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Abstract

This paper introduces the edge-based contiguous p-median (ECpM) problem to par-
tition the roads in a network into a given number of compact and contiguous territories.
Two binary programming models are introduced, both of which incorporate a network
distance. The first model requires an exponential number of cut set-based constraints
to model contiguity; it is paired with a separation scheme that usually generates only
a small number of these constraints, namely, a branch-and-cut (B&C) algorithm. The
second model utilizes a polynomial number of shortest-path constraints to model con-
tiguity and can be solved with off-the-shelf solvers. The respective solution approaches
are tested on road networks with over 2, 700 nodes and close to 3, 400 edges, yielding
models with over 9.6 million binary variables. Solving the model based on shortest
path contiguity (SPC) constraints via standard branch and bound attains speedups in
computational time of up to 17x relative to the cut set-based B&C implementation.
In addition, the SPC constraints are demonstrated to be supervalid inequalities of the
edge-based p-median (EpM) model (i.e., for which contiguity is not explicitly required),
meaning that they may cut off integer-feasible solutions and some, but not all, of the
optimal solutions of this simpler problem. Finally, the paper explores structural in-
sights and connections between ECpM and the edge-based districting (EBD) problem,
which enforces an additional work balance criterion. An existing model that utilizes cut
set-based contiguity constraints was unable to find a feasible solution within 12 hours
for any of the tested instances, while an SPC-based EBD model was able to solve most
of these to optimality.

Keywords: location analysis; last-mile logistics; p-median; districting; supervalid inequali-
ties

1 Introduction
Over the last few years, there has been a global acceleration in the transition to the e-
commerce business model. This has led to increased interest in last-mile freight logistics,

∗A preliminary version of this paper appeared in conference proceedings in (Kassem and Escobedo,
2023a). The associated conference paper contained the two formulations for the edge-based contiguous p-
median problem. All other content presented herein, including theorems, proofs, algorithms, computational
results, insights, and writing, differs from that conference paper.
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that is, the final leg of a delivery service in a consumer supply chain network where the
consignment is sent directly to the consumer or to collection points from a transportation
hub (Bosona, 2020). The last mile is the least efficient part of the supply chain, with costs
contributing up to 28% of the total transportation cost (Bergmann et al., 2020). Moreover,
last-mile logistics can contribute up to 30% of vehicle miles and up to 50% of greenhouse gas
(GHG) emissions in developed urban areas (Dablanc and Rakotonarivo, 2010). Prior studies
show that proximity from warehouses to service areas is a dominant factor in operational
and environmental costs (Wygonik and Goodchild, 2018). In addition, the consolidation
of shipments to customers along road segments and routes can help attain economies of
density. This, in turn, enables the utilization of larger and more cost-effective vehicles,
helping distribute fixed costs among more units and lowering variable costs, reducing the
unit shipment cost (Alumur et al., 2021).

Discrete location-allocation models provide a systematic framework for prioritizing such
key considerations in the planning of service areas onto which last-miles logistics are to be
subsequently deployed. These models determine simultaneously how to locate a set of
facilities and/or services (e.g., warehouses, schools, hospitals) and allocate customers or
communities to the chosen locations according to one or several decision criteria (Marianov
et al., 2002). They are usually defined on graphs, which can represent various types of
territories — road networks, air transport networks, maritime networks, etc. (Tansel et al.,
1983) — and have been adapted for different types of distance functions (Brimberg et al.,
2008). Discrete location-allocation models that employ discrete (i.e., network) distances are
especially suited to reflect practical aspects of road travel encountered in last-miles logistics
(Kalcsics and Ŕıos-Mercado, 2019). A quintessential model with these characteristics is the
p-median, which was first introduced in Hakimi (1964). The model selects p facilities from
among a discrete set of candidate locations—most commonly represented as the nodes
of the territory graph—and allocates customers to these facilities, with the objective of
minimizing the sum of the weighted distances from each facility to its allocated customers
(Hakimi, 1964).

Prior research has introduced numerous models and algorithms for the p-median, an
NP-hard problem (Hakimi, 1979). Thorough reviews from the facility location literature
are available in Owen and Daskin (1998), Melo et al. (2009), and Ulukan and Demircioğlu
(2015); textbook treatments include Drezner and Hamacher (2004) and Daskin (2013).
Similar to Hakimi (1964), many works employ network distances (or a function thereof)
between the facilities and customers as a proxy for operational costs. To reflect various
practical considerations, the p-median has been extended to impose additional restrictions.
For instance, the capacitated p-median problem introduces limits on the amount of demand
that each facility can serve (Ceselli and Righini, 2005). Another example is the dynamic
p-median problem, which allows facilities to be opened, closed, relocated, or mobilized over
a planning horizon, optimizing both location and timing decisions to minimize the total
costs of satisfying the demand of allocated customers (Güden and Süral, 2019).

While various practical considerations have been incorporated into p-median models,
other essential aspects have not been widely explored. The related literature tends to
concentrate on node-based partitioning models, meaning that the customers (and facili-
ties) are assumed to be situated on the vertices of the underlying territory graph (i.e.,
street intersections). Alternative partitioning models for reflecting the locations of residen-
tial customers on the graph’s edges (i.e., along the streets), which is relevant to various

2



logistics contexts (Kalcsics and Ŕıos-Mercado, 2019), have received significantly less atten-
tion. While the related edge-based graph partitioning problem has been recently studied
in relation to computer science applications, e.g., distributed graph pre-processing on large
graphs, characteristics of the models developed to address it are not tailored to logistics
applications. Moreover, the computational techniques developed for the edge-based graph
partitioning problem have focused on heuristic algorithms (Zhang et al., 2017; Mayer et al.,
2018; Mayer and Jacobsen, 2021). Our work seeks to probe deeper into the study of edge-
based location-allocation models and their solution techniques by considering the edge-based
p-median problem and key extensions thereof. To this end, we introduce binary program-
ming models and exact algorithms, and we analyze their theoretical and computational
implications.

Another practical consideration that is rarely explicitly enforced in p-median models is
contiguity, even though having a direct path from every facility to its allocated customers
is inherently beneficial. An exception is the node-based p-median extension introduced
by Lolonis and Armstrong (1993), which imposes this criterion via a set of non-linear ex-
pressions. The resulting model is incompatible with most optimization solvers; hence, the
authors introduce a heuristic approach to solve it. Another exception is the connected
p-median problem, which requires only the selected medians (i.e., facilities) to form a con-
nected subgraph (Yen et al., 2010). Our work introduces different sets of linear constraints
for imposing a more extensive type of contiguity that requires the selected center of each
territory and its allocated edges to be connected. It is relevant to add that, although this
type of contiguity is commonly enforced in other spatial optimization models (Williams,
2002; Carvajal et al., 2013; Salazar-Aguilar et al., 2011; Garćıa-Ayala et al., 2016), it has
not been explicitly incorporated in more elementary location-allocation models. Addressing
this research gap is important because certain design criteria associated with these more
restrictive models can conflict with the basic requirements of p-median models. For ex-
ample, the requirement that each facility must serve approximately the same amount of
customers or demand, which is commonplace in logistics districting (see below), can degrade
compactness of the service areas (Garćıa-Ayala et al., 2016).

