
Multiple Kernel Learning-Aided
Column-and-Constraint Generation Method

Biao Han
Email: hanb16@tsinghua.org.cn

Abstract—Two-stage robust optimization (two-stage RO), due
to its ability to balance robustness and flexibility, has been widely
used in various fields for decision-making under uncertainty. This
paper proposes a multiple kernel learning (MKL)-aided column-
and-constraint generation (CCG) method to address this issue in
the context of data-driven decision optimization, and releases a
corresponding registered Julia package, MKLTwoStageRO.jl.
The proposed method performs efficient multi-process parallel
MKL on a large number of directional nullspace projection norm
kernels in the uncertainty space, and with the help of one-class
support vector machine, constructs a piecewise linear polyhedral
intersection uncertainty set enjoying structural sparsity and
computational tractability. The significant scenarios identified
as boundary support vectors in the MKL phase are used to
add valid initial cuts to the subsequent CCG procedure, so that
the exact solution of the MKL uncertainty set-induced two-stage
RO can be achieved with fewer iterations. Decision-makers are
able to adjust the set construction efficiency, model complexity,
and risk aversion degree through three hyperparameters in
the proposed method. This method implies a connection with
two-stage stochastic programming based on the value-at-risk
measure, thus providing a quantitative evaluation of the solution
quality. Numerical study on the data-driven two-stage robust
location-transportation problem demonstrates the effectiveness
and practicability of the proposed method and software pack-
age. The source code of MKLTwoStageRO.jl is available at
https://github.com/hanb16/MKLTwoStageRO.jl.

I. INTRODUCTION

Robust optimization (RO) is a methodology for formulating
decision-making problems whose solutions are required to
have immunization against parameter uncertainties. Its un-
derlying logic differs from probability-based approaches such
as stochastic programming that assume perfect knowledge
of corresponding probability distributions. In RO, one seeks
an optimal solution for the worst-case scenario of uncertain
parameters within a prespecified uncertainty set [1], [2]. A
wide range of RO problems are modeled as static RO or
single-stage RO that only contains once-for-all “here-and-
now” decisions, which may tend to be overly conservative. A
more complicated but flexible RO model is two-stage RO (also
known as adjustable or adaptive RO), which involves not only
“here-and-now” decisions (first-stage decisions) made before
the uncertainty materializes, but also “wait-and-see” decisions
(second-stage decisions, or recourse decisions) made after the
uncertainty is revealed. Because of the better balance between
exploitation and exploration, two-stage RO has recieved sub-
stantial applications in various domains including finance [3],
energy [4], logistics [5], healthcare [6], etc. In this paper,

we focus on the two-stage RO formulation of the following
general form

min
x∈X

a⊤x+max
u∈U

min
y∈Y(x,u)

b⊤y (1)

with

Y(x,u) = {y ∈ Rq |Ax+By +Cu ≥ c,y ≥ 0} , (2)

where a ∈ Rp, b ∈ Rq , A ∈ Rt×p, B ∈ Rt×q , C ∈ Rt×r,
c ∈ Rt are the problem’s parameters, x ∈ X ⊆ Rp is the
first-stage decision variable which may have mixed integer
components, y ∈ Rq is the continuous second-stage decision
variable, and u ∈ Rr is the uncertain parameter which lies in
a convex and compact uncertainty set U .

The computational intractability of two-stage RO and the
over-conservatism of its solution have usually been two major
obstacles for scholars trying to overstep. In order to make
the problem easier to solve, scholars in many cases restrict
the recourse decision y to be in some simplified function
classes such as affine functions suggested by Ben-Tal et
al. [7]. And at the same time, people use some structured
geometries to model the uncertainty set U , thus giving rise to
box uncertainty sets [8], ellipsoidal uncertainty sets [9] and
uncertainty sets based on general norms [10], etc. However,
these measures often inevitably lead to overly conservative
optimization solutions. Intersections and unions of these basic
geometries are then developed to capture actual uncertainties
to reduce the conservativeness [10]–[12]. But obviously, due
to the pre-set elementary structures, this is still unable to break
through the dilemma of flexibility and tractability.

In recent years, the big data era has spawned a new
paradigm known as data-driven robust decision-making [13]–
[16]. Machine learning techniques have been developed to
model and solve two-stage RO. In Ning and You [17], a
nonparametric kernel density M-estimation method is used to
learn the uncertainty set from data for multi-stage adaptive
RO, a more general version of the two-stage case. Shang and
You [18] construct the uncertainty set with support vector
clustering and apply it to multi-stage stochastic model pre-
dictive control. In Han et al. [19], a multiple kernel learning
(MKL)-based one-class support vector machine (SVM) with
tailored basis kernels is proposed to construct the uncertainty
set automatically. Wang et al. [20] learn the parameters of
the uncertainty set using a stochastic augmented Lagrangian
method to meet specific probability level of constraint satis-
faction. Although their methods greatly reduced the redundant

https://github.com/hanb16/MKLTwoStageRO.jl


coverage of the set than traditional methods and obtained
tractable robust counterparts, they could actually only achieve
suboptimal solutions of (1), because they all adopted affine
decision rules when dealing with multi-stage cases. Thus, as a
result, the probabilistic guarantees given by them become less
convincing for the evaluation of the solution quality. There is
also some other related literature addressing the construction
of uncertainty sets using machine learning techniques [21]–
[24], but they mainly focus on static RO and few of them
provide systematic integration with two-stage RO.

In the contex of exactly solving the two-stage RO (1), one of
the classic approaches is the Benders-dual cutting plane algo-
rithm, which iteratively solves a master problem and an adver-
sarial sub-problem, while gradually adding cuts to the former
according to the dual information of the latter [25]–[27]. Under
the master-subproblem framework, another algorithm, termed
as column-and-constraint generation (CCG), is proved to have
much better scalability and becomes popular amoung scholars
[28]. Many variants of CCG have been proposed to further
improve its efficiency or broaden its application scope [29]–
[32]. It’s worth mentioning that the power of machine learning
is also harnessed to the CCG algorithm to tackle two-stage RO.
Bertsimas and Kim [33] train decision tree classifiers to predict
high-quality strategies based on the instance set generated
by CCG algorithm, which drastically speeds up the solution
process of two-stage RO. Dumouchelle et al. [34] proposes a
custom-designed neural network to estimate the value function
of the second-stage problem, which expands the applicability
of the two-stage framework to large-scale instances with
integer decisions in both stages. However, the above methods
only consider uncertainty sets in basic forms that are given
in advance (for example, the budget uncertainty set), and
provide no specific uncertainty set construction approach. As
a matter of fact, uncertainty sets are an indispensable element
that distinguishes RO from deterministic optimization. The
friendliness of a RO algorithm will be compromised if it is
separated from a proper uncertainty set construction procedure,
and if the set constructed is not exact enough, even an exact
solution algorithm will only yield inexact (overly conservative)
decisions in practice. Some works have proposed possible
general frameworks to handle two-stage RO systematically
[35], [36], but they, including many of the aforementioned
ones, are usually explicitly or implicitly based on the relatively
complete recourse assumption, which can’t deal with a wide
range of two-stage RO instances where this assumption do not
hold but they themselves are feasible.

This paper proposes an MKL-aided CCG method to cope
with two-stage RO systematically in a data-driven manner,
including the construction of the uncertainty set and the
solution of the induced robust counterpart. In the uncertainty
set construction phase, an efficient multi-process parallel MKL
algorithm is introduced with a novel type of candidate basis
kernel termed as directional nullspace projection norm kernel.
This algorithm constructs a piecewise linear polyhedral inter-
section uncertainty set automatically from the historical data
of the uncertainties, which has compact structure and concise

expression. At the same time, it identifies a small number
of boundary support vectors from the massive data to serve
as the significant scenarios in the following CCG procedure.
The robust counterpart of the two-stage RO can then be
solved with a modified CCG algorithm and the significant
scenarios identified in the former MKL phase provide useful
initial cuts so that they have the potential to reduce the
iteration. Our method implies a connection between two-stage
RO and the value-at-risk measure-based two-stage stochastic
programming, so it can provide a probabilistic quantitative
evaluation on the solution quality. The proposed MKL-aided
CCG method doesn’t require the relatively complete recourse
assumption, therefore it can theoretically cope with any feasi-
ble two-stage RO (1). The above workflow has been integrated
into a Julia package named as MKLTwoStageRO.jl for
better utilization and improvement. To our best knowledge,
it may be the first registered open-source package that deals
with data-driven two-stage RO systematically with the help of
machine learning techniques in the Julia community.

The remainder of this paper is organized as follows. In
Section II, we present the adopted unified MKL-based one-
class SVM framework with the novel directional nullspace
projection norm kernel. We then propose the efficient parallel
HessianMKL algorithm to construct an intersection MKL un-
certainty set. In Section III, based on the discussion of the basis
of CCG method, we demonstrate the tractability of the inter-
section MKL uncertainty set and propose an MKL uncertainty
set-induced CCG algorithm. Section IV briefly introduces the
companion software package, MKLTwoStageRO.jl. Section
V conducts numerical experiments on a data-driven two-
stage robust location-transportation problem, followed by final
concluding remarks.

