all

ωi ∈ Ω and X = {x : 0 ≤ x ≤ 1}. Then, an optimal worst-case probability distribution is given

by p(∗,0) = (0.025 0.05 0.925), and all solutions x ∈ X are optimal. Scenario ω2 has a positive

probability in p(∗,0). However, by setting pω2 = 0 and solving the assessment problem for ω2, one

can show that scenario ω2 is ineffective. In fact, there exists an alternative worst-case distribution

p(∗,1) = (0.05 0 0.95). However, we do not have any scenarios with the same costs hωi(x
∗).

6 Numerical Results

We now present our computational experiments investigating the performance of easy-to-check

conditions, comparing DRO-W with DRO-TV, and seeking further insights. We begin by describing

the test problems and our computational setup.

6.1 Experimental Setup

To conduct computational experiments, we chose two problems from the literature, denoted 20TERM

and APL1P. 20TERM, described in [32], models a motor freight carrier’s operations. The first-stage

determines the positions of a fleet of vehicles at the beginning of a day, and the second-stage decides

the movement of the fleet through a network to satisfy point-to-point demands for shipments, with

penalties for unsatisfied demands. The second-stage decisions also need to end the day with a fleet

configuration matching the first-stage decisions. The problem has 40 stochastic parameters and

1.1 × 1012 scenarios. Because 20TERM has prohibitively many scenarios to be solved exactly, we

sampled 1000 scenarios via Latin Hypercube sampling method to generate a test case. ALP1P,

described in [24] and also used in [39], is a power capacity expansion problem. The first-stage

allocates capacities that must be installed on the generators, while the second stage decides on

the amount of additional capacities purchased to fulfill the unmet demands. The problem has 5
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stochastic parameters that signify demands and generator reliabilities and 1280 scenarios in total.

We chose APL1P to be able to compare the results with [39].

In our experiments, we utilized the L2-norm to quantify the transportation costs, i.e., cωiωj =

||ξωi − ξωj ||2 in DRO-W. It is important to emphasize that in the context of APL1P, where both

demand and generator availability are subject to uncertainty, we adopted a “scaled” L2-norm.

Because demand values are three orders of magnitude larger than generator availabilities for ALP1P,

we scaled the generator availabilities by 1000. This ensured that both the demand and generator

availability play an equally significant role in determining the transportation cost.

Both problems were solved on a 64-bit PC with Intel Xeon 2.60 GHz processor and 128GB

RAM. A variant of Benders’ decomposition was used to solve the DROs; we refer to Section A-2 of

the Appendix in [39] for details. We implemented the decomposition algorithm via C++ (Visual

Studio 2017) and CPLEX 12.8, using SUTIL [15] to read in the problems and generate samples.

The optimality threshold in the algorithm was set to 10−9. We also used the same tolerance, 10−9,

for our conditions to check the effectiveness of scenarios. For instance, any value less then 10−9 is

treated as zero. Also, if two values have an absolute difference less than 10−9, they are treated as

being equal.

6.2 Performance of Easy-to-Check Conditions

We first tested the performance of the proposed conditions in identifying the effectiveness of sce-

narios in DRO-W as the transportation budget ρ varies. The smallest value of ρ is set to zero,

which essentially turns DRO-W into a regular stochastic program that minimizes the expected cost

with respect to the nominal distribution. The largest value of ρ for each problem is obtained so

that at least 98% of scenarios become effective. Then, for each problem, 20 different values of ρ

are used (plus ρ = 0). Tables 2 and 3 present the number of scenarios in each category Ωc(x
∗, λ∗)

for c = N,M,U as well as the number of effective and ineffective scenarios being identified by our

conditions for APL1P and 20TERM instances, respectively. In all cases reported in Tables 2 and

3, we did not observe any multiple optimal λ∗ at the numerically obtained optimal solutions x∗.