Certain extensions of the p-median problem implicitly yield contiguous territories, but
they come with excessive computational costs relative to planning purposes. In particular,
the Hamiltonian p-median (HpM) problem is a location-routing problem that combines the
p-median problem and the traveling salesperson problem (Branco and Coelho, 1990). HpM
simultaneously selects p depots, allocates customers to one of the depots, and determines
routes for serving customers allocated to the same depot, with the objective of minimizing
total distance traveled. It is related to but more challenging than the generalized vehicle
routing problem, in which the depots are predetermined (Gollowitzer et al., 2011). The
inclusion of subtour elimination constraints to determine each route in HpM effectively im-
poses contiguity, by enforcing each vehicle to complete a tour that visits each of its assigned
customers exactly once during a single trip that starts and ends at the depot. Hence, it is a
more restrictive form of contiguity than requiring simply the customers served by each depot
to be connected. Logistics districting represents an important class of location-allocation
models that also build on the p-median, imposing the added requirements of contiguity
and work balance, and exacerbate its computational difficulties. Before proceeding, it is
important to distinguish these models from those developed in political districting, whose
study has received comparatively more attention spanning several decades (e.g., Hess et al.
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(1965); Mehrotra et al. (1998); Ricca et al. (2011); Validi et al. (2022)). While their basic
design criteria—compactness, contiguity, and work balance (see Section 2)—are concep-
tually similar, the two types of models exhibit substantive differences including the basic
units to be partitioned, distance functions employed, and additional design criteria that are
unique to each context.

This paper makes several contributions to territorial design. First, it introduces the
edge-based contiguous p-median (ECpM) problem and two exact binary formulations to
solve it. The formulations partition a road network into a fixed number of compact and
contiguous territories by locating centers and allocating roads to these centers, with the
objective of minimizing the total distance within each territory. The two proposed formula-
tions differ in how they enforce contiguity: the first requires an exponential number of cut
set constraints, while the second utilizes a polynomial number of shortest-path constraints.
As a second contribution, this paper introduces a separation algorithm that generates only
a small number of cut set constraints to solve the first model, namely, a branch-and-cut
(B&C) algorithm. The second model is solved using off-the-shelf methods (i.e., branch-
and-bound). As a third contribution, the paper derives three logically equivalent sets of
constraints for enforcing shortest-path contiguity (SPC) and compares them using polyhe-
dral techniques. The SPC constraints are also demonstrated to be supervalid inequalities
for the simpler edge-based p-median problem (EpM), meaning that they may cut off integer-
feasible solutions and some, but not all, of the optimal solutions for this simpler problem.
As a fourth contribution, the paper carries out experiments to test the computational im-
pacts of applying the SPC-based model on road networks with over 2, 700 nodes and close
to 3, 400 edges. As a final contribution, the paper explores theoretical and computational
implications of the proposed p-median models on edge-based districting (EBD).

The remainder of the paper is structured as follows. Section 2 provides the background
for this paper and a brief overview of related works. Section 3 introduces the EpM and
ECpM problems and binary programming formulations to solve them. It also derives addi-
tional theoretical insights regarding the SPC constraints introduced for ECpM and performs
computational studies to test the featured models and solution schemes. Section 4 explores
the connections between ECpM and EBD, and it tests the additional computational benefits
of the proposed SPC-based models. Finally, Section 5 concludes the paper.

2 Background
Location-allocation models are designed to create territories that satisfy desirable criteria.
A territory is considered to be compact if its shape is nearly circular or approximately
square-shaped, non-distorted, without holes, and with smooth boundaries (Butsch et al.,
2014). By prioritizing compactness, location-allocation models can help improve the subse-
quent road-based routing for e-commerce companies, as compact territories lead to shorter
travel distances (Garćıa-Ayala et al., 2016). Another design criterion that can improve
last-mile logistics is contiguity. A territory is considered to be contiguous if it is possible to
travel between any two points within a territory without leaving the territory. Contiguity
can enable e-commerce companies to aggregate different customer orders placed in close
proximity to each other and eventually deploy their routing algorithms within each non-
overlapping territory (Álvarez-Miranda and Pereira, 2021). Contiguity has been studied
in spatial optimization, and it is among the most difficult criteria to enforce in these con-
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texts (Ricca and Simeone, 2008). This criterion can be implicitly prioritized by optimizing
compactness; however, compact territories need not be contiguous (Shirabe, 2009).

There have been several attempts to impose contiguity across different applications
including political districting (Garfinkel and Nemhauser, 1970; Validi et al., 2022), land ac-
quisition (Williams, 2002), forest planning (Carvajal et al., 2013), and territorial districting
(Salazar-Aguilar et al., 2011; Garćıa-Ayala et al., 2016). A natural approach is to leverage
similar restrictions from other optimization models such as subtour elimination constraints
from the traveling salesperson problem (TSP) (Dantzig et al., 1954)—which prevent so-
lutions that induce cycles with fewer arcs than the total number of cities to be visited.
Subtour elimination constraints can be imposed through cut set logic, which requires that
a feasible solution must include at least one arc between every strict subset of cities and its
complement. Variations of this concept have been devised for node-based (Salazar-Aguilar
et al., 2011) and edge-based (Garćıa-Ayala et al., 2016) districting models. However, the
inclusion of the full constraint set, which has exponential cardinality, is computationally
prohibitive except for very small instances. Thus, these models cannot be implemented with
off-the-shelf methods (i.e., branch-and-bound) and, consequently, they tend to be paired
with a separation scheme.

There are three main types of separation schemes for dealing with contiguity: iterative
branch-and-bound with a cut generation scheme (B&B&Cut), integer separation, and frac-
tional separation. B&B&Cut is an iterative exact algorithm that solves a relaxed version of
the original model without contiguity constraints using branch-and-bound (B&B) (Salazar-
Aguilar et al., 2011). Then, it uses a search algorithm—e.g., breadth first search or depth
first search—to check for disconnected territories, adds the needed cuts, and re-solves the
new model using B&B. At each iteration, the search algorithm either finds some violated
contiguity constraints, which are added to the model, or it concludes that all territories
are contiguous, terminating the solution algorithm. On the other hand, integer separation
solves the relaxed version of the original model without the contiguity constraints, and
then it deploys a cutting plane algorithm within the B&B exploration for every incumbent
integer solution. That is, once an integer solution is obtained, the algorithm checks if there
are violated contiguity constraints using a search algorithm, and it adds the needed cuts
on-the-go (e.g., as lazy constraints) without having to restart B&B every time a violated
contiguity constraint is found (Mendes et al., 2022). The implementation of integer sep-
aration requires more sophisticated knowledge of the optimization solver, for example, to
issue callbacks for adding the violated constraints. Finally, fractional separation deploys a
cutting plane algorithm within B&B exploration for every fractional solution. This strat-
egy relies on complex and/or computationally expensive algorithms (e.g., multiple calls to
the minimum cut algorithm) (Validi et al., 2022). Therefore, prior works have implemented
primarily B&B&Cut or integer separation (Salazar-Aguilar et al., 2011; Garćıa-Ayala et al.,
2016; Mendes et al., 2022; Validi et al., 2022). Branch-and-cut algorithms tend to align
with the second and third types of separation scheme (Martin, 2001).

Previous research has also introduced compact constraints sets (i.e., of polynomial cardi-
nality) for imposing contiguity. These are divided into two main types: network flow-based
(Shirabe, 2009; Jafari and Hearne, 2013; Wang et al., 2021) and neighbor-based (Mehrotra
et al., 1998; Önal et al., 2016; Farughi et al., 2020). With the former type, the undirected
planar graph is converted into a bidirected graph by replacing each undirected edge with
two arcs (one for each direction). Contiguity is achieved by ensuring flow between nodes
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occupying the same territory. Models equipped with these constraints tend to perform
poorly computationally, except on small problem instances (Wang et al., 2021; Validi et al.,
2022). Within each territory, different network flow configurations can represent the same
allocation solution, causing a high level of symmetry. Thus, these models are usually aug-
mented with symmetry-reducing cutting planes (Wang et al., 2021; Mendes et al., 2022).
An alternative type of compact contiguity constraints considers logic on neighbors, specif-
ically, if a node is allocated to a certain center node, then at least one of the neighboring
nodes must be allocated to the same center node. Propagating this requirement generates
a chain of mutually adjacent nodes, forming a path between the center node and any node
assigned to it within each territory. Such constraints can be regarded as a special appli-
cation of dominance constraints developed for the simple plant location problem (Cánovas
et al., 2007). To the best of our knowledge, the comparative performance of these compact
contiguity constraints vis-á-vis cut set-based constraints has not been directly evaluated.

