
Neural Embedded Mixed-Integer Optimization for

Location-Routing Problems

Waquar Kaleem and Anirudh Subramanyam

Department of Industrial and Manufacturing Engineering,
The Pennsylvania State University, University Park, PA, USA

December 7, 2024

Abstract

We present a novel framework that combines machine learning with mixed-integer optimiza-
tion to solve the Capacitated Location-Routing Problem (CLRP). The CLRP is a classical yet
NP-hard problem that integrates strategic facility location with operational vehicle routing de-
cisions, aiming to simultaneously minimize both fixed and variable costs. The proposed method
first trains a permutationally invariant neural network that approximates the vehicle routing
cost for serving any arbitrary subset of customers by any candidate facility. The trained neu-
ral network is then used as a surrogate within a mixed-integer optimization problem, which
is reformulated and solved using off-the-shelf solvers. The framework is simple, scalable, and
requires no routing-specific knowledge or parameter tuning. Computational experiments on
large-scale benchmark instances confirm the effectiveness of our approach. Using only 10,000
training samples generated by an off-the-shelf vehicle routing heuristic and a one-time training
cost of approximately 2 wall-clock hours, the method provides location-allocation decisions that
are within 1% of the best-known solutions for large problems in less than 5 seconds on average.
The findings suggest that the neural-embedded framework can be a viable method for tackling
integrated location and routing problems at scale. Our code and data are publicly available.
Keywords: location-routing, vehicle routing, mixed-integer optimization, neural networks

1 Introduction

The Location-Routing Problem (LRP) involves determining where to open facilities (or depots)
to serve a given set of geographically distributed customers, as well as identifying the vehicle
routes that should be constructed to serve those customers from the opened facilities. In contrast
to the classical Facility Location Problem (FLP) [24, 34], the LRP arises in applications where
customers are served by vehicles operating on less-than-truckload routes. Consequently, the cost
of any candidate location decision must be evaluated by solving a Vehicle Routing Problem (VRP)
[57] for each opened facility. The LRP thus generalizes both the FLP and the VRP, making it NP-
hard in general. The Capacitated LRP (CLRP) refers to the simplest variant of the LRP in which
both facilities and vehicles have limited capacities, and the objective is to minimize the total cost
of facility operations and routing while ensuring that all customer demands are satisfied without
exceeding these capacities [52, 3].

A natural strategy to solve the CLRP is to make the location and routing decisions indepen-
dently of each other. This is partly justified in light of the fact that facility location is a strategic

1

decision, whereas vehicle routing is operational. In many applications, vehicle routes are often
redesigned on a daily basis once the facilities are established. However, choosing facility locations
without taking into account their economic impacts on routing may result in highly suboptimal
solutions, as the possible configurations of feasible vehicle routes are strongly influenced by the
locations of open facilities. Any initial savings in fixed facility setup costs may not be able to
compensate for large losses in distribution in the long run [51, 3]. Indeed, since distribution is a
repetitive activity, any additional routing costs for having chosen a poor facility location will be
incurred on a regular basis, and over time, these accumulated costs may exceed savings in setup
costs.

The need to address both decisions simultaneously has led to an active area of research in
developing new models, solution methods, and applications, as witnessed by the large number of
surveys published on the subject [40, 19, 52, 3, 38]. Variants of the CLRP can be broadly classified
as either discrete or continuous, depending on whether the customer and facility locations are
situated on predetermined discrete points or in continuous space. Within the former category,
which is the focus of our work, existing solution methods can be further classified as either exact or
heuristic. Exact approaches include compact mixed-integer programming (MIP) formulations [15],
branch-and-cut techniques [6, 15], branch-and-price methods [1, 8], and extended MIP formulations
based on set partitioning [5, 16]. Although exact methods can provide mathematical guarantees of
suboptimality, they are limited in terms of scalability, being unable to address instances containing
more than 100 customers or 10 facilities. In contrast, heuristic methods can provide solutions to
large-scale instances at the expense of losing optimality certificates.

A key drawback of existing heuristics is the complexity of their implementations. Indeed, even
conceptually simple algorithms such as [36] require deep knowledge of advanced metaheuristic
techniques and routing-specific neighborhood operators that can entail significant implementation
time and effort. In addition, most heuristics require a significant amount of parameter tuning and
may not be able to readily accommodate side constraints, such as customer-depot incompatibilities
or heterogeneous vehicle fleets.

Likewise, a key challenge in existing MIP-based exact approaches is to address the routing
constraints for each of the opened facilities, which themselves are a priori unknown. Specifically,
these constraints must ensure that there are no closed tours visiting only customers (also known
as sub-tours), that each route is connected to exactly one facility, and that there are no paths
connecting two different facilities. These constraints make the VRP a notoriously difficult problem
in its own right and further complicate the solution of the LRP.

To address these challenges, we propose a new approach that formulates an easy-to-solve MIP
model, in which the vehicle routing cost associated with each opened facility is approximated using
a sparse neural network surrogate. Our approach is termed Neural Embedded Optimization for
Location-Routing Problems (NEO-LRP) and leverages the key property that the optimal vehicle
routing cost is a set function that is permutation-invariant to the ordering of its customers. The
neural network surrogate consists of feed-forward rectified linear units (ReLU) that enables its
embedding within a MIP using binary variables and linear constraints. When the network is
sparse, the resulting neural embedded model can be quickly solved using off-the-shelf MIP solvers.

A distinctive feature of our method is its modularity with respect to the problem size and side
constraints. In particular, a single pre-trained model can be used to tackle problems consisting of
varying numbers of customers and facility locations, as well as side constraints such as customer
incompatibilities and depot-specific assignment rules, all without requiring deep routing-specific
knowledge, parameter tuning, or significant implementation effort. We caution, however, that this
modularity comes at the price of an inability to compute the actual vehicle routes; indeed, NEO-
LRP only provides a set of locations where facilities should be opened along with the allocations of

2

customers to those facilities. As we have mentioned previously, however, this price is not too steep
since the actual vehicle routes can be readily computed a posteriori using any available (exact or
heuristic) VRP solver. Our specific contributions are as follows:

1. We propose NEO-LRP, a new solution framework for integrated location and routing prob-
lems, that consists of first approximating the vehicle routing cost associated with each opened
facility using a permutation-invariant and sparse neural network, and then embedding this
network within an easy-to-solve MIP model.

2. We provide generic data collection procedures for training the NEO-LRP surrogate as well
as pre-trained models that can be used out-of-the-box and embedded within MIP models to
obtain cost-efficient location-allocation decisions for CLRP instances of any size.

3. We perform detailed experimental analyses to elucidate the impact of various components
of our framework, including choice of sampling method, sample requirements for training,
choice of exact versus heuristic VRP solvers for generating labeled training data, and the use
of single pre-trained versus instance-specific neural surrogates.

4. We experimentally compare NEO-LRP with existing state-of-the-art baselines on literature
benchmarks in terms of solution quality and computation time.

Our paper capitalizes on recent developments in the MIP representation of trained neural net-
works [56, 25, 27, 13]. To the best of our knowledge, ours is the first approach to employ a
neural-embedded MIP framework for solving integrated location and routing problems. A prelimi-
nary version of this paper appeared as an extended conference abstract [32]. This version did not
include any detailed experimental analyses, relying on a single (and suboptimal) sampling method
to train the neural surrogate. In contrast, this paper provides the most comprehensive results
to-date, presenting extensive analyses of sampling methods, training sample requirements, routing
solvers for labeled data, and pre-trained versus instance-specific neural surrogates.

The remainder of the paper is organized as follows. Section 2 provides an overview of the
relevant literature; Section 3 introduces the problem definition and notation; Section 4 presents the
main idea and ingredients of NEO-LRP; Section 5 presents computational experiments and their
findings; finally, Section 6 concludes the paper with discussions and key takeaways.

2 Literature Review

The LRP has been extensively studied for several decades with numerous comprehensive surveys
and literature reviews devoted to the subject [37, 19, 48, 17, 2, 52, 38, 39, 40]. Among the various
variants of the LRP, the CLRP is the most commonly studied variant. In this section, we briefly
review the different exact and heuristic methods that have been developed to solve the CLRP,
including those based on machine learning techniques. We refer the reader to the aforementioned
surveys for detailed reviews.

2.1 Exact Methods

Exact methods for solving the CLRP aim to find provably optimal solutions but are generally limited
to small and medium-sized (up to 100 customers) instances due to their computational complexity.
These methods typically employ techniques such as branch(-price)-and-cut. For example, [8, 1]
develop branch-and-price algorithms to solve variants of the LRP with additional constraints on
the maximum length of each route and with capacity restrictions, respectively. Similarly, [6] propose

3

a branch-and-cut method that uses binary variables to determine which facilities to open and which
arcs to traverse using a vehicle flow formulation. A computational comparison of various vehicle flow
formulations can be found in [15], who find that three-index formulations can offer computational
advantages over their two-index counterparts. In contrast to branch-and-cut methods, the work of
[5] develops a set partitioning model and an exact solution strategy that incorporates lower bounds
from solving a relaxed CLRP and the linear programming relaxation of a Multi-Depot Capacitated
Vehicle Routing Problem (MDCVRP). Finally, a solution strategy that combines techniques from
both two-index vehicle flow and set partitioning ideas is presented in [16]. Although all of these
exact methods provide optimal solutions and valuable insights for small-to-medium sized CLRP
instances, their high computational needs limit their ability to address large-scale problems.

