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Abstract. Building on [J. Glob. Optim. 89 (2024) 899–926], we continue to focus on solving
a nonconvex and nonsmooth structured optimization problem with linear and closed convex set
constraints, where its objective function is the sum of a convex (possibly nonsmooth) function and a
smooth (possibly nonconvex) function. Based on the traditional augmented Lagrangian construction,
we introduce a proximal-perturbed Lagrangian function and propose a proximal alternating direction
method of multipliers that leverages this new Lagrangian-based formulation. We establish that
the iterative subsequence obtained by the proposed method converges to a stationary point under
standard assumptions.
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1 Introduction

In this study, we consider the nonconvex and nonsmooth structured optimization problem:

min θ1(p) + θ2(q) s.t. Ap+ q = b, p ∈ P, (1)

where the function θ1 : Rn → R is convex, proper lower semicontinuous, and possibly nonsmooth,
θ2 : Rm → R is continuously differentiable and possibly nonconvex, A ∈ Rm×n is a matrix, b ∈ Rm is
a vector, and P ⊆ Rn is a nonempty, closed, convex set. It is well known that separable optimization
problems with linear constraints and closed convex set constraints have been extensively studied
in the convex setting using splitting algorithms [1, 2, 3]. In fact, nonconvex scenarios are widely
encountered in practical engineering applications. For structured problems of the form (1), most
studies, such as [3, 4, 5, 6], focus on cases that ignore the closed convex set constraints. Research
that simultaneously considers both linear constraints and closed convex set constraints in nonconvex
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structured problems remains relatively scarce. Recently, Yin et al. [7] proposed a partial Bregman
alternating direction method of multipliers (ADMM) incorporating a general relaxation factor for
solving structured problem (1) in the nonconvex setting, which has greatly inspired our work. Herein,
we further investigate this problem and design a splitting algorithm with provable convergence to
solve it.

On the other hand, Kim [8] observed that the convergence analysis of most existing augmented
Lagrangian (AL) methods depends on the boundedness assumption of the dual iterates. To relax
this restriction, Kim introduced a new Lagrangian-based formulation, namely the proximal-perturbed
Lagrangian function (PPLF), and established the convergence of the AL method to a stationary solu-
tion based on standard assumptions without requiring the aforementioned boundedness condition of
dual iterates. For the PPLF introduced by Kim [8], it does not include a quadratic penalty term for
linear constraints, which structurally differs from the traditional AL function. This design avoids the
need for additional and often stricter assumptions when handling linear constraints. Moreover, the
penalty parameter and dual proximal parameter involved in the PPLF are relatively easy to select
in numerical experiments and are not highly sensitive to the numerical results. Inspired by this for-
mulation, Kim [9] introduced a primal-dual-based method for solving nonconvex composite problems
under linear constraints. The solved objective function is the sum of a continuously differentiable
(potentially nonconvex) function and a proper closed convex (potentially nonsmooth) function. In a
subsequent study, Bai et al. [10] proposed a Bregman ADMM-type algorithm, leveraging the PPLF
to solve separable nonconvex and nonsmooth optimization problems. It is worth mentioning that
the problems studied in [9, 10] consider only linear constraints, while disregarding closed convex set
constraints.

Following the PPLF considered in [8, 9, 10], we propose a proximal ADMM with a PPLF (denote
PPLF-PADMM) to solve the structured problem (1) addressed in [7]. We further establish the
theoretical convergence of PPLF-PADMM. Specifically, we obtain that the iterative subsequence
generated by the PPLF-PADMM converges to a stationary point under standard assumptions.

2 Preliminaries

Throughout this paper, for any symmetric matrix F ∈ Rn×n, we denote ∥p∥2F := p⊤Fp. For simplic-
ity, let ∆min(F ) represent the smallest singular value of the linear operator F . Let Λ := (p, q, z, λ, ν),
and use Lβ(Λk) to represent Lβ(pk, qk, zk, λk, νk). Assume a convex function θ : Rn → R, its subdif-
ferential at p ∈ Rn is described as ∂θ(p) := {ξ ∈ Rn | θ(q) ≥ θ(p) + ⟨ξ, q − p⟩,
∀ q ∈ Rn}. For a nonempty convex set C ⊆ Rn, its normal cone at p ∈ C is given by NC(p) =
{ξ ∈ Rn | ⟨ξ, u− p⟩ ≤ 0, ∀ u ∈ C}.