3 Exact Formulations
In this section, we define the ECpM problem and present a binary programming model
with cut set-based contiguity constraints for solving it. The latter constraints are expo-
nential in number, and their full specification requires prohibitive computational resources.
Therefore, we complement this model with a branch-and-cut (B&C) algorithm that tends
to generate only a small subset of these constraints on real-world instances. We also propose
an alternative model that incorporates shortest-path contiguity (SPC) constraints, which
are polynomial in number. In addition, we demonstrate that the SPC constraints represent
supervalid inequalities of EpM (i.e., ECpM without the contiguity requirement).

3.1 The Edge-based p-median (EpM) Model
Prior to introducing the ECpM problem, we introduce the EpM problem, which aims to
determine the optimal location of p center nodes and the edges that are allocated to them.
The underlying road network is represented as an undirected planar graph G = (V,E),
which is assumed to be connected. To proceed with the mathematical formulation of EpM,
let l(m,n) be the length of edge (m,n) ∈ E and consider the following network distance
concepts.

Definition 3.1. Let SPi,j be the set of edges that make up the shortest path from node i
to node j. This parameter is expressed mathematically as

SPi,j = argmin
ρ∈P⟩,|

 ∑
(m,n)∈ρ

l(m,n)

 ,

where P⟩,| is the set of all possible paths between nodes i, j ∈ V .

Definition 3.2. Let SPi,(j,k) be the set of edges that make up the shortest path from node
i to edge (j, k); it is given by either SPi,j or SPi,k, depending on which of j or k is the tail
node in the path. This parameter is expressed mathematically as

SPi,(j,k) = argmin

 ∑
(m,n)∈SPi,j

l(m,n),
∑

(m,n)∈SPi,k

l(m,n)

 .
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Definition 3.3. Let di,(j,k) be a network distance equal to the sum of positive edge lengths
that make up the shortest path from node i to edge (j, k). This parameter is expressed
mathematically as

di,(j,k) =
∑

(m,n)∈SPi,(j,k)

l(m,n),

The shortest path between every pair of nodes in G can be computed efficiently using
Dijkstra’s algorithm (Ahuja et al., 1988). Based on Definitions 3.1 and 3.2, this result can
be extended to the shortest path between every node and edge in the graph, which must
be computed to construct the EpM model. The components of the model are described in
the ensuing paragraphs.
Sets and Indices:

i ∈ V Nodes in the network (corresponding to street crossings, dead ends, etc.).

(j, k) ∈ E Edges in the network (corresponding to roads, streets, etc.).

Parameters:

di,(j,k) Distance from node i to edge (j, k) (see Definition 3.3).

p Number of territories.

Decision Variables:

wi =

{
1 if node i is selected as a center node,

0 otherwise.

xi,(j,k) =

{
1 if edge (j, k) is allocated to center node i,

0 otherwise.

(EPM) min
∑
i∈V

∑
(j,k)∈E

di,(j,k)xi,(j,k) (1)

s.t.
∑
i∈V

xi,(j,k) = 1 ∀ (j, k) ∈ E (2)∑
i∈V

wi = p (3)

xi,(j,k) ≤ wi ∀i ∈ V,∀(j, k) ∈ E (4)

xi,(j,k) ∈ B ∀i ∈ V,∀ (j, k) ∈ E (5)

wi ∈ B ∀i ∈ V (6)
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Compact and Contiguous Territories with
EpM.

1

2

3 4

56

7 8

9

(b) Non-contiguous Solution (Dispersion =
35).

1

2

3 4

56

7 8

9

First Territory

Second Territory

(c) Contiguous Solution (Dispersion = 35).

Figure 1: Road Network and EpM Solutions with Identical Dispersions (i.e., Objective
Function Values)

Objective Function (1) maximizes compactness by minimizing the dispersion from each
center node i to its allocated edges. Constraint (2) ensures that each edge (j, k) ∈ E is
allocated to exactly one center node. Constraint (3) ensures that exactly p center nodes
are selected. Constraint (4) allows edge (j, k) to be allocated to node i only if it is selected
to be a center node. Constraints (5) and (6) specify the domain of the variables.

Next, Example 3.1 and Figure 1 illustrate that model (1)-(6) can return solutions cor-
responding to non-contiguous territories. Then, the ensuing subsection presents two binary
programming models for extending EpM to exclude such outcomes; the models differ in
how they impose contiguity.

Example 3.1. Consider the connected planar graph G = (V,E) depicted in Figure 1a,
where |V | = 9, |E| = 11, and p = 2. Figures 1b and Figure 1c display two EpM solutions.
In each case, solid edges correspond to the first territory, whereas dotted edges correspond
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to the second territory; the centers of the two territories follow the same formatting scheme
as the edges. In both of solutions, nodes 1 and 3 are the centers of the first and second
district, respectively. The sole difference is the allocation of edge (2, 7), which is allocated
to the first territory in Figure 1b and to the second territory in Figure 1c. The two solutions
have the same dispersion (35), but only the latter is contiguous.

3.2 The Edge-based Contiguous p-median Model with Cut Set
Contiguity Constraints (ECpM-CSC)

As an extension of the EpM problem, this subsection presents a binary programming formu-
lation to partition E into p compact and contiguous territories. The formulation imposes
contiguity by forcing every cut set that separates any pair of nonadjacent edges allocated
to a certain territory to allocate at least one edge from the cut set to the same territory.
Cut set contiguity constraints, which are exponential in number, are analogous to subtour
elimination constraints of the TSP (see Section 2). They were first devised for node-based
districting by Drexl and Haase (1999), who also explain that it is usually possible to solve
real-world instances by imposing only a small number of these constraints. Cut set con-
tiguity constraints are adapted for edge-based districting in Garćıa-Ayala et al. (2016).
Note, however, that their model assumes that the centers are predetermined (i.e., it is an
allocation-only model).
Sets and Indices:

S ⊂ E A subset of edges.

V (S) ⊂ V Set of nodes that are incident to any edge in S.

σ(S) Cut set of S (i.e., σ(S) := {(i, j) ∈ E|i ∈ V (S) , j ∈ V \ V (S)}).

(ECpM-CSC) min
∑
i∈V

∑
(j,k)∈E

di,(j,k)xi,(j,k) (7)

s.t. (2)− (6)∑
s∈σ(S)

xis−
∑
s∈S

xis≥ xi,(j,k)− |S| ∀i ∈ V,∀(j, k)∈ E,S⊂ E\σ({(j, k)}) (8)

The main difference from EpM is the addition of Constraints (8), which ensure that any
edge (j, k) allocated to center node i should be adjacent to other edges allocated to the
same center node. To elaborate, let S ⊂ E \σ({(j, k)}) be any subset of edges not adjacent
to (j, k), where σ({(j, k)}) is the set of adjacent edges to (j, k). If edge (j, k) is not allocated
to center node i (that is, xi,(j,k) = 0), the constraint is always satisfied. Additionally, if
there is one or more edges in S not allocated to center node i, then the value of second
term is strictly less than |S|, and the constraint is also always satisfied. The constraint is
activated only when all edges in S are allocated to center node i and edge (j, k) is allocated
to center node i (xi,(j,k) = 1). It imposes this logic by requiring that at least one edge in
the cut set of set S must be allocated to center node i. Applying these constraints for every
possible subset S ensures that all edges within each service area are connected.
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3.2.1 Branch-and-Cut Scheme
There is an exponential number of Constraints (8), making their full implementation im-
practical. Next, we pair ECpM-CSC with an integer separation scheme, namely a branch-
and-cut algorithm (B&C), which is adapted from an algorithm introduced in Mendes et al.
(2022). B&C generates only those cut set contiguity constraints that are deemed necessary
based on the solution to a relaxed version of ECpM. These constraints are determined based
on the output of a separation algorithm, whose pseudocode is given in Algorithm 1. Note
that, in the B&C implementation, the cuts corresponding to (8) are added on-the-go as lazy
constraints, thereby avoiding having to restart B&B to remove point x∗ from the current
relaxation.