II. MULTIPLE KERNLEL LEARNING-BASED UNCERTAINTY
SET CONSTRUCTION

A. MKL-Based One-Class SVM

One-class SVM (OC-SVM) is a classic machine learning
method for estimating the support of an unknown distribution
from its historical observations [37]. It has been widely applied
due to its simplicity, efficiency, and good generalization ability.
The mechanism of OC-SVM is quite clear, which is to first
map the data samples D = {ui}Ni=1 through a mapping
function ϕ(u) into a high-dimensional reproducing kernel
Hilbert space H, and then in this space separate the data
points from the origin as much as possible using a hyper-
plane

{
ϕ(u) ∈ H

∣∣w⊤ϕ(u)− ρ = 0
}

. Given a kernel function
K(u,v), the OC-SVM problem can be transformed into a
tractable form using the kernel trick K(u,v) = ϕ(u)⊤ϕ(v),
even if we do not know what the specific mapping ϕ(·) is.

Studies have shown that by introducing more degrees of
freedom to the kernel function K(u,v), e.g., expressing it as
a convex combination of multiple basis kernels:

K(u,v) =

M∑
m=1

πmKm(u,v) with πm ≥ 0,

M∑
m=1

πm = 1,

(3)

2



and learning an optimal kernel combination coefficient π
simultaneously during training, the representation capability
and predictive performance of SVM can be enhanced [38]–
[40]. Han et al. [19] applied MKL techniques to OC-SVM and
proposed the following unified MKL-based OC-SVM (MKL-
OC-SVM) framework

min
{wm},π,ρ,ξ

1

2

M∑
m=1

1

πm
∥wm∥2 − ρ+

1

Nν

N∑
n=1

ξn

s.t.

M∑
m=1

w⊤
mϕm(un) ≥ ρ− ξn, ∀n ∈ [N ]

ξn ≥ 0, ∀n ∈ [N ]
M∑

m=1

πm = 1

0 ≤ πm ≤ 1
Mµ , ∀m ∈ [M ]

(4)

with its neatly symmetrical dual form

min
α,γ,ζ

−γ +
1

Mµ

M∑
m=1

ζm

s.t.
1

2

N∑
n,n′=1

αnαn′Km(un,un′) ≤ ζm − γ, ∀m ∈ [M ]

ζm ≥ 0, ∀m ∈ [M ]
N∑

n=1

αn = 1

0 ≤ αn ≤ 1
Nν , ∀n ∈ [N ].

(5)
As suggested by Han et al. [19], the MKL-OC-SVM can

be used to construct the data-driven uncertainty set for robust
optimization. The idea is to train an MKL-OC-SVM based
on the uncertainty data samples D = {ui}Ni=1 with plenty
of candidate basis kernel functions {Km(·, ·)}Mm=1 provided
in advance. After training, a considerable number of data
samples and candidate basis kernels will be discarded, leaving
only a small amount of necessary support vectors (SVs) and
support kernels (SKs) to form a relatively concise data-driven
uncertainty set as follows:

Uν,µ(D) =

{
u

∣∣∣∣∣ ∑
n∈SV

∑
m∈SK

α⋆
nπ

⋆
mKm(u,un) ≥ ρ⋆

}
, (6)

where SV and SK denote the index set of the SVs and the
SKs respectively, and {α⋆}, {π⋆} and ρ⋆ are the optimal
solutions that solve (4) and (5).

Note that the candidate basis kernels need to be carefully
selected rather than arbitrarily taken from the popular classical
kernels such as Gaussian kernel, polynomial kernel, etc., so as
to ensure the computational tractability of the two-stage RO
(1) induced by the MKL-based uncertainty set (6).

B. Directional Nullspace Projection Norm Kernel

Han et al. [19] proposed a directional projection distance
kernel (DPDK) to serve as the basis kernels in MKL, i.e.,

Km(u,v) = 1− 1

κcm

∣∣q⊤
m(u− v)

∣∣ , (7)

which enables the uncertainty set constructed through MKL
to have a convex polyhedral structure, thereby facilitating
the solution of the induced robust optimization. This kernel
essentially projects data points in the direction of qm, and
measures a kind of negative distance between each pair of
projection points.

As a substitute, a novel kernel function termed as directional
nullspace projection norm kernel (DNPNK) is presented in
this paper. Similar to DPDK, it also requires generating unit
direction vectors {qm} in the uncertainty space in advance.
The difference lies in that, for a given qm, DNPNK does not
project the data points towards this direction, but towards its
orthogonal complement space Qm, and measures a kind of
negative norm between each pair of projection points. If we
consider q⊤

m as a map, then Qm is also known as the nullspace
or kernel of q⊤

m, i.e., Qm = (span{qm})⊥ = null(q⊤
m) =

ker(q⊤
m). Now we assume that the column vectors of the

matrix Qm ∈ Rr×(r−1) are composed of a set of standard
orthonormal basis {q(1)

m ,q
(2)
m , · · · ,q(r−1)

m } of Qm, then the
expression of DNPNK is:

Km(u,v) = 1− 1

κcm

∥∥Q⊤
m(u− v)

∥∥
p
, (8)

where p ≥ 1 so that ∥·∥p is a legitimate ℓp-norm, and the
kernel parameters cm and κ can be selected as

cm = max
u,v∈D

∥∥Q⊤
m(u− v)

∥∥
p
, κ > 1 (9)

according to the following proposition.
Proposition 1 (Positive Defineteness of DNPNK): If the

parameters cm and κ are set according to (9), then every basis
kernel matrix Km with elements Km(u,v),∀u,v ∈ D,m ∈
[M ] induced by DNPNK (8) is positive definite.

Proof: For every pair of u,v ∈ D ⊂ Rr, we denote by
û = 1

κcm
Q⊤

mu and v̂ = 1
κcm

Q⊤
mv their corresponding scaled

projections on Qm, and by c ∈ Qm the midpoint of the line
segment connecting û and v̂, i.e., c = 1

2 (û + v̂). Now if we
make an ℓp-norm ball B with radius 1

2 centered on c, i.e., B ={
z ∈ Qm

∣∣∥z− c∥p ≤ 1
2

}
, it will be easy to prove that û, v̂ ∈

relintB,∀u,v ∈ D, where relintB is the relative interior of
B, because ∥û−c∥p = 1

2∥û− v̂∥p = 1
2κcm

∥∥Q⊤
m(u− v)

∥∥
p
≤

1
2κcm

maxu′,v′∈D
∥∥Q⊤

m(u′ − v′)
∥∥
p

= 1
2κ < 1

2 and the
same is true for v̂. We further denote by {z, z} =
aff {û, v̂} ∩ relbdB the intersection set of the affine hull
of {û, v̂} and the relative boundary of B, then it is
not hard to see that DNPNK (8) can be decomposed as
Km(u,v) = 1 − ∥û− v̂∥p = ∥z− z∥p − ∥û− v̂∥p =
min{∥z− û∥p , ∥z− v̂∥p} + min{∥z− û∥p , ∥z− v̂∥p} =

Km(u,v) + Km(u,v), where the two minimizations are
denoted by Km(u,v) and Km(u,v) respectively. Let w =
∥z− û∥p > 0 and w′ = ∥z− v̂∥p > 0, then it follows that
Km(u,v) = min{w,w′} is a conventional intersection kernel
on one dimensional variables and hence the kernel matrix Km

generated from data set D satisfies positive defineteness [41]–
[43]. The positive definiteness of Km can be established in
a similar fashion. Therefore, Km = Km + Km is positive
definite.

3



In this paper, we take p = 1 to achieve better computa-
tional tractability of the induced two-stage robust optimization.
Therefore, by substituting (8) into (6), we can obtain the MKL
uncertainty set based on DNPNKs:

Uν,µ(D)

=

{
u

∣∣∣∣∣ ∑
n∈SV

∑
m∈SK

α⋆
nπ

⋆
m

κcm

∥∥Q⊤
m(u− un)

∥∥
1
≤ 1− ρ⋆

}

=

{
u

∣∣∣∣∣ ∑
n∈SV

∑
m∈SK

r−1∑
k=1

α⋆
nπ

⋆
m

κcm

∣∣∣(q(k)
m )⊤(u− un)

∣∣∣ ≤ 1− ρ⋆

}
.

(10)

Note that, when the dimension of the uncertainty space
r = 2, DNPNK and the induced MKL uncertainty set will
degenerate into an isomorphism of DPDK and its corre-
sponding set. We also point out that, the proposed DNPNK-
based uncertainty set (10) (which has a three-layer summation
structure on the absolute value term) not only characterizes the
set through SVs and SKs like the DPDK-based one (which
has a two-layer summation structure on the absolute value
term, i.e., the SV-layer and SK-layer, see [19, (26)]), but also
characterizes the set through the dimension of the data space
itself like the WGIK-based one proposed by Shang et al. [23]
(which only has one dimension-layer of summation structure
on the absolute value term, see [19, (25)]). In a nutshell,
DNPNK incorporates and generalizes both DPDK and WGIK.