The results reveal the following. First, the conditions successfully identify the effectiveness of

a large fraction of scenarios. For APL1P, only a small portion of the total number of scenarios

remain undetermined, and this portion can be higher for medium values of the transportation

budget ρ. At small values of ρ (e.g., ρ = 60, 120), scenarios in ΩM (x∗, λ∗) are classified as effective

by Theorem 1(iii). At ρ = 540 in Table 2, scenarios in ΩM (x∗, λ∗) are classified as ineffective by

Theorem 2(ii). Classifying the scenarios in ΩM (x∗, λ∗) appears to be more difficult for medium

values of ρ for APL1P. For 20TERM, there are no undetermined scenarios except when ρ = 45. At

this value of ρ, the problem is equivalent to minimizing the highest cost, and there are only two

scenarios that have the highest cost. The easy-to-check conditions cannot differentiate between

these two highest-cost scenarios without having to solve assessment problems. Otherwise, the

conditions work very well for 20TERM. We will further examine the differences between these two
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problems in Section 6.4.

Second, as the transportation budget (or, level of robustness) increases, the total number of

scenarios in ΩU (x
∗, λ∗) (consequently, the number of effective scenarios) decreases and the total

number of scenarios in ΩN (x∗, λ∗) (consequently, the number of ineffective scenarios) increases. The

problem becomes more robust and focuses more on the expensive scenarios as the budget ρ increases.

In addition, an optimal dual variable λ∗ obtained by the numerical method decreases. This dual

value quantifies the incremental improvement in the worst-case expectation for an additional unit

of budget (see (3d)), which tends to go down when there is a large budget. Consequently, a more

expensive scenario ωj becomes more likely to achieve ωj ∈ argmaxω{hω(x∗) − λ∗cωiω} for any ωi.

An extreme case of this observation is when λ∗ = 0, only the most expensive scenarios can be in

the set A(ωi, λ
∗) = argmaxω{hω(x∗)− λ∗cωiω} for any ωi (last row of Table 3).

Table 2: Number of scenarios in each category Ωc(x
∗, λ∗), c = N,M,U as well as number of

ineffective, effective, and undetermined scenarios in DRO-W using APL1P.
# of scenarios # of scenarios

ρ ΩU (x∗, λ∗) ΩN (x∗, λ∗) ΩM (x∗, λ∗) Effective Ineffective Undetermined
0 1276 0 4 1280 0 0
60 1221 58 1 1222 58 0
120 1156 122 2 1158 122 0
160 1116 164 0 1116 164 0
200 1082 190 8 1082 190 8
240 1062 215 3 1063 215 3
280 1022 256 2 1022 256 2
320 964 314 2 966 314 0
360 832 444 4 834 444 2
380 797 480 3 798 480 2
400 758 580 2 758 580 2
420 714 553 13 714 553 13
440 664 604 12 664 604 12
460 568 712 0 568 712 0
480 511 767 2 511 767 2
500 400 878 2 400 878 2
520 354 926 0 354 926 0
540 211 975 94 211 1069 0
560 182 1098 0 182 1098 0
580 81 1194 5 81 1194 5
600 20 1260 0 20 1260 0

6.3 Effectiveness versus Cost of Scenarios

We now analyze and compare the effectiveness of scenarios in DRO-W and DRO-TV by focusing on

the scenario costs. In DRO-TV, we use ρ = 0.8 for both problems and in DRO-W, we use ρ = 510

for APL1P and ρ = 35 for 20TERM. These values of ρ are chosen so that approximately 20% of

scenarios are effective in each case.

Figure 2 shows the effectiveness of scenarios categorized by our conditions as effective (1 in the

y-axis), ineffective (0 in the y-axis) or undetermined (2 in the y-axis) with respect to their sorted

costs (x-axis). Figures 2(a) and 2(b) depict the results for DRO-TV, while Figures 2(c) and 2(d)

illustrate them for DRO-W. The left graphs ((a) and (c)) show the results for APL1P, and the
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Table 3: Number of ineffective, effective, and undetermined scenarios in DRO-W using 20TERM.
# of scenarios # of scenarios

ρ ΩU (x∗, λ∗) ΩN (x∗, λ∗) ΩM (x∗, λ∗) Effective Ineffective Undetermined
0 999 0 1 1000 0 0
2 954 45 1 955 45 0
4 909 90 1 910 90 0
6 867 132 1 868 132 0
8 824 175 1 825 175 0
10 780 219 1 781 219 0
12 735 264 1 736 264 0
14 692 307 1 693 307 0
16 647 352 1 648 352 0
18 602 397 1 603 397 0
20 558 441 1 559 441 0
22.5 502 497 1 503 497 0
25 446 553 1 447 553 0
27.5 390 609 1 391 609 0
30 334 665 1 335 665 0
32.5 276 723 1 277 723 0
35 219 780 1 220 780 0
37.5 157 841 2 159 841 0
40 91 907 1 92 907 0
42.5 27 973 0 27 973 0
45 0 998 2 0 998 2

right graphs ((b) and (d)) for 20TERM. Note that the effectiveness of the undetermined scenarios

can be checked by solving the assessment problems. However, we label them as undetermined in

Figure 2 to illustrate the performance of our conditions.