To describe Algorithm 1, let G[Ek] = (Vk, Ek) denote the subgraph of G induced from
the edges in territory k, denoted as Ek, which gives that Vk := {u, v ∈ V |(u, v) ∈ Ek}.
The algorithms first solves a relaxed version of the original model omitting all contiguity
constraints. In the next and all subsequent iterations, the algorithm solves the current re-
laxation of ECpM-CSC, yielding an incumbent binary solution x∗. The solution is inspected
for violations in contiguity using breadth first search (BFS) (or another comparable search
algorithm), which returns the connected components in each service area. When there is
more than one connected component within an area, a violation in contiguity is detected,
and the algorithm adds a set R of cut set constraints to remove it. Referring to the pseu-
docode, Lines 2-11 iterate over each of the p territories found from the relaxation solution.
When territory k is not contiguous, Lines 5-11 add the violated contiguity constraints for
every pair S

′
k, S

′′
k of connected components in Ek. Specifically, Line 9 adds one violated

contiguity constraint, for each (l,m) ∈ S
′
k that is found to be disconnected from the edges

within the connected component S
′′
k ; the added constraint enforces that at least one edge

in the cut set of S
′′
k must be allocated to the same territory as edge (l,m). Lines 10-11

carry out the same function as Lines 8-9, but for each (u, v) ∈ S
′′
k .

3.3 The Edge-based Contiguous p-median Model with Shortest-
path Contiguity Constraints (ECpM-SPC)

An alternative approach to model contiguity used in spatial optimization applications is to
leverage shortest paths. Zoltners and Sinha (1983) introduce the concept of hierarchical
adjacency trees for the sales territory alignment problem with predetermined centers. For
each predetermined center node, a set of shortest paths is determined from the center to all
other nodes, with the predecessor-successor along each shortest path recorded. Contiguity is
enforced by ensuring that no node can be allocated to a center node unless one or more of its
immediate preceding nodes along a shortest path is also allocated to the same center node.
Cova and Church (2000) derive shortest-path contiguity-n constraints for single-region site
search problems. These constraints allow each spatial unit to be reached from the root along
only one of its n-shortest paths; to that end, it is necessary to compute the shortest, the
second-shortest, and so on, up to the nth-shortest path from each spatial unit to the root,
where n is assumed to be reasonably small. Mehrotra et al. (1998) develop and implement
a special version of shortest-path contiguity-n constraints for political districting where
only the first shortest path is considered. More recently, Farughi et al. (2020) introduce a
distinct set of shortest-path contiguity constraints for designing health care districts. The
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Algorithm 1 Separation Algorithm

Input:
x∗, the binary solution obtained from the current relaxation of ECpM-CSC
{E1, E2, ...., Ep}, a p-partition of E
σ({(u, v)}), ∀(u, v) ∈ E, the cut set of each edge
Output: a set R, which is empty if all p territories are contiguous; otherwise it is the set
of valid inequalities that cuts off x∗ from the current relaxation space

1: R← ∅
2: for k = 1 to p do
3: Deploy BFS within G[Ek] to identify whether G[Ek] is contiguous
4: Identify all of the connected components, say, S1

k , S
2
k , ..., S

t
k

5: if G[Ek] is not contiguous then
6: Identify center for district k, and denote its index as i
7: for all pairs S

′
k, S

′′
k of connected components within Ek do

8: for each (l,m) ∈ S
′
k

9: R← R ∪ {
∑

s∈σ(S′′
k )
xis−

∑
s∈S′′

k
xis≥ xi,(l,m)− |S

′′
k |}

10: for each (u, v) ∈ S
′′
k

11: R← R ∪ {
∑

s∈σ(S′
k)
xis−

∑
s∈S′

k
xis≥ xi,(u,v)− |S

′
k|}

12: end for
13: return R

constraints ensure that if nodes j and k are allocated to center node i, then all nodes
along SPj,k must also be assigned to center node i. A common feature of these shortest-
path constraints is that they are defined exclusively for node-based territorial planning
models. An exception is Cova and Church (2000), where the spatial unit is a raster, which
nevertheless can be readily represented as a node.

To the best of our knowledge, shortest-path contiguity constraints—henceforth referred
to as SPC constraints, for short—have not been defined for edge-based location-allocation
models. This work seeks to fill this research gap. The main intuition behind the proposed
constraints is that, for any connected planar graph with more than one edge, if edge (j, k)
is assigned to center node i, then all edges along the shortest path that joins them must
also be assigned to i. Since SPi,(j,k) is an uninterrupted path, requiring all of its edges to
be allocated to center node i when edge (j, k) is allocated to i is tantamount to enforc-
ing contiguity within each territory. It is possible to model this requirement in at least
three logically equivalent ways, denoted as constraints SPC-1, SPC-2, and SPC-3; their
expressions are given by

(SPC-1) |SPi,(j,k)|xi,(j,k) ≤
∑

(l,m)∈SPi,(j,k)

xi,(l,m) ∀i ∈ V,∀ (j, k) ∈ E (10′)

(SPC-2) xi,(j,k) ≤ xi,(l,m) ∀i ∈ V,∀ (j, k) ∈ E,∀(l,m) ∈ SPi,(j,k) (10′′)

(SPC-3) xi,(j,k) ≤ xi,(l,m) ∀i ∈ V,∀ (j, k) ∈ E, (l,m) ∈ SPi,(j,k) ∩ σ({(j, k)})
(10′′′)

where σ({(j, k)}) is the cut set of edge (j, k) (i.e., the set of its adjacent edges). Note that
in (10′′′), (l,m) is the preceding edge to (j, k) on the shortest path from (j, k) to node i,
because it belongs to both SPi,(j,k) and σ({(j, k)}). Next, we establish that constraints sets
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SPC-1, SPC-2, and SPC-3 are logically equivalent, and afterward we demonstrate which of
the constraint sets induces the tightest formulation.

Theorem 3.1. For any instance of ECpM, constraints SPC-1, SPC-2, and SPC-3 are
logically equivalent.

Proof. Proof. If xi,(j,k) = 0, all three left-hand sides become 0, making the constraints
redundant. If xi,(j,k) = 1, the shortest path allocation requirement is imposed by each
constraint set. SPC-1 forces the full set of edges along SPi,(j,k) to be allocated to node i,
using a single inequality. SPC-2 relates, as separate expressions, the allocation to center i
of each (l,m) ∈ SPi,(j,k) with the corresponding allocation variable xi,(j,k). SPC-3 follows a
similar approach as SPC-2, but it enforces only that the edge that precedes (j, k) ∈ SPi,(j,k)

must be allocated to i.
0.2

0.8

0.3

0.7

0.3

0.7

0.2

0.8

i0 i1 i2 i3

î2 ĵ2ĵ1î1

î3 ĵ3

First Territory

Second Territory

Figure 2: Subgraph Depicting Fractional Solutions for the Linear Relaxation of SPC-1 and
SPC-2.