Lemma 2.1 [11] Let θ : Rn → R be a continuously differentiable function with the gradient ∇θ that
is Lθ-Lipschitz continuous. Then for any q, q̂ ∈ Rn, we have |θ(q)−θ(q̂)−⟨∇θ(q̂), q− q̂⟩| ⩽ Lθ

2 ∥q− q̂∥2.

Proposition 2.1 [12] Let θ1, θ2 : Rn → R be two functions, and let C ⊆ Rn be a nonempty closed
convex set.
(i) If the function θ1 is locally Lipschitz continuous at p∗ ∈ Rn and reaches its local minimum at p∗,
then p∗ is a stationary point of θ1, i.e., 0 ∈ ∂θ1(p

∗).
(ii) If both θ1 and θ2 are subdifferentially regular at p, it follows that ∂(θ1+θ2)(p) = ∂θ1(p)+∂θ2(p).
As a result, if θ1 is subdifferentially regular at p and θ2 is continuously differentiable at p, it follows
that ∂(θ1 + θ2)(p) = ∂θ1(p) +∇θ2(p).
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(iii) p∗ ∈ C is a minimizer of the problem min{θ1(p) | p ∈ C}, where θ1 is a convex function, if and
only if 0 ∈ ∂θ1(p

∗) +NC(p
∗), or equivalently, there exists ξ∗ ∈ ∂θ1(p

∗) such that ⟨ξ∗, p− p∗⟩ ≥ 0 for
any p ∈ C.

Definition 2.1 We say that (p∗, q∗, λ∗) ∈ Rn×Rm×Rm is a stationary point of structured problem
(1) if it satisfies

0 ∈ ∂θ1(p
∗) +A⊤λ∗ +NP(p

∗), p∗ ∈ P; ∇θ2(q
∗) + λ∗ = 0; Ap∗ + q∗ = b,

or equivalently, there exists ξ∗ ∈ ∂θ1(p
∗) such that

p∗ ∈ P, ⟨ξ∗ +A⊤λ∗, p− p∗⟩ ≥ 0, ∀ p ∈ P; ∇θ2(q
∗) + λ∗ = 0; Ap∗ + q∗ = b.

3 The Proposed Algorithm and Its Theoretical Analysis

Inspired by [8, 9, 10], which apply PPLF to the design of first-order algorithms, we reformulate
problem (1) by introducing perturbation variable z ∈ Rm and letting Ap + q − b = z and z = 0.
Then, we have

min
p∈Rn, q∈Rm

θ1(p) + θ2(q) s.t. Ap+ q − b = z, z = 0, ∀ p ∈ P.

For the unique solution z∗ = 0, the problem mentioned above is equivalent to (1). Now, we present
the PPLF of problem (1):

Lβ(Λ) = θ1(p) + θ2(q) + ⟨λ,Ap+ q − b− z⟩+ ⟨ν, z⟩+ γ

2
∥z∥2 − β

2
∥λ− ν∥2, (2)

where λ ∈ Rm and ν ∈ Rm are the Lagrange multipliers corresponding to Ap + q − b = z and
z = 0, respectively. Here, γ > 0 is a penalty parameter, and β > 0 is a dual proximal parameter.
Notice that the structure of Lβ(Λ) is different from that of the standard AL function. Specifically,
it lacks a penalty term for enforcing the linear constraint Ap+ q− b = z. Instead, only the auxiliary
constraint z = 0 is penalized with a quadratic term, while the constraint Ap+q−b = z is relaxed into
the objective function using its associated multiplier λ. Additionally, the negative quadratic term
−β

2 ∥λ− ν∥2 ensures that Lβ is smooth and strongly concave in λ for a fixed ν, and vice versa. Due
to the strong convexity of Lβ(Λ) with respect to the perturbation variable z, a unique solution exists
for any given (λ, ν). Minimizing Lβ with respect to z yields z(λ, ν) = (λ− ν)/γ, which implies λ = ν
at the unique solution z∗ = 0. This relationship between λ and ν at z∗ = 0 motivates the inclusion of
the term −β