In DRO-TV, effectiveness of scenarios is directly related to their costs. All scenarios with

costs below VaRρ[h(x
∗)] are ineffective and almost all scenarios with costs above this threshold are

effective. Scenarios whose costs equal VaRρ[h(x
∗)] can be either effective or ineffective, and some

of them cannot be categorized by our conditions; see Figures 2(a) and 2(b). The same is true for

scenarios whose costs are equal to sup[h(x∗)] under some cases (when λ∗TV = 0 and Ω4(x
∗) is not

a singleton; see Theorem 3(v)). While such a case is not present in Figure 2, see the last row of

Table 3 and note that at ρ = 45, DRO-W is equivalent to DRO-TV with ρ ≥ 1.

DRO-W has a different behavior than DRO-TV. Cost alone cannot determine the effectiveness

of a scenario in DRO-W. However, it can provide some indication. For example, in Figure 2(d),

scenarios of 20TERM with low costs tend to be ineffective and scenarios with high costs tend to

be effective. However, scenarios whose costs are in the middle (2–2.1× 105) can either be effective

or ineffective. This is more pronounced in APL1P, where only the very low-cost scenarios are

ineffective and only the very high-cost scenarios are effective. Figure 2(c) shows there is a relatively

large region where the cost of a scenario cannot indicate its effectiveness. We will examine this in

more detail in the next section.

We end this section with a remark that in Figure 2(a), costs of scenarios are concentrated

around specific points at this optimal solution x∗. However, this does not mean the costs within

a small neighborhood are the same. Their costs still exhibit some variation, with the differences

between them not significant enough to be visually seen in the plot. For example, around the cost of
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3.3×104, there are scenarios labeled as effective, ineffective, and undetermined. These scenarios do

not necessarily have the same cost. For instance, the ones labeled as effective are more expensive

than the ones labeled undetermined (among which the costs are the same since they are all at

VaRρ[h(x
∗)]).

(a) APL1P, DRO-TV, ρ = 0.8. (b) 20TERM, DRO-TV, ρ = 0.8.

(c) APL1P, DRO-W, ρ = 510. (d) 20TERM, DRO-W, ρ = 35.

Figure 2: Sorted costs of scenarios (x-axis) versus categorized effectiveness of scenarios (y-axis). The y-axis
in each plot stands for 0: Ineffective, 1: Effective, 2: Undetermined. Left figures show results for APL1P
and right figures for 1000-sample 20TERM.

6.4 Characteristics of Effective Scenarios and Worst-Case Distributions

We now dive deeper into DRO-W’s varying behavior in APL1P versus 20TERM. We keep the same

experimental setup as in Section 6.3 and first investigate the worst-case distributions. Figures

3(a) and 3(b) (top row) depict the nominal distributions, and Figures 3(c) and 3(d) (middle row)

illustrate the worst-case distributions for the two problems. Observe that the y-axis of Figure 3(d)

is scaled to show the worst-case probability of other scenarios, but the worst-case probability of

the highest-cost scenario is 0.8. The last row of Figure 3 repeats the last row of Figure 2 for an

easy comparison. Left figures show the results for APL1P, the right figures for 20TERM, and the

x-axes of all graphs provide the sorted costs of scenarios.

By directing our attention to the worst-case distribution (middle row), we notice that in APL1P,

a small number of scenarios experience a substantial inflow of probability mass. In contrast, in

20TERM, only the scenario with the highest cost encounters a probability mass inflow. When

examining effective and ineffective scenarios, we note that in APL1P, the correlation between a

scenario’s effectiveness and its cost is considerably weaker compared to 20TERM.