Theorem 3.2. Define the polytope PSPC-1 = {(x,w) ∈ [0, 1]|V |×|E|×[0, 1]|V | : (x,w) satisfies (2)-(4), (10′)}
and the polytope PSPC-2 = {(x,w) ∈ [0, 1]|V |×|E|× [0, 1]|V | : (x,w) satisfies (2)-(4), (10′′)}.
For any instance of ECpM, PSPC-2 ⊆ PSPC-1, and this inclusion can be strict.

Proof. Proof. Constraint (10′) can be obtained as a linear combination of Constraint (10′′);
specifically, for any i ∈ V and (j, k) ∈ E, summing (10′′) over all (l,m) ∈ SPi,(j,k) yields
Constraint (10′). This implies that all feasible solutions to PSPC-2 are also feasible to PSPC-1

and, thus, PSPC-2 ⊆ PSPC-1.
We show that the inclusion can be strict. Let p ≥ 2 and assume that there are at

least two nodes with a shortest path of three hops (i.e., there are three consecutive edges
separating them). We construct a solution x′ ∈ PSPC-1 \ PSPC-2. An example is depicted
in Figure 2 for convenience. Therein, squiggly lines indicate a collapsed non-empty set of
edges along some indicated shortest path. A number adjacent to a dotted line indicates the
value of the allocation variable associated with that edge and center node i1, and a number
adjacent to a solid line indicates the value of the allocation variable associated with that
edge and center node i3.

Without loss of generality, consider the shortest path from i0 to i3, with |SPi0,i3 | = 3,
and fix i1 and i3 as center nodes (wi3 = wi1 = 1). If p > 2, select the remaining (p − 2)
centers arbitrarily from V \{i1, i3}; then set the allocation variables corresponding to edges
(i0, i1), (i1, i2), and (i2, i3) as follows:

• Edge (i0, i1). Set xi1,(i0,i1) = 0.2 and xi3,(i0,i1) = 0.8.

• Edge (i1, i2). Set xi1,(i1,i2) = 0.3 and xi3,(i1,i2) = 0.7.
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• Edge (i2, i3). Set xi3,(i2,i3) = 1.

With consideration of the above three edges, proceed according to three mutually ex-
clusive cases.
Case 1: (i0, i1) ∈ SPi1,(î1,ĵ1)

.

Set xi1,(î1,ĵ1) = 0.2 and xi1,(l,m) = 0.2 ∀(l,m) ∈ SPi0,(î1,ĵ1)
; additionally, set xi3,(î1,ĵ1) = 0.8,

and xi3,(l,m) = 0.8 ∀(l,m) ∈ SPi0,(î1,ĵ1)
.

Case 2: (i1, i2) ∈ SPi1,(î2,ĵ2)
and (i2, i3) /∈ SPi1,(î2,ĵ2)

Set xi1,(î2,ĵ2) = 0.3 and xi1,(l,m) = 0.3 ∀(l,m) ∈ SPi2,(î2,ĵ2)
; additionally, set xi3,(î2,ĵ2) = 0.7

and xi3,(l,m) = 0.7 ∀(l,m) ∈ SPi2,(î2,ĵ2)
.

Case 3: (i1, i2), (i2, i3) ∈ SPi1,(î3,ĵ3)

Set xi3,(î3,ĵ3) = 1 and xi3,(l,m) = 1 ∀(l,m) ∈ SPi3,(î3,ĵ3)
.

To finish constructing the solution, allocate all other edges in full to center i1.
The constructed solution x′ satisfies Constraints (2)-(4) and (10′): The sum of the

allocation variables for each edge is equal to 1; the number of territories is equal to p; and
each edge is allocated to a node, only if the node is chosen as a center node.

Now, isolating Constraint (10′) for edge (i0, i1) and node i3, the chosen variable settings
give that

|SPi3,(i0,i1)|xi3,(i0,i1) = 2 · (0.8) ≤ 1 + 0.7 = xi3,(i1,i2) + xi3,(i2,i3). (9)

and, thus, the constraint is satisfied. On the other hand, Constraint (10′′) is violated
since

xi3,(i0,i1) = 0.8 ≰ 0.7 = xi3,(i1,i2). (10)

Theorem 3.3. Let PSPC-2 be the polytope defined in Theorem 3.2 and define the polytope
PSPC-3 = {(x,w) ∈ [0, 1]|V |×|E| × [0, 1]|V | : (x,w) satisfies (2)-(4), (10′′′)}. Then, PSPC-2 =
PSPC-3.

Proof. Proof. Constraints (10′′′) enforce that, if edge (j, k) is assigned to center node i, then
the preceding edge (k, l) in SPi,(j,k) must also be assigned to i. By the same logic, if (k, l)
is assigned to i, then the preceding edge (l, o) on the shortest path SPi,(k,l) must also be
assigned to i. By transitivity, if xi,(j,k) ≤ xi,(k,l) and xi,(k,l) ≤ xi,(l,o), then xi,(j,k) ≤ xi,(l,o).
The same logic can be extended to all adjacent pairwise edges along SPi,(j,k). Constraints
(10′′) enforce exactly the same logic, but they list all inequalities explicitly (i.e., without
taking advantage of the implied transitivity). This means that PSPC-2 and PSPC-3 are
equal.

Upon inspection, there areO
(
|V |2|E|

)
constraints of type SPC-2, and there areO (|V ||E|)

constraints of types SPC-1 and SPC-3. Because constraints SPC-3 induce a linear pro-
gramming relaxation that is at least as tight as that obtained with constraints SPC-1 (see
Theorem 3.2), the former are henceforth adopted for the remainder of this work. Therefore,
the ECpM-SPC formulation is given by:
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(ECpM-SPC) min
∑
i∈V

∑
(j,k)∈E

di,(j,k)xi,(j,k) (11)

s.t. (2)− (6)

xi,(j,k) ≤ xi,(l,m) ∀i ∈ V,∀ (j, k) ∈ E, (l,m) ∈ SPi,(j,k) ∩ σ({(j, k)}) (12)

The contiguity criterion is not required by the EpM problem. Thus, at first glance, the
SPC constraints may seem extraneous to this simpler model. Nevertheless, we show that
they can also be useful for solving this problem. To that end, it is useful to differentiate
between three types of cutting plane techniques that can be imposed to reduce the solution
space. The best known and most widely applied type, valid inequalities (referred alterna-
tively as valid logic cuts), can remove only fractional points of the relaxed feasible region,
meaning that they do not remove any integer feasible points. On the other hand, non-valid
logic cuts can make deeper cuts to the solution space by additionally allowing the removal
of integer-feasible, non-optimal solutions. This type of cutting planes was first introduced
by Hooker (1994) and have been applied in capacitated warehouse location (Osorio Lama
and Mújica Garćıa, 1999), design of chemical processing networks (Hooker, 1994), and mul-
tilevel generalized assignment (Osorio and Laguna, 2003). The third type of cutting plane
technique, known as supervalid inequalities, also allows the removal of non-optimal solu-
tions, that are integer feasible (Israeli and Wood, 2002). However, they go one step further
by allowing the removal of some, but not all, of the optimal solutions. In other words, they
are a stronger type of cutting plane techniques than both valid inequalities and non-valid
logic cuts. The latter type of cutting planes have been applied to interdiction problems (Se-
fair et al., 2017; Baycik and Sullivan, 2019; Wei and Walteros, 2024) and routing problems
(Yuan et al., 2020, 2021).