2.2 Heuristic Methods

Common heuristic methods for the CLRP include simulated annealing (SA), local and tabu search
algorithms, population-based algorithms, and savings and insertion methods. For example, [47]
develop a method that constructs an initial feasible solution using a greedy heuristic that is then
improved by solving the MDCVRP using a guided tabu search that penalizes infeasible solutions.
Similarly, [46] employ a Greedy Randomized Adaptive Search Procedure (GRASP) combined with
savings-based heuristics to generate initial solutions that are further refined using local search tech-
niques such as insertion, swap, and 2-opt moves. A more recent method [36] integrates GRASP
with Variable Neighborhood Search (VNS) instead. The GRASP provides a diverse set of high-
quality initial solutions, while VNS refines them by systematically exploring various neighborhood
structures. This method is a representative state-of-the-art baseline against which we compare the
performance of our proposed NEO-LRP method. Other works [14, 11, 50, 55, 53] explore solving
the FLP first and then constructing vehicle routes based on those location-allocation decisions;
we choose a representative baseline from this class of methods as well. Methods based on savings
and insertion can be found in [31, 46, 30]. These aim to reduce the total distance traveled by
iteratively inserting or merging customers into a set of initial routes. In contrast, memetic algo-
rithms [45, 20, 18, 21], which are variants of genetic algorithms, construct a single vehicle tour for
each facility that is then iteratively improved and made feasible using crossover and repair oper-
ations of appropriately defined ‘chromosomes’. A similar two-phase method can be found in [23],
where a giant tour serving all customers is initially constructed and then split according to vehicle
capacities, resulting in customer-to-facility allocations that are then individually optimized by solv-
ing a Traveling Salesman Problem (TSP). Other heuristics attempt to incorporate mathematical
programming techniques. For example, [4] attempt to solve the CLRP using an algorithm called
Partial Optimization Metaheuristic Under Special Intensification Conditions, which involves solv-
ing the TSP on clusters of customers, opening a facility for each cluster, and greedily merging them
to improve the overall solution. In another example, [41] develop a mixed-integer programming
formulation for the nested CLRP and decompose it using Lagrangian relaxation methods.

2.3 Machine Learning Methods

The use of machine learning for discrete optimization and algorithmic decision-making has been
gaining significant attention in recent years. Our work specifically falls within the broader category
of machine learning methods for combinatorial optimization [12, 7, 33]. A recent review of machine
learning methods to solve routing problems can be found in [9]. Of particular relevance to our
work, however, are those approaches that employ some form of machine learning to build surrogate
models or tackle nested optimization tasks [35, 43]. For example, [59] suggest the use of a neural

4

network for approximating TSP tour lengths; the trained network is then used to estimate routing
costs within a genetic algorithm (GA). Along similar lines, [54] solve the CLRP by training a
graph neural network (GNN) to approximate routing costs and integrating its predictions within a
tailored GA.

Both of the aforementioned approaches leverage neural network predictions within heuristics,
specifically genetic algorithms, to guide the solution process. Although integrating trained neural
networks within heuristics like GA can be beneficial, the algorithms may lack modularity, requiring
significant routing-specific knowledge especially in incorporating additional constraints, while also
relying heavily on parameter tuning. In contrast, we propose a simple MIP-based framework
that can be readily solved by off-the-shelf MIP solvers while also accommodating side constraints.
Moreover, the method uses a simple feed-forward permutation-invariant neural network that does
not require large amounts of training data. Our method thus strikes a good balance between
modeling flexibility, solution quality and computational efficiency.

3 Problem Definition and Notation

The CLRP can be defined on a graph G with node set V = I∪J and arc set A. Here, I and J denote
the set of depot and customer locations, respectively, and A = {(i, j) : i, j ∈ V, i ̸= j}\(I×I). Each
customer node j ∈ J features coordinates (uj , vj) and demand dj . Each depot node i ∈ I features
coordinates (u0i , v

0
i), maximum capacity Ci, and fixed cost fi. An unlimited homogeneous fleet of

vehicles can be made available at each depot location. Each of these vehicles has a finite capacity
Q and its use incurs a fixed cost F in addition to a variable cost cij whenever it travels along
arc (i, j) ∈ A. We assume that cij is proportional to the Euclidean (or some other norm-induced)
distance between the individual coordinates of i and j.

A CLRP solution, (Io, {Ji}i∈Io , {Ri}i∈Io), consists of a set of opened depots Io ⊆ I, a cor-
responding set of customers Ji ⊆ J allocated to each open depot i ∈ Io, and a set of vehicle
routes Ri that originate at depot node i ∈ Io and serve the customers in Ji. The collection
Ri = {rik : k ∈ {1, 2, . . . ,Ki}} consists of Ki vehicle routes (i.e., simple cycles in G) each of which
starts and ends at i ∈ Io without visiting other depots in I \ {i}, and which partition the set Ji.
If we let dr denote the total demand of customers visited on route r, then The route set Ri is
feasible only if the total demand served by each route r ∈ Ri is less than the vehicle capacity Q.
The solution (Io, {Ji}i∈Io , {Ri}i∈Io) is feasible only if each route set Ri is feasible, the collection
{Ji}i∈Io partitions the set J of all customers, and the capacity of each opened depot is not exceeded:∑

j∈Ji dj ≤ Ci for all i ∈ Io.
The cost of a feasible solution is given by the sum of fixed depot opening costs and vehicle

routing costs, the latter itself being the sum of vehicle usage costs and variable transport costs:∑
i∈Io

fi +
∑
i∈Io

FKi +
∑
i∈Io

∑
r∈Ri

∑
(i,j)∈r

cij . (1)

The goal of the CLRP is to find a minimum-cost feasible solution.
For convenience, we define gi : {0, 1}J → R to be the function that maps an arbitrary sub-

set of customers S ⊆ J to the optimal vehicle routing cost of serving S from an arbitrary depot
i ∈ I. Specifically, gi(S) denotes the optimal cost of the induced VRP defined on the subgraph
of G with depot at node i, customer set S, and a homogeneous fleet of vehicles each of capacity
Q and fixed usage cost F . Using this notation, observe that the cost (1) of a CLRP solution,
(Io, {Ji}i∈Io , {Ri}i∈Io), where the route sets Ri are optimal for the VRP instance induced by cus-

5

tomers Ji and depot i ∈ Io, can also be equivalently written as∑
i∈Io

fi +
∑
i∈Io

gi(Ji), where gi(Ji) = FKi +
∑
r∈Ri

∑
(i,j)∈r

cij . (2)

An illustrative example explaining the key notation is shown in Figure 1.

4

3

2

1

a
b

c

d

e

f

g

h

i

J2 = {a, b}

J4 = {e, f, g, h}

J3 = {c, d, i}

Figure 1: An illustrative example of a CLRP solution. Depots and customers are depicted by
square and circular nodes, respectively. The set of open depots is Io = {2, 3, 4}. Each open depot
i ∈ Io serves a set of customers Ji, indicated by the enclosures. The vehicle routes Ri for each depot
are shown as paths connecting the depot to its assigned customers and returning to the depot. For
example, depot 2 serves customers J2 = {a, b} with one route: 2→ a→ b→ 2.

4 Neural Embedded Optimization for Location-Routing Problems

We begin by presenting an exact formulation of the CLRP to help explain our approach. Let binary
variables yi and xij indicate whether depot i ∈ I is opened and whether customer j ∈ J is served
by depot i, respectively. Using these variables, the CLRP can be formulated as follows:

minimize
(x,y)∈X

h(x, y), (3)

where the set X of feasible location-allocation decisions is given by:

X =

(x, y) :

xij ≤ yi, ∀i ∈ I, j ∈ J∑
i∈I

xij = 1, ∀j ∈ J∑
j∈J

djxij ≤ Ci, ∀i ∈ I

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J

yi ∈ {0, 1}, ∀i ∈ I

. (4)

6

Following (2), the objective function h can be defined as:

h(x, y) =
∑
i∈I

fiyi +
∑
i∈I

gi(Ji(x)), (5)

where Ji(x) is the set of customers allocated to depot i that depends only on the assignment
variables x. In particular, Ji(x) = {j ∈ J : xij = 1}. Note that the constraint, xij ≤ yi,
ensures that customers can only be assigned to a depot if that depot is open. The constraint,∑

i∈I xij = 1, ensures that customer j ∈ J is assigned to exactly one depot. Finally, the constraint,∑
j∈J djxij ≤ Ci, ensures that the total demand assigned to depot i ∈ I does not exceed its capacity.

4.1 Neural Surrogate Modeling

Observe that calculating gi(Ji(x)) is computationally complex as it involves the modeling and
solution of a VRP instance defined by depot node i ∈ I and customers Ji(x) that are decision-
dependent and hence, a priori unknown. We propose to replace gi with a neural network surrogate
that takes an arbitrary subset of customers S ⊆ J as input and returns (an approximation of) the
optimal vehicle routing cost for serving S from depot i ∈ I as output. Central to our approach is the
observation that each gi is a function that operates on sets, which allows us to design a customized
neural network architecture for gi. We begin by presenting an exact representation result, which
establishes that each gi can be represented using a common Deep Sets architecture [61] that is
independent of the depot node i ∈ I.

Theorem 1 (Depot-independent sum-decomposition of gi). Let P > 0 denote any fixed constant.
Define the normalized feature vector sij := (P−1(uj − u0i), P

−1(vj − v0i), Q
−1dj) for all i ∈ I and

j ∈ J . Then, the following statements are true.

1. There exist L ∈ N and functions ϕ : R3 → RL and ρ : RL → R such that

gi(S) = ρ

∑
j∈S

ϕ(sij)

 for all S ⊆ J and i ∈ I.

2. If (x, y) ∈ X, then

gi(Ji(x)) = ρ

∑
j∈J

ϕ(sij)xij

 for all i ∈ I.

Proof. Let D = (u0i , v
0
i , {uj , vj , dj}j∈S , Q, F) denote the data parameterizing any arbitrary VRP

instance that may arise as part of a candidate location-allocation decision. Here, (u0i , v
0
i) denotes

the coordinates of depot node i ∈ I, whereas S ⊆ J denotes any arbitrary set of customers with
j ∈ S having coordinates (uj , vj) and demand dj , and finally, Q and F denote the vehicle capacity
and usage costs, respectively.

