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Abstract—This paper introduces an optimization 

technique for scenario modeling in uncertain business 

situations, termed the Gradient-Driven Solution Based on 

Indifference Analysis (GIA). GIA evolves the conventional 

methods of scenario planning by applying a reverse-

strategy approach, where future financial goals are 

specified, and the path to attain these targets are 

engineered backward. It adopts economic concepts to 

construct gain indifference curves and loss indifference 

lines, which aid in making strategic decisions and refining 

financial plans. This method employs gain and loss 

gradients to assess and improve the efficiency of decision-

making processes. The GIA algorithm’s effectiveness has 

been confirmed through its application in a real-world 

project, where it adeptly navigated the intricacies of 

scenario modeling by proposing variable adjustments that 

streamline efforts and curtail losses. The outcomes reveal 

that GIA not only addresses scenario modeling challenges 

but also augments existing financial plans. 

Keywords—Scenario Modelling, Optimization, 

Consumer Theory, Gradient-Driven Solution Based on 

Indifference Analysis (GIA) 

 

I. INTRODUCTION 

In today’s rapidly evolving business landscape, 

organizations encounter increasing uncertainties, highlighting 

the need for robust strategic planning tools. Scenario 

modelling has emerged as a key strategy, enabling companies 

to probe and prepare for a range of potential future scenarios, 

thereby enhancing their strategic decision-making and 

adaptability [1, 2]. This approach has become widely 

acknowledged and adopted across various business sectors [3]. 

While conventional scenario modelling has been 

instrumental in providing a forward-looking view, facilitating 

“what if” analyses and sensitivity assessments [4-17], it falls 

short in exploring scenarios from a reverse standpoint. The 

focus of this paper, the “inverse” scenario modelling, adopts a 

novel approach. Rather than merely forecasting future 

outcomes from present-day actions, it enables organizations to 

set a desired future state or objective and retrospectively 

determine the optimal path and actions to attain that goal. This 

method is especially pertinent to financial planning 

optimization, where firms establish specific financial 

objectives and seek a strategic and operational route to reach 

these goals. 

There exists a rich corpus of research on optimization 

issues in diverse sectors [18, 19], with significant attention to 

optimization within trading and investment contexts [20-25]. 

However, the particular challenges of applying scenario 

modelling to business operations, especially from an inverse 

perspective, have not been extensively examined. The 

Gradient-Driven Solution Based on Indifference Analysis 

(GIA) methodology introduced in this paper aims to address 

the issue, providing a structured and quantitatively rigorous 

framework that not only enables the envisioning of various 

future scenarios but also delineates the most effective 

strategies to achieve predetermined financial objectives. 

The GIA methodology synthesizes classical scenario 

modelling with economic theory, particularly adopting the 

economic constructs of utility indifference curves and budget 

lines in consumer theory [32-35], to tackle optimization 

challenges in business. The method introduces gain 

indifference curves and loss indifference lines into strategic 

business planning, allowing for the comparison of various 

strategy combinations that yield equivalent financial results or 

costs, thus aiding in the optimization of strategic planning and 

operational efficiency. 

Utilizing these concepts, The GIA approach presents a 

framework that not only visualizes the problem but also 

addresses it through a systematic and sequential process, 

utilizing the concepts of gain and loss gradients for effective 

resolution. It allows companies to strategically navigate 

towards their future financial aspirations, providing a refined 

tool for scenario planning that aligns business strategies with 
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financial and operational objectives, thereby improving 

decision-making in complex business situations. 

Beyond addressing scenario modelling challenges, the 

GIA method offers a means to refine existing financial plans. 

It enhances efficiency by identifying areas where effort can be 

reorganized, achieving equivalent financial targets with less 

exertion. This is accomplished by intelligently reallocating 

attention to modifiable variables, optimizing their impact on 

the overall plan. 

Furthermore, GIA has proven to be an effective tool 

beyond theoretical applications, as it has been successfully 

implemented in a real-world project. This practical application 

underscores GIA’s utility in navigating and optimizing 

complex scenario modelling challenges in actual business 

environments, demonstrating its potential to enhance existing 

financial plans and strategic decision-making processes. 

This paper is organized as follows. Section 2 presents an 

example to elaborate the scenario modelling problem. Section 

3 delves into the GIA methodology, presenting its underlying 

theory and outlining the detailed steps of the implementation 

process. Section 4 evaluates the effectiveness of the GIA 

methodology in solving scenario modelling issues and 

improving existing financial plans, using both a hypothetical 

scenario and a practical real-world application. Section 5 

concludes the paper, summarizing the findings and suggesting 

avenues for future research. 

 

II. PROBLEM STATEMENT 

This section delineates the scenario modeling problem by 

elucidating relevant concepts via a hypothetical example, 

thereby establishing a foundational understanding necessary 

for comprehending the subsequent discussions. 

 

A. Baseline 

The initial phase of the scenario modelling problem is 

established through a baseline, which is essentially a forecast 

encompassing predictions regarding the quantities and prices 

of a product portfolio over forthcoming periods, with revenues 

being the product of these quantities and prices. 

Notably, the sales are subscription based, hence the 

quantities and prices carry over from one period to the next, 

adding the complexity of the problem. 

Tab 1 exemplifies a hypothetical baseline forecast, 

extending over the upcoming three months, with Month 1 

delineated in Columns C-E, Month 2 in Columns G-I, and 

Month 3 in Columns K-M. The ensuing discourse will 

concentrate on Month 1 to elucidate the example. 

 

 

Tab 1: A hypothetical example of the baseline 

 

 

Tab 2: Baseline formulas 
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This forecast incorporates projections for two products, 

designated as Product A and Product B, and includes their 

combined predictions. Structurally, the forecast is segmented 

into three distinct categories for each month: quantities are 

detailed in Rows 4-6, prices in Rows 8-10, and revenues in 

Rows 12-14, providing a comprehensive view of the 

forecasted financial landscape for each product. 