Theorem 3.4 shows that the SPC constraints are supervalid inequalities of EpM. Be-
forehand, the ensuing example motivates the featured insight regarding this additional use
of the SPC constrains (see Figure 3).

Example 3.2. Consider the connected planar graph G = (V,E) depicted in Figure 3a,
where |V | = 9, |E| = 11, and p = 2. Figure 3b depicts a non-contiguous EpM solution, and
Figure 3c shows an EpM solution satisfying the SPC constraints. In each case, solid edges
correspond to the first territory, whereas dotted edges correspond to the second territory;
the centers of the two territories follow the same formatting scheme as the edges. In both
solutions depicted, nodes 1 and 6 are the centers. The sole difference is the allocation of
edge (2, 7): In 3b, it is allocated to the first territory, but in 3c it is allocated to the second
territory. The latter allocation dominates the former, because d1,(2,7) = 5 < 10 = d6,(2,7).
The difference stems from the fact that allocating edge (7, 9) to node 1 and enforcing SPC
forces all edges along SP1,(7,9), including (2, 7), to be allocated to center node 1. The
following theorem generalizes the insights of this example.

Theorem 3.4. Let G = (V,E) be an undirected connected planar graph with |E| ≥ 2. In
an optimal solution to EpM, if edge (j, k) is assigned to center node i (i.e., xi,(j,k) = 1),
then there exists an optimal solution where all edges in SPi,(j,k) are also assigned to i.

14



5

5 5

55

5

5

5 5

5

2

1

2

3 4

56

7 8

9

(a) Road Network to be Partitioned into Two
Compact and Contiguous Territories with
EpM.

1

2

3 4

56

7 8

9

(b) EpM Solution before Imposing SPC (Dis-
persion = 35).

1

2

3 4

56

7 8

9

First Territory

Second Territory

(c) EpM Solution after Imposing SPC (Dis-
persion = 30).

Figure 3: Two EpM Solutions of the Road Network.

Proof. Proof. Assume by contradiction that (j, k) is assigned to i, but there is some edge
along SPi,(j,k) not allocated to node i, and that this solution achieves a lower dispersion
value than the solution where (j, k) is assigned to i and all edges along SPi,(j,k) are allocated
to i. Without loss of generality, let (l,m) ∈ SPi,(j,k) be the edge that is instead allocated
to center node i′ ̸= i, j, k, and let node l be the tail node of SPi,(l,m).

The only difference between the dispersion measure of the two solutions is related to
the difference between di′,(j,k) and di,(j,k), because the location and allocation variables
associated with all other node-edge pairings have identical values. We consider two possible
cases and accompany them with helpful illustrations (see Figure 4).
Case 1: l is the tail node SPi′,(l,m) (Figure 4a).

Since di′,(l,m) < di,(l,m) holds, we have that

di,(j,k) = di,(l,m) + dl,(j,k) (13a)
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Figure 4: Planar Graph Examples to Illustrate Two Cases for the Proof of Theorem 3.4

> di′,(l,m) + dl,(j,k) (13b)

= di′,(j,k). (13c)

Equation (13a) corresponds to the distance from node i to edge (j, k), whereas (13b) corre-
sponds to the distance from i′ to (j, k). Since di′,(l,m) < di,(l,m) holds, then di,(j,k) > di′,(j,k).
This contradicts the assumption that center node i is the optimal center for edge (j, k).
Case 2: m is the tail node of SPi′,(l,m) (Figure 4b).

In this case, since di′,(l,m) < di,(l,m) and l(l,m) > 0 hold, we have that

di,(j,k) = di,(l,m) + dl,(j,k) (14a)

= di,(l,m) + l(l,m) + dm,(j,k) (14b)

> di′,(l,m) + dm,(j,k) (14c)

= di′,(j,k). (14d)

Equation (14a) corresponds to the distance from node i to edge (j, k), whereas (14c) cor-
responds to the distance from i′ to (j, k). Since di′,(l,m) < di,(l,m) and l(l,m) > 0 hold, then
di,(j,k) > di′,(j,k). This contradicts the assumption that node i is an optimal center for edge
(j, k).

3.4 Computational Results for ECpM
Next, we describe computational tests to evaluate the impact of the SPC constraints on
solving the ECpM and EpM problems. The optimization models were coded in Python 3.8
and solved using CPLEX 22.1.1. The computational tests were performed on 28 cores of a
high performance computing node equipped with 128 GB of memory and an Intel Xeon E5
v4 Processor running at 2.40 GHz. For each instance and solution method, a time limit of
12 hours was imposed.

The problem instances are derived from 14 real-world road networks located in Denmark,
which were originally developed for the capacitated arc routing problem (Kiilerich and
Wøhlk, 2018); they are deployed therein for waste collection and are herein repurposed for
more general location-allocation problems to test the featured EpM models. The selected
road networks encompass small-, medium, and large-scale problem instances, with the
cardinality of V ranging from 198 to 2, 773 nodes and the cardinality of E ranging from
265 to 3, 472 edges. From these fourteen road networks, a total of 84 instances are created
by fixing one of six numbers of districts, namely, p ∈ {2, 10, 30, 40, 50, 100}.

16



Table 1 shows key instance information (the respective column labels are provided in
the adjoining parentheses): road network number (RN), road network name (RN Name),
number of nodes (|V |), number of edges (|E|), and the associated number of binary vari-
ables (NBV) in the ECpM model. The table also shows computational performance met-
rics: average computational time of solving ECpM with cut set contiguity constraints via
the branch-and-cut scheme (ECpM-CSC), average computational time of solving ECpM
with the shortest-path contiguity constraints (ECpM-SPC), and the improvement factor of
ECpM-SPC relative to ECpM-CSC (CSC/SPC). More specifically, the latter performance
metric is calculated as

CSC/SPC =
Average time to solve the instances with ECpM-CSC

Average time to solve the instances with ECpM-SPC
. (15)

Hence, when CSC/SPC > 1, this indicates that ECpM-SPC was solved faster than ECpM-
CSC.

Table 1: On Average, ECpM-SPC Outperformed ECpM-CSC across All Tested Road Net-
works.

RN No. RN Name |V | |E| NBV ECpM-CSC ECpM-SPC CSC/SPC

1 F15 g 198 265 52,668 142 8 17.31
2 N17 g 268 305 82,008 141 15 9.58
3 K13 g 393 421 165,846 284 34 8.24
4 F6 p 502 741 372,484 1,414 94 14.98
5 O12 g 761 852 649,133 1,766 202 8.74
6 S9 p 782 1,030 806,242 1,958 305 6.43
7 N16 g 915 1,030 943,365 2,086 404 5.16
8 S9 g 1,094 1,447 1,584,112 4,151 962 4.31
9 S11 g 1,564 1,805 2,824,584 7,005 2,985 2.35
10 K9 p 1,735 2,226 3,863,845 12,445 4,376 2.84
11 N11 g 2,134 2,411 5,147,208 18,987 6,778 2.80
12 N15 g 2,171 2,459 5,340,660 21,357 7,317 2.92
13 N9 g 2,018 2,655 5,359,808 18,622 7,131 2.61
14 K9 g 2,773 3,472 9,630,629 ∗ 16,880 ∗

* The computer ran out of memory for all instances associated with this road network.

