
Reduction from the Partition Problem: Dynamic Lot Sizing

Problem with Polynomial Complexity

Chee-Khian Sim*

School of Mathematics and Physics
University of Portsmouth

Lion Gate Building, Lion Terrace
Portsmouth PO1 3HF

Last updated: 06 December 2024

Abstract

In this note, we reduce an instance of the partition problem to a dynamic lot sizing
problem in polynomial time, and show that solving the latter problem solves the former
problem. We further show that the instance of the partition problem can be solved using
polynomial number of addition, multiplication and sort operations in input data using the
reduction.

Keywords. Partition problem; dynamic lot sizing model; polynomial complexity.

1 Notations

Let f(N) and g(N) be two nonnegative real-valued functions, where N ∈ Z++. We write
g(N) = O(f(N)) to mean that g(N) ≤ Cf(N) for some positive constant C and all N > 0.

Furthermore, I(x), where x ∈ Z, is defined to be 1 for x > 0, and 0 otherwise; and x+ =
max{x, 0}, where x ∈ ℜ.

2 The Partition Problem and its Reduction to a Dynamic Lot
Sizing Problem

Let S = {1, . . . , n} and ai ∈ Z++ for i ∈ S, with
∑

i∈S ai = 2C. The partition problem is to
find a subset A of S such that ∑

i∈A
ai =

∑
i∈S\A

ai = C.

It is known that the partition problem is NP-complete [1, 2, 3]. We call an instance of the
partition problem PPi.

*Email address: chee-khian.sim@port.ac.uk

1



In this section, we reduce PPi to a dynamic lot sizing problem in polynomial time and show
that solving the dynamic lot sizing problem solves PPi in Theorem 2.2. As a consequence, if
the dynamic lot sizing problem can be solved with polynomial complexity, PPi can also be
solved with polynomial complexity.

Dynamic lot sizing problem is introduced in [5], and has since been studied intensively by
researchers. We consider a variant of this basic problem which is related to remanufacturing.

In the following, we list down the parameters of the dynamic lot sizing model that we are
considering in this note:

Parameters:

� N = number of periods in the time horizon, where N ≥ 1;

� Di = demand for serviceable products during the ith period, where i = 1, . . . , N . We
assume that Di ∈ Z++, i = 1, . . . , N ;

� Ri = returned products as cores at the beginning of the ith period, where i = 1, . . . , N .
We assume that Ri ∈ Z+, i = 1, . . . , N , and set RN+1 = 0;

� Kr,i = setup cost when there is remanufacturing at the beginning of the ith period, where
i = 1, . . . , N . We let Kr,i ≥ 0 for all i = 1, . . . , N ;

� ∆Km,i = setup cost when there is manufacturing at the beginning of the ith period,
where i = 1, . . . , N . We let ∆Km,i ≥ 0 for all i = 1, . . . , N ;

� hs,i = unit holding cost of serviceable product over the ith period whether from manu-
facturing or remanufacturing, where i = 1, . . . , N . We let hs,i ≥ 0 for all i = 1, . . . , N ;

� hc,i = unit holding cost of core over the ith period, where i = 1, . . . , N . We let hc,i ≥ 0
for all i = 1, . . . , N ;

� cr,i = unit remanufacturing cost in the ith period, where i = 1, . . . , N . We let cr,i ≥ 0
for all i = 2, . . . , N ;

� cm,i = unit manufacturing cost in the ith period, where i = 1, . . . , N . We let cm,i ≥ 0 for
all i = 1, . . . , N .

We further impose assumptions on the above parameters as follows:

Assumption 2.1 (a) cr,i < cm,i for i = 1, . . . , N ;

(b) hs,i > hc,i +Kr,j for i, j = 1, . . . , N , and j ≥ i;

(c) ∆Km,i ≥ Kr,i for i = 1, . . . , N ;

(d) hs,i + cm,i > ∆Km,j + cm,j for i < j.