In the quantity segment, delineated within Rows 4-6, 

subscription data for each product is presented across three 

columns for each month. These columns chronicle the number 

of subscribers at the start of the month (Column C), the 

increment in subscribers during the month (Column D), and 

the total subscriber count at the month’s end (Column E). 

Similarly, the price segment, outlined in Rows 8-10, 

employs three columns to capture the pricing dynamics: the 

average monthly subscription rate at the beginning of the 

month (Column C), the average rate for new subscribers added 

within the month (Column D), and an aggregated average rate 

for all subscribers, both existing and new, for the entire month 

(Column E). 

Parallel to this, the revenue segment, captured in Rows 12-

14, uses three columns to reflect financial outcomes: the 

revenue from subscribers at the start of the month (Column C), 

revenue derived from new subscribers during the month 

(Column D), and the total revenue accrued from all 

subscribers by the month’s conclusion (Column E). 

It is imperative to highlight that within Tab 1, certain 

values are projections derived directly from the established 

forecast. These values, totalling 12, are marked with a green 

highlight within the table, for example, the projected number 

of new subscribers in Cell D4. Such values are amenable to 

modifications within the scenario modelling context, thereby 

classifying them as decision variables. 

Conversely, other values within Tab 1 are outcomes of 

static formulas that encapsulate specific business rules, as 

expounded in Tab 2. A case in point is the formula in Cell 

D12, represented as “=D4*D8.” This formula demonstrates 

that the revenue for Product A in Month 1 (D12) is determined 

by multiplying the number of new subscribers (D4) by the 

average subscription rate for these new subscribers (D8). 

These resultant values, being products of predefined formulas, 

are not subject to direct alterations within the scenario 

modelling framework. 

It is essential to recognize that the scenario presented in 

Tab 1 serves as a simplified illustration. Actual business 

contexts might exhibit greater complexity, potentially 

involving an expanded array of products, a more extensive 

assortment of items within each month, and additional 

forecasting periods. Despite these complexities, the 

fundamental approach to handling these scenarios remains 

consistent with the methodology demonstrated in the given 

example. 

 

B. Objective variable 

Within the framework of the baseline forecast, the goal of 

the scenario modelling is to empower the user to identify a 

specific variable and designate a target value for it, diverging 

from the baseline figure. For instance, if the forecasted total 

revenue over three months is $50,470, as noted in cell O14 of 

Tab 1 highlighted in orange, a user might aspire to surpass this 

figure. Consequently, in this context, the three-month total 

revenue becomes the objective variable, around which the 

scenario modelling is cantered. 

 

C. Objective 

The objective within the scenario modelling framework is 

defined as the target value that the user aims to achieve. In the 

context provided, the user’s goal is to attain a total revenue of 

$51,470 over three months, representing an increase of $1,000 

from the baseline figure of $50,470. Thus, the specified target 

of $51,470 becomes the focal point or the objective of the 

scenario modelling exercise. 

 

D. Decision variables 

To attain the specified objective, it is necessary to adjust 

the values that were initially forecasted in the baseline. These 

adjustable values are termed decision variables. In the 

provided example, the 12 values marked in green in Tab 1, 

which are direct predictions from the baseline, qualify as 

decision variables. Altering these decision variables will 

consequently lead to modifications in other values within the 

table, due to the interconnected formulas, thereby enabling the 

achievement of the desired objective. Hence, these decision 

variables serve as the pivotal elements or the solutions within 

the scenario modelling framework. 

 

E. Implicit objective 

Given the scenario with one objective variable and 12 

decision variables, the relationship can be encapsulated in the 

following mathematical function: 

𝑓(𝑄𝐴1, 𝑄𝐴2, 𝑄𝐴3, 𝑄𝐵1, 𝑄𝐵2, 𝑄𝐵3, 𝑃𝐴1, 𝑃𝐴2, 𝑃𝐴3, 𝑃𝐵1, 𝑃𝐵2, 𝑃𝐵3) = 𝑅 (1) 

where 

QA1, QA2, QA3, QB1, QB2, QB3, PA1, PA2, PA3, PB1, 

PB2, PB3 are the 12 decision variables that can be adjusted. 

For example, QA1 denotes the quantity, specifically the 

number of additional subscribers for Product A in Month 1, as 
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shown in Cell D4 of Tab 1. Similarly, PA1 represents the 

price, specifically the rate for additional subscribers of 

Product A in Month 1, indicated in Cell D8 of Tab 1; 

R is the objective variable, which in this case is the total 

revenue over three months, recorded in Cell O14 of Tab 1; 

f is the function that transforms the input decision 

variables into the output R, embodying the underlying 

business rules governing the scenario. 

From (1), the followings can be deduced: 

 𝑑𝑓 = 12 (2) 

 𝑛𝑐 = 1 (3) 

where 

df is the degree of freedom within the problem, 

corresponding to the quantity of decision variables, which in 

this context is 12. 

nc is the number of constraints within the problem, 

equating to the count of objectives, which is 1 in this case. 

From (2) and (3), it can be derived that 

 𝑑𝑓 ≫ 𝑛𝑐  

This indicates a significantly higher degree of freedom 

compared to the number of constraints. Consequently, it leads 

to a scenario where potentially infinite solutions exist. By 

altering any combination of the 12 decision variables, one can 

achieve myriad outcomes, all satisfying the objective for the 

total revenue over three months. 

Nonetheless, it is critical to acknowledge that not all 

solutions hold equal value or feasibility. Certain solutions, 

particularly those involving balanced adjustments across 

several decision variables, may be more advantageous or 

practical than others that propose drastic changes to a single 

variable. This introduces an implicit objective in scenario 

modelling: to sift through the possible solutions and identify 

the most optimal or “preferred” one based on certain criteria. 