C. Parallel Learning Algorithm
Instead of solving the dual problem (5) directly, Han et

al. [19] extended HessianMKL algorithm [44] to MKL-OC-
SVM formulation (4) and proposed to alternatively optimize
the following constrained optimization using Newton’s method

min
π

J(π)

s.t.

M∑
m=1

πm = 1

0 ≤ πm ≤ 1
Mµ , ∀m ∈ [M ]

(11)

and solve the following single kernel OC-SVM problem with
given π̂ (i.e., the kernel is K̂ =

∑
m π̂mKm) using any

existing SVM solver

J(π) =


min

{wm},ρ,ξ

1

2

M∑
m=1

1

πm
∥wm∥2 − ρ+

1

Nν

N∑
n=1

ξn

s.t.

M∑
m=1

w⊤
mϕm(un) ≥ ρ− ξn, ∀n ∈ [N ]

ξn ≥ 0, ∀n ∈ [N ].
(12)

Although this algorithm also cannot escape the curse of
dimensionality, it has been proven to be much more efficient
than directly solving (5) or using the first-order SimpleMKL
algorithm [38], and has been well applied in many practical
scenarios such as [45]. In order to further reduce the time
cost of MKL and broaden the application range of MKL-OC-
SVM, this paper proposes to accelerate the learning process
using parallel computing technology.

The idea of parallel learning is simple. If the number M of
candidate basis kernels {Km}Mm=1 is large, we can first group
all kernels into B batches, and then use the HessianMKL
algorithm to learn each batch b ∈ [B] in parallel, thereby
obtaining B MKL sets with shorter time overhead. Finally,
we take the intersection of the sets as the final uncertainty
set. The basis kernels can be grouped in one of the following
ways:

• Randomly. Randomly draw l indices from the index set
[M ] = {1, 2, · · · ,M} without replacement to form the
index set I(b) of the bth batch of kernels for b ∈ [B− 1],
and assign the remaining l′ indices to I(B), where l =⌊
M
B

⌋
and l′ = M − l(B − 1).

• Sequentially. Let I(b) = {(b− 1)l + k |k ∈ [l]} ,∀b ∈
[B − 1] and I(B) = {(B − 1)l + k |k ∈ [l′]}.

• Systematacially. Let I(b) = {b+ kl ∈ [M ] |k ∈ N} ,∀b ∈
[B].

To implement this idea, the original HessianMKL algorithm
for MKL-OC-SVM [19] does not need to be modified much.
For the sake of self-containedness, here we list several nec-
essary formulas within it. The gradient g of J(π) after every
time (12) is sovled is given by

gm =
∂J

∂πm
= −1

2
(α̂SV )

⊤K(SV,SV )
m α̂SV , ∀m, (13)

where we denote by α̂SV the fragment of α̂ (the current
optimal dual variable that solves (12)) that is composed of
the elements corresponding to SVs, and by K

(SV ,SV )
m the

submatrix of Km that is composed of the rows and columns
corresponding to SVs. The Hessian H is given by

Hmm′ =
∂2J

∂πm∂πm′

=(α̂SV )
⊤
K(SV ,BSV )

m AK
(BSV ,SV )
m′ α̂SV , ∀m,m′, (14)

where A is the submatrix of the following matrix with the last
row and last column removed:[

K̂(BSV,BSV ) 1
1⊤ 0

]−1

.

The Newton step d for updating π when optimizing (11) can
then be obtained by solving the following quadratic program
(QP):

min
d

1
2d

⊤Hd+ g⊤d

s.t. 1⊤d = 0
0 ≤ π̂+ d ≤ 1

Mµ1,

(15)

where π̂ is the current value of π. When the globally optimal
α⋆ and π⋆ are achieved, a robust ρ⋆ can be obtained by
averaging according to the following equation:

K⋆(BSV,·)α⋆ − ρ⋆1 = 0. (16)

Now the parallel HessianMKL algorithm for MKL-OC-SVM
can be presented as Algorithm 1.

Based on DNPNKs, the output of Algorithm 1 can form
B polyhedral uncertainty sets {U (b)

ν,µ(D)}Bb=1, each of which

4



Algorithm 1 Parallel HessianMKL for MKL-OC-SVM

Input: {Km}Mm=1, ν, µ, B, ϵ > 0
Output: {α(b),π(b), ρ(b)}Bb=1

1: Group the M kernel matrices {Km}Mm=1 into B batches
with M (b) the batch size, and renumber the kernel matri-
ces within each batch as {K(b)

m }M
(b)

m=1,∀b ∈ [B].
2: parallel for b = 1 to B do
3: Initialize:

α(b) ← 1
N 1,

π(b) ← 1
M(b)1,

K(b) ←
∑M(b)

m=1 π
(b)
m K

(b)
m ,

∆J (b) ← −∞,
J̃ (b) ← (α(b))⊤K(b)α(b).

4: while
∣∣∆J (b)

∣∣ > ϵ · J̃ (b) do
5: Update α(b) by solving (12) using single kernel OC-

SVM solver with kernel matrix K(b) and regulariza-
tion parameter ν.

6: Compute the gradient g(b) according to (13) and the
Hessian H(b) according to (14).

7: Obtain the current Newton step d(b) by solving (15)
using QP solver with batch size M (b) and regular-
ization parameter µ.

8: Choose a proper step size τ (b) by backtracking line
search.

9: Update:
π(b) ← π(b) + τ (b) · d(b),
K(b) ←

∑M(b)

m=1 π
(b)
m K

(b)
m ,

∆J (b) ← (α(b))⊤K(b)α(b) − J̃ (b),
J̃ (b) ← (α(b))⊤K(b)α(b).

10: end while
11: Compute ρ(b) according to (16).
12: end parallel for
13: return {α(b),π(b), ρ(b)}Bb=1

is in the form of (10). They together derive the following
intersection MKL uncertainty set

U∗
ν,µ(D) =

B⋂
b=1

U (b)
ν,µ(D) (17)

=

u

∣∣∣∣∣∣∣∣
∑

n∈SV (b)

∑
m∈SK(b)

r−1∑
k=1

α
(b)⋆
n π

(b)⋆
m

κcm

∣∣∣(q(b)(k)
m )⊤(u− un)

∣∣∣
≤ 1− ρ(b)⋆, ∀b ∈ [B]

 .

(18)

It is quite obvious that if the batch number B = 1,
Algorithm 1 will be reduced to the original HessianMKL
algorithm for MKL-OC-SVM [19] and the intersection MKL
uncertainty set (17) will become (6).

We can extend the concepts of boundary support vectors
(BSVs) and outliers (OLs) in [19] to the intersection MKL

uncertainty set (18) by naturally defining

BSV = D ∩ relbdU∗
ν,µ(D) =

B⋂
b=1

{
un ∈ D

∣∣∣n ∈ BSV (b)
}

(19)
as the point set of BSVs and

OL = D \ U∗
ν,µ(D) =

B⋃
b=1

{
un ∈ D

∣∣∣n ∈ OL(b)
}

(20)

as the point set of OLs, where BSV (b) and OL(b) stand for the
index sets of the BSVs and the OLs generated from the batch
b MKL, and their definitions strictly follow [19]. We have
the following proposition about the outliers of the intersection
MKL set.

Proposition 2 (Relationship Between ν, B and the Propor-
tion of Outliers): If an intersection MKL set (17) is derived
by Algorithm 1 with given ν ∈ (0, 1], B ≥ 1 then Bν is an
upper bound on the proportion of outliers defined by (20).

Proof: Firstly, the latter equation of (20) is obtained
by substituting (17) and performing simple set operations.
Then, based on the inclusion-exclusion principle, the following
inequality about the cardinality of finite point set OL can be
established: cardOL = card

⋃B
b=1

{
un ∈ D

∣∣n ∈ OL(b)
}
≤∑B

b=1 card
{
un ∈ D

∣∣n ∈ OL(b)
}

=
∑B

b=1 cardOL(b). Ac-
cording to [19, Proposition 2], cardOL(b) has an upper bound
Nν, hence we have cardOL ≤

∑B
b=1 Nν = NBν. Therefore,

cardOL/N ≤ Bν, and the proposition is proven.
Proposition 2 provides a theoretical upper bound for the

proportion of outliers prior to learning the uncertainty set.
This upper bound equals to the regularization parameter ν
when B = 1 while it may be very loose as B becomes
large. Nevertheless, numerical case study shows that the actual
proportion of outliers posterior to the construction of the
uncertaity set does not increase linearly with respect to B as
Bν does, and it does not overstep ν too dramatically within
reasonable ranges of B and ν, if we choose the directions
{qm} of all basis kernels evenly amoung the uncertaity space
and group them systemeticially into batches (cf. Section V-C).
Therefore, in practice when we use Algorithm 1 it still makes
sense to take the value of ν as an important a priori reference
for the proportion of outliers. The useful meaning of the
proportion of outliers under the proposed MKL-aided CCG
framework will be discussed later.