These assumptions are crucial to prove Proposition 3.1, which in turn is needed to formulate
the dynamic program for the dynamic lot sizing problem we are considering in this note, and
to solve it efficiently.

Demand must be satisfied in each period in our model. Our objective for the model is to
minimize its total cost, which comprises of setup costs for manufacturing and remanufacturing,

2



holding costs for serviceable products and cores, manufacturing and remanufacturing costs. We
have the following sequence of events in our model - at the beginning of a period, (i) returned
products arrive as cores; (ii) number of units of serviceable products to produce through
remanufacturing and manufacturing is determined; (iii) demand in the period is satisfied; (iv)
any leftover cores and serviceable products are held to the next period.

The dynamic lot sizing problem (DLSP) we are considering is given by:

min

N∑
i=1

(Kr,iI(xi) + ∆Km,iI(yi) + cr,ixi + cm,iyi + hc,i[Ji − xi] + hs,iIi+1)

subject to

Ji+1 = Ji +Ri+1 − xi, i = 1, . . . , N,

Ii+1 = Ii + xi + yi −Di, i = 1, . . . , N,

xi ≤ Ji, i = 1, . . . , N,

Ji, Ii ≥ 0, i = 2, . . . , N,

xi, yi ∈ Z+, i = 1, . . . , N,

J1 = R1, I1 = 0.

The decision variables in the above minimization problem are:

� xi = number of units of cores remanufactured in the ith period;

� yi = number of units of serviceable products obtained by manufacturing in the ith period,

while

� Ji = number of units of cores at the beginning of the ith period;

� Ii = number of units of available serviceable products at the beginning of the ith period.

The objective function in the above minimization problem is the total cost of the model.
The first constraint tells us the number of units of cores available at the beginning of the
(i + 1)th period, i = 1, . . . , N , after events occurred in the ith period. The second constraint
tells us the number of units of serviceable products available at the beginning of the (i+ 1)th

period, i = 1, . . . , N , after events occurred in the ith period. The third constraint tells us
that the number of cores remanufactured in the ith period cannot exceed the cores available
in the period. The fourth constraint tells us that the number of units of cores and serviceable
products at the beginning of the ith period are never negative. The next constraint is the sign
constraint on the decision variables in the problem, while the last constraint sets specific values
on J1, I1. Note that the parameters in DLSP satisfy Assumption 2.1.

Let us call the optimal value of the minimization problem C∗, and its optimal solution x∗i , y
∗
i ,

i = 1, . . . , N , with J∗
i = J∗

i−1 + Ri − x∗i−1, I
∗
i = I∗i−1 + x∗i−1 + y∗i−1 − Di−1, i = 2, . . . , N + 1,

J∗
1 = R1, I

∗
1 = 0.

We reduce PPi in polynomial time to the above dynamic lot sizing problem by setting appro-
priate values for the parameters of the model as follows:

� N = n;

3



� Di = ai, i = 1, . . . , N(= n);

� R1 = C, Ri = 0, i = 2, . . . , N ;

� Kr,i = ∆Km,i = 1, i = 1, . . . , N ;

� hs,i = 3, i = 1, . . . , N ;

� hc,i = 0, i = 1, . . . , N ;

� cr,i = 0, i = 1, . . . , N ;

� cm,i = 1, i = 1, . . . , N .

It is easy to check that parameters of the model with the above values satisfy Assumption 2.1.
We call the dynamic lot sizing problem with these values for its parameters DLSPp, and this
problem is a special case of DLSP. We have the following theorem:

Theorem 2.2 PPi can be solved by solving DLSPp.

Proof: Claim 1: Suppose there exists a subset A of S = {1, . . . , n} such that∑
i∈A

ai =
∑

i∈S\A

ai = C,

then the optimal value to DLSPp is at most N + C.

It is easy to see that by remanufacturing Di units of cores in the ith period, when i ∈ A, and
manufacturing Di units from raw materials in the ith period, when i ̸∈ A, total cost is N +C,
and it is feasible to DLSPp. Hence, the optimal value to DLSPp is at most N + C.