 

III. METHODOLOGY 

The scenario modelling problem under discussion is 

fundamentally a mathematical optimization challenge, where 

the objective is to identify optimal values for decision 

variables that maximize or minimize a given function. This 

process involves systematically selecting inputs for the 

decision variables from a permissible range and computing the 

function’s value to satisfy the specified objective [26, 27]. 

While there exists a plethora of methodologies to address 

optimization problems [28-31], and a variety of mature 

computational tools available in programming languages and 

spreadsheet applications, a gap is identified for the specific 

scenario modelling challenge at hand. This gap is particularly 

pronounced when addressing problems characterized by loss 

gradient functions that adopt a format of progressively 

increasing segmented linear functions, which will be detailed 

in the ensuing sections. The prevailing solutions in this 

context are observed to be either excessively slow, prone to 

instability, or exhibit convergence issues, indicating the 

necessity for a novel solution. 

To address this nuanced challenge, this paper introduces 

an innovative approach by integrating a concept from 

economics, resulting in the development of the Gradient-

Driven Solution Based on Indifference Analysis (GIA). This 

methodology is specifically tailored for the scenario modelling 

optimization problem, aiming to offer a more efficient, stable, 

and convergent solution compared to existing methods. 

 

A. Inspiration from the economics theory 

Note: the following review and figures of the economics 

concepts in this section are referenced from 

https://www.economicshelp.org/blog/glossary/indifference-

curves/ with slight modifications by the paper. 

In economics, consumer theory is a pivotal concept that 

elucidates the decision-making processes of rational 

consumers, who make choices based on the utility derived 

from goods or services [32]. This theory posits that a 

consumer's decision point is located at the tangency between a 

utility indifference curve and a budget constraint [33-35]. 

A utility indifference curve represents all combinations of 

two goods that provide the same level of utility to the 

consumer, illustrating a state of indifference between different 

bundles of goods. Fig 1 exemplifies such a curve, showcasing 

the trade-off between two goods, apples and bananas, where 

the curve’s convexity reflects diminishing marginal utility. 

 

 
Fig 1: Utility indifference curve. It represents all combinations of two 

goods that provide the same level of utility to the consumer. 

 

Fig 2 presents a utility indifference curve map, illustrating 

various indifference curves, each denoting a different level of 

utility. For instance, all points on curve I2 yield identical 

https://www.economicshelp.org/blog/glossary/indifference-curves/
https://www.economicshelp.org/blog/glossary/indifference-curves/
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utility, which is superior to that of I1 and inferior to I4, with I4 

representing the highest utility. 

 

 
Fig 2: Utility indifference curve map. It illustrates various utility 

indifference curves, each denoting a different level of utility. 

 

The budget line, as depicted in Fig 3, illustrates all 

possible combinations of two goods that a consumer can 

purchase within the confines of their budget. For example, 

with a budget of £40, and given the prices of apples and 

bananas, the line delineates all purchasable combinations of 

these fruits. 

 

 
Fig 3: Budget line. It illustrates all possible combinations of two 

goods that a consumer can purchase within the confines of their 

budget. 

 

Fig 4 visualizes the optimal consumption choice, where 

the consumer achieves maximum utility at the point where the 

highest attainable indifference curve is tangent to the budget 

line, indicating the most preferred combination of goods 

within budgetary limits. 

 

 
Fig 4: Optimal consumption choice. The consumer achieves 

maximum utility at the point where the highest attainable 

indifference curve is tangent to the budget line. 

 

Furthermore, Fig 5 introduces an income-consumption 

curve, indicating how a consumer’s optimal choice of goods 

evolves with increasing income, allowing them to reach higher 

utility levels as depicted by the upward and rightward shift 

along the curve in blue colour. 

 

 
Fig 5: Income-consumption curve. It indicates how a consumer’s 

optimal choice of goods evolves with increasing income, allowing 

them to reach higher utility levels as depicted by the upward and 

rightward shift along the curve in blue colour. 

 

By leveraging these foundational concepts from consumer 

theory, this paper adapts a similar analytical framework to 

address the scenario modelling problem, introducing 

analogous concepts that will be detailed in subsequent sections 

to construct a comprehensive solution methodology. 

 

B. Gain indifference curve 

Drawing on the economic principle of the utility 

indifference curve, this paper proposes the analogous concept 

of a gain indifference curve, exemplified in Fig 6. At any 

point on this curve, the interplay between the price and 

quantity of a product yields a consistent revenue level, thereby 
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delineating the trade-off between these two variables in the 

context of revenue generation. 

 

 
Fig 6: Gain indifference curve. On this curve, the relationship 

between a product’s price and quantity consistently results in a stable 

revenue outcome. 

 

Characteristically, the gain indifference curve is convex, 

taking on a hyperbolic shape, a reflection of the constancy in 

the product of price and quantity along the curve’s trajectory. 

In Fig 7, a map of multiple gain indifference curves is 

presented. Each curve, such as I2, signifies a series of price-

quantity combinations that culminate in identical revenue 

figures, with revenue levels escalating as one moves to higher 

curves—evidenced by I4 generating the highest revenue 

among the illustrated curves. 

 

 
Fig 7: Gain indifference curve map. It illustrates various gain 

indifference curves, each denoting a different level of revenue. 

 

The essence of this concept is that higher gain indifference 

curves correlate with increased revenue outcomes. 

It is crucial to note, however, that Figs 6 and 7 present a 

simplified view, focusing on the price and quantity dynamics 

of a singular product. Real-world scenarios, akin to those 

depicted in Tab 1, typically involve multiple products, 

necessitating an expanded consideration of diverse price and 

quantity variables. Consequently, in a more complex scenario, 

the gain indifference curve would extend into a convex 

hyperplane within a multidimensional space. Nevertheless, for 

clarity and ease of exposition, a two-dimensional 

representation is employed in this discussion. 