2 ∥λ− ν∥2 in the PPLF (2). Substituting z(λ, ν) into Lβ(Λ) leads to the reduced PPLF,
i.e.,

Lβ(p, q, z(λ, ν), λ, ν) = θ1(p) + θ2(q) + ⟨λ,Ap+ q − b⟩ − 1

2ρ
∥λ− ν∥2. (3)

Since Lβ(p, q, z(λ, ν), λ, ν) is strongly concave in λ for given (p, q, ν), there exists a unique maxi-
mizer, denoted by λ(p, q, ν). Maximizing the reduced PPLF (3) with respect to λ yields λ(p, q, ν) =
argmaxλ∈Rm Lβ(p, q, z(λ, ν), λ, ν) = ν+ρ(Ap+q−b), from which the λ-update step in (4d) is derived.

To proceed, based on the above analysis, we present the proposed PPLF-PADMM, which leverages
the features of the PPLF to solve problem (1). Throughout the proof and analysis, we suppose that
the sequence {Λk} is produced by the PPLF-PADMM and Lβ(Λ0) < +∞. The specific iterative
steps are outlined as follows:
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Algorithm 1 PPLF-PADMM for solving problem (1).

Input: γ ≫ 1, β ∈ (0, 1), ρ := γ
1+γβ , r ∈ (0.9, 1), η > Lθ2 + 3ρ + 2ρ2

γ , and ∆min(F )
2 −(

3
2 + 1

1+γβ

)
ρ∥A∥2 > 0.

Initialize: p0, q0, z0, λ0, ν0 and δ0.
for k = 0, 1, ...,K − 1 do

pk+1 = argmin
p

{
Lβ(p, qk, zk, λk, νk) +

1

2
∥p− pk∥2F | p ∈ P

}
, (4a)

qk+1 = argmin
q

{
⟨∇qLβ(pk+1, qk, zk, λk, νk), q − qk⟩+

η

2
∥q − qk∥2

}
, (4b)

νk+1 = νk + τk(λk − νk) with τk =
δk

∥λk − νk∥2 + 1
, (4c)

λk+1 = νk+1 + ρ(Apk+1 + qk+1 − b), (4d)

zk+1 =
λk+1 − νk+1

γ
, δk+1 = rδk. (4e)

end for
Output: Λk+1 := (pk+1, qk+1, zk+1, λk+1, νk+1).

Lemma 3.1 The sequences {νk}, {λk}, and {zk} are bounded.

Proof From the ν-update step (4c), we deduce that

∥νk+1∥ = ∥ν0 +
k∑

i=0

τi(λi − νi)∥ ≤ ∥ν0∥+
+∞∑
i=0

δi
∥λi − νi∥2 + 1

∥λi − νi∥

≤ ∥ν0∥+
+∞∑
i=0

δi

∥λi − νi∥+ 1
∥λi−νi∥

≤ ∥ν0∥+
1

2

+∞∑
i=0

δi.

Note that
∑+∞

k=0 δk is convergent, where δk = rkδ0 and r ∈ (0.9, 1). Moreover, since ∥ν0∥ < +∞,
{νk} is bounded. Furthermore, it follows from (4c) that λk = 1

τk
(νk+1 − νk) + νk. Combining (4c)

and (4e), we obtain zk =
νk+1−νk

γτk
. Since {νk} is bounded, we conclude that both {λk} and {zk} are

bounded.

Lemma 3.2 The following four relationships hold.

∥νk+1 − νk∥2 = τ2k∥λk − νk∥2 ≤
δ2k
4
, τk∥λk − νk∥2 ≤ δk, ∥νk+1 − λk∥2 = (1− τk)

2∥λk − νk∥2, (5)

∥λk+1 − λk∥2 ≤ 3ρ2∥A∥2∥pk+1 − pk∥2 + 3ρ2∥qk+1 − qk∥2 + 3∥νk+1 − νk∥2. (6)

Proof It immediately follows from the ν-update step (4c) that

∥νk+1 − νk∥2 = τ2k∥λk − νk∥2 =
δ2k

∥λk − νk∥2 + 2 + 1
∥λk−νk∥2

≤
δ2k
4
,

and the first relation in (5) holds. By τk = δk
∥λk−νk∥2+1

≤ 1, where δk ∈ (0, 1], and combining

τk∥λk − νk∥2 = δk
1+1/∥λk−νk∥2

≤ δk, we obtain the second relation in (5). Using (4c), we obtain
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∥λk − νk+1∥ = ∥λk − νk − τk(λk − νk)∥ = (1− τk)∥λk − νk∥, and squaring both sides yields the third
relation in (5). Finally, using the λ-update (4d) and the fact that (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for
any a, b, c ∈ Rm, we obtain (6).