III. MKL UNCERTAINTY SET-INDUCED
COLUMN-AND-CONSTRAINT GENERATION METHOD

A. CCG Method Description

The CCG method proposed by Zeng and Zhao [28] is
a general iterative framework to solve two-stage RO (1)
exactly, which is easy to implement and has good scalability.
It alternates between solving the following master problem
(MP) with variables and constraints generated by a gradually
enriched finite significant scenario set S to find a lower bound
LB on the objective value and the corresponding first-stage

5



decision x:
[MP]:

P (S) =



min
x,η,{y(s)}s∈S

a⊤x+ η

s.t. x ∈ X
η ≥ b⊤y(s), ∀s ∈ S
Ax+By(s) +Cs ≥ c, ∀s ∈ S
y(s) ≥ 0, ∀s ∈ S,

(21)
and solving the following sub-problem (SP) with given x using
proper oracle to derive an upper bound UB for the overall
objective and identify some new significant scenario for u
that can then be included in the set S:
[SP]:

Q(x) =


max
u∈U

min
y

b⊤y

s.t. Ax+By +Cu ≥ c
y ≥ 0.

(22)

By making use of the Karush-Kuhn-Tucker (KKT) condi-
tions, Zeng and Zhao [28] provided a general optimality oracle
for SP (22), which can be converted into a 0-1 mixed integer
program with the Big-M method. However, this oracle is
rooted in the relatively complete recourse assumption (RCRA)
that Y(x,u) ̸= ∅ for any x ∈ X and any u ∈ U , which is
so restrictive that if the oracle is applied to cases where the
RCRA does not hold, the CCG procedure might not converge
in a finite number of steps or might converge to an unrobust
solution with the corresponding objective value more aggres-
sive (less) than the true optimal one, even though the two-
stage RO problem being solved is itself feasible. Bertsimas
and Shtern [30] rigorously clarified this issue and extended the
CCG method to a more general feasibility assumption (FA),
i.e., there exists at least one x ∈ X such that for any u ∈ U the
feasible region of the recourse problem Y(x,u) ̸= ∅. They
proposed to determine the feasibility of the given x before
solving (22) at each iteration by checking if the following
optimization problem has a strictly positive objective value:

F (x) =


max
u∈U

min
y,δ

δ

s.t. Ax+By +Cu+ δ1 ≥ c
y ≥ 0, δ ≥ 0.

(23)

For a given x, if the optimal value F (x) > 0 (i.e., the given x
is infeasible), the upper bound UB of (1) will be set to +∞
by convention and the corresponding u will be incorperated
into the significant scenario set S, otherwise the optimality
oracle will be called as before. Since (23) naturally satisfies
the RCRA and has a structure similar to (22), it can also be
equivalently transformed into a mixed integer program using
the KKT conditions and the Big-M method, which is referred
to as the feasibility oracle. Wang and Zeng [31] also adopted
a similar feasibility oracle when handling two-stage RO with
mixed integer recourse.

In this paper, we propose to embed the MKL-based un-
certianty set into the extended CCG framework discussed
above, thus providing an integrated and practical workflow

for modeling and solving data-driven two-stage RO problems
of the form (1) that satisfy the FA (but not necessarily the
RCRA).

B. Tractability of the Intersection MKL Uncertainty Set

Similar to the DPDK-based MKL uncertainty set [19],
the proposed DNPNK-based MKL uncertainty set (10) and
the intersection version (18) also have benign computational
tractability. By introducing auxiliary variables θnmk,∀n ∈
SV,m ∈ SK, k ∈ [r − 1], (10) can be linearized as

Ũν,µ(D) =

u

∣∣∣∣∣∣∣∣∣∣

∑
n∈SV

∑
m∈SK

r−1∑
k=1

α⋆
nπ

⋆
m

κcm
θnmk ≤ 1− ρ⋆,

− θnmk ≤ (q(k)
m )⊤(u− un) ≤ θnmk,

∀n ∈ SV,m ∈ SK, k ∈ [r − 1]

 ,

(24)
and consequently (18) becomes

Ũ∗
ν,µ(D) =

B⋂
b=1

Ũ (b)
ν,µ(D)

=


u

∣∣∣∣∣∣∣∣∣∣∣

∑
n∈SV (b)

∑
m∈SK(b)

r−1∑
k=1

α
(b)⋆
n π

(b)⋆
m

κcm
θ
(b)
nmk ≤ 1− ρ(b)⋆,

− θ
(b)
nmk ≤ (q(b)(k)

m )⊤(u− un) ≤ θ
(b)
nmk,

∀n ∈ SV (b),m ∈ SK(b), k ∈ [r − 1], b ∈ [B]


.

(25)

Based on the linearized intersection MKL uncertainty set (25),
by deriving the robust counterparts of (22) and (23) using the
KKT conditions and the Big-M method, the optimality and
feasibility oracles mentioned in the previous subsection are
presented as
[Optimality Oracle]:

Q̃(x) =



max
u∈Rr,y∈Rq

+,λ∈Rt
+,

v∈{0,1}t,w∈{0,1}q

b⊤y

s.t. u ∈ Ũ∗
ν,µ(D)

Ax+By +Cu ≥ c

B⊤λ ≤ b

λ ≤ M̄v

Ax+By +Cu− c ≤ M̄(1− v)

y ≤ M̄w

b−B⊤λ ≤ M̄(1−w)

(26)

and

6



[Feasibility Oracle]:

F̃ (x) =



max
u∈Rr,(y,δ)∈Rq+1

+ ,λ∈Rt
+,

v∈{0,1}t,w∈{0,1}q+1

δ

s.t. u ∈ Ũ∗
ν,µ(D)

Ax+By +Cu+ δ1 ≥ c

[B 1]⊤λ ≤ eq+1

λ ≤ M̄v

Ax+By +Cu+ δ1− c ≤ M̄(1− v)

(y, δ) ≤ M̄w

eq+1 − [B 1]⊤λ ≤ M̄(1−w),

(27)

where the constraint u ∈ Ũ∗
ν,µ in both oracles can be

equivalently replaced by the expressions in (25) with some
additional auxiliary variables.

Remark 1: It is obvious that the use of the inter-
section MKL uncertainty set Ũ∗

ν,µ does not structurally
increase the solution difficulty of the oracles, keeping
them as mixed integer linear programs that can be ef-
ficiently solved by existing solvers, but only introduces
(r − 1)

∑B
b=1 cardSV

(b) · cardSK(b) additional scalar vari-
ables and

(
2(r − 1)

∑B
b=1 cardSV

(b) · cardSK(b) +B
)

lin-
ear scalar constraints in total. Since in the MKL-OC-SVM
(4) ν and µ are lower bounds on the proportions of SVs
and SKs respectively [19], an optimistic estimation for the
number of additional scalar variables brought by Ũ∗

ν,µ should
be (r − 1)NνMµ and that for the linear scalar constraints is
(2(r − 1)NνMµ+B).

C. MKL Uncertainty Set-Induced CCG Algorithm

The CCG algorithm needs at least one scenario u0 ∈ U
to be incorperated into the significant scenario set S to start
from solving MP (21). Although it is valid to initialize S
with any partial enumeration of U , a conceivable fact is that
a good initialization will yield a tighter lower bound LB in
the first iteration and thereby speed up the convergence of the
algorithm. Scholars have devised various strategies to obtain
a better initialization S0 for S. For example, Zhao and Zeng
[29] suggest to randomly select a feasible point u0 from the
uncertainty set U to establish a singleton S0 = {u0}. Specif-
ically, they take an extreme point of U as u0 by arbitrarily
solving the problem maxu{1⊤u|u ∈ U} in advance, or take
the worst-case scenario u0 obtained from the previous solution
within their algorithm procedure. Tsang et al. [32] propose an
inexact CCG method, whose early iterations can essentially be
regarded as repeatedly pre-solving the MP and the SP in a fast
but inexact manner and checking and collecting scenarios one
by one until obtaining an S0 that can give an ideal LB. In
Bertsimas and Kim [33], to reduce the number of different
target classes the machine learning algorithm needs to be
trained on, the authers provide a data-driven heuristic warm
start to the CCG algorithm, which plays an important role in
their proposed method.

Under the data-driven two-stage RO setup in this paper,
although we originally have a large number of discrete un-

Algorithm 2 MKL Uncertainty Set-Induced CCG

Input: X , A, B, C, a, b, c, Ũ∗
ν,µ(D), BSV , S0, ϵ > 0

Output: x
1: Initialize: LB ← −∞, UB ← +∞, S ← S0 ∪ BSV .
2: loop
3: Compute x and η by solving MP P (S), i.e., (21).
4: Update the lower bound LB ← a⊤x+ η.
5: if UB − LB ≤ ϵ then
6: return x
7: end if
8: Obtain δ and u by calling Feasibility Oracle F̃ (x), i.e.,

(27).
9: if δ > ϵ then {Note: x is infeasible.}

10: Update the upper bound UB ← min{UB,+∞}.
11: else {Note: x is feasible.}
12: Obtain y and u by calling Optimality Oracle Q̃(x),

i.e., (26).
13: Update the unpper bound UB ← min{UB,a⊤x +

b⊤y}.
14: end if
15: if UB − LB ≤ ϵ then
16: return x
17: end if
18: Update the significant scenario set S ← S ∪ {u}.
19: end loop

certainty scenarios in D available for initializing S, it is
clearly unrealistic and unnecessary to include all of them in
S0. Fortunately, the construction process of uncertainty set
based on MKL-OC-SVM naturally identifies some potentially
significant scenarios, namely the BSVs mentioned earlier.
Thanks to the sparsity of MKL-OC-SVM, these relatively few
BSVs are very likely to be the extreme points of U∗

ν,µ(D),
and even if they are not, they have the potential to induce MP
(21) to give a more valuable lower bound. With this intuition in
mind, this paper suggests to incorporate the BSVs discovered
by MKL-OC-SVM into the S0 obtained by the aforementioned
initialization methods to initialize S, in the hope of further
reducing the iterations of the CCG algorithm and improving
its efficiency.