 

C. Gain gradient 

The concept of gain gradient is defined as the incremental 

revenue generated when there is a unit increase in either the 

price or quantity of a product. For instance, if increasing the 

product quantity from 100 to 101 leads to a revenue increase 

of $20, the gain gradient at a quantity of 100 is determined to 

be 20. This metric is crucial for assessing the potential 

benefits associated with modifications in a product’s price or 

quantity parameters. 

 

D. Loss 

The concept of loss is integrated into the scenario 

modelling framework, where loss quantifies the effort or 

adversity a business encounters to attain a specific revenue 

level. Unlike more tangible metrics, loss is interpreted here as 

a largely psychological measure, emphasizing that its absolute 

value may not hold standalone significance. Instead, the 

comparative analysis of varying loss levels provides 

actionable insights. 

 

E. Implicit objective: total loss minimization 

The introduction of loss as a concept enables the pursuit of 

the implicit objective within scenario modelling: the 

identification and selection of the optimal solution from a 

potentially infinite set, where “optimal” is defined as the 

scenario that minimizes total loss. This objective is 

mathematically framed as the minimization of the aggregate 

loss experienced in adjusting the pricing and quantity 

variables to meet the revenue target. 

Detailed exploration of this implicit objective, including its 

mathematical underpinnings and practical implications, is 

presented in subsequent sections of the paper. 

 

F. Loss indifference line 

Building on the economic concept of the budget line, this 

paper introduces the novel concept of a loss indifference line, 

depicted in Fig 8. This line represents various combinations of 

a product’s price and quantity that result in the same level of 

loss for the business. 
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Fig 8: Loss indifference line. It represents various combinations of a 

product’s price and quantity that result in the same level of loss for 

the business. 

 

To construct a loss indifference line, one can apply linear 

regression to historical data of price and quantity 

combinations, as shown in Fig 9. Here, the grey dots represent 

historical price and quantity data points, with the linear 

regression line defining the loss indifference line. This 

approach assumes that the business exerted a consistent level 

of effort across different periods, with any deviations around 

the regression line attributed to random fluctuations. By 

employing regression analysis, these random effects are 

mitigated, revealing the core loss indifference line. 

 

 
Fig 9: Loss indifference line derived from linear regression on 

historical data of price and quantity combinations. The grey dots 

represent historical price and quantity data points. 

 

Typically, a loss indifference line exhibits a negative slope, 

indicating that an increase in price tends to decrease sales 

volume and vice versa, illustrating the loss trade-off between 

price and quantity. This observation aligns with real-world 

data where price-quantity relationships for various products 

demonstrate similar negative trends, validating the loss 

indifference line concept. 

The practical value of the loss concept is primarily in its 

comparative analysis, as illustrated by the loss indifference 

line map shown in Fig 10. This figure demonstrates that lines 

situated lower on the graph signify a reduced level of loss, 

thus being more favourable for the business. Such insights 

underscore the significance of the loss indifference line in 

facilitating strategic decision-making within the context of 

scenario modelling. 

 

 
Fig 10: Loss indifference line map. The practical value of the loss 

concept is primarily in its comparative analysis. Lines situated lower 

on the graph signify a reduced level of loss, thus being more 

favourable for the business. 

 

G. Loss gradient 

The concept of the loss gradient quantifies the additional 

effort required by a business when either the price or quantity 

of a product is incremented by one unit. To illustrate, if 

escalating the quantity of a product from 100 to 101 results in 

a 10 unit increase in loss, the loss gradient at a quantity of 100 

is determined to be 10 units. 

This metric, the loss gradient, is instrumental in assessing 

the challenges associated with altering a product’s price or 

quantity. It facilitates a comparative analysis, enabling 

businesses to gauge the relative difficulty of modifying the 

price versus the quantity of a particular product or to compare 

these challenges across different products. 

 

H. Universal measure for loss comparison: standard 

deviation 

In the context of scenario modelling, where multiple 

products are analysed, it is crucial to consider a diverse array 

of prices and quantities. Consequently, the loss indifference 

concept extends into a multidimensional space, forming a 

hyperplane rather than a simple line. 

A significant challenge arises in comparing loss changes 

across various products, as the ease of altering price or 

quantity can vary significantly from one product to another. 

To address this, the paper proposes utilizing the reciprocal 

of the standard deviation of historical price-quantity data as a 

metric to gauge the loss gradient, which is the relative 

difficultness of making such changes. A higher standard 

deviation indicates greater historical volatility in price or 

quantity, suggesting that deviations from the regression line 

are more feasible. 

This concept is represented in Fig 11. In Fig 11(a), three 

loss indifference lines for Product A are shown, with the 

central line derived from linear regression on historical data 

and the flanking lines representing one standard deviation 
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above and below the regression line. Similarly, Fig 11(b) 

illustrates three corresponding lines for Product B. 

 

 
Fig 11: Loss comparison across products. In (a), there are three loss 

indifference lines for Product A: the middle line is based on linear 

regression of historical data, and the other two lines are one standard 

deviation away from this central line. In (b), similar lines for Product 

B are displayed. Product A's wider spacing between lines, due to a 

higher standard deviation, suggests it has more price or quantity 

flexibility than Product B. By comparing these loss gradients, we can 

discern which product's attributes, like price or quantity, are easier to 

adjust, aiding in strategic decision-making. 

 

The comparison between Product A and Product B reveals 

that Product A, with its higher standard deviation, has 

experienced greater historical volatility, implying that it is 

generally easier to adjust Product A’s price or quantity to meet 

new objectives. The spacing between the loss indifference 

lines for Product A is larger than that for Product B, 

suggesting differing levels of effort required to achieve 

changes in loss. 

By analysing the loss gradient for each decision variable 

across different products, one can make nuanced comparisons. 

For instance, if Product A’s quantity has a lower loss gradient 

than Product B’s quantity, as depicted in Fig 11, it indicates a 

relative ease in adjusting Product A’s quantity over Product 

B’s. This comparative approach allows for a more informed 

and strategic decision-making process regarding price and 

quantity adjustments across a range of products. 