Claim 2: Suppose the optimal value to DLSPp is at most N + C, and we let A to contain
elements i ∈ S = {1, . . . , N} such that we remanufacture in the ith period in DLSPp. Then
we have ∑

i∈A
ai =

∑
i∈S\A

ai = C.

First note that under optimality, whenever we produce, we only produce enough to satisfy
demand for the period, and do not hold serviceable products to the next period. To see this,
suppose we hold a serviceable product to the next period, then a cost of hs,i = 3 is incurred.
If we do not produce the serviceable product in the current period, but in the next period,
we do not incur the holding cost of hs,i = 3 and may even save on its manufacturing cost
if this product is obtained by manufacturing, but we incur a possible setup cost of 1 due to
remanufacturing or manufacturing, and possible unit manufacturing cost cm,i+1 = 1. In the
new setup, total cost is reduced by at least 1, but this contradicts optimality. Hence, under
optimality, whenever we produce, we only produce enough to satisfy demand for the period,
and do not hold serviceable products to the next period. It is easy to see that all R1 = C
units of cores are remanufactured to satisfy demand since there is no cost for remanufacturing.
Note that these cores need not be all remanufactured in the 1st period and they can be held
to later periods for remanufacturing without incurring holding cost since hc,i = 0. Now, total

demand is
∑N

i=1Di =
∑N

i=1 ai = 2C, and since half of these demands is satisfied through
remanfacturing and that all demand has to be satisfied, the other half of these demands has to

4



be satisfied through manufacturing, incurring a total manufacturing cost of C, since cm,i = 1.
In each period, we always have manufacturing and/or remanufacturing to satisfy demand in
the period, as we do not have serviceable products held from earlier periods to satisfy demand
in the period. Total setup cost is then at least N . Hence, total cost is at least N+C. However,
the optimal value toDLSPp is at most N+C. Therefore, under optimality, we must have total
cost is exactly N+C, leading to total setup cost to be exactly N , and we either remanufacture
or manufacture in a period. Claim 2 then follows. 2

Note that DLSPp and Theorem 2.2 with the claims in its proof follow [4], while the proof of
Claim 2 in the theorem is inspired by [4].

3 Dynamic Programming Formulation of Dynamic Lot Sizing
Problem and its Efficient Solution

We propose a dynamic programming formulation of DLSP in this section. Before we do
this, we state and prove the following proposition that is the key which allows us to have the
formulation and then solving it efficiently.

Proposition 3.1 In DLSP, suppose we produce in the ith period and we next produce in
the jth period, where j > i. If I∗i + J∗

i ≤ Di + . . . + Dj−1, then x∗i = J∗
i , I∗j = 0 and

y∗i = (Di + . . . +Dj−1) − (I∗i + J∗
i ) . On the other hand, if I∗i + J∗

i ≥ Di + . . . +Dj−1, then
x∗i = ((Di + . . .+Dj−1)− I∗i )

+, I∗j = (I∗i − (Di + . . .+Dj−1))
+ and y∗i = 0.

Proof: We first prove that if I∗i + J∗
i ≤ Di + . . . + Dj−1, then x∗i = J∗

i . In order to satisfy
demand in the ith period up to the (j−1)th period before we produce again, we need to produce
at least (Di + . . . +Dj−1) − I∗i units of serviceable products either by remanufacturing from
J∗
i units of cores or manufacturing from raw materials in the ith period. Since cr,i < cm,i and