As an integration of all discussions in this section, the
MKL uncertianty set-induced CCG (MKLCCG) algorithm is
summarized in Algorithm 2.

Remark 2: The proposed MKL-aided CCG method yields
a numerically exact optimal solution to the two-stage RO (1)
for any given MKL-based uncertainty set (18), which thus
establishes a connection with two-stage stochastic program-
ming under sample average approximation [46]–[48] with the
commonly used risk measure value-at-risk (V@R) [49], [50].
Specifically, if the probability distribution of the uncertainty
is estimated empirically based on the finite discrete scenarios
D, i.e., P̂{u = ui} = 1

N ,∀i, the optimal objective value z⋆

7



of (1) can then be interpreted as

z⋆ = V@Rχ[z] = min
{
z̃
∣∣∣P̂ {z ≤ z̃} ≥ χ

}
, (28)

where χ is given by the probability that an uncertainty
realization falls into the uncertaity set U∗

ν,µ(D). In other
words, we have at least an confidence level of χ × 100%
to believe that the actual loss z does not exceed z⋆ if we
follow the decision suggested by the optimal solution of (1).
A conservative a priori lower bound on χ is provided by
χ = 1 − Bν in the light of Proposition 2, with a reference
value χ̃ = 1 − ν, which can be used as a rough guide to
determine the values of hyperparameters when learning the
uncertainty set. Once the uncertainty set is constructed, a
calibrated empirical value of χ based on the current training
will be revealed, i.e., χ̂ = 1 − cardOL/N . This indicates
that the MKL-aided CCG method proposed in this paper can
not only provide an optimal solution to (1), but also offer
a quantitative assessment of the risk level associated with
that solution. On the other hand, decision-makers are also
able to select appropriate hyperparameters through a trial-
and-error process thereby constructing an uncertainty set that
meets a specified degree of risk aversion and then inducing the
MKLCCG algorithm to give a satisfying solution. In addition,
a more mathematically rigorous generalization lower bound
on χ can be obtained according to [51] under some restrictive
conditions.

IV. MKLTWOSTAGERO.JL : AN OPEN-SOURCE SOFTWARE
PACKAGE

To facilitate users in practical evaluation and applica-
tion, the MKL-aided CCG method proposed in this paper
has been incorporated into an open-source software package
MKLTwoStageRO.jl. With its assistance, users can con-
struct MKL uncertainty sets based on DNPNKs parallelly,
visualize the uncertainty sets, solve the two-stage RO using
the MKLCCG algorithm, and retrieve the adaptive recourse
decisions according to revealed uncertainties at the second-
stage, with a small amount of code. This package is written
in the Julia language [52], and a prototype version has been
registered in the General registry of Julia.

This package also supports constructing MKL-based un-
certainty sets using DPDKs [19] or other existing or cus-
tom kernels (some additional acceleration techniques are also
adopted in this package when computing the plenty of kernel
matrices so that the efficiency of the entire MKL process can
be further improved), while also allowing for the construc-
tion of non-MKL-based polyhedral uncertainty sets for two-
stage RO (e.g., those based on general algebraic expressions
or polyhedral geometric operations). Users can also choose
other classic two-stage RO algorithms besides the proposed
MKLCCG, such as extended column-and-constraint gener-
ation (ECCG) [30], original (nested) column-and-constraint
generation (CCG) [28], [29], and Benders-dual cutting plane
method (BDCP) [25], [26], [28].

Readers are directed to the link https://github.com/hanb16/
MKLTwoStageRO.jl for the source code, examples and docu-
mentation of the package MKLTwoStageRO.jl.

V. CASE STUDY: DATA-DRIVEN ROBUST
LOCATION-TRANSPORTATION PROBLEM

A. Problem Statement

Consider the location-transportation problem where m po-
tential facilities supply a commodity to n customers. For
each potential facility i, the fixed cost for building it at the
corresponding site is fi, its unit capacity cost is ai, and its
maximal production capacity is ci. The unit transportation cost
between facility i and customer j is given by bij . Furthermore,
the demand of each customer j is dj , which in practice is
unknown before any facility is opened and its capacity is
determined. However, in many cases, we can obtain a certain
amount of historical or experimental demand data D through
market survey or other approaches. The question now is how to
make robust yet flexible decisions about location, production
and transportation based on these data.

We denote by xi ∈ {0, 1} whether potential facility i is
built, by zi ∈ R+ how much the facility is to produce, and by
yij ∈ R+ the transportation amount from facility i to customer
j. Then this problem can be modeled by the following two-
stage RO:

min
(x,z)∈X

∑
i

(fixi + aizi) + max
d∈U(D)

min
y∈Y(x,z,d)

∑
i,j

bijyij

s.t. X =
{
(x, z) ∈ {0, 1}m × Rm

+ |zi ≤ cixi, ∀i
}

Y(x, z,d) =
{
y ∈ Rm×n

+

∣∣∣∑j yij ≤ zi, ∀i,∑
i yij ≥ dj , ∀j

}
,

(29)

where U(D) is the data-driven uncertainty set that we are
going to construct with the proposed MKL-based method.

In the following subsections, the parameters of the instances
are chosen from the following ranges: fi ∈ [300, 500], ai ∈
[15, 25] and bij ∈ [10, 40]. In addition, for a given demand
data set D, we chose a proper scaling factor σ > 1 to have∑

i ci = σ·maxd{
∑

j dj |d ∈ D} so that the feasibility of (29)
can be ensured for any possible realization in the data-driven
uncertainty set U(D) (i.e., the FA holds).

B. An Illustrative Toy Instance

We first study a toy instance where there are m = 4 potential
facilitate and n = 2 customers. The demand data D of the
two customers is given by the N = 300 scatter points in
Fig. 1, which presents significant negative correlation between
the dimensions. We generated M = 50 basis DNPNKs for
this problem with their corresponding unit direction vectors
{qm}50m=1 drawn evenly from the 2-dimensional uncertainty
space [19]. These kernels were treated as a single bundle to
learn using the conventional HessianMKL for MKL-OC-SVM
algorithm [19] (equivalently B = 1), and were systemeticially
grouped into B = 5 batches to resort to the proposed parallel
HessianMKL for MKL-OC-SVM Algorithm 1, respectively.

8

https://github.com/hanb16/MKLTwoStageRO.jl
https://github.com/hanb16/MKLTwoStageRO.jl


0 2 4
0

2

4

Interior Points

Boundary Support Vectors

Outliers

(a) The conventional MKL uncertainty set (B = 1)

0 2 4
0

2

4

Interior Points

Boundary Support Vectors

Outliers

(b) The intersection MKL uncertainty set (B = 5)

Fig. 1. Conventional and intersection MKL uncertainty sets constructed by
Algorithm 1 (ν = 0.05, µ = 0.05).

In both cases, we chose the kernel regularization parameter as
µ = 0.05 in order to ensure the total number of SKs won’t
be less than ⌈Mµ⌉ = 3, and the data regularization parameter
was also set to be ν = 0.05 with the hope that the number of
SVs in each batch would be no less than Nν = 15 and the
number of outliers won’t exceed this.

The above two cases were both implemented in Julia v1.10.3
with the help of the package MKLTwoStageRO.jl on a gen-
eral Windows personal computer. Due to the small scale, their
MKL processes were quickly completed within 2 seconds, and
the efficiency advantage of the proposed parallel algorithm was
conceivably not significant for this instance. The conventional
and intersection MKL uncertainty sets constructed in both
cases are shown in Fig. 1, where the pink areas with thick red
boundaries are the sets learned and the areas surrounded by
the thin red lines in Fig. 1b represent the sets obtained by each
parallel batch. It can be seen by comparing the two subfigures
in Fig. 1 that the intersection MKL uncertainty set tends to
reduce redundant coverage, while the conventional OC-SVM
does not seek to minimize the volume of the set [51]. As a
result, the conventional MKL uncertainty set covers 96.0%
of uncertainty scenarios with 12 outliers, and the intersection

TABLE I
ALGORITHM PERFORMANCE COMPARISON

Iter. ECCG MKLCCG
LB UB Gap LB UB Gap

0 −∞ +∞ +∞ −∞ +∞ +∞
1 1480.55 +∞ +∞ 1505.53 1510.38 4.85
2 1480.55 1513.99 33.44 1510.38 – 0.00
3 1510.38 1510.38 0.00

MKL uncertainty set covers 94.3% of uncertainty scenarios
with 17 outliers.