 

I. Loss gradient function 

The loss gradient function is a pivotal tool in scenario 

modeling, assigned to each decision variable to define the loss 

gradient across all potential values of that variable. This 

function can adopt various forms, with this paper specifically 

utilizing a progressively increasing segmented linear function 

to illustrate the concept. Tab 3 provides an example of loss 

gradient functions for four decision variables (QA1, QB1, 

PA1, PB1) in Month 1, as referenced in Tab 1. 

 

Tab 3: Loss gradient functions of decision variables 

 

 

Consider QA1 from Tab 3: its loss function is divided into 

segments such as 16-23, 24-27, and so forth, with distinct loss 

gradients assigned to each range (e.g., a gradient of 2 for the 

16-23 segment). These segments allow the consideration of 

values both below and above the baseline (30 for QA1), 

extending the analysis to a broad spectrum of potential values. 

The loss gradient at the baseline is derived from the 

reciprocal of the standard deviation of historical data, 

indicating that variables with more historical volatility are 

deemed easier to adjust. The segmented nature of the loss 

gradient function, with consistent values within a segment but 

increasing between segments, aids in guiding a search 

algorithm towards a balanced solution by incrementally 

adjusting multiple variables rather than excessively altering a 

single one. 

This nuanced approach encourages the algorithm to 

distribute adjustments across various decision variables, 

aiming for a solution that harmonizes the increments rather 

than relying on disproportionate increases in a few variables. 

While Tab 3 sets a framework for these functions, it’s 

important to note that the actual application of thresholds and 

loss gradients can be adjusted by domain experts to tailor the 

scenario modeling process to specific contexts or objectives, 

enhancing the model’s relevance and applicability. 

 

J. Theoretical solution 

In a manner akin to consumer theory within economics, 

the methodology to ascertain the optimal solution in scenario 

modelling entails identifying the lowest loss indifference line 

that intersects tangentially with the gain indifference curve 

symbolizing the target objective value, as depicted in Fig 12. 

At this juncture, the desired objective is attained with minimal 

business effort. 
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Fig 12. Theoretical solution. The lowest loss indifference line that 

intersects tangentially with the gain indifference curve IC1 

symbolizing the target objective value. At this juncture, the desired 

objective is attained with minimal business effort. 

 

Fig 13 showcases a loss-gain curve, illustrating that with 

an increase in loss, the business is positioned to realize higher 

revenues corresponding to elevated gain indifference curves. 

This dynamic suggests that the most favourable choice 

transitions towards the upper-right quadrant, delineating an 

upward trajectory of revenue in response to escalating loss, 

represented by the blue loss-gain curve in the diagram. This 

graphical representation elucidates the interplay between loss 

and gain, guiding towards an optimal balance where the 

business objective is met efficiently. 

 

 
Fig 13. Loss-gain curve. It illustrates that with an increase in loss, the 

business is positioned to realize higher revenues corresponding to 

elevated gain indifference curves. The most favourable choice 

transitions towards the upper-right quadrant, delineating an upward 

trajectory of revenue in response to escalating loss, represented by 

the blue loss-gain curve in the diagram. 

 

K. Loss-gain-gradient-ratio (LGR) 

The Loss-Gain-Gradient-Ratio (LGR) is a novel metric 

defined as the ratio of the loss gradient to the gain gradient. 

This ratio quantifies the incremental effort required by a 

business to generate an additional dollar in revenue. In essence, 

LGR offers a nuanced perspective on the efficiency of 

resource allocation in revenue generation. 

Within the framework of an iterative search algorithm, 

LGR serves as a critical metric for evaluating and comparing 

decision variables at each iteration. The strategy is to prioritize 

the adjustment of the variable with the lowest LGR, 

suggesting that this variable offers the most cost-effective 

opportunity for revenue enhancement at that point in the 

algorithm. Adopting this approach ensures that the algorithm’s 

progression aligns closely with the optimal trajectory 

delineated by the loss-gain curve illustrated in Fig 13, guiding 

the search towards the most resource-efficient solution. 

 

L. Overall solution represented in a figure 

Fig 14 illustrates the comprehensive methodology applied 

in scenario modelling. Here, the baseline scenario starts with a 

revenue prediction marked at $5 million, shown as a blue dot. 

The objective set forth is to escalate this figure to $6 million. 

 

 
Fig 14: Overall view of the Gradient-Driven Solution Based on 

Indifference Analysis (GIA) for scenario modelling optimization 

problem. 

 

In the depiction, two gain indifference curves correspond 

to the $5 million and $6 million revenue benchmarks, with the 

curve for $6 million positioned above the $5 million curve, 

indicating higher revenue levels. 

Historical data points for price and quantity are 

represented by grey dots, and their collective trend is captured 

by a blue dotted line, signifying a loss indifference line at 

1000 loss units. It’s important to note that the specific value of 

1000 units is less critical than its comparative context against 

other loss indifference lines. 

Additionally, two parallel blue dotted lines delineate a 

variance of plus or minus one standard deviation from the 

main loss indifference line, quantified as 50 loss units to 

signify a standard deviation change. This standardization is 

crucial for ensuring equitable comparison across different 

products regarding the effort required to enhance revenue 

uniformly. 

In this framework, the primary loss indifference line at 

1000 units intersects rather than tangents the $5 million gain 

indifference curve, suggesting that achieving the $5 million 

revenue target can be optimized to require less effort. The 

optimal point for the $5 million target is marked by a green 
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dot, where a lower loss indifference line at 950 units meets the 

gain curve, indicating a more efficient solution with 50 units 

less loss. 

For the aspirational $6 million target, the optimal solution 

is identified where the loss indifference line at 1050 units—

representing an incremental effort—tangentially meets the $6 

million gain indifference curve, marked by another green dot. 

This intersection represents the strategic point where the 

desired $6 million revenue can be achieved with minimal 

additional loss, showcasing the model’s capability to guide 

towards the most resource-efficient solution. 