Observe that the optimal cost of the VRP instance D is equal to gi(S) by definition. Also, since
the travel costs cij depend only on the (norm-induced) distance between the individual coordinates
of i and j, it follows that the optimal cost of the VRP instance D is also equal to the optimal cost
of the VRP instance parameterized by data (0, 0, (sij)j∈S , 1, P

−1F) multiplied by P−1. Let now
γ : {0, 1}J → R denote the function that maps S ⊆ J to the optimal cost of the VRP instance,
(0, 0, (sij)j∈S , 1, P

−1F). Since sij ∈ R3, it follows from [60, Theorem 2.8] that there exist L ∈ N

7

and functions ϕ : R3 → RL and ρ : RL → R such that γ(S) = ρ
(∑

j∈S ϕ(sij)
)
for all S ⊆ J . The

first part of the theorem now follows since we have established that γ(S) = P−1gi(S).
The second part follows by setting S = Ji(x) to obtain gi(Ji(x)) = ρ

(∑
j∈Ji(x) ϕ(sij)

)
. Using

the definition of Ji(x) along with xij ∈ {0, 1} simplifies it to ρ
(∑

j∈J ϕ(sij)xij
)
.

Theorem 1 suggests that a common ϕ and ρ can be used to decompose functions gi for all i ∈ I.
In fact, its proof suggests a deeper result that one can in fact attempt to approximate the optimal
cost of any arbitrary VRP instance (not necessarily one that is induced by the CLRP instance)
using the functions ϕ and ρ, as long as its features are appropriately normalized. In particular, the
coordinates must be transformed so that the depot is centered at (0, 0) and the customer demands
must be normalized by the vehicle capacity.

However, although the theorem ensures the existence of such functions, it does not provide
an explicit method for constructing them. To achieve this, we approximate the functions ϕ and
ρ with feedforward neural networks, denoted henceforth as ϕ̂ and ρ̂, respectively. Indeed, ϕ̂ can
then be interpreted as a feature extractor that maps the individual customer-level features to an
L-dimensional latent space and ρ̂ can then be interpreted as a regressor.

4.2 Overall Framework and Data Collection for Training

It will be helpful to recall the notation that we introduced in the proof of Theorem 1. Let D =
(u0, v0, {uj , vj , dj}j∈S , Q, F) denote the data parameterizing any arbitrary VRP instance with depot
located at (u0, v0), customer set S such that each j ∈ S has coordinates (uj , vj) and demand dj ,
which are served by a homogeneous vehicle fleet of capacity Q and per-vehicle usage cost F . Let
ν(D) denote the optimal cost of the VRP instance D.

The proposed NEO-LRP framework is shown in Figure 2. We first generate a number of VRP
instances D using different sampling methods and calculate their costs ν(D), which we describe
in Section 4.4. The training dataset thus consists of input-output pairs (D, ν(D)). Each input is
processed to calculate the normalized feature vectors of the customers S. In particular, for each cus-
tomer j ∈ S, we calculate the normalized feature vector σj =

(
P−1(uj − u0), P−1(vj − v0), Q−1dj

)
,

where P is calculated as the maximum range of customer coordinates after centering the depot at
(0, 0), which also ensures σj ∈ [−1, 1]3. Note that we use a different symbol that is subscripted only
by j, namely σj instead of sij that is used in Theorem 1, to explicitly highlight that our framework
can also be trained using VRP instances that are not necessarily generated from the given CLRP
instance (where the depots are always located at i ∈ I).

Figure 2: The NEO-LRP framework for solving the CLRP.

8

In the training phase, NEO-LRP then embeds each individual customer-level feature vector,
σj , into some L-dimensional latent space. This is done by passing each individual feature vector

independently through the feature extractor network ϕ̂, and then aggregating the resulting |S|
(denoted as N in Figure 2) latent space features, to produce a single aggregated latent vector Z .
This final embedding is then passed through a ReLU feedforward network ρ̂ to predict normalized
output. In our implementation, ϕ̂ consists of ReLU-activated layers except for the linear output
layer, while ρ̂ is entirely composed of ReLU-activated layers including the final output layer.

A key advantage of the architecture is that it can be used to process customer sets S of arbitrary
size beyond those that may have been seen during training. Moreover, the feature extractor network
ϕ̂, can be quite complex and does not even have to be ReLU-activated as only the regressor network
ρ̂ is embedded in the MIP model. This embedding is described in the next section.

4.3 MIP Representation of Neural Surrogate

The MIP model for the neural embedded CLRP can be described as follows.

minimize
x,y,γ,θ

∑
i∈I

(fiyi + γi) (6)

subject to (x, y) ∈ X,

θil =
∑
j∈J

ϕ̂l(sij)xij ∀l ∈ [L], i ∈ I, (7)

yi = 0 =⇒ γi = 0 ∀i ∈ I, (8)

yi = 1 =⇒ γi = ρ̂(θi1, . . . , θiL) ∀i ∈ I. (9)

Constraints (7) define the input layer based on Theorem 1. Specifically, ϕ̂l(sij) is the l
th component

of the L-dimensional latent embedding of the feature vector of the customer j ∈ J normalized with
respect to the depot i ∈ I. These latent vectors are pre-computed prior to building the model.
The normalized feature vectors sij and the latent dimension L are also defined in Theorem 1.
Constraints (8)–(9) enforce the output of the neural network in the objective function only if
depot i ∈ I is opened and ignore the corresponding output otherwise. These indicator constraints
can be reformulated as linear constraints using big-M constants [10]. The right-hand side of the
implication constraint (9), namely γi = ρ̂(θi1, . . . , θiL), is a neural network constraint. Since ρ̂ is a
trained feedforward ReLU network, this constraint can be equivalently represented as mixed-integer
linear constraints [25]. A complete MIP formulation of the neural embedded CLRP, including an
explicit representation of the neural network constraints, can be found in Appendix A.

The embedded MIP model introduces |I|n new binary variables in addition to the location-
allocation decisions from (4), where n is the number of hidden units in the trained ρ̂ network.
Although this number may seem large, our empirical findings indicate that the architecture of the
ρ̂ neural network can be controlled to make the resulting model easier to solve than traditional
MIP-based methods for the CLRP. Specifically, if K is the number of hidden layers and nk is the
number of ReLU-activated units in layer k, then n =

∑K
k=1 nk. The computational complexity of

the MIP can then be directly managed by tuning K and nk during hyperparameter optimization.

4.3.1 Addition of Constraints

A key advantage of the MIP representation is its ability to seamlessly incorporate additional con-
straints. This flexibility allows the model to handle practical considerations that may be otherwise

9

challenging to address using traditional heuristics designed to optimize over trained neural net-
works [54, 59]. Below, we briefly describe two examples of constraints that are straightforward to
accommodate within the NEO-LRP framework, but may be difficult to handle within traditional
heuristics, entailing adjustments and careful enforcement during solution construction or repair.

Incompatibility Constraints Between Customers. Specific incompatibility or service re-
quirements can prevent certain pairs of customers from being served by the same depot. If C ⊆ J×J
denotes the set of conflicting customer pairs, then the following constraint can ensure that the cus-
tomers j and j′ in C are not both assigned to the same depot.

xij + xij′ ≤ 1, ∀(j, j′) ∈ C, ∀i ∈ I. (10)

Depot-Specific Assignment Constraints. Specific customers may only be served by a subset
of depots due to operational constraints or agreements. For example, the following constraint can
enforce this restriction,

xij = 0, ∀i ∈ I \ Ij , j ∈ J, (11)

where Ij ⊆ I is the set of depots allowed to serve customer j. This ensures that customer j is
assigned only to permissible depots.

4.3.2 Obtaining the Final Routes

The NEO-LRP model (3)–(5) only focuses on determining location-allocation decisions, namely
identifying which depots to open (indicated by yi), and deciding which customers to assign to these
depots (indicated by xij). The neural network surrogate, ĝi, approximates the routing cost for
assigning a certain subset of customers to depot i ∈ I, thus enabling the MIP solver to efficiently
explore the solution space without explicitly calculating any vehicle routes during the solution
process. The actual vehicle routes (and true routing costs) can be calculated a posteriori after ob-
taining a solution of the neural embedded MIP model (6)–(9) and obtaining the location-allocation
decisions (x̂, ŷ). Specifically, we extract the subset of customers assigned to each depot i ∈ I,
namely Ji(x̂) = {j ∈ J : x̂ij = 1}, and then solve the corresponding VRP instance for that depot
using an exact VRP solver to determine the true routing cost, gi(Ji(x̂)), and the optimal vehicle
routes associated with that depot. This allows us to calculate the complete CLRP solution and its
total cost based on the location-allocation decision obtained by NEO-LRP.

4.4 Data Generation and Model Training

A guiding principle in our data generation procedure is to enable the use of a single pre-trained
model that can generalize to input data D of varying numbers of customers and across different
depots. To that end, we develop a dataset of input-output pairs (D, ν(D)) by exploring three sam-
pling schemes: Generic VRP Sampling (GVS), Random Subsampling under Capacity Constraints
(RSCC), and Proximity-Based Subsampling under Capacity Constraints (PSCC).

• In GVS, we generate VRP instances following the methodology proposed in [58, 49]1. The
number of customers N is varied in the range {1, 2, . . . , 100}. Similarly, we vary depot
positions (random, centered, cornered), customer positions (random, clustered, random-
clustered), demand types (various distributions), and average route sizes (from very short

1Code available at http://vrp.galgos.inf.puc-rio.br/index.php/en/updates

10

http://vrp.galgos.inf.puc-rio.br/index.php/en/updates

to ultra-long) to create a wide range of VRP instances that capture different spatial distribu-
tions and demand patterns. We refer the reader to [58, 49] for details. We emphasize that the
VRP instances generated using GVS are completely independent of the given CLRP instance
and of any distribution from which the given instance may have been drawn.