∆Km,i ≥ Kr,i by Assumption 2.1(a) and (c), and in order not to incur unnecessary holding
costs for cores, under optimality, we remanufacture all available cores, thus x∗i = J∗

i . Now,
we prove that I∗i + J∗

i ≤ Di + . . . + Dj−1 implies I∗j = 0 by assuming that I∗j > 0 and show

that this leads to a contradiction. Note that since we produce in the ith period and the jth

period, we have x∗i + y∗i , x
∗
j + y∗j ≥ 1, and we note that a setup cost of at least ∆Km,k and at

most ∆Km,k +Kr,k is incurred in the kth period, k = i or j. Since we assume that I∗j > 0, we
have I∗i + x∗i + y∗i > Di + . . . + Dj−1. Hence, with x∗i = J∗

i and I∗i + J∗
i ≤ Di + . . . + Dj−1,

it leads to y∗i ≥ 1. That is, there is manufacturing in the ith period incurring an additional
setup cost of ∆Km,i in the period. Observe that by reducing manufacturing in the ith period
by 1 unit, we still satisfy demand in the periods from the ith period to the (j − 1)th period,
with cost reduced by at least cm,i + hs,i, and a further cost reduction of ∆Km,i if we do not
manufacture at all in the ith period, in the new setting. The unit of missing serviceable product
produced at the ith period can be “reinstated” in the jth period either by remanufacturing or
manufacturing incurring a cost of at most ∆Km,j+cm,j , because cr,j < cm,j and ∆Km,j ≥ Kr,j

by Assumption 2.1(a), (c). In the new setting, total system cost is then reduced by at least
hs,i+cm,i−∆Km,j−cm,j , which is positive by Assumption 2.1(d). This leads to a contradiction
to optimality. We conclude then that I∗i + J∗

i ≤ Di + . . .+Dj−1 implies I∗j = 0. Furthermore,

it is easy to see that we have y∗i = (Di + . . . +Dj−1) − (I∗i + J∗
i ), since demand from the ith

period up to the (j − 1)th period have to be satisfied and x∗i = J∗
i .

Next, we show that if I∗i + J∗
i ≥ Di + . . .+Dj−1, then x∗i = ((Di + . . .+Dj−1)− I∗i )

+. First,
we note that since demand from the ith period up to the (j − 1)th period have to be satisfied,

5



any excess demands not fulfilled by I∗i units of serviceable products have to be satisfied from
remanufacturing from the available J∗

i units of cores at the beginning of the ith period, and
hence we have x∗i ≥ ((Di + . . .+Dj−1)− I∗i )

+. If x∗i > ((Di + . . .+Dj−1)− I∗i )
+, then excess

serviceable products remanufactured have to be held till the jth period incurring holding cost
of (x∗i − ((Di+ . . .+Dj−1)− I∗i )

+)
∑j−1

k=i hs,k, which is higher than the sum of the holding cost

of cores of (x∗i − ((Di + . . . +Dj−1) − I∗i )
+)

∑j−1
k=i hc,k (if these cores are not remanufactured

in the ith period) and possible setup cost of Kr,j (to remanufacture these cores to serviceable
products in the jth period), since hc,k + Kr,j < hs,k by Assumption 2.1(b), and this is a
contradiction to optimality. Hence, we have x∗i = ((Di + . . . +Dj−1) − I∗i )

+. Furthermore, if
I∗i +J∗

i ≥ Di+. . .+Dj−1, then I∗j = (I∗i −(Di+. . .+Dj−1))
+, since x∗i = ((Di+. . .+Dj−1)−I∗i )

+

and y∗i = 0. Note that y∗i = 0 since demand from the ith period up to the (j − 1)th period are
satisfied by available serviceable products, I∗i , and those remanufactured in the ith period, and
we do not want to manufacture additional serviceable products that have to be then held till
the jth period incurring unnecessary holding cost of serviceable products. 2

The results in the above proposition have the “flavor” of the well-known zero-inventory property
of the dynamic lot sizing problem, which first appeared in [5].

Remark 3.2 Under optimality, it is easy to convince ourselves from the proof of Proposition
3.1 that if the ith period is the last period when we produce before the end of the time horizon,
then results in the proposition still hold, where we let j = N + 1 in the proposition.

Let us now consider a dynamic program which we use to solve DLSP.