 

M. Search space and staring point 

Fig 14 outlines the search space utilized by the search 

algorithm of GIA to identify the optimal solution. The process 

initiates from a search starting point, depicted as a purple dot 

within the figure. The designated search space is the region 

above and to the right of this starting point, as demarcated in 

the diagram. 

The selection of the search starting point is somewhat 

discretionary, yet it is advisable to opt for a “conservative” 

starting position. This entails setting initial price and quantity 

values lower than those in the baseline, ensuring that no 

potential solutions with prices or quantities below the baseline 

are overlooked during the search. 

Tab 4 presents a set of example starting values: QA1 at 28, 

QB1 at 36, PA1 at $29, and PB1 at $38. These values are 

intentionally set below the baseline figures from Tab 1, where 

QA1 is 30, QB1 is 40, PA1 is $30, and PB1 is $40, to 

encompass a broader range of potential solutions. 

 

Tab 4: Search starting values 

 

 

With the search space established, the algorithm proceeds 

through a series of monotonically increasing steps, 

systematically exploring the space to converge on the most 

favorable solution. 

 

N. Practical process to seek the best solution 

This section outlines an iterative method to identify the 

optimal solution for the scenario modeling issue. The 

procedure involves two nested loops: an outer loop (Steps 7-

18) and an inner loop (Steps 9-13), with specific examples 

provided at each stage. 

Step 1 

Action: Create a spreadsheet that integrates baseline 

predictions and variable relationships as per the established 

business rules. 

Example: Tabs 1 and 2. 

Step 2 

Action: Identify the objective variable for the scenario 

modeling task, as chosen by the user. 

Example: The user selects the total revenue over three 

months, displayed in Cell O14 of Tab 1, as the objective 

variable. 

Step 3 

Action: Specify the target value for the objective variable, 

defining the objective of the scenario modeling task. This 

objective is user-defined. 

Example: The user sets the objective at $51,470, which 

exceeds the baseline value of $50,470 (noted in Cell O14 of 

Tab 1) by $1,000. This target is consistently referred to 

throughout the iterative process, as illustrated in Tab 5, for 

example in Cell A59. 

Step 4 

Action: Define the decision variables that can be directly 

changed by the model. Their values will be overwritten 

through the process and finally become the output of the 

scenario modelling problem when reaching the objective. 

Example: For the sake of simplicity, this example only 

takes the four variables highlighted in green in Month 1 in 

Cells D4, D5, D8, D9 of Tab 1 as the decision variables of the 

problem. The other eight variables highlighted in green in the 

rest two months are ignored. 

Step 5 

Action: Establish loss gradient functions for each of the 

decision variables, utilizing a progressively increasing 

segmented linear function to define the relationship between 

variable adjustments and associated loss. 

Example: Tab 3. 

Step 6 

Action: Assign starting values to each decision variable for 

the commencement of the search process. These starting 

values are ideally set below the baseline to ensure a 

comprehensive exploration of potential solutions. The initial 

combination of these values represents a preliminary, 

suboptimal solution that will undergo iterative enhancements. 

Example: Tab 4. 

Step 7 

Action: Initiate the outer loop, which encompasses Steps 

8-18. This loop will iterate until the predefined objective is 

met as outlined in Step 18. 
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Example: In Tab 5, this outer loop is demonstrated, where 

it cycles through eight iterations to arrive at the desired 

solution. 

Step 8 

Action: Record the current value of the objective variable 

at the beginning of each outer loop iteration. 

Example: For Loop 1, the objective variable value is noted 

as 49,510, located in Cell A61 of Tab 5. 

Step 9 

Action: Execute the inner loop, focusing on each decision 

variable sequentially. Within this loop, Steps 10-13 are 

performed for every variable to evaluate and potentially adjust 

their values. 

Example: In the first iteration of the inner loop, the focus 

is on variable QA1, as illustrated in row 58 of Tab 5. 

Step 10 

Action: Determine the loss gradient for the chosen 

decision variable from Step 9, utilizing its respective loss 

gradient function outlined in Step 5. 

Example: For QA1 during Loop 1, the loss gradient is 

determined to be 8, as shown in Cell F58 of Tab 5. This value 

is derived by considering QA1’s value of 28 from Cell C58 in 

Tab 5 and referencing the loss gradient function for QA1 in 

Tab 3, where the loss gradient for a value of 28 is listed as 8 in 

Cell C20. 

Step 11 

Action: Compute the cumulative loss for the selected 

decision variable, employing the same loss gradient function. 

Example: The cumulative loss for QA1 in Loop 1 is 

calculated to be -16, shown in Cell E58 of Tab 5. This figure 

is calculated by taking QA1’s loop value of 28 from Cell C58, 

then consulting the loss gradient function for values between 

28-29, which is 8 (found in Cell C20 of Tab 3). Assuming the 

baseline (30) incurs zero loss, a decrease to 28 (2 units less) 

results in a cumulative loss of -16 (calculated as -2 multiplied 

by 8). 

Step 12 

Action: Determine the gain gradient for the decision 

variable highlighted in Step 9, following the detailed steps 

from 12.1 to 12.4. 

Example: For QA1 in Loop 1, the gain gradient is 

identified as $87.00, as calculated in Step 12.3. 

Step 12.1 

Action: Temporarily increase the value of the decision 

variable chosen in Step 9 by one unit, ensuring that the values 

of all other decision variables remain constant. 

Example: In Loop 1, QA1’s original value is 28 (shown in 

Cell C58 of Tab 5). This value is temporarily increased by one 

unit to 29. This updated value of 29 is not permanently 

recorded in the table as it is provisional and will be reverted to 

its original in Step 12.4. 

Step 12.2 

Action: Record the updated value of the objective variable 

after the increment made in Step 12.1. 

Example: Post the adjustment of QA1 in Loop 1, the 

objective variable’s new value is noted as 49,597. This figure 

is temporary for the purpose of calculation and is not 

permanently entered into the table, as it will be reverted in 

Step 12.4. 