Analysis of the computational impact of the SPC constraints on the edge-
based contiguous p-median problem. The first salient observation is that, for all six
instances associated with the largest road network tested, namely RN14, ECpM-CSC ran
out of memory. Conversely, ECpM-SPC was able to solve each instance associated with
this road network in 4.69 hours, on average. Restricted to instances associated with RN1
to RN13, the average and median improvement factors of ECpM-SPC relative to ECpM-
CSC (i.e., CSC/SPC) were 6.79 and 5.16, respectively. These improvement factors decrease
as the network size increases, ranging from 17.31 for RN1 to 2.61 for RN13. Over these
thirteen road networks, ECpM-SPC outperformed ECpM-CSC in 83.3% (65 of 78) of all
associated instances. The remaining instances where ECpM-SPC did not achieve the fastest
computational times each involved small settings of the district parameter, namely, p = 2,
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10. In other words, ECpM-SPC tends to outperform ECpM-CSC as the number of possible
location and allocation decisions increases in the network.

The computational benefits of the SPC constraints are more pronounced on instances
with more districts. As a representative example, for the instance of RN12 with p = 100,
solving ECpM-CSC took 10.88 hours, but solving ECpM-SPC took only 54.7 minutes,
yielding an 11.95x improvement. To further delve into the computational benefits of the
SPC constraints as p increases, we focus on four road networks of increasing sizes, namely,
RN1, RN5, RN9, and RN12. Figure 5 shows that CSC/SPC increases as p increases;
here, note that the improvement factors are calculated using the solution times attained by
ECpM-CSC and ECpM-SPC for each individual instance (as opposed to the average times
over multiple instances). One plausible explanation for the observed increase is that, as
the number of districts increases, branch-and-cut incurs more computational overhead—
i.e., a higher number of variable subsets must be checked for contiguity and separating
constraints added, whenever an integer-feasible solution is found. Conversely, ECpM-SPC
has a fixed polynomial number of contiguity constraints, more specifically O (|V ||E|) of
them, and these are always added in full up front.

Figure 5: The improvement of ECpM-SPC relative to ECpM-CSC tends to grow with p

Analysis of the computational impact of the SPC constraints on the edge-
based p-median problem. Next, we illustrate usefulness of the SPC constraints beyond
enforcing contiguity. Specifically, we measure their effect on solving the EpM problem—
recall that the SPC constraints represent supervalid inequalities for this simpler problem,
as is explained in Section 3.3. To that end, we compare the solution times of the EpM and
ECpM-SPC models over the fourteen road networks; the results are summarized in Table
2.

For instances associated with RN1 to RN8, EpM outperformed ECpM-SPC, which sug-
gests that the larger model size caused by the addition of the SPC constraints had a bigger
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effect than the resulting reduction in the feasibility space. On the other hand, for all but
one instance associated with RN9 to RN13 (each with |E| ≥ 1, 805), ECpM-SPC outper-
formed EpM by 2.45x, on average. Similar to ECpM-CSC in the prior experiment, EpM
ran out of memory for all instances associated with RN 14, but ECpM-SPC solved all of
these instances to optimality, which is surprising in that EpM is a relaxation of ECpM.
This illustrates that the benefit of adding the SPC constraints as supervalid inequalities for
EpM is best realized on larger and more complex problem instances.
Table 2: Adding the SPC Constraints as Supervalid inequalities of EPM Was Beneficial for
Those Instances Associated with the Six Largest Road Networks.

RN No. RN Name |V | |E| NBV EPM ECpM-SPC EPM/SPC

1 F15 g 198 265 52,668 5 8 0.64
2 N17 g 268 305 82,008 10 15 0.65
3 K13 g 393 421 165,846 19 34 0.55
4 F6 p 502 741 372,484 43 94 0.45
5 O12 g 761 852 649,133 56 202 0.27
6 S9 p 782 1,030 806,242 106 305 0.35
7 N16 g 915 1,030 943,365 126 404 0.31
8 S9 g 1,094 1,447 1,584,112 346 962 0.36
9 S11 g 1,564 1,805 2,824,584 5,497 2,985 1.84
10 K9 p 1,735 2,226 3,863,845 9,128 4,376 2.09
11 N11 g 2,134 2,411 5,147,208 14,913 6,778 2.20
12 N15 g 2,171 2,459 5,340,660 15,622 7,317 2.14
13 N9 g 2,018 2,655 5,359,808 13,696 7,131 1.92
14 K9 g 2,773 3,472 9,630,629 ∗ 16,880 ∗

* The computer ran out of memory for all instances associated with this road network.

4 Connections to Edge-based Districting Models
ECpM can be transformed into a more traditional logistics districting model by imposing a
work balance criterion, which is intended to promote fairness among different service agents
(e.g., drivers) (Yanık and Bozkaya, 2020). This criterion can imposed by requiring that the
same quantity of demand must be served within each territory, within a certain tolerance;
this translates into setting an upper and a lower bound on the cumulative demand served
within a district. To introduce these balance constraints, let b(j,k) be the demand along edge

(j, k), b be a fixed quantity representing an equal apportionment of demand per district
(i.e., obtained by dividing total demand by p), and τ be the allowed percentage deviation
from satisfying b of demand in each district exactly. The set of work balance constraints is
written as,

∑
(j,k)∈E

b(j,k)xi,(j,k) ≤ b(1 + τ)wi ∀i ∈ V (16)

∑
(j,k)∈E

b(j,k)xi,(j,k) ≥ b(1− τ)wi ∀i ∈ V. (17)
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Constraints (16) and (17) give upper and lower bounds on the total demand served
within a territory. We remark that Constraints (4) become redundant when Constraints
(16) are added, as the latter also fulfill the requirement of allowing edge (j, k) to be allocated
to node i only if i is selected to be a center node. Thus, in the subsequent computational
tests in Section 4.2, Constraints (4) are dropped from the featured districting formulations.

4.1 Differences between the Edge-based Districting Models Ob-
tained with General Contiguity and Shortest-Path Contiguity

As the above paragraphs explain, adding Constraints (16) and (17) to ECpM transforms
it into an edge-based districting (EBD) problem. When they are added to ECpM-CSC
((2) - (6) , (7) - (8)), the model from Kassem and Escobedo (2023b) is obtained; the re-
sulting model is denoted hereafter as EBD-CSC. However, a distinctive districting model
is obtained when the balance constraints are added to ECpM-SPC ((2) - (6), (11) - (12));
the resulting model is hereafter denoted as EBD-SPC. This stems from their interaction
with shortest-path contiguity constraints, which enforce a stronger form of contiguity com-
pared to the cut-set based constraints. Figure 6 provides a small example to illustrate the
differences.

Example 4.1. Consider the connected planar graph depicted in Figure 6a, where |V | = 11,
|E| = 14, τ = 20%, and p = 2; therein, it is assumed that b(j,k) = l(j,k) ∀(j, k) ∈ E,
which gives b̄ = 35.5. Figures 6b and 6c depict the EBD-CSC and EBD-SPC solutions,
respectively. In each case, dotted edges correspond to the first district, and solid edges
correspond to the second district; the centers of the two districts follow the same formatting
scheme as the edges. In both solutions, nodes 5 and 7 are the centers. The sole difference
is the allocation of edge (4, 9), which is allocated to the first district by EBD-CSC and
to the second district by EBD-SPC. Note that allocating both (1, 4) and (4, 9) to 5 would
violate the maximum demand allowed for the first district (42.6) and the minimum demand
allowed for the second district (28.4). In effect, the combination of the SPC and balance
constraints forces the allocation of (4, 9) to the second district with center node 7 (since
(1, 4) ∈ SP7,(4,9) and is allocated to the second district). Stated otherwise, these constraints
disallow allocating (4, 9) to the first district with center node 5, as SPC would force (1, 4),
which is part of SP5,(4,9), to be also allocated to the first district.