For i = 1, . . . , N , and Ji, Ii ≥ 0,

C∗∗
i (Ji, Ii) := min

{
C∗−
i (Ji, Ii), C

∗+
i (Ji, Ii)

}
, (1)

where

C∗−
i (Ji, Ii)

:= min
{
Kr,iI((Di + . . .+Dj−1)− Ii) + cr,i((Di + . . .+Dj−1)− Ii)

++

j−2∑
k=i

(hs,i + . . .+ hs,k)Dk+1 + (Ii − (Di + . . .+Dj−1))
+

j−1∑
k=i

hs,k +

j−1∑
k=i+1

(hc,k + . . .+ hc,j−1)Rk + (Ji − ((Di + . . .+Dj−1)− Ii)
+)

j−1∑
k=i

hc,k +

C∗∗
j (Ji − ((Di + . . .+Dj−1)− Ii)

+ +Ri+1 + . . .+Rj , (Ii − (Di + . . .+Dj−1))
+) |

i+ 1 ≤ j ≤ N + 1, Ii + Ji ≥ Di + . . .+Dj−1} , (2)

and

C∗+
i (Ji, Ii)

:= min {Kr,iI(Ji) + ∆Km,iI((Di + . . .+Dj−1)− (Ii + Ji)) + cr,iJi+
j−2∑
k=i

(hs,i + . . .+ hs,k)Dk+1 +

j−1∑
k=i+1

(hc,k + . . .+ hc,j−1)Rk +

cm,i[(Di + . . . Dj−1)− (Ii + Ji)] + C∗∗
j (Ri+1 + . . .+Rj , 0) |

6



i+ 1 ≤ j ≤ N + 1, Ii + Ji ≤ Di + . . .+Dj−1} . (3)

We have the convention that C∗
N+1(JN+1, IN+1) = 0 for all JN+1, IN+1 ≥ 0.

The following lemma relates the above dynamic program to DLSP:

Lemma 3.3 We have C∗ = C∗∗
1 (R1, 0).

Proof: For i = 1, . . . , N , suppose we produce in the ith period, by Proposition 3.1, we can
interpret C∗∗

i (Ji, Ii) in (1) as the optimal cost incurred by our model from the beginning of
the ith period to the end of the time horizon, where Ji, Ii is the number of units of serviceable
products and cores in our model at the beginning of the ith period; C∗−

i (Ji, Ii) in (2) as
the optimal cost incurred by our model from the beginning of the ith period to the end of
the time horizon under the condition that if we produce in the jth period, where j > i, then
Ii+Ji ≥ Di+. . .+Dj−1, with Ji, Ii being the number of units of serviceable products and cores
in our model at the beginning of the ith period; C∗+

i (Ji, Ii) in (3) as the optimal cost incurred
by our model from the beginning of the ith period to the end of the time horizon under the
consition that if we produce in the jth period, where j > i, then Ii+Ji ≤ Di+ . . .+Dj−1, with
Ji, Ii is the number of units of serviceable products and cores in our model at the beginning
of the ith period. Clearly, we then have C∗ = C∗∗

1 (R1, 0). 2

By the above lemma, we are able to solve DLSP by solving the dynamic program (1)-(3)
with J1 = R1, I1 = 0. We next describe an algorithm to solve DLSP by solving this dynamic
program. Before we do this, we have a lemma below that is the basis for the algorithm and
further allows us to show Theorem 3.6:

Lemma 3.4 When solving DLSP using the dynamic program (1)-(3), where we set J1 =
R1, I1 = 0, we have, for all i = 2, . . . , N , Ii = 0 and Ji takes value (Rk1 + . . .+ Ri)− (Dk2 +
. . .+Di−1) for some k1, k2, where 1 ≤ k1 ≤ k2 ≤ i, in (1).

Proof: Consider i = 1 in (1) with J1 = R1, I1 = 0. We see from (2) that for 2 ≤ j ≤ N + 1,
the first argument and second argument of C∗∗

j (·, ·) for its minimization problem takes value
(R1 + . . . + Rj) − (D1 + . . . + Dj−1) and 0 respectively, while from (3), the first and second
argument of C∗∗

j (·, ·) for its minimization problem takes value R2+ . . .+Rj and 0 respectively.