Step 12.3 

Action: Determine the gain gradient for the decision 

variable selected in Step 9. This is done by subtracting the 

original objective variable value recorded in Step 8 from the 

new objective variable value documented in Step 12.2. 

Example: For QA1 in the Loop 1, the gain gradient is 

computed as $87.00, showcased in Cell G58 of Tab 5. This 

value is derived by subtracting the original objective variable 

value (49,510 from Step 8) from the new objective variable 

value (49,597 from Step 12.2). 

Step 12.4 

Action: Revert the decision variable’s value to its original 

state as recorded before the increment in Step 12.1. 

Example: QA1’s value, initially altered in the process, is 

reset to 28 in Cell C58 of Tab 5, reversing the temporary 

change made in Step 12.1. 

Step 13 

Action: Compute the loss-gain-gradient-ratio (LGR) for 

the decision variable chosen in Step 9. This is done by 

dividing the loss gradient calculated in Step 10 by the gain 

gradient determined in Step 12. This step concludes the inner 

loop initiated in Step 9. 

Example: For QA1 in Loop 1, the LGR is calculated to be 

0.09, as shown in Cell H58 of Tab 5. This value results from 

dividing the loss gradient (8 from Step 10) by the gain 

gradient (87.00 from Step 12). 

Step 14 

Action: Determine the total loss for the current provisional 

solution by aggregating the cumulative losses for all decision 

variables calculated in Step 11. This total loss serves as a 

measure of the effort required from the business to attain the 

solution. A lower total loss signifies a more efficient solution, 

when the gain remains constant. Thus, comparing total loss 

figures can help in evaluating the effectiveness of different 

solutions. 

Example: For Loop 1, the total loss is computed as -52, as 

recorded in Cell E62 of Tab 5. This figure is the sum of all 

cumulative losses for the decision variables, as shown in Cells 

E58:E61. The negative value of -52 suggests that the interim 



12 

 

solution offers a 52-unit saving in effort compared to the 

baseline. However, since the objective has not yet been met, 

further iterations of the outer loop will be necessary, 

increasing both the objective variable and the total loss. 

Step 15 

Action: Evaluate all the LGRs computed in Step 13 for 

each decision variable and identify the one with the smallest 

LGR value. The variable with the lowest LGR is chosen for 

the next adjustment, as it represents the most efficient option 

for increasing revenue with the least additional loss. 

Example: In Loop 1, QB1 is selected because its LGR 

value, 0.04, noted in Cell H59 of Tab 5, is the lowest among 

all calculated LGRs for the decision variables within that loop, 

as shown in Cells H58:H61. 

Step 16 

Action: Adjust the value of the decision variable identified 

in Step 15 by a predetermined increment to enhance the 

provisional solution, moving the objective variable closer to 

the target. The magnitude of this increment can be chosen 

flexibly; a smaller increment is generally preferred for a more 

refined solution, reducing the total loss and mitigating the 

non-linear impacts of loss and gain gradients. However, 

smaller increments mean the outer loop will need to be 

executed more frequently, extending the overall computation 

time. For decision variables defined by a progressively 

increasing segmented linear function, the increment can be set 

to reach the start of the next segment in the loss function. 

Example: Transitioning from Loop 1 to Loop 2, QB1’s 

value is increased from 36 to 40, as indicated by moving from 

Cell 59 to Cell 67 in Tab 5. This adjustment is based on the 

loss function for QB1, detailed in Cells E17:F24 in Tab 3, 

where the subsequent segment threshold after 36 is identified 

as 40 in Cell E21. 

Step 17 

Action: Record the updated value of the objective variable 

after implementing the changes decided in the previous steps. 

Example: In Loop 2, the updated objective variable value 

is noted as 49,966, shown in Cell A69 of Tab 5. 

Step 18 

Action: Evaluate whether the updated objective variable 

meets the target set in Step 3. If the updated value is still 

below the target, initiate another iteration of the outer loop 

starting from Step 7. If the target is met, conclude the outer 

loop and proceed to finalize the solution in the subsequent step. 

Example: Since the updated value of 49,966 from Step 17 

is below the target of 51,470 set in Step 3, the process returns 

to Step 7 for additional iterations. This loop continues until the 

objective variable value reaches 51,470, at which point the 

outer loop concludes. 

Step 19 

Action: Document the definitive solution, which is 

delineated by the final values of the decision variables. These 

values represent the resolution to the scenario modeling 

challenge. 

Example: The conclusive solution is presented in Cells 

C122:C125 of Tab 5, where the values are listed as QA1 at 30, 

QB1 at 45, PA1 at $31, and PB1 at $42. 

Step 20 

Action: Compute the total loss for the final solution by 

following a similar approach to Step 14. This total loss should 

approximate the minimum feasible loss across all potential 

solutions, reflecting the optimized state of the model. 

Example: The total loss for the ultimate solution is 

recorded as 93 in Cell E126 of Tab 5, indicating that the 

business incurs an additional 93 units of loss to meet the 

objective. This figure is expected to be the minimal necessary 

loss to achieve the set objective. 
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Tab 5: Process steps to seek the best solution for the higher objective 
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Tab 6: Process steps to seek the best alternative solution for the baseline 

 

 

 

O. Better solution for baseline 

While the prior steps focused on achieving a user-defined 

objective surpassing the baseline, it’s noteworthy that an 

enhanced solution can also be identified for the baseline 

scenario itself. This concept is demonstrated through an 

alternative scenario modeling process presented in Tab 6. 

In Tab 6, the procedure mirrors that of Tab 5, with the 

critical distinction being the objective is aligned with the 

baseline figure of 50,470, instead of an elevated target of 

51,470. This objective of 50,470 is consistently referenced 

throughout each loop iteration, such as in Cell A59 during 

Loop 1. The process requires four loops to navigate the search 

space and pinpoint the optimal solution. 