• In RSCC, we generate VRP instances by subsampling a depot and customer subsets from a
given benchmark dataset of CLRP instances. In doing so, we ensure that the total customer
demand in each subset does not exceed the capacity of the selected depot. In summary,
given a CLRP instance, we randomly select a subset S ⊆ J of customers, such that |S| = N
and N is drawn uniformly from {1, 2, . . . , |J |}. A depot i ∈ I is then selected uniformly at
random. We compute the total demand dtotal =

∑
j∈S dj and check if the capacity constraint

dtotal ≤ Ci is satisfied and create a VRP instance with customer set S and depot i if that
happens to be the case. A detailed description of the method is given in Appendix B.

• The PSCC method builds upon RSCC by incorporating spatial proximity between depots and
customers while still subsampling from the benchmark dataset of CLRP instances. Starting
with a CLRP instance, we randomly select a subset S ⊆ J of customers, such that |S| = N
and N is drawn uniformly from {1, 2, . . . , |J |}. After computing the total demand dtotal =∑

j∈S dj , we identify the set of feasible depots I ′ = {i ∈ I : dtotal ≤ Ci}. We then select the
feasible depot i∗ = argmini∈I′

∑
j∈S cij that minimizes the total distance to the customers in

S, and form a VRP instance with customer set S and depot i∗. A detailed description of the
method is given in Appendix B.

Each sampling strategy can generate a comprehensive dataset covering various scenarios in
terms of customer distribution, demand patterns, and depot assignments. Each VRP instance D in
the dataset is solved using an exact or heuristic VRP solver to obtain the label ν(D), representing
its vehicle routing cost. The dataset is finally split into training, validation, and testing sets.

We note that the generated dataset can be quite heterogeneous in terms of the number of
customers N in each VRP instance. However, as mentioned in Section 4.1, our neural architecture
model naturally allows the processing of inputs of arbitrary size. In actual implementation, this
is achieved by first identifying the largest-sized VRP instance across the entire dataset, say with
Nmax customers. The customer-level features of every other instance are then uniformly padded to
have the same length as Nmax. This allows batch-transformation of this variable-sized dataset via
ϕ̂ into appropriate latent vectors.

4.5 Sparsity Control, Hyperparameter Optimization and Loss Function

The MIP model in Section 4.3 introduces |I| binary variables for each neuron in the regressor
network ρ̂. Therefore, it is important to explicitly control the number of neurons in the ρ̂ network.
Although this can be achieved using sparsity control methods such as pruning, we used the strategy
of simply restricting the neural network to just one hidden layer. Moreover, as the input of the ρ̂
network is equal to the latent dimension L, we also explicitly controlled L during hyperparameter
optimization. In contrast, the ϕ̂ network can be quite complex and can have multiple hidden
layers. During hyperparameter optimization, 50 random configurations of the neural architecture
are evaluated to identify the best network configuration. The range of hyperparameters used is
given in Appendix C. We employ mean squared error (MSE) loss for training.

11

5 Experimental Results and Discussion

All experiments were conducted with an Intel Xeon CPU 6226R and Nvidia Tesla P100-PCIE-
12GB GPU, which was primarily utilized for training. We use Gurobi 10.0.3 [29] as the MIP
solver, the Gurobi machine learning package [28] for implementing neural network constraints, and
Pytorch 2.1.0 [42] for supervised learning tasks. For generating the labels in our dataset, we use
the heuristic VRP solver provided by OR-Tools [26] (except in Section 5.5.3). For computing
the actual vehicle routes a posteriori as described in Section 4.3.2, we use VRPSolverEasy [22],
an exact branch-price-and-cut solver. Our codes, including pre-trained models, are available at
https://github.com/Subramanyam-Lab/NEO-LRP.

5.1 Benchmark Instances

The CLRP benchmarks from [44], commonly known as the Prodhon set of instances, are used for
the computations. This benchmark set consists of 30 instances ranging in size from 20 customers
and 5 depots to 200 customers and 10 depots. All the instances have vehicle capacities of either
70 or 150. The instances are also constrained in terms of depot capacities, and the benchmark set
comprises clustered instances as well as those with randomly distributed customers.

5.2 Baselines

We evaluated the performance of our proposed method, NEO-LRP, by comparing it in terms
of objective value and computation time against two baselines. The first baseline is a recently
proposed state-of-the-art heuristic specifically designed for the CLRP, known as GRASP/VNS [36].
This tailored heuristic combines a Greedy Randomized Adaptive Search Procedure (GRASP) with
Variable Neighborhood Search (VNS) to determine the optimal depot locations and associated
vehicle routes, considering both depot and vehicle capacities. Unlike GRASP/VNS, our NEO-LRP
framework focuses on generating optimal location-allocation decisions without explicitly providing
the detailed vehicle routes. NEO-LRP determines which depots to open and assigns customers to
these depots, effectively solving only the location-allocation aspects of the problem. The actual
vehicle routes are determined a posteriori using an exact VRP Solver [22] We also compared NEO-
LRP against a classical model, denoted FLP-VRP. The model is identical to our CLRP formulation
given by equations (5)–(4), except for a modification in the objective function. Specifically, the
objective function of the FLP model is simplified to account only for the fixed depot opening
costs and the direct transportation costs from depots to customers, without considering the vehicle
routing costs and constraints. The modified objective function used by FLP-VRP is h(x, y) =∑

i∈I fiyi +
∑

i∈I
∑

j∈J cijxij . The final routes are calculated using the procedure described in
Section 4.3.2.

5.3 Evaluation Metrics

Optimization Gap with respect to Best Known Solution. This metric quantifies the rel-
ative difference in the objective function value between the solution obtained by a given method
and the best known solution (BKS). Let (x, y) denote a candidate solution and let (x∗, y∗) denote
the reference (possibly optimal) BKS. Then, this metric is defined as:

Egap
BKS =

|h(x, y)− h(x∗, y∗)|
h(x∗, y∗)

Here, h(x, y) is the true objective function given in (5).

12

https://github.com/Subramanyam-Lab/NEO-LRP

Prediction Error of Neural Network. This metric measures the accuracy of the neural net-
work in approximating the functions gi for all depots i ∈ I at the solution (x̂, ŷ) determined by
NEO-LRP. It is defined as the relative error in the actual and predicted cost over all depots:

Epred =

∣∣∑
i∈I gi(Ji(x̂))−

∑
i∈I ĝi(Ji(x̂))ŷi

∣∣∑
i∈I gi(Ji(x̂))

Mean Absolute Percentage Error on Training and Testing Data. To evaluate the re-
gression performance of our neural network surrogate model during training and testing, we also
compute the Mean Absolute Percentage Error (MAPE) over the respective datasets.

5.4 Comparison with Baselines

In this section, we compare the results of NEO-LRP with GRASP/VNS and FLP-VRP, across
the instances in the benchmark set consisting of 20, 50, 100 and 200 customers. Table 1 lists
each instance and its corresponding best known solution (BKS) taken from [36]. Since NEO-
LRP incorporates supervised machine learning, it incurs a one-time computational cost for data
generation and neural network training. For comparisons with baseline methods, we generated
10,000 unique VRP instances across all 30 CLRP instances using the RSCC data sampling method.
These samples were divided into training and validation sets with a 90-10 split, we also sample
10,000 more instances for testing purposes. Data sampling took approximately Tsampling = 3 min,
due to parallelization over 400 CPU cores. Solving the 20,000 VRP instances using the heuristic
solver with a 30-second time limit per instance required a total of approximately Tsolving = 25
min. Neural network training, including hyperparameter optimization over 61 evaluations with 10
parallel workers on 1 GPU, took Ttraining = 1.6 hours. Testing time was Ttesting = 14 sec. The total
computational time was approximately Tone-time = 2.1 wall-clock hours. Once trained, the neural
network models ϕ̂ and ρ̂ can be utilized out-of-the-box without incurring any additional costs.

In the case of NEO-LRP and FLP-VRP, we first determine the optimal location-allocation
decisions by solving their respective MIP models. As described in Section 4.3.2, we then compute
the actual vehicle routes a posteriori using an exact VRP solver [22] to obtain the true routing
costs, ensuring that the final objective values reflect the true transportation costs. We calculate the
gap between the total cost of the best solution obtained using this approach and the BKS, which is
then reported in the respective columns titled Egap

BKS. For each of these methods, we report both the
time required for location-allocation decisions (TLA) and the total computational time including
routing (Ttotal), where both gaps and times are averaged over five runs. In contrast, GRASP/VNS
simultaneously determines both location and routing decisions. We take the total computational
times (Ttotal) and solution gaps as reported in [36], which are also averaged over five runs. We note
that the computation times of GRASP/VNS were obtained using an Intel Xeon E5 processor, and
may not be directly comparable with those of NEO-LRP and FLP.

Table 1 shows that, despite their simplicity, both NEO-LRP and FLP-VRP provide location-
allocation decisions that are on average within 5% of the BKS across all instances. Specifically,
NEO-LRP achieves an average gap of 4.32% for the 20-customer instances, 3.68% for the 50-
customer instances, 1.77% for the 100-customer instances and 0.80% for the 200-customer instances.
This demonstrates a consistent improvement in solution quality as the problem size increases,
hinting that our single pre-trained model may perform better on the larger instances.

Table 1 also highlights significant trade-offs between solution quality and computational time.
GRASP/VNS achieves the smallest average gaps across all instance sizes (e.g., 0.14% for the 50-
customer instances and 1.40% for the 100-customer instances), except for the 200-customer in-
stances where NEO-LRP achieves a better gap of 0.80% compared to GRASP/VNS’s 1.24%. In

13

Table 1: Performance versus baselines on all benchmarks instances (averaged over five runs).