Although the dispersion values achieved by the optimal solutions of both models usually
match, there are times when the EBD-CSC dispersion value can be lower than that of EBD-
SPC. In fact, it is guaranteed that it will never be higher, since the latter imposes a stricter
type of contiguity. Example 4.1 shows an instance with such a disparity, specifically, the
dispersion value of EBD-CSC (55) is lower than that of EBD-SPC (60). The difference is
due to the relationship between d5,(4,9) and d7,(4,9), namely, 10 = d5,(4,9) < d7,(4,9) = 15.
However, the lower dispersion attained by EBD-CSC comes with a practical drawback,
namely that in some of the service areas, extra distance may be unnecessarily traversed by
an agent in the subsequent routing operations, when one or more edges along the shortest
path from a center node to one of its allocated edges (according to the original territory)
is allocated to a different district. In Example 4.1, edge (1, 4), which is part of SP5,(4,9),
is not allocated to the first district. This means that to reach (4, 9) from the center node
5, an agent assigned to serve the first district would have either to take a longer route
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than the actual shortest path to stay within the district or temporarily leave the district,
which could increase the deadhead distance (i.e., travel along roads where no service is
performed (Garćıa-Ayala et al., 2016)). The differences between the two models also have
computational implications, as the ensuing subsection demonstrates.
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(a) Road Network to be Partitioned into
Two Districts with EBD-CSC and EBD-
SPC. With p = 2 and τ = 20%, the Demand
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Figure 6: Road Network and Districting Solutions Obtained with EBD-CSC and EBD-
SPC.

4.2 Computational Results for EBD
The same computational resources and specifications from Section 3.4 carry over to this
section. The focus of the featured computational experiments is on EBD, which is a related
but more challenging problem than ECpM. Owing to this increased difficulty, the computa-
tional tests feature only two medium-sized road networks, namely, RN 4 and RN 5. From
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these two road networks, a total of 54 instances are created by fixing one of nine numbers
of districts, namely, p ∈ {2, 4, 6, 8, 10, 20, 30, 40, 50} and one of three work balance tolerance
settings, namely, τ ∈ {1%, 10%, 50%}. In all of the generated instances, the demand along
each edge (i.e., b(j,k)) is set to its demand, as specified in Kiilerich and Wøhlk (2018).

The initial intent of the computational tests was to evaluate the different computa-
tional capabilities of the two districting models, namely, EBD-CSC and EBD-SPC. How-
ever, EBD-CSC could not find a feasible solution within the 12-hour time limit for any
of the tested instances, meaning it did not reach a basic level of performance required for
comparison. On the other hand, EBD-SPC was able to solve 59.3% (32 of 54) of the in-
stances to optimality. Additionally, EBD-SPC reached the time limit for 16.7% (9 of 54) of
the instances with an average relative percentage gap of 8.23%, it could not find a feasible
solution within the 12-hour time limit for 3.70% (2 of 54) of these instances, and it returned
infeasibility for 20.4% (11 of 54) of the instances. For these reasons, this section delves only
into the computational results of EBD-SPC.

Analysis of the impact of the balance parameter τ . Different computational
metrics were recorded to assess the effect of τ . They are recorded in Tables 3 and 4.
Table 3 displays the road network number (RN No.), the tolerance setting (τ), the average
computational time of solving EBD with the shortest-path contiguity constraints (EBD-
SPC), the number of instances solved to optimality (|IT ≤∞∈ ̸= ∅|), the number of instances
for which the time limit was reached with a feasible solution (|IT >∞∈ ̸= ∅|), the number
of infeasible instances identified within the time limit (|IT ≤∞∈ = ∅|), and the number
of instances for which the time limit was reached without finding a feasible solution and
without identifying the problem as infeasible (|IT >∞∈ = ∅|). As a point of clarification, the
average computational times of EBD-SPC are calculated based on instances that reached a
feasible or optimal solution within the time limit (i.e., those instances belonging to IT ≤∞∈ ̸=
∅ or IT >∞∈ ̸= ∅). The road network number (RN No.), tolerance setting (τ), and average
and max relative optimality gaps (Gap %) are reported in Table 4.

Tables 3 and 4 show that average computational times, average relative percentage gap,
and maximum relative percentage gap tend to decrease as τ increases from 1% to 50%.
This suggests that it is more difficult to balance the demand between the different districts
at low tolerance settings. Indeed, 72.7% (8 of 11) of the infeasible instances obtained in
this analysis arose from the setting τ = 1%. At this low value of τ , the demand must be
balanced nearly equally among the districts, which is impossible for some instances.

Analysis of the impact of the number of districts. To test the sensitivity of p
on computational times (in seconds) of solving EBD-SPC, for RNs 4 and 5, the average
computational times were calculated over the three tolerance settings, τ ∈ {1%, 50%, 100%},
for each p setting, namely, p ∈ {2, 4, 6, 8, 10, 20, 30, 40, 50}. The results are plotted in
Figure 7. For both road networks, there seems to be a general trend of decreasing average
computational times as p increases. However, there are notable exceptions. For RN 5, there
are slight increases at p = 6, p = 10, and p = 40; for RN 4, there are more sizable increases
at p = 6, p = 8 and p = 50. One possible reason is that certain values of p can induce
balance targets that are more difficult to achieve based on the demand values of a specific
road network. Moreover, some of the variability could be explained by the fact that each
plotted data point corresponds to the average of only three instances (i.e., one for each of
the tested tolerance settings).
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Table 3: Average EBD-SPC Solution Times (in Hours) Decrease as the Work Balance
Tolerance (τ) Increases

RN No. τ EBD-SPC* |IT ≤∞∈ ̸= ∅| |IT >∞∈ ̸= ∅| |IT ≤∞∈ = ∅| |IT >∞∈ = ∅|

4 1% 10.20 2 3 4 0
4 10% 8.49 4 5 0 0
4 50% 0.84 9 0 0 0
5 1% 5.43 3 1 4 1
5 10% 2.08 5 0 3 1
5 50% 1.85 9 0 0 0

* Reported statistic includes instances where a feasible or optimal solution was reached within the 12 hour
time limit (i.e., columns |IT ≤∞∈ ̸= ∅| and |IT >∞∈ ̸= ∅|).

Table 4: Statistics on Relative Percentage Gap for Different Settings of τ in EBD-SPC

RN No. τ Gap %

Average Max

4 1% 8.86% 12.31%
4 10% 4.94% 7.42%
4 50% ≤ 0.01% ≤ 0.01%
5 1% 22.85% 22.85%
5 10% ≤ 0.01% ≤ 0.01%
4 50% ≤ 0.01% ≤ 0.01%

5 Conclusion
This paper introduces and derives two binary programming formulations for the ECpM
optimization problem. The first model requires an exponential number of cut set-based
constraints and is paired with a branch-and-cut algorithm that generates only a small
number of these constraints. The second utilizes a compact set of shortest-path contigu-
ity (SPC) constraints derived herein; the model is solved with off-the-shelf methods. The
results show that the SPC constraints can expedite the solution of large-scale instances of
this problem and the simpler edge-based p-median problems (i.e., ECpM without contigu-
ity), with speedups of up to 17x for the instances tested in this work. Finally, the paper
explores structural insights and connections between ECpM and the edge-based districting
(EBD) problem, which enforces an additional planning criterion (work balance). Balance
constraints were added to the two ECpM models to obtain two EBD models. The short-
est path-based formulation exhibited a superior computational performance, enabling the
solution of larger instances, than the cut set-based formulation. As an additional practical
benefit, the shortest path-based formulation eliminates a potential drawback in subsequent
routing operations by preventing the buildup of deadhead distance and avoiding the need
to travel beyond the district boundaries to reach specific customers. Future work will ex-
plore additional network insights that can further reduce the computational effort of solving
ECpM and EBD.
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Figure 7: Effect of Increasing p on Average Computational Times of RN 4 and RN 5, with
Different Tolerance Settings.
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