To gain insight into this behavior, let us examine the transportation costs between distinct sce-

narios cωiωj whenever ωi ̸= ωj (recall cωiωi is always zero for all ωi). Figure 4 depicts the distribution

of these transportation costs, which reveals that the variation in these costs to be considerably lower
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(a) APL1P, nominal distribution. (b) 20TERM, nominal distribution.

(c) APL1P, worst-case distribution. (d) 20TERM, worst-case distribu-
tion (prob. of highest-cost scen. is 0.8.)

(e) APL1P, effectiveness of scenarios. (f) 20TERM, effectiveness of scenar-
ios.

Figure 3: Sorted cost of scenarios (x-axis) vs. top row: nominal distributions, middle row: worst-case
distributions, and bottom row: effective/ineffective scenarios in DRO-W (y-axis). Left figures show results
for APL1P and right figures for 1000-sample 20TERM.

(a) APL1P (b) 20TERM

Figure 4: Distribution of transportation costs between distinct scenarios in (a) APL1P and (b) 1000-sample
20TERM.
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in 20TERM compared to APL1P. In fact, the average transportation cost between distinct pairs

of scenarios for 20TERM is 44.40 while the standard deviation is 3.56. On the other hand, APL1P

has an average transportation cost of 756.71 with a 312.2 standard deviation—a much higher value

relative to its mean. As a point of comparison, in DRO-TV, transportation costs between distinct

scenarios is always 1, and hence have a mean of 1 with 0 standard deviation.

In 20TERM, since the transportation costs between scenarios are similar, the worst-case ex-

pected problem of DRO-W tends to transport the probability mass to the highest-cost scenarios.

Also, the ineffective scenarios are more likely to be the ones with lower costs. This results in

DRO-W behaving similarly to DRO-TV, where mainly the highest-cost scenarios will have inflow

probability mass (see [39] for details); also compare Figures 2(b) and 2(d). On the other hand, in

APL1P, where the variance of the distances between distinct scenarios is more significant, multiple

scenarios have relatively large probability mass inflows. Moreover, those scenarios do not necessar-

ily have the highest costs. This is because the worst-case expected problem of DRO-W tends to

transport the probability mass to a high-cost scenario nearby (i.e., using less transportation cost).

These results imply that the specific transportation cost used and how that transportation cost

is distributed among different scenarios have an impact on the worst-case distribution and hence

the effectiveness of scenarios in DRO-W.

7 Conclusion and Future Research

This paper studied effective scenarios in DROs formed via distance-based ambiguity sets, and it

significantly expanded the results in [39] in several directions. First, for general distance-based

ambiguity sets on a finite support, it streamlined and generalized the analysis by showing that the

worst-case probability of a scenario being uniquely zero or always positive is sufficient to deter-

mine whether that scenario is ineffective or effective, respectively. Then, it provided easy-to-check

sufficient conditions for identifying the effectiveness of scenarios in DRO-W. The earlier results for

DRO-TV became a special case of the conditions presented in this paper. Furthermore, in several

cases (e.g., when the dual variable corresponding to the transportation budget has multiple op-

tima), the paper established that the proposed easy-to-check conditions identify the effectiveness of

all scenarios in DRO-W. Numerical results reveal that these conditions work well and can identify

a large portion of scenarios in the tested problems. In addition, the experiments imply that when

the cost of transporting probability mass to a different scenario is relatively uniform (i.e., when the

transportation costs between distinct scenarios have relatively lower variance), DRO-W appears to

behave similar to DRO-TV. Otherwise, there could be a large range of scenarios whose costs cannot

provide a good indication of their effectiveness.

This paper focused on fundamental properties of effective scenarios for general distance-based

ambiguity sets and also easy-to-check conditions for DRO-W in a post-optimality fashion. This

analysis forms the basis of their use for computational purposes, which merit future work. These

include (i) problem-specific scenario reduction for DRO-W [e.g., 2], (ii) computation of efficient
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bounds [e.g., 6, 14], (iii) estimation of effective scenarios using machine learning (e.g., classification)

methods, and (iv) devising algorithms to solve DROs that focus on effective scenarios for compu-

tational speedups [e.g., 52]. Future research also includes utilizing the general results presented in

Section 3 to study effective scenarios in DROs formed with other ambiguity sets. Finally, extending

such general results to continuous distributions, including more general settings of DRO-W, and

for multistage DROs [e.g., 38] also constitute valuable future research directions.
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