Lemma 3.3 Suppose that the gradient of θ2 satisfies the Lipschitz condition. Then, for any k ≥ 0,
we have

Lβ(Λk+1)− Lβ(Λk) ≤ −c1∥pk+1 − pk∥2 − c2∥qk+1 − qk∥2 − c3∥zk+1∥2 + δ̂k, (7)

where c1 := ∆min(F )
2 −

(
3
2 + 1

1+γβ

)
ρ ∥A∥2, c2 := 1

2

(
η −

(
Lθ2 + 3ρ+ 2ρ2

γ

))
, c3 := 1

2γ , and δ̂k :=

3δ2k
8ρ + δk

ρ − τkδk
2ρ .

Proof From the p-update of (4a), we see that

Lβ(pk+1, qk, zk, λk, νk)− Lβ(Λk) ≤ −1

2
∥pk+1 − pk∥2F ≤ −∆min(F )

2
∥pk+1 − pk∥2. (8)

By the definition of PPLF in (2), we have

Lβ (pk+1, qk+1, zk, λk, νk)− Lβ(pk+1, qk, zk, λk, νk) = θ2(qk+1)− θ2(qk) + ⟨λk, qk+1 − qk⟩

≤ ⟨∇θ2(qk), qk+1 − qk⟩+
Lθ2

2
∥qk+1 − qk∥2 + ⟨λk, qk+1 − qk⟩ ≤ −1

2
(η − Lθ2)∥qk+1 − qk∥2,

(9)

where the first inequality applies Lemma 2.1, and the second inequality follows from the iteration of
the q-subproblem (4b). Next, we start by noting that

Lβ(pk+1, qk+1, zk, λk+1, νk+1)− Lβ(pk+1, qk+1, zk, λk, νk)

= ⟨λk+1 − λk, Apk+1 + qk+1 − b⟩︸ ︷︷ ︸
(A)

+ ⟨(λk − νk)− (λk+1 − νk+1), zk⟩︸ ︷︷ ︸
(B)

− β

2
∥λk+1 − νk+1∥2 +

β

2
∥λk − νk∥2.

(10)

By using the update steps (4c) and (4d), we have λk+1 − νk+1 = ρ(Apk+1 + qk+1 − b) and zk =
1
γ (λk − νk). Applying the identity ⟨a − b, a⟩ = 1

2∥a − b∥2 + 1
2∥a∥

2 − 1
2∥b∥

2 to (A) and (B) with
a = λk − νk and b = λk+1 − νk+1, we obtain

(A) =
1

2ρ
∥λk+1 − λk∥2 +

1

2ρ
∥λk+1 − νk+1∥2 −

1

2ρ
∥νk+1 − λk∥2, (11)

(B) =
1

2γ
∥ρA(pk − pk+1) + ρ(qk − qk+1))∥2 +

1

2γ
∥λk − νk∥2 −

1

2γ
∥λk+1 − νk+1∥2

≤ ρ2∥A∥2

γ
∥pk+1 − pk∥2 +

ρ2

γ
∥qk+1 − qk∥2 +

1

2γ
∥λk − νk∥2 −

1

2γ
∥λk+1 − νk+1∥2.