The intersection MKL uncertainty set was then adopted for
the subsequent CCG procedure. In addition to the proposed
MKLCCG Algorithm 2, as a comparison, the same set is also
used to solve with the algorithm denoted as ECCG [30]. The
main difference between them is that ECCG only treats the
intersection MKL uncertainty set as a general polyhedron and
does not take full advantage of the BSV significant scenarios
identified in the MKL phase. For both algorithms, the initial
significant scenario sets S0 are given by a same singleton {d0}
where d0 is the scenario that solves maxd{1⊤d|d ∈ U(D)}
[29].

The dynamic behaviors of the two algorithms are presented
in Table I. It distinctly shows that the ECCG algorithm termi-
nated after 3 entire iterations, while the MKLCCG algorithm
met the termination criterion earlier after updating the LB
at the middle of the 2nd iteration. We further looked into
the iteration processes of both algorithms and found that,
in the 1st iteration of the ECCG algorithm it solved the
MP P (S0) and yielded the lower bound 1480.55 with the
active scenario d0 = (4.04, 2.07), whereas for the MKLCCG
algorithm the active scenario in the 1st iteration was one
of the BSVs (0.63, 4.50) so that it raised the first lower
bound to 1505.53 through the MP P (S0 ∪ BSV), which
accelerated the convergence. Furthermore, due to the fact that
the RCRA doesn’t hold for this instance, the ECCG algorithm
unluckily produced an infeasible x at the first solution of the
MP, thus delaying its UB update. Finally, both algorithms
reached the worst-case scenario (0.79, 4.58) and achieved the
same optimal objective value 1510.38 that we might believe
the actual overall cost of the location-transportation problem
won’t exceed with an empirical confidence level more than
94.3%. Multiple repeated solutions showed that the MKLCCG
algorithm could converge within 1 second, while ECCG took
more than 2 seconds to complete. This seems negligible in this
particular instance, but we point out that since the MKLCCG
algorithm has the potential to reduce the number of iterations,
its advantage may be significant when dealing with some tough
cases where calling the Feasibility Oracle F̃ (x) may be very
time-consuming even if the corresponding Optimality Oracle
Q̃(x) is efficient, as found by Bertsimas and Shtern [30] in
their numerical experiments.

9



ν
0.0 0.1 0.2 0.3 0.4

P
ro

po
rt

io
n 

of
 O

ut
lie

rs

0.0

0.1

0.2

0.3

0.4

B = 1

B = 2

B = 3

B = 4

B = 5

B = 6

B = 7

B = 8

ν

1.18ν

Fig. 2. The variation trend of the proportion of outliers with respect to ν
under different B.

C. A Higher Dimensional Instance

We then study a higher dimensional instance to find out
how the hyper-parameters ν and B influence the result and
the performance of the proposed method. There are m = 4
potential facilities and n = 4 customers in this instance.
The demand data was sampled with size N = 300 from a
4-dimensional Gaussian distribution whose mean vector was
randomly selected from [3, 6]4 and covariance matrix was a
randomly generated symmetric positive definite matrix with
diagonal elements taken from [1, 2] and non-diagonal elements
taken from [−1, 0]. We constructed the uncertainty set with
Algorithm 1 and solved the induced two-stage RO with
Algorithm 2 for this instance under varying ν and B on the
High-Performance Computing Platform of Peking University
using Julia v1.10.3 and MKLTwoStageRO.jl.

When constructing the uncertainty set under each combina-
tion of ν and B, we uniformly provided M = 113 = 1331
candidate basis kernels for learning, with the corresponding
unit direction vectors {qm}1331m=1 evenly selected within the
4-dimensional uncertainty space. The kernel regularization
parameter µ was set to 0.05 for all cases. For cases where
B > 1, we systematically grouped the basis kernels for
parallel learning. Fig. 2 shows the trend of the proportion of
outliers identified by the learned sets under different values
of B as ν varies. We can see from the figure that, within
the illustrated range of ν and B, the proportion of outliers
generally increases approximately linearly with ν, and the
growth rate roughly increases as B gets larger. When B = 1,
ν is a strict upper bound on the proportion of outliers [19],
[51], while when B > 1, this bound is crossed as ν increases.
Proposition 2 presents an upper bound Bν for B ≥ 1, but it is
conservative. As a matter of fact, over all the values of ν and
B shown in Fig. 2, the proportion of outliers does not actually
exceed 1.18ν at most. Therefore, for the proposed intersection
MKL uncertainty set, ν can effectively regulate the number of
outliers that the set fails to cover, and it is still meaningful to
regard it as an a prior reference value for the proportion of

B
1 5432 6 7 8

M
K

L 
T

im
e 

(s
ec

) 
| M

K
LC

C
G

 T
im

e 
(m

in
)

0

50

100

150

200

250

O
pt

im
al

 O
bj

ec
tiv

e 
V

al
ue

1250

1300

1350

1400

1450

1500

ν = 0.01 ν = 0.05 ν = 0.10

M
K

L 
T

im
e 

(s
ec

) 
 

 
 

 
M

K
LC

C
G

 T
im

e 
(m

in
)

—

Fig. 3. The variation trends of the learning (MKL) and solution (MKLCCG)
time and the optimal objective value with respect to B under different ν.

outliers within a reasonable range of ν and B in practice.
Fig. 3 depicts the variations with respect to B of the times

taken to construct uncertainty set through MKL and to solve
the induced two-stage RO using the MKLCCG algorithm,
together with the corresponding optimal objective value ob-
tained, under different ν. Note that the MKL time (in red) in
the figure includes not only the execution time of Algorithm
1, but also the preceding kernel generation and kernel matrix
computation time. As can be seen from the figure, after
taking the measure of multi-process parallel learning, the
MKL time is significantly reduced, with a maximum speedup
ratio (the wall clock time using a single process divided by
the wall clock time using multiple processes) of about 2–6.
This speedup effect seems to be more significant for smaller
values of ν. The MKLCCG time (in green) also shows a
decreasing trend as B increases, although there is a large
fluctuation at ν = 0.10 (This may be due to the fact that the
algorithm process occasionally encounters the aforementioned
time-consuming situation of calling the Feasibility Oracle).
The optimal objective value (in blue) of the induced two-
stage RO also decreases with increasing B, which is a direct
consequence of the tendency of intersection MKL uncertainty
set to reduce set redundant coverage. From the perspective
of ν, it can be found that an increase in ν significantly
increases the time consumption of MKLCCG and significantly
reduces the optimal objective value. This is because a larger
ν corresponds to a set containing fewer potential uncertainty
scenarios, thus leading to a robust optimization solution with
higher risk tolerance, and at the same time, this brings more
scalar variables and constraints to the robust counterpart.

VI. CONCLUDING REMARKS

In this paper, we presented a data-driven integrated work-
flow for modeling and solving two-stage RO problems,
namely, the MKL-aided CCG method. This method covers
the two main phases of dealing with general two-stage RO,
i.e., the construction of uncertainty set and the solution of

10



the induced robust counterpart, which are supported by two
algorithms respectively. We showed that by using this method,
a compact piecewise linear polyhedral uncertainty set that is
the intersection of different MKL-based uncertainty sets can be
constructed efficiently from massive historical uncertainty data
and plenty of basis DNPNKs. This intersection uncertainty
set consists of sparse SVs and SKs so that the tractability
of the robust counterpart can be ensured, and its identified
BSVs can provide effective initial cuts for the subsequent CCG
procedure, thereby assisting its convergence. The proposed
method seeks to provide the decision-makers with exact robust
decision solutions that can resist over-conservatism when only
the feasibility assumption holds, and at the same time, provide
probability-based quality evaluation for them. And as depicted
in the figures, the risk aversion degree of the solution can be
adjusted quantificationally through hyperparameters. We also
released an easy-to-use companion software package to the
Julia community, the effectiveness and practicability of which
have been verified through numerical experiments together
with the proposed method. Future work may be directed
towards further developing the theoretical framework of the
method and improving the software package to make it more
user-friendly.

ACKNOWLEDGMENT

This work is supported by the High-Performance Comput-
ing Platform of Peking University.

The author would like to thank Dr. Ying Guan, research
fellow at Harvard University, for providing substantial support.

By default, the package MKLTwoStageRO.jl implicitly
uses open-source packages like KernelFunctions.jl1,
optimization solvers HiGHS.jl2 and Ipopt.jl3, single
kernel SVM solver LIBSVM.jl4, etc. Thanks for these
quality packages, although the users are also allowed to replace
them with other alternatives.

REFERENCES

[1] A. Ben-Tal, A. Nemirovski, and L. El Ghaoui, Robust Optimization,
ser. Princeton Series in Applied Mathematics Ser. Princeton: Princeton
University Press, 2009.