NEO-LRP FLP-VRP GRASP/VNS

Instance BKS Egap
BKS(%) TLA (s) Ttotal (s) Egap

BKS(%) TLA (s) Ttotal (s) Egap
BKS(%) Ttotal (s)

20-5-1a 54,793 3.24 0.24 0.40 4.38 0.03 0.22 0.08 0.78
20-5-1b 39,104 3.65 0.22 0.27 6.30 0.01 0.07 0.00 0.67
20-5-2a 48,908 3.22 0.26 0.39 0.58 0.10 0.16 0.00 0.76
20-5-2b 37,542 7.16 0.17 0.27 14.59 0.06 0.12 0.00 0.65

Average 4.32 0.22 0.33 6.46 0.05 0.14 0.02 0.71

50-5-1a 90,111 1.63 0.24 1.05 2.94 0.01 0.22 0.00 7.95
50-5-1b 63,242 3.83 0.17 2.07 11.66 0.01 0.93 0.00 8.59
50-5-2a 88,293 3.98 0.56 1.80 4.50 0.77 1.33 0.35 8.52
50-5-2b 67,308 5.68 0.49 1.21 7.46 0.77 2.10 0.54 9.18
50-5-2bbis 51,822 3.76 0.67 0.96 3.92 0.23 1.58 0.02 8.98
50-5-2bis 84,055 1.47 0.50 1.36 1.47 0.13 0.94 0.00 7.90
50-5-3a 86,203 2.82 0.27 3.42 10.48 0.05 1.05 0.19 7.78
50-5-3b 61,830 6.25 0.48 1.43 24.08 0.05 0.30 0.00 7.59

Average 3.68 0.42 1.66 8.31 0.26 1.06 0.14 8.31

100-5-1a 274,814 1.41 1.39 17.86 1.28 1.11 13.21 0.44 70.15
100-5-1b 213,568 1.25 2.19 43.58 1.22 1.12 7.13 0.38 70.81
100-5-2a 193,671 0.43 0.22 8.13 0.43 0.08 6.16 0.23 82.00
100-5-2b 157,095 0.73 0.30 52.20 0.73 0.08 53.74 0.07 61.93
100-5-3a 200,079 1.48 0.70 19.81 0.76 0.48 3.20 0.24 64.37
100-5-3b 152,441 2.26 0.56 34.64 2.08 0.49 12.43 1.03 57.29
100-10-1a 287,661 3.81 3.15 20.84 2.48 11.74 22.39 0.61 78.81
100-10-1b 230,989 3.23 2.74 6.24 5.13 11.76 14.41 1.19 87.95
100-10-2a 243,590 1.68 1.92 17.26 1.84 2.23 6.95 2.06 75.65
100-10-2b 203,988 2.12 2.93 6.71 2.52 2.25 6.55 1.23 67.50
100-10-3a 250,882 0.98 1.52 13.13 0.98 8.91 13.27 3.83 71.87
100-10-3b 203,114 1.83 1.60 10.10 2.13 8.93 21.31 5.53 79.76

Average 1.77 1.60 20.88 1.80 4.10 15.06 1.40 72.34

200-10-1a 474,850 0.83 3.51 63.34 1.95 3.51 143.22 3.16 752.03
200-10-1b 375,177 0.56 4.16 963.63 2.87 3.51 68.41 2.74 735.75
200-10-2a 448,077 0.47 3.39 682.98 0.34 0.48 130.44 0.38 642.16
200-10-2b 373,696 0.30 2.91 98.69 0.30 0.48 49.01 0.23 683.19
200-10-3a 469,433 0.80 3.04 57.17 0.90 1.14 29.47 0.48 661.82
200-10-3b 362,320 1.85 4.10 722.45 6.12 1.15 374.98 0.45 818.25

Average 0.80 3.52 431.38 2.08 1.71 132.59 1.24 715.53

terms of computational efficiency, NEO-LRP is consistently faster than GRASP/VNS, being 3.5
times faster for 100-customer instances and 1.7 times faster for 200-customer instances. Most no-
tably, NEO-LRP can obtain high-quality location-allocation decisions extremely quickly, requiring
only 1.6 seconds on average for 100-customer instances and 3.5 seconds for 200-customer instances,
not including the routing phase.

Although FLP-VRP provides results close to NEO-LRP in terms of solution quality for smaller
instances, its performance becomes less competitive as the instance size grows, with higher com-
putational times particularly for larger instances. The trade-offs between solution quality and
computational time vary significantly with problem size. For small instances (20-50 customers),
GRASP/VNS clearly dominates with near-optimal solutions (gaps of 0.02% and 0.14% respectively)
with minimal time. For medium-sized instances (100 customers), GRASP/VNS achieves slightly

14

better solutions (1.40% gap) but at significantly higher computational cost, while for large instances
(200 customers), NEO-LRP dominates in both solution quality (0.80% gap versus 1.24%) and com-
putational efficiency. Overall, NEO-LRP emerges as a particularly effective method for large-scale
problems, striking a good balance between solution quality and computational efficiency.

5.5 Ablation Studies

We perform detailed experimental analyses to understand the impact of various components of our
framework, including the choice of sampling method, sample requirements for training, choice of
vehicle routing solvers for generating labeled training data, as well as the use of single pre-trained
versus instance-specific neural surrogates. All results are averaged over 5 runs.

5.5.1 Effect of Different Sampling Methods

For each sampling method–Generic VRP Sampling (GVS), Random Subsampling under Capacity
Constraints (RSCC), and Proximity-based Subsampling under Capacity Constraints (PSCC)–we
generate 10,000 VRP instances. Of these, 90% are used for training, while the remaining 10% are
used for validation during hyperparameter optimization. In addition, a separate test set of 10,000
unique VRP instances is sampled to evaluate the trained network. We solve each VRP instance D
using a heuristic routing solver [26] with a 30-second time limit to compute the label ν(D).

We observe that the neural networks ϕ̂ and ρ̂ trained using the RSCC sampling method achieve
the lowest median gap Egap

BKS of 1.84%, compared to GVS at 4.29% and PSCC at 2.79%. To further
understand the performance, we analyze how each sampling method influences the prediction error
Epred and test error Etest, and their relationship with the total transportation cost.

Recall that the prediction error Epred measures how well the neural networks approximate
the total transportation cost. On the other hand, the test error Etest evaluates the performance
of the trained neural networks on test instances sampled using the same method as the training
data. These test instances represent subsets of customers but may not fully reflect the actual
customer assignments Ji(x) that are encountered during optimization. Sampling methods influence
the model’s ability to generalize to these optimization assignments.

GVS RSCC PSCC
0

5

10

15

20

(a)

E
te
st
(%

)

GVS RSCC PSCC
0

20

40

60

80

(b)

E
p
re
d
(%

)

GVS RSCC PSCC
0

5

10

15

20

(c)

E
g
a
p

B
K
S
(%

)

Figure 3: Comparison of sampling methods on (a) Etest, (b) Epred, (c) Egap
BKS

The GVS sampling method generates instances inspired by [58, 49] and aims to create diverse
spatial and demand distributions of customer sets S. This diversity allows GVS to achieve a
relatively low median Etest of 2.87%. However, the median Epred is much higher at 58.31%, in-
dicating poor generalization to the customer assignments Ji(x) encountered during optimization.
We believe that this discrepancy arises because, although the training and test instances share the

15

same distribution, the actual assignments Ji(x) during optimization may not be representative of
this distribution. Therefore, we see that neural networks trained with GVS struggle to accurately
approximate gi(Ji(x)). Similar observations has also been reported previously in [54].

In contrast, the RSCC method directly subsamples random customer subsets S from CLRP
instances. We believe that this alignment between the training data and the customer assignments
Ji(x) during optimization results in a lower median Epred of 9.64%, which directly translates into
the lowest median Egap

BKS of 1.84%. PSCC is similar to RSCC except that it incorporates spatial
proximity constraints, achieving slightly higher median Epred (12%) and median Egap

BKS (2.79%).
We believe that proximity constraints may reduce the diversity of training samples, limiting the
neural network’s ability to generalize compared to RSCC.

Despite the significance of Epred as a performance indicator, it is important to note that even
when Epred is high the corresponding optimization gap Egap

BKS remains relatively small (see Figure
3). This can be attributed to the solution selection mechanism in NEO-LRP. While the neural
surrogate may have prediction errors it still effectively guides the search toward promising regions
of the solution space. NEO-LRP uses the neural surrogate predictions to explore the solution space
and computes the true cost by solving the corresponding VRP only for the final best solution. The
final verification approach means that although the neural surrogate predictions may have errors
(as shown by Epred particularly for GVS) it is still capable of identifying high-quality solutions
when evaluated exactly as measured by Egap

BKS. The neural surrogate effectively guides the search
for feasible solutions while the exact computation of transportation costs for the best identified
solution enables accurate final evaluation. Consequently, a high Epred does not adversely affect the
optimization gap Egap

BKS as one might expect.

5.5.2 Effect of Sample Size

We study the effect of sample size on the performance of NEO-LRP by varying the number of
VRP instances used to train the neural networks ϕ̂ and ρ̂. The RSCC sampling method is used to
generate training and validation datasets of sizes 100, 1000, 10,000, 100,000, while keeping the test
set fixed at 10,000 instances. We use a heuristic solver [26] to compute the true labels. The data is
split into training and validation sets using a 90-10 split. We then train neural networks and solve
the embedded model and finally evaluate the solutions using the metrics Egap

BKS, E
pred, and Etest.

The results are summarized in Figure 4. We observe that as the training sample size Ntrain

increases, both the test error Etest and the prediction error Epred decrease, indicating improved
neural network performance on unseen data. Specifically, the median Etest decreases from 11.37%
to 3.74%, and median Epred decreases from 12.11% to 7.40% when Ntrain increases from 100 to
100,000. However, the median Egap

BKS remains relatively constant across different sample sizes,
fluctuating only slightly around 1.77%. This observation suggests that increasing the training
sample size has a limited effect on the final solution quality in terms of the optimization gap Egap

BKS.
The decrease in Etest and Epred with larger training datasets is expected, as more data enables the
neural networks to learn better representations and generalize effectively to unseen instances.