(12)
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Substituting (11) and (12) into (10) and rearranging terms, we yield

Lβ(pk+1, qk+1, zk, λk+1, νk+1)− Lβ(pk+1, qk+1, zk, λk, νk)

≤ 1

2ρ
∥λk+1 − λk∥2 +

ρ2∥A∥2

γ
∥pk+1 − pk∥2 +

ρ2

γ
∥qk+1 − qk∥2 −

1

2ρ
∥νk+1 − λk∥2 +

1

2ρ
∥λk − νk∥2

≤ 1

2ρ
(3ρ2∥A∥2∥pk+1 − pk∥2 + 3ρ2∥qk+1 − qk∥2 + 3∥νk+1 − νk∥2) +

ρ ∥A∥2

1 + γβ
∥pk+1 − pk∥2

+
ρ2

γ
∥qk+1 − qk∥2 +

1

2ρ
(2τk − τ2k )∥λk − νk∥2

≤
(
3

2
+

1

1 + γβ

)
ρ ∥A∥2∥pk+1 − pk∥2 +

(
3ρ

2
+

ρ2

γ

)
∥qk+1 − qk∥2 +

3δ2k
8ρ

+
δk
ρ

− τkδk
2ρ

,

(13)
where the second inequality applies the third relation in (5) and (6), and the third inequality uses
the first and second relations in (5). For the z-update expression, it notes that ∇zLβ(Λk+1) = 0 since
zk+1 minimizes Lβ (pk+1, qk+1, z, λk+1, νk+1). Hence, by the γ-strong convexity of Lβ with respect to
z, we have

Lβ(Λk+1)− Lβ(pk+1, qk+1, zk, λk+1, νk+1) ≤ −γ

2
∥zk+1 − zk∥2 ≤ − 1

2γ
∥zk+1∥2,

where the last inequality follows from the existence of a sufficiently large positive γ such that ∥zk+1∥ ≤
γ∥zk+1− zk∥ for any k > 0, which implies that −γ

2∥zk+1− zk∥2 ≤ − 1
2γ ∥zk+1∥2. Combining the above

inequality with (8), (9), and (13), we yield the desired result (7).

Theorem 3.1 Suppose the conditions in Lemma 3.3 hold, and let θ1 and θ2 satisfy the coercivity
condition. Then the following hold:
(i) The sequences {pk} and {qk} are bounded. Moreover, Lβ(Λk) is convergent.
(ii) limk→+∞(∥pk+1 − pk∥+ ∥qk+1 − qk∥+ ∥zk+1∥+ ∥λk+1 − λk∥+ ∥νk+1 − νk∥) = 0.
(iii) Any accumulation point (p∗, q∗, λ∗) of the sequence {(pk, qk, λk)} is a stationary point of (1).

Proof (i) Using the inequality in (7), we have Lβ(Λ0)+
∑k−1

i=0

(
3δ20
8ρ r

2i + δ0
ρ r

i
)
≥ Lβ(Λk−1)+

3δ2k−1

8ρ +
δk−1

ρ ≥ Lβ(Λk). Based on the definition of PPLF in (2), we obtain

Lβ(wk) = θ1 (pk) + θ2 (qk) + ⟨λk, Apk + qk − b⟩ − ⟨λk − νk, zk⟩+
γ

2
∥zk∥2 −

β

2
∥λk − νk∥2

= θ1 (pk) + θ2 (qk) +
1

ρ
⟨λk, λk − νk⟩ −

1

2ρ
∥λk − νk∥2

= θ1 (pk) + θ2 (qk) +
1

2ρ
∥λk∥2 −

1

2ρ
∥νk∥2 .

Combining the fact that θ1 and θ2 satisfy the coercivity condition, i.e., lim∥p∥→+∞ θ1(p) = +∞ and
lim∥q∥→+∞ θ2(q) = +∞, with the boundedness of the sequences {νk} and {λk}, we conclude that both
{pk} and {qk} are bounded. Since Lβ(Λk) is lower semicontinuous and nonincreasing, the sequence
{Lβ(Λk)} is nonincreasing and bounded below, hence {Lβ(Λk)} converges to a finite value L∗

β.
(ii) Suppose that Λ∗ is an accumulation point of the sequence {Λk}, and consider a convergent
subsequence, i.e., limi→∞ Λki = Λ∗. Summing (7) from k = 0 to k = K − 1, using the result from
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conclusion (i), and letting c0 := min{c1, c2, c3}, we obtain

K−1∑
k=0

(
∥pk+1 − pk∥2 + ∥qk+1 − qk∥2 + ∥zk+1∥2

)
≤ 1

c0

(
Lβ(Λ0)− Lβ(Λk) +

K−1∑
k=0

δ̂k

)

≤ 1

c0

(
Lβ(Λ0)− L∗

β +
K−1∑
k=0

δ̂k

)
.