[2] D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications
of robust optimization,” SIAM Review, vol. 53, no. 3, pp. 464–501, Jan.
2011. [Online]. Available: https://doi.org/10.1137/080734510

[3] D. Luan, C. Wang, Z. Wu, and Z. Xia, “Two-stage robust optimization
model for uncertainty investment portfolio problems,” Journal of
Mathematics, vol. 2021, no. 1, p. 3087066, 2021. [Online]. Available:
https://doi.org/10.1155/2021/3087066

[4] H. Qiu, W. Gu, P. Liu, Q. Sun, Z. Wu, and X. Lu, “Application of
two-stage robust optimization theory in power system scheduling under
uncertainties: A review and perspective,” Energy, vol. 251, p. 123942,
2022. [Online]. Available: https://doi.org/10.1016/j.energy.2022.123942

[5] C. Cheng, M. Qi, Y. Zhang, and L.-M. Rousseau, “A two-stage
robust approach for the reliable logistics network design problem,”
Transportation Research Part B: Methodological, vol. 111, pp. 185–202,
2018. [Online]. Available: https://doi.org/10.1016/j.trb.2018.03.015

1https://github.com/JuliaGaussianProcesses/KernelFunctions.jl
2https://github.com/jump-dev/HiGHS.jl
3https://github.com/jump-dev/Ipopt.jl
4https://github.com/JuliaML/LIBSVM.jl

[6] S. Neyshabouri and B. P. Berg, “Two-stage robust optimization
approach to elective surgery and downstream capacity planning,”
European Journal of Operational Research, vol. 260, no. 1, pp. 21–40,
Jul. 2017. [Online]. Available: https://doi.org/10.1016/j.ejor.2016.11.043

[7] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski,
“Adjustable robust solutions of uncertain linear programs,” Mathematical
Programming, vol. 99, no. 2, pp. 351–376, Mar. 2004. [Online].
Available: https://doi.org/10.1007/s10107-003-0454-y

[8] A. L. Soyster, “Technical note—convex programming with set-inclusive
constraints and applications to inexact linear programming,” Operations
Research, vol. 21, no. 5, pp. 1154–1157, Oct. 1973. [Online]. Available:
https://doi.org/10.1287/opre.21.5.1154

[9] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,”
Mathematics of Operations Research, vol. 23, no. 4, pp. 769–805, Nov.
1998. [Online]. Available: https://doi.org/10.1287/moor.23.4.769

[10] D. Bertsimas, D. Pachamanova, and M. Sim, “Robust linear
optimization under general norms,” Operations Research Letters,
vol. 32, no. 6, pp. 510–516, Nov. 2004. [Online]. Available:
https://doi.org/10.1016/j.orl.2003.12.007

[11] A. Ben-Tal and A. Nemirovski, “Robust solutions of linear programming
problems contaminated with uncertain data,” Mathematical
Programming, vol. 88, no. 3, pp. 411–424, Sep. 2000. [Online].
Available: https://doi.org/10.1007/PL00011380

[12] Z. Li, R. Ding, and C. A. Floudas, “A comparative theoretical and
computational study on robust counterpart optimization: I. robust linear
optimization and robust mixed integer linear optimization,” Industrial
& Engineering Chemistry Research, vol. 50, no. 18, pp. 10 567–10 603,
Aug. 2011. [Online]. Available: https://doi.org/10.1021/ie200150p

[13] D. Bertsimas and A. Thiele, Robust and data-driven optimization:
modern decision making under uncertainty. INFORMS, Sep. 2006,
pp. 95–122. [Online]. Available: https://doi.org/10.1287/educ.1063.0022

[14] C. Ning and F. You, “Optimization under uncertainty in the era
of big data and deep learning: When machine learning meets
mathematical programming,” Computers & Chemical Engineering,
vol. 125, pp. 434–448, Jun. 2019. [Online]. Available: https:
//doi.org/10.1016/j.compchemeng.2019.03.034

[15] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and
W. Yin, “Learning to optimize: A primer and a benchmark,” Journal
of Machine Learning Research, vol. 23, no. 189, pp. 1–59, 2022.
[Online]. Available: http://jmlr.org/papers/v23/21-0308.html

[16] L. J. Hong, Z. Huang, and H. Lam, “Learning-based robust
optimization: Procedures and statistical guarantees,” Management
Science, vol. 67, no. 6, pp. 3447–3467, Jun. 2021. [Online]. Available:
https://doi.org/10.1287/mnsc.2020.3640

[17] C. Ning and F. You, “A data-driven multistage adaptive robust
optimization framework for planning and scheduling under uncertainty,”
AIChE Journal, vol. 63, no. 10, pp. 4343–4369, May 2017. [Online].
Available: https://doi.org/10.1002/aic.15792

[18] C. Shang and F. You, “A data-driven robust optimization approach
to scenario-based stochastic model predictive control,” Journal of
Process Control, vol. 75, pp. 24–39, 2019. [Online]. Available:
https://doi.org/10.1016/j.jprocont.2018.12.013

[19] B. Han, C. Shang, and D. Huang, “Multiple kernel learning-aided
robust optimization: Learning algorithm, computational tractability,
and usage in multi-stage decision-making,” European Journal of
Operational Research, vol. 292, no. 3, pp. 1004–1018, Aug. 2021.
[Online]. Available: https://doi.org/10.1016/j.ejor.2020.11.027

[20] I. Wang, C. Becker, B. Van Parys, and B. Stellato, “Learning
decision-focused uncertainty sets in robust optimization,” arXiv preprint
arXiv:2305.19225v4, 2024. [Online]. Available: https://arxiv.org/abs/
2305.19225v4

[21] T. Tulabandhula and C. Rudin, “Robust optimization using machine
learning for uncertainty sets,” arXiv preprint arXiv:1407.1097v1, 2014.
[Online]. Available: https://arxiv.org/abs/1407.1097v1

[22] T. Campbell and J. P. How, “Bayesian nonparametric set construction
for robust optimization,” in 2015 American Control Conference
(ACC), IEEE. IEEE, Jul. 2015, pp. 4216–4221. [Online]. Available:
https://doi.org/10.1109/acc.2015.7171991

[23] C. Shang, X. Huang, and F. You, “Data-driven robust optimization
based on kernel learning,” Computers & Chemical Engineering,
vol. 106, pp. 464–479, Nov. 2017. [Online]. Available: https:
//doi.org/10.1016/j.compchemeng.2017.07.004

[24] M. Goerigk and J. Kurtz, “Data-driven robust optimization using deep
neural networks,” Computers & Operations Research, vol. 151, p.

11

https://doi.org/10.1137/080734510
https://doi.org/10.1155/2021/3087066
https://doi.org/10.1016/j.energy.2022.123942
https://doi.org/10.1016/j.trb.2018.03.015
https://github.com/JuliaGaussianProcesses/KernelFunctions.jl
https://github.com/jump-dev/HiGHS.jl
https://github.com/jump-dev/Ipopt.jl
https://github.com/JuliaML/LIBSVM.jl
https://doi.org/10.1016/j.ejor.2016.11.043
https://doi.org/10.1007/s10107-003-0454-y
https://doi.org/10.1287/opre.21.5.1154
https://doi.org/10.1287/moor.23.4.769
https://doi.org/10.1016/j.orl.2003.12.007
https://doi.org/10.1007/PL00011380
https://doi.org/10.1021/ie200150p
https://doi.org/10.1287/educ.1063.0022
https://doi.org/10.1016/j.compchemeng.2019.03.034
https://doi.org/10.1016/j.compchemeng.2019.03.034
http://jmlr.org/papers/v23/21-0308.html
https://doi.org/10.1287/mnsc.2020.3640
https://doi.org/10.1002/aic.15792
https://doi.org/10.1016/j.jprocont.2018.12.013
https://doi.org/10.1016/j.ejor.2020.11.027
https://arxiv.org/abs/2305.19225v4
https://arxiv.org/abs/2305.19225v4
https://arxiv.org/abs/1407.1097v1
https://doi.org/10.1109/acc.2015.7171991
https://doi.org/10.1016/j.compchemeng.2017.07.004
https://doi.org/10.1016/j.compchemeng.2017.07.004


106087, Mar. 2023. [Online]. Available: https://doi.org/10.1016/j.cor.
2022.106087

[25] J. F. Benders, “Partitioning procedures for solving mixed-variables
programming problems,” Numerische Mathematik, vol. 4, no. 1, pp. 238–
252, Dec. 1962. [Online]. Available: https://doi.org/10.1007/bf01386316

[26] A. M. Geoffrion, “Generalized Benders decomposition,” Journal of
Optimization Theory and Applications, vol. 10, no. 4, pp. 237–260,
Oct. 1972. [Online]. Available: https://doi.org/10.1007/bf00934810

[27] L. Zhao and B. Zeng, “Robust unit commitment problem with demand
response and wind energy,” in 2012 IEEE Power and Energy Society
General Meeting, IEEE. IEEE, Jul. 2012, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/pesgm.2012.6344860