5.5.3 Effect of Routing Solver

We study the effect of the solver used to generate the target label and its effect on Egap
BKS. To

examine this, we use the RSCC method to generate a total of 10,000 VRP training and validation
instances along with a separate test set of 10,000 instances. If we denote the target label generated
by a heuristic solver as νheuristic(D), and the target label generated by an exact solver as νexact(D).
Each VRP instance is solved using a heuristic solver [26] with a time limit of 30 seconds to compute

16

102 103 104 105
0

10

20

30

(a)

E
te
st
(%

)

102 103 104 105
0

10

20

30

(b)

E
p
re
d
(%

)

102 103 104 105
0

10

20

30

(c)

E
g
a
p

B
K
S
(%

)

Figure 4: Effect of sample size on (a) Etest, (b) Epred, (c) Egap
BKS.

νheuristic(D) and an exact solver [22] with a time limit of 1800 seconds to compute νexact(D). To
quantify the difference between these two solvers, we define the label gap (Elabel) as the percentage
discrepancy between the heuristic and exact solvers for the same VRP instance D as follows:

Elabel =
|νexact(D)− νheuristic(D)|

νexact(D)
× 100%.

After solving the 20,000 VRP instances (training, validation, and test), we observe that Elabel

remained below 5% for more than 99% of the instances, with only four instances exceeding 5%
(see Figure 5). We found that the exact solver was efficient, taking an average of 6.29 seconds to
solve each instance, though with a standard deviation of 62.58 seconds. In contrast, the heuristic
solver required an average of 29.3 seconds per instance with a lower standard deviation of 4.53
seconds. The total time required by the exact solver was less than that of the heuristic solver. We
also observe that the choice of solver had a minimal effect on the time required to train the neural
network. The model trained using heuristically generated labels completed training in 1.6 hours,
whereas the model using exactly generated labels νexact(D) required only slightly longer time at
1.8 hours.

We observe that the solver choice has minimal impact on the framework’s performance in terms
of Egap

BKS. Using exact label generation, NEO-LRP achieves a median Egap
BKS of 1.24%, whereas me-

dian Egap
BKS is 1.84% when we use heuristic solvers. Our findings suggest that while both approaches

are viable, we recommend using the exact solver for VRP instances with fewer customers, whereas
the heuristic solver may be more appropriate for handling larger instances.

5.5.4 Effect of Problem Size

We examine the effect of problem size on the performance of NEO-LRP, considering problem sizes
with 20, 50, 100, and 200 customers. Using each of the sampling methods (GVS, RSCC, and PSCC),
we generate a total of 10,000 VRP instances, which are then split into training and testing sets with
a 90-10 split. Three separate neural networks are trained on the heterogeneous dataset generated
by each sampling method. Each model is then embedded within the optimization framework and
solved using off-the-shelf solver [29]. The results are presented in Figure 6.

We observe that as the problem size increases Egap
BKS decreases for all three sampling methods.

This indicates that, regardless of the sampling method, the trained neural networks perform better
as the problem size grows. This trend suggests that the NEO-LRP framework is capable of per-
forming better with larger problem instances, even though the models are trained on a small fixed

17

Exact Heuristic

10−2

100

102

(a)

S
o
lv
er

ti
m
e
(s
)

Exact Heuristic

0

2

4

6

(b)

E
g
a
p

B
K
S
(%

)

0 2 4

101

102

103

104

(c)

F
re
q
u
en

cy

Figure 5: Comparison of exact versus heuristic VRP solvers: (a) Solver time (s) , (b) Egap
BKS, (c)

Histogram of Elabel(%) across 0–5% (as only 4 instances exceed 5%).

heterogenous dataset of 10,000 instances. The observed reduction in Egap
BKS as the problem size in-

creases supports our hypothesis that a single neural network, when trained on a sufficiently diverse
dataset, performs better on larger problem instances. This behavior is consistent across all three
sampling methods, with each benefiting from the larger problem sizes. Our results demonstrate
NEO-LRP’s ability to identify high-quality solutions improves as the size of instances increases.

20 50 100 200
0

2

4

6

8

10

GVS

E
g
a
p

B
K
S
(%

)

20 50 100 200
0

2

4

6

8

10

RSCC

E
g
a
p

B
K
S
(%

)

20 50 100 200
0

2

4

6

8

10

PSCC

E
g
a
p

B
K
S
(%

)

Figure 6: Effect of problem size (the x-axis represents the number of customers in the instance).

5.5.5 Single versus Customized Neural Networks

We study the effect of using a single neural network trained on a heterogeneous dataset across all
benchmark instances compared to using customized neural networks for each specific instance.

Single Neural Network. We sample 10,000 VRP instances using RSCC across all the bench-
mark instances and train a single neural network on this dataset. Each neural network is trained
on a 90-10 split of the sampled instances.

Customized Neural Networks. For each of the individual benchmark instances, we sample
10,000 instances specifically for that problem and train a unique neural network for each benchmark
instance. This results in 30 distinct pairs of ϕ̂ and ρ̂ respectively, one for each of the 30 benchmark
instances. Each neural network is trained on a 90-10 split of the sampled instances.

The results are presented in Table 2. Perhaps counterintuitively, we observe that using a single
neural network provides comparable, and in some cases better, performance than using customized

18

neural networks. For the 20-customer instances, the average optimization gap Egap
BKS is 4.32% for

the single neural network and 3.27% for the customized networks. For the 50-customer instances,
the single neural network achieves an average gap of 3.68%, while the customized networks have
a slightly better average of 3.14%. For the 100-customer instances, the single neural network
achieves an average gap of 1.77%, while the customized networks have a comparable average of
1.54%. However, for larger instances with 200 customers, the single neural network outperforms
the customized networks. Specifically, for the 200-customer instances, the average optimization gap
is 0.80% with the single network compared to 1.21% with customized networks.

Table 2: Results comparing the effect of single vs customized neural networks

Single Customized

Instance BKS Egap
BKS TLA Ttotal Egap

BKS TLA Ttotal

20-5-1a 54,793 3.24 0.24 0.40 3.24 0.27 0.40
20-5-1b 39,104 3.65 0.22 0.27 6.48 3.63 3.71
20-5-2a 48,908 3.22 0.26 0.39 3.22 0.19 0.31
20-5-2b 37,542 7.16 0.17 0.27 0.13 3.89 3.97

Average 4.32 0.22 0.33 3.27 1.99 2.10

50-5-1a 90,111 1.63 0.24 1.05 0.26 0.20 0.41
50-5-1b 63,242 3.83 0.17 2.07 1.18 0.44 6.01
50-5-2a 88,293 3.98 0.56 1.80 4.50 0.13 1.08
50-5-2b 67,308 5.68 0.49 1.21 5.17 0.27 1.70
50-5-2bbis 51,822 3.76 0.67 0.96 4.79 0.41 1.66
50-5-2bis 84,055 1.47 0.50 1.36 2.67 0.46 1.30
50-5-3a 86,203 2.82 0.27 3.42 1.43 0.26 0.93
50-5-3b 61,830 6.25 0.48 1.43 5.10 0.59 1.19

Average 3.68 0.42 1.66 3.14 0.35 1.78

100-5-1a 274,814 1.41 1.39 17.86 1.25 1.99 11.20
100-5-1b 213,568 1.25 2.19 43.58 1.38 0.98 12.74
100-5-2a 193,671 0.43 0.22 8.13 0.43 0.62 7.75
100-5-2b 157,095 0.73 0.30 52.20 0.73 0.51 49.20
100-5-3a 200,079 1.48 0.70 19.81 1.07 0.74 9.21
100-5-3b 152,441 2.26 0.56 34.64 0.71 2.42 5.57
100-10-1a 287,661 3.81 3.15 20.84 2.16 24.25 35.32
100-10-1b 230,989 3.23 2.74 6.24 4.64 40.32 45.26
100-10-2a 243,590 1.68 1.92 17.26 1.15 8.98 20.02
100-10-2b 203,988 2.12 2.93 6.71 2.22 11.39 13.45
100-10-3a 250,882 0.98 1.52 13.13 0.61 10.81 21.02
100-10-3b 203,114 1.83 1.60 10.10 2.13 2.84 24.28

Average 1.77 1.60 20.88 1.54 8.82 21.25

200-10-1a 474,850 0.83 3.51 63.34 1.74 27.52 774.19
200-10-1b 375,177 0.56 4.16 963.63 0.93 17.15 71.63
200-10-2a 448,077 0.47 3.39 682.98 0.26 5.67 640.65
200-10-2b 373,696 0.30 2.91 98.69 0.66 22.16 88.44
200-10-3a 469,433 0.80 3.04 57.17 0.96 16.53 339.41
200-10-3b 362, 320 1.85 4.10 722.45 2.72 15.85 36.60

Average 0.80 3.52 431.38 1.21 17.48 325.15

In terms of computation time, the single neural network consistently requires less TLA than
the customized networks across all instance sizes. This difference becomes more pronounced as
the problem size increases. For the 100-customer instances, the single network requires only 1.60

19

seconds compared to 8.82 seconds for customized networks, and for 200-customer instances, the
difference is even more substantial (3.52 seconds versus 17.48 seconds). When considering the to-
tal computational time including routing (Ttotal), both approaches show comparable performance.
For 100-customer instances, both methods require similar time (20.88 seconds versus 21.25 sec-
onds), while for 200-customer instances, the total times are 431.38 seconds and 325.15 seconds
respectively. This suggests that while the single network is significantly more efficient in making
location-allocation decisions, the routing phase dominates the overall computational effort, resulting
in comparable total solution times between the approaches.

However, the training time for the neural networks differs significantly between the two ap-
proaches. Training the single neural network on one GPU with 10 workers took approximately 1.6
hours. In contrast, training all 30 customized neural networks took a total of 35.5 hours, utilizing 2
GPUs and 10 workers. This highlights a substantial reduction in training time when using a single
neural network.