Since
∑+∞

k=0 δk ≤ δ0
2(1−r) < +∞ and

∑+∞
k=0 δ

2
k ≤ δ20

2(1−r2)
< +∞, and τk ∈ (0, 1), we have

∑+∞
k=0 δ̂k <

+∞. Then, by taking the limit as K → +∞, we deduce

+∞∑
k=0

∥pk+1 − pk∥2 < +∞,
+∞∑
k=0

∥qk+1 − qk∥2 < +∞,
+∞∑
k=0

∥zk+1∥2 < +∞.

On the other hand, it can be deduced from (5) and
∑+∞

k=0 δ
2
k < +∞ that

∑+∞
k=0 ∥νk+1 − νk∥2 ≤∑+∞

k=0
δ2k
4 < +∞. Finally, by combining (6), we obtain

+∞∑
k=0

∥λk+1 − λk∥2 ≤ 3ρ2∥A∥2
+∞∑
k=0

∥pk+1 − pk∥2 + 3ρ2
+∞∑
k=0

∥qk+1 − qk∥2 + 3
+∞∑
k=0

∥νk+1 − νk∥2 < +∞.

Therefore, conclusion (ii) follows immediately.
(iii) We begin by noting from the first-order optimality condition of PPLF-PADMM that pk+1 ∈ P,
and there exists ξk+1 ∈ ∂θ1(pk+1) such that{

⟨ξk+1 +A⊤λk + F (pk+1 − pk), pk+1 − p⟩ ≤ 0, ∀ p ∈ P, (14a)

∇θ2(qk) + λk = 0, ρ(Apk+1 + qk+1 − b) = λk+1 − νk+1, λk+1 − νk+1 = γzk+1, (14b)

It is straightforward to see that (14a) is equivalent to pk+1 ∈ P and ⟨A⊤λk+F (pk+1−pk), pk+1−p⟩ ≤
⟨ξk+1, p−pk+1⟩. Notice that from the convexity of θ1 and ξk+1 ∈ ∂θ1(pk+1), we have ⟨ξk+1, p−pk+1⟩ ≤
θ1(p)− θ1(pk+1) for any p ∈ P. Hence, we obtain

pk+1 ∈ P, θ1(pk+1) + ⟨λk, Apk+1⟩+ ⟨F (pk+1 − pk), pk+1 − p⟩ ≤ θ1(p) + ⟨λk, Ap⟩.

In the above-mentioned relationship, let k := ki, and then take the limit as i → +∞, invoking
limi→+∞ Λki = Λ∗, conclusion (ii), and using the closeness of P, we obtain

p∗ ∈ P, θ1(p
∗) + ⟨λ∗, Ap∗⟩ ≤ θ1(p) + ⟨λ∗, Ap⟩, ∀ p ∈ P,

which implies that p∗ = argminp∈P θ1(p)+⟨λ∗, Ap⟩. According to the first-order optimality condition,
there exists ξ∗ ∈ ∂θ1(p

∗) such that

p∗ ∈ P, ⟨ξ∗ +A⊤λ∗, p∗ − p⟩ ≤ 0, ∀ p ∈ P.

Using (14b), taking k := ki, passing to the limit as i → ∞, and invoking limi→∞ Λki = Λ∗, we
conclude that ∇θ2(q

∗) + λ∗ = 0 and ρ(Ap∗ + q∗ − b) = λ∗ − ν∗ = γz∗ = 0. From the above results
and Definition 2.1, it follows that any accumulation point (p∗, q∗, λ∗) of the sequence {(pk, qk, λk)} is
a stationary point of (1).
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4 Conclusion

In this work, we address the problem of solving a nonconvex and nonsmooth structured optimization
problem with linear and closed convex set constraints, where the objective is the sum of a convex
(possibly nonsmooth) function and a smooth (possibly nonconvex) function. Building upon the
augmented Lagrangian function, we introduce a new Lagrangian-based formulation and develop a
PPLF-ADMM tailored to this problem. We demonstrate that the sequence obtained by the proposed
PPLF-ADMM converges to a stationary point under standard assumptions. Our results are expected
to provide a reference algorithm for efficiently solving composite practical optimization problems.
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