[28] B. Zeng and L. Zhao, “Solving two-stage robust optimization problems
using a column-and-constraint generation method,” Operations Research
Letters, vol. 41, no. 5, pp. 457–461, Sep. 2013. [Online]. Available:
https://doi.org/10.1016/j.orl.2013.05.003

[29] L. Zhao and B. Zeng, “An exact algorithm for two-stage
robust optimization with mixed integer recourse problems,”
University South Florida, Tech. Rep., 2012. [Online]. Available:
https://optimization-online.org/?p=11876

[30] D. Bertsimas and S. Shtern, “A scalable algorithm for two-stage
adaptive linear optimization,” arXiv preprint arXiv:1807.02812v1,
2018. [Online]. Available: https://arxiv.org/abs/1807.02812v1

[31] W. Wang and B. Zeng, “Computing two-stage robust optimization with
mixed integer structures,” arXiv preprint arXiv:2312.13607v1, 2023.
[Online]. Available: https://arxiv.org/abs/2312.13607v1

[32] M. Y. Tsang, K. S. Shehadeh, and F. E. Curtis, “An inexact column-
and-constraint generation method to solve two-stage robust optimization
problems,” Operations Research Letters, vol. 51, no. 1, pp. 92–98, Jan.
2023. [Online]. Available: https://doi.org/10.1016/j.orl.2022.12.002

[33] D. Bertsimas and C. W. Kim, “A machine learning approach to two-
stage adaptive robust optimization,” European Journal of Operational
Research, vol. 319, no. 1, pp. 16–30, Nov. 2024. [Online]. Available:
https://doi.org/10.1016/j.ejor.2024.06.012

[34] J. Dumouchelle, E. Julien, J. Kurtz, and E. B. Khalil, “Deep learning for
two-stage robust integer optimization,” arXiv preprint arXiv.2310.04345,
2024. [Online]. Available: https://arxiv.org/abs/2310.04345v3

[35] C. Ning and F. You, “Data-driven adaptive nested robust optimization:
General modeling framework and efficient computational algorithm
for decision making under uncertainty,” AIChE Journal, vol. 63,
no. 9, pp. 3790–3817, Apr. 2017. [Online]. Available: https:
//doi.org/10.1002/aic.15717

[36] ——, “Data-driven decision making under uncertainty integrating robust
optimization with principal component analysis and kernel smoothing
methods,” Computers & Chemical Engineering, vol. 112, pp. 190–210,
Apr. 2018. [Online]. Available: https://doi.org/10.1016/j.compchemeng.
2018.02.007

[37] B. Schölkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[38] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “Simplemkl,”
Journal of Machine Learning Research, vol. 9, no. 83, pp.
2491–2521, 2008. [Online]. Available: https://www.jmlr.org/papers/v9/
rakotomamonjy08a.html

[39] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I.
Jordan, “Learning the kernel matrix with semidefinite programming,”
Journal of Machine learning research, vol. 5, no. Jan, pp. 27–72, 2004.
[Online]. Available: https://www.jmlr.org/papers/v5/lanckriet04a.html

[40] X. Xu, I. W. Tsang, and D. Xu, “Soft margin multiple kernel
learning,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 24, no. 5, pp. 749–761, May 2013. [Online]. Available:
https://doi.org/10.1109/tnnls.2012.2237183

[41] F. Odone, A. Barla, and A. Verri, “Building kernels from binary
strings for image matching,” IEEE Transactions on Image Processing,
vol. 14, no. 2, pp. 169–180, Feb. 2005. [Online]. Available:
https://doi.org/10.1109/tip.2004.840701

[42] S. Maji, A. C. Berg, and J. Malik, “Classification using intersection
kernel support vector machines is efficient,” in 2008 IEEE Conference
on Computer Vision and Pattern Recognition, IEEE. IEEE, Jun. 2008,
pp. 1–8. [Online]. Available: https://doi.org/10.1109/cvpr.2008.4587630

[43] ——, “Efficient classification for additive kernel svms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 1, pp. 66–77, Jan. 2012. [Online]. Available: https://doi.org/10.
1109/tpami.2012.62

[44] O. Chapelle and A. Rakotomamonjy, “Second order optimization of
kernel parameters,” in Proc. of the NIPS Workshop on Kernel Learning:
Automatic Selection of Optimal Kernels, vol. 19. Citeseer, 2008, p. 87.
[Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&
type=pdf&doi=a294a7cfe9093d12f0fd29e35ad44cf5dbbc4412

[45] Y. Liu, W. He, and L. Zhao, “Data-driven robust optimization
with multiple kernel learning for refinery planning under price
uncertainty,” in 2022 Australian & New Zealand Control Conference
(ANZCC), IEEE. IEEE, Nov. 2022, pp. 81–86. [Online]. Available:
https://doi.org/10.1109/anzcc56036.2022.9966966

[46] A. J. King and R. T. Rockafellar, “Asymptotic theory for solutions
in statistical estimation and stochastic programming,” Mathematics of
Operations Research, vol. 18, no. 1, pp. 148–162, Feb. 1993. [Online].
Available: https://doi.org/10.1287/moor.18.1.148

[47] A. Shapiro, “Asymptotic behavior of optimal solutions in stochastic
programming,” Mathematics of Operations Research, vol. 18, no. 4,
pp. 829–845, Nov. 1993. [Online]. Available: https://doi.org/10.1287/
moor.18.4.829

[48] T. Homem-de Mello and G. Bayraksan, “Monte carlo sampling-based
methods for stochastic optimization,” Surveys in Operations Research
and Management Science, vol. 19, no. 1, pp. 56–85, Jan. 2014.
[Online]. Available: https://doi.org/10.1016/j.sorms.2014.05.001

[49] R. Rockafellar and S. Uryasev, “Conditional value-at-risk for
general loss distributions,” Journal of Banking & Finance, vol. 26,
no. 7, pp. 1443–1471, Jul. 2002. [Online]. Available: https:
//doi.org/10.1016/s0378-4266(02)00271-6

[50] S. Sarykalin, G. Serraino, and S. Uryasev, Value-at-risk vs. conditional
value-at-risk in risk management and optimization. INFORMS, Sep.
2008, pp. 270–294. [Online]. Available: https://doi.org/10.1287/educ.
1080.0052

[51] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural Computation, vol. 13, no. 7, pp. 1443–1471, Jul. 2001. [Online].
Available: https://doi.org/10.1162/089976601750264965

[52] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65–
98, Jan. 2017. [Online]. Available: https://doi.org/10.1137/141000671

12

https://doi.org/10.1016/j.cor.2022.106087
https://doi.org/10.1016/j.cor.2022.106087
https://doi.org/10.1007/bf01386316
https://doi.org/10.1007/bf00934810
https://doi.org/10.1109/pesgm.2012.6344860
https://doi.org/10.1016/j.orl.2013.05.003
https://optimization-online.org/?p=11876
https://arxiv.org/abs/1807.02812v1
https://arxiv.org/abs/2312.13607v1
https://doi.org/10.1016/j.orl.2022.12.002
https://doi.org/10.1016/j.ejor.2024.06.012
https://arxiv.org/abs/2310.04345v3
https://doi.org/10.1002/aic.15717
https://doi.org/10.1002/aic.15717
https://doi.org/10.1016/j.compchemeng.2018.02.007
https://doi.org/10.1016/j.compchemeng.2018.02.007
https://www.jmlr.org/papers/v9/rakotomamonjy08a.html
https://www.jmlr.org/papers/v9/rakotomamonjy08a.html
https://www.jmlr.org/papers/v5/lanckriet04a.html
https://doi.org/10.1109/tnnls.2012.2237183
https://doi.org/10.1109/tip.2004.840701
https://doi.org/10.1109/cvpr.2008.4587630
https://doi.org/10.1109/tpami.2012.62
https://doi.org/10.1109/tpami.2012.62
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a294a7cfe9093d12f0fd29e35ad44cf5dbbc4412
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a294a7cfe9093d12f0fd29e35ad44cf5dbbc4412
https://doi.org/10.1109/anzcc56036.2022.9966966
https://doi.org/10.1287/moor.18.1.148
https://doi.org/10.1287/moor.18.4.829
https://doi.org/10.1287/moor.18.4.829
https://doi.org/10.1016/j.sorms.2014.05.001
https://doi.org/10.1016/s0378-4266(02)00271-6
https://doi.org/10.1016/s0378-4266(02)00271-6
https://doi.org/10.1287/educ.1080.0052
https://doi.org/10.1287/educ.1080.0052
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1137/141000671

	Introduction
	Multiple Kernlel Learning-Based Uncertainty Set Construction
	MKL-Based One-Class SVM
	Directional Nullspace Projection Norm Kernel
	Parallel Learning Algorithm

	MKL Uncertainty Set-Induced Column-and-Constraint Generation Method
	CCG Method Description
	Tractability of the Intersection MKL Uncertainty Set
	MKL Uncertainty Set-Induced CCG Algorithm

	MKLTwoStageRO.jl: An Open-Source Software Package
	Case Study: Data-Driven Robust Location-Transportation Problem
	Problem Statement
	An Illustrative Toy Instance
	A Higher Dimensional Instance

	Concluding Remarks
	References