These results highlight several key insights. First, a single neural network trained on a diverse
dataset generalizes well across different problem instances, even outperforming instance-specific
models for larger problems. This suggests that NEO-LRP’s neural surrogate effectively captures
the underlying structure of the problem and enables it to make better predictions across a variety of
instances. Second, the use of a single neural network significantly reduces computational overhead
and makes the approach more scalable and practical. We observe that the NEO-LRP framework
demonstrates strong generalization capabilities with a single pre-trained neural network achieving
high-quality solutions with lower computational effort compared to customized neural networks.

6 Conclusion

Our paper offers a fresh approach to combine machine learning with integer programming to solve
location-routing problems. The proposed model, NEO-LRP, is a generic solution framework that
first approximates the (difficult-to-compute) vehicle routing cost associated with each open facility
using a sparse neural surrogate and then embeds this surrogate into an easy-to-solve MIP model.
A key benefit of our model is that it can avoid potentially costly, time consuming, and complex
implementations that are typical of the state-of-the-art heuristics while also being able to generalize
to problems with other types of side constraints. Our experiments showed that NEO-LRP can
achieve high-quality solutions quickly, especially for larger instances. In terms of the future work,
our methodology can be extended in several directions. While the current neural network training
focuses on minimizing test error, incorporating a ranking-preserving loss function could help identify
promising solutions that might be overestimated and prematurely discarded during the neural-
embedded optimization. This approach would ensure the correct ordering of solution costs even
when absolute predictions are not highly accurate. Another promising direction is to investigate
the potential of the method in addressing other applications, involving integrated planning and
scheduling decisions.

7 Acknowledgments

We acknowledge support from the United States Department of Energy, award number DE-SC0023361.
Computations for this research were performed on the Pennsylvania State University’s Institute for
Computational and Data Sciences’ Roar supercomputer.

20

Appendix

A Neural Embedded MIP Formulation

We provide here the complete MIP formulation for the neural embedded CLRP. This model builds
upon the formulation originally proposed in [25] for embedding a trained neural network within a
MIP. Suppose that the trained ρ̂ network contains K hidden layers, numbered 1 to K, and layer
k ∈ [K] := {1, 2, . . . ,K} contains nk ReLU-activated units (i.e., neurons), numbered 1 to nk. For
ease of notation, let k = 0 denote the input layer, so that n0 := L (the latent dimension from
Theorem 1) and k = K + 1 denote the output layer. Let wk−1

ℓm be the weight of the output from
neuron ℓ in layer k − 1 that feeds into neuron m ∈ [nk] := {1, 2, . . . , nk} in layer k, whose bias we
denote as bkm. For each i ∈ I, we use continuous non-negative variables θkim and slack variable νkim
to encode the output of unit m in layer k. The binary variable zkim indicates if the neuron is active;
that is, if θkim ≥ 0 and νkim = 0. The complete MIP model can be described as follows:

minimize
x,y,z,γ,θ,ν

∑
i∈I

(fiyi + γi) (12)

subject to (x, y) ∈ X,

θ0il =
∑
j∈J

ϕ̂l(sij)xij ∀l ∈ [n0], i ∈ I, (13)

nk−1∑
ℓ=1

wk−1
ℓm θk−1

im + bkm = θkim − νkim ∀m ∈ [nk], k ∈ [K], i ∈ I, (14)

zkim = 1 =⇒ νkim = 0 ∀m ∈ [nk], k ∈ [K], i ∈ I, (15)

zkim = 0 =⇒ θkim = 0 ∀m ∈ [nk], k ∈ [K], i ∈ I, (16)

yi = 1 =⇒ γi =

nK∑
ℓ=1

wK
ℓmθKim + bK+1

m ∀i ∈ I, (17)

yi = 0 =⇒ γi = 0 ∀i ∈ I, (18)

zkim ∈ {0, 1}, θkim ≥ 0, νkim ≥ 0 ∀m ∈ [nk], k ∈ [K], i ∈ I. (19)

Constraints (13) define the input layer based on the embedding from Theorem 1. Constraints (14)–
(16) enforce the desired ReLU-activated output from each hidden layer k. Constraints (17)–(18)
enforce the output of the neural network in the objective function only when depot i ∈ I is opened,
and ignore the corresponding output otherwise. We note that the indicator constraints (15)–(18)
can be reformulated as linear constraints [10].

21

B Sampling Schemes

Algorithm 1 Random Subsampling under Capacity Constraints (RSCC)

Input: Dataset DLRP of CLRP instances, desired number Ndata of VRP instances.
Output: Generated dataset of VRP instances, DVRP.
1: Initialize DVRP ← ∅
2: while |DVRP| < Ndata do
3: Select

(
I, J, {Ci}i∈I , {(u0i , v0i)}i∈I , {(uj , vj , dj)}j∈J , Q, F

)
∈ DLRP uniformly at random

4: Choose N ∈ {1, 2, . . . , |J |} uniformly at random
5: Sample a subset S ⊆ J with |S| = N uniformly at random
6: Select a depot i ∈ I uniformly at random
7: Compute total demand dtotal =

∑
j∈S dj

8: if dtotal ≤ Ci then
9: Define VRP instance D =

(
u0i , v

0
i , {(uj , vj , dj)}j∈S , Q, F

)
10: if D /∈ DVRP then
11: DVRP ← DVRP ∪ {D}
12: end if
13: end if
14: end while

Algorithm 2 Proximity-Based Subsampling under Capacity Constraints (PSCC)

Input: Dataset DLRP of CLRP instances, desired number Ndata of VRP instances.
Output: Generated dataset of VRP instances, DVRP.
1: Initialize DVRP ← ∅
2: while |DVRP| < Ndata do
3: Select

(
I, J, {Ci}i∈I , {(u0i , v0i)}i∈I , {(uj , vj , dj)}j∈J , Q, F

)
∈ DLRP uniformly at random

4: Choose N ∈ {1, 2, . . . , |J |} uniformly at random
5: Sample a subset S ⊆ J with |S| = N uniformly at random
6: Compute total demand dtotal =

∑
j∈S dj

7: Let I ′ = {i ∈ I : dtotal ≤ Ci}
8: if I ′ ̸= ∅ then

9: Select i∗ ∈ argmini∈I′
{∑

j∈S cij

}
10: Define VRP instance D =

(
u0i∗ , v

0
i∗ , {(uj , vj , dj)}j∈S , Q, F

)
11: if D /∈ DVRP then
12: DVRP ← DVRP ∪ {D}
13: end if
14: end if
15: end while

22

C Hyperparameters

Table 3: Neural Network Hyperparameters and their Ranges

Hyperparameter Range

Latent space dimension {4, 6, 8}
Number of hidden layers in ϕ̂ {2, 3, 4, 5, 6}
Number of hidden layers in ρ̂ {1}
Neurons per layer in ϕ̂ {32, 64, 128, 256, 512, 1024, 2048}
Neurons per layer in ρ̂ {4, 6, 8}
Early stopping patience {15, 20}
Batch size {32}
Learning rate {0.001}
Number of epochs {50, 100, 200, 400, 600, 800, 1000}
Optimizer Adam
Loss function MSE
Activation function ReLU

23

References

[1] Akca, Z., Berger, R., Ralphs, T.: A branch-and-price algorithm for combined location and
routing problems under capacity restrictions. In: Operations research and cyber-infrastructure.
pp. 309–330. Springer (2009)

[2] Albareda-Sambola, M., Rodŕıguez-Pereira, J.: Location-routing and location-arc routing. Lo-
cation science pp. 431–451 (2019)

[3] Albareda-Sambola, M., Rodŕıguez-Pereira, J.: Location-Routing and Location-Arc Routing.
In: Laporte, G., Nickel, S., Saldanha-da Gama, F. (eds.) Location Science, pp. 431–451.
Springer, Cham, Switzerland, 2 edn. (2020)

[4] Alvim, A.C., Taillard, É.D.: Popmusic for the world location-routing problem. EURO Journal
on Transportation and Logistics 2(3), 231–254 (2013)

[5] Baldacci, R., Mingozzi, A., Wolfler Calvo, R.: An exact method for the capacitated location-
routing problem. Operations research 59(5), 1284–1296 (2011)

[6] Belenguer, J.M., Benavent, E., Prins, C., Prodhon, C., Calvo, R.W.: A branch-and-cut method
for the capacitated location-routing problem. Computers & Operations Research 38(6), 931–
941 (2011)

[7] Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research 290(2), 405–421
(2021)

[8] Berger, R.T., Coullard, C.R., Daskin, M.S.: Location-routing problems with distance con-
straints. Transportation Science 41(1), 29–43 (2007)

[9] Bogyrbayeva, A., Meraliyev, M., Mustakhov, T., Dauletbayev, B.: Learning to solve vehicle
routing problems: A survey. arXiv preprint arXiv:2205.02453 (2022)

[10] Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with indica-
tor constraints. Mathematical programming 151, 191–223 (2015)

[11] Bouhafs, L., Hajjam, A., Koukam, A.: A combination of simulated annealing and ant colony
system for the capacitated location-routing problem. In: Knowledge-Based Intelligent Infor-
mation and Engineering Systems: 10th International Conference, KES 2006, Bournemouth,
UK, October 9-11, 2006. Proceedings, Part I 10. pp. 409–416. Springer (2006)

[12] Cappart, Q., Chételat, D., Khalil, E.B., Lodi, A., Morris, C., Veličković, P.: Combinatorial
optimization and reasoning with graph neural networks. Journal of Machine Learning Research
24(130), 1–61 (2023)

[13] Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C., Laird, C.D., Misener, R.: Omlt:
Optimization & machine learning toolkit. The Journal of Machine Learning Research 23(1),
15829–15836 (2022)

[14] Chan, Y., Baker, S.F.: The multiple depot, multiple traveling salesmen facility-location prob-
lem: Vehicle range, service frequency, and heuristic implementations. Mathematical and Com-
puter Modelling 41(8-9), 1035–1053 (2005)