The total loss calculated for this optimal solution is -4, as 

shown in Cell E94. This negative value signifies that the 

business can reduce effort by 4 units while still attaining the 

baseline revenue target. The solution reveals a strategic 

adjustment between QA1 and QB1: it recommends reducing 

QA1 from its baseline of 30 (Cell D4 in Tab 1) to 28 (Cell 

C90 in Tab 6) and augmenting QB1 from its baseline of 40 

(Cell D5 in Tab 1) to an adjusted value of 41.5, which is 

rounded to 42 as shown in Cell C91 of Tab 6. This nuanced 

trade-off between QA1 and QB1 exemplifies how strategic 

adjustments can lead to efficiency gains, even when the goal is 

to meet existing baseline figures. 

 

IV. RESULT 

A. Optimized solution to the scenario modelling problem 

The iterative method outlined previously offers a strategy 

to ascertain the optimal solution in scenario modelling, 

emphasizing a balanced approach where multiple decision 

variables are incrementally adjusted. This contrasts with 

strategies that rely on significant changes to a single variable. 

To appraise the effectiveness of the identified solution, this 

analysis juxtaposes it with four alternative solutions delineated 
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in Tab 7. These alternatives, while achieving the same target 

objective of $51,470, adopt a disproportionate strategy by 

altering only one decision variable and maintaining the others 

at their baseline levels. 

 

Tab 7: Comparison of solutions for a desired objective of $51,470 

 

 

Tab 7 reveals that each of these alternative strategies 

results in a greater total loss compared to the algorithm-

derived solution. This comparative analysis substantiates the 

efficacy of the algorithmic approach, confirming it as the 

superior method for minimizing total loss in the context of 

scenario modelling. 

 

B. Better alternative to the existing plan 

The GIA methodology not only serves to surpass a set 

objective but also to refine an existing baseline plan. By 

applying the outlined approach, an enhanced alternative to the 

baseline can be identified, demonstrating potential for broader 

application in strategic planning and optimization. 

Tab 8 showcases a comparison between the original 

baseline and the optimized alternative solution. While both 

solutions attain the same revenue target of $50,470, the 

alternative approach adjusts the decision variables to achieve 

this outcome more efficiently. 

 

Tab 8: Comparison of baseline vs the best alternative solution for the 

baseline revenue of $50,470 

 

 

The analysis in Tab 8 indicates a reduction of 4 units of 

loss in the alternative solution compared to the baseline. This 

signifies that the algorithm-derived solution offers a more 

loss-efficient strategy, validating the approach’s capability to 

enhance existing plans by minimizing the total loss. 

This methodology’s utility extends beyond mere scenario 

modelling, offering insights into strategic business planning. 

Often, the baseline configurations of business plans are not 

optimized for loss minimization. Through the iterative search 

and optimization process, it's possible to uncover superior 

strategies that maintain revenue targets while reducing 

operational loss, thereby optimizing resource allocation and 

enhancing overall business performance. 

 

C. Real-world project application 

The GIA algorithm was employed to address complex 

scenario modelling challenges in a real-world context, 

specifically within a subscription-based revenue framework 

encompassing multiple products. 

In this practical application, the complexity was notably 

higher than in the simplified examples. The products involved 

had interrelated constraints, and each period presented a 

multitude of decision variables that could be adjusted. This 

complexity rendered manual identification of the optimal 

strategy nearly impossible. 

The GIA algorithm’s application facilitated efficient 

identification of the most effective path to reach the set 

objectives. It proved adept at not only striving for targets 

beyond the baseline but also enhancing the baseline itself. In 

both scenarios—aiming for higher objectives and refining the 

existing baseline—the GIA algorithm demonstrated its 

effectiveness, delivering substantial improvements in 

decision-making and optimization for the business. 

This real-world application underscores the GIA 

algorithm’s potential as a powerful tool for businesses facing 

intricate scenario modelling challenges, offering a systematic 

approach to navigate and optimize complex decision-making 

landscapes. 

 

V. CONCLUSION 

The Gradient-Driven Solution Based on Indifference 

Analysis (GIA) introduces a novel approach to scenario 

modeling, offering a framework that allows organizations to 

effectively navigate and optimize their financial planning. By 

employing an inverse methodology that integrates economic 

theories with practical business applications, GIA provides a 

robust tool for organizations to achieve their financial targets 

through a systematic analysis of decision variables and 

strategic options. 

This methodology’s application extends beyond traditional 

scenario planning, demonstrating its potential to refine 

financial strategies and enhance decision-making processes. 

By identifying efficient resource allocations and minimizing 

losses, GIA supports businesses to adapt an environment of 

uncertainty. 

The application of GIA has proven successful not only in 

theoretical constructs but also in real-world projects, 

showcasing its efficacy in practical settings. This success story 

underscores GIA’s capacity to not only achieve heightened 

financial objectives but also to enhance existing plans without 

necessarily targeting higher goals, by optimizing resource 

allocation and minimizing losses in uncertain environments. 
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Future research avenues present opportunities to broaden 

the understanding and utility of GIA across a spectrum of 

industry contexts. By delving deeper into its application in 

varied sectors, researchers can uncover insights into how 

different industries can harness GIA to navigate their unique 

challenges and uncertainties, using it as a strategic tool to 

forecast and plan for future scenarios effectively. This 

exploration will illuminate the adaptability and impact of GIA 

across sectors, potentially uncovering new use cases and 

benefits. 

In addition to exploring industry-specific applications, 

there is potential in enhancing the versatility and robustness of 

GIA by integrating a variety of loss function formats. 

Currently, GIA utilizes a particular set of loss functions to 

model and solve scenario planning problems; however, by 

expanding this repertoire to include diverse loss function 

formats, the methodology could be tailored more precisely to 

specific industry needs or scenario complexities. This 

enhancement would not only broaden the scope of GIA’s 

applicability but also improve its precision and effectiveness 

in different planning contexts. 
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