24

[15] Contardo, C., Cordeau, J.F., Gendron, B.: A computational comparison of flow formulations
for the capacitated location-routing problem. Discrete Optimization 10(4), 263–295 (2013)

[16] Contardo, C., Cordeau, J.F., Gendron, B.: An exact algorithm based on cut-and-column
generation for the capacitated location-routing problem. INFORMS Journal on Computing
26(1), 88–102 (2014)

[17] Cuda, R., Guastaroba, G., Speranza, M.G.: A survey on two-echelon routing problems. Com-
puters & Operations Research 55, 185–199 (2015)

[18] Derbel, H., Jarboui, B., Hanafi, S., Chabchoub, H.: Genetic algorithm with iterated local
search for solving a location-routing problem. Expert Systems with Applications 39(3), 2865–
2871 (2012)

[19] Drexl, M., Schneider, M.: A survey of variants and extensions of the location-routing problem.
European journal of operational research 241(2), 283–308 (2015)

[20] Duhamel, C., Lacomme, P., Prins, C., Prodhon, C.: A memetic approach for the capaci-
tated location routing problem. In: Proceedings of the 9th EU/Meeting on Metaheuristics for
Logistics and Vehicle Routing, Troyes, France. vol. 38, p. 39 (2008)

[21] Duhamel, C., Lacomme, P., Prins, C., Prodhon, C.: A grasp× els approach for the capacitated
location-routing problem. Computers & Operations Research 37(11), 1912–1923 (2010)

[22] Errami, N., Queiroga, E., Sadykov, R., Uchoa, E.: Vrpsolvereasy: a python library for the
exact solution of a rich vehicle routing problem. INFORMS Journal on Computing 36(4),
956–965 (2024)

[23] Escobar, J.W., Linfati, R., Toth, P.: A two-phase hybrid heuristic algorithm for the capacitated
location-routing problem. Computers & Operations Research 40(1), 70–79 (2013)

[24] Farahani, R.Z., Hekmatfar, M.: Facility location: concepts, models, algorithms and case stud-
ies. Springer Science & Business Media (2009)

[25] Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization. Constraints
23(3), 296–309 (2018)

[26] Furnon, V., Perron, L.: Or-tools routing library, https://developers.google.com/

optimization/routing/

[27] Grimstad, B., Andersson, H.: Relu networks as surrogate models in mixed-integer linear pro-
grams. Computers & Chemical Engineering 131, 106580 (2019)

[28] Gurobi Optimization, L.: gurobi-machinelearning: A python package for mixed-integer pro-
gramming formulations of trained machine learning models (2024), https://github.com/

Gurobi/gurobi-machinelearning, python package for embedding trained ML models in MIP
optimization

[29] Gurobi Optimization, LLC: Gurobi optimizer reference manual. Online (2021), https://www.
gurobi.com

[30] Jabal-Ameli, M., Aryanezhad, M., Ghaffari-Nasab, N.: A variable neighborhood descent based
heuristic to solve the capacitated location-routing problem. International Journal of Industrial
Engineering Computations 2(1), 141–154 (2011)

25

https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/
https://github.com/Gurobi/gurobi-machinelearning
https://github.com/Gurobi/gurobi-machinelearning
https://www.gurobi.com
https://www.gurobi.com

[31] Jarboui, B., Derbel, H., Hanafi, S., Mladenović, N.: Variable neighborhood search for location
routing. Computers & Operations Research 40(1), 47–57 (2013)

[32] Kaleem, W., Ayala, H., Subramanyam, A.: Neural embedded optimization for integrated
location and routing problems. In: IISE Annual Conference. Proceedings. pp. 1–6. Institute of
Industrial and Systems Engineers (IISE) (2024)

[33] Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization
algorithms over graphs. In: Advances in Neural Information Processing Systems. vol. 30.
Curran Associates, Inc. (2017)

[34] Laporte, G., Nickel, S., Saldanha-da Gama, F.: Location Science. Springer, Cham, Switzer-
land, 2 edn. (2020)

[35] Larsen, E., Frejinger, E., Gendron, B., Lodi, A.: Fast continuous and integer l-shaped heuristics
through supervised learning. INFORMS Journal on Computing (2023)

[36] Löffler, M., Bartolini, E., Schneider, M.: A conceptually simple algorithm for the capacitated
location-routing problem. EURO Journal on Computational Optimization 11, 100063 (2023)

[37] Lopes, R.B., Ferreira, C., Santos, B.S., Barreto, S.: A taxonomical analysis, current methods
and objectives on location-routing problems. International transactions in operational research
20(6), 795–822 (2013)

[38] Mara, S.T.W., Kuo, R., Asih, A.M.S.: Location-routing problem: a classification of recent
research. International Transactions in Operational Research 28(6), 2941–2983 (2021)

[39] Min, H., Jayaraman, V., Srivastava, R.: Combined location-routing problems: A synthesis and
future research directions. European Journal of Operational Research 108(1), 1–15 (1998)

[40] Nagy, G., Salhi, S.: Location-routing: Issues, models and methods. European journal of oper-
ational research 177(2), 649–672 (2007)

[41] Özyurt, Z., Aksen, D.: Solving the multi-depot location-routing problem with lagrangian relax-
ation. Extending the horizons: Advances in computing, optimization, and decision technologies
pp. 125–144 (2007)

[42] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems 32 (2019)

[43] Patel, R.M., Dumouchelle, J., Khalil, E., Bodur, M.: Neur2sp: Neural two-stage stochastic
programming. In: Advances in Neural Information Processing Systems. vol. 35, pp. 23992–
24005. Curran Associates, Inc. (2022)

[44] Prins, C., Prodhon, C., Calvo, R.W.: Nouveaux algorithmes pour le problème de localisation et
routage avec contraintes de capacité. In: MOSIM’04 (4ème Conf. Francophone de Modélisation
et Simulation) (2004)

[45] Prins, C., Prodhon, C., Calvo, R.W.: A memetic algorithm with population management
(ma— pm) for the capacitated location-routing problem. In: European Conference on Evolu-
tionary Computation in Combinatorial Optimization. pp. 183–194. Springer (2006)

26

[46] Prins, C., Prodhon, C., Calvo, R.W.: Solving the capacitated location-routing problem by a
grasp complemented by a learning process and a path relinking. 4or 4, 221–238 (2006)

[47] Prins, C., Prodhon, C., Ruiz, A., Soriano, P., Wolfler Calvo, R.: Solving the capacitated
location-routing problem by a cooperative lagrangean relaxation-granular tabu search heuris-
tic. Transportation science 41(4), 470–483 (2007)

[48] Prodhon, C., Prins, C.: A survey of recent research on location-routing problems. European
journal of operational research 238(1), 1–17 (2014)

[49] Queiroga, E., Sadykov, R., Uchoa, E., Vidal, T.: 10,000 optimal cvrp solutions for testing
machine learning based heuristics. In: AAAI-22 workshop on machine learning for operations
research (ML4OR) (2021)

[50] Sahraeian, R., Nadizadeh, A.: Using greedy clustering method to solve capacitated location-
routing problem. In: XIII Congreso de Ingenieŕıa de Organización. pp. 1721–1729 (2009)

[51] Salhi, S., Rand, G.K.: The effect of ignoring routes when locating depots. European journal
of operational research 39(2), 150–156 (1989)

[52] Schneider, M., Drexl, M.: A survey of the standard location-routing problem. Annals of Op-
erations Research 259, 389–414 (2017)

[53] Schneider, M., Löffler, M.: Large composite neighborhoods for the capacitated location-routing
problem. Transportation Science 53(1), 301–318 (2019)

[54] Sobhanan, A., Park, J., Park, J., Kwon, C.: Genetic algorithms with neural cost predictor for
solving hierarchical vehicle routing problems. Transportation Science (2024)

[55] Ting, C.J., Chen, C.H.: A multiple ant colony optimization algorithm for the capacitated
location routing problem. International journal of production economics 141(1), 34–44 (2013)

[56] Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer
programming. arXiv preprint arXiv:1711.07356 (2017)

[57] Toth, P., Vigo, D.: Vehicle routing: problems, methods, and applications. SIAM (2014)

[58] Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New benchmark in-
stances for the capacitated vehicle routing problem. European Journal of Operational Research
257(3), 845–858 (2017)

[59] Varol, T., Özener, O.Ö., Albey, E.: Neural network estimators for optimal tour lengths of trav-
eling salesperson problem instances with arbitrary node distributions. Transportation Science
58(1), 45–66 (2024)

[60] Wagstaff, E., Fuchs, F., Engelcke, M., Posner, I., Osborne, M.A.: On the limitations of repre-
senting functions on sets. In: International Conference on Machine Learning. pp. 6487–6494.
PMLR (2019)

[61] Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhutdinov, R., Smola, A.J.: Deep
sets. In: Proceedings of the 31st International Conference on Neural Information Processing
Systems. pp. 3394–3404 (2017)

27

	Introduction
	Literature Review
	Exact Methods
	Heuristic Methods
	Machine Learning Methods

	Problem Definition and Notation
	Neural Embedded Optimization for Location-Routing Problems
	Neural Surrogate Modeling
	Overall Framework and Data Collection for Training
	MIP Representation of Neural Surrogate
	Addition of Constraints
	Obtaining the Final Routes

	Data Generation and Model Training
	Sparsity Control, Hyperparameter Optimization and Loss Function

	Experimental Results and Discussion
	Benchmark Instances
	Baselines
	Evaluation Metrics
	Comparison with Baselines
	Ablation Studies
	Effect of Different Sampling Methods
	Effect of Sample Size
	Effect of Routing Solver
	Effect of Problem Size
	Single versus Customized Neural Networks

	Conclusion
	Acknowledgments
	Neural Embedded MIP Formulation
	Sampling Schemes
	Hyperparameters