Let us now focus on C∗∗
2 (R2, 0) = min{C∗−

2 (R2, 0), C
∗+
2 (R2, 0)}. For C∗−

2 (R2, 0), we see from
(2) that the expression within the minimization problem has the first and second argument
of C∗∗

j (·, ·) equal to (R2 + . . . + Rj) − (D2 + . . . + Dj−1) and 0 respectively for j ≥ 3. For

C∗+
2 (R2, 0), we see from (3) that the expression within its minimization problem has the first

and second argument of C∗∗
j (·, ·) equal to R3 + . . . + Rj and 0 respectively for j ≥ 3. If we

consider C∗∗
i ((R2 + . . .+Ri)− (D2 + . . .+Di−1), 0) for some i ≥ 3, then we see from (2) that

the expression within the minimization problem has the first and second argument of C∗∗
j (·, ·)

equal to (R2+ . . .+Rj)− (D2+ . . .+Dj−1) and 0 respectively for j > i, and from (3) that the
expression within the minimization problem has the first and second argument of C∗∗

j (·, ·) equal
to Ri+1+ . . .+Rj and 0 respectively for j > i. Furthermore, if we consider C∗∗

i (R3+ . . . Ri, 0)
for some i ≥ 3, then we see from (2) that the expression within the minimization problem
has the first and second argument of C∗

j (·, ·) equal to (R3 + . . .+Rj)− (Di + . . .+Dj−1) and
0 respectively for j > i, and from (3) that the expression within the minimization problem
has the first and second argument of C∗∗

j (·, ·) equal to Ri+1 + . . . + Rj and 0 respectively
for j > i. Now, let us focus on C∗∗

i (R2 + . . . + Ri, 0) for i ≥ 3. We see from (2) that the
expression within the minimization problem has the first and second argument of C∗∗

j (·, ·)

7



equal to (R2 + . . . + Rj) − (Di + . . . + Dj−1) and 0 respectively for j > i, and from (3),
the expression within the minimization problem has the first and second argument of C∗∗

j (·, ·)
equal to Ri+1+ . . .+Rj and 0 respectively for j > i. By arguing in a similar manner for other
possibilities when solving the dynamic program (1)-(3) with J1 = R1, I1 = 0, we see that the
lemma holds. 2

Algorithm 3.5
Step 1. Iterate from i = N to 2, and use previously computed values for C∗∗

j (Jj , Ij),
j = i + 1, . . . , N , with C∗∗

N+1(JN+1, IN+1) = 0, to find C∗∗
i (Ji, Ii) from (1)-(3) with Ji =

(Rk1 + . . .+Ri)− (Dk2 + . . .+Di−1), for 1 ≤ k1 ≤ k2 ≤ i, and Ii = 0.

Step 2. Find C∗∗
1 (R1, 0) using (1), where C∗∗

j ((R1 + . . . + Rj) − (D1 + . . . +Dj−1), 0) in
(2) and C∗∗

j (R2 + . . .+Rj , 0) in (3), j = 2, . . . N + 1, have been computed in Step 1.

While executing the algorithm, we determine j∗(i) which is the j, i+1 ≤ j ≤ N+1 that attained
the minimum in (2) or (3), for i = 1, . . . , N . Whether we consider (2) or (3) depends on whether
the first term or the second term in the minimization in (1) is lower. These j∗(i) allow us to
determine the period when we should produce. In particular, we always remanufacture when
j∗(i) is obtained using (2), with possible manufacturing if j∗(i) is obtained using (3).

Theorem 3.6 below states the complexity to solve DLSP using its dynamic programming
formulation.

Theorem 3.6 DLSP can be solved using O(N6) multiplication, addition and sort operations.

Proof: We solve DLSP using the dynamic programming formulation (1)-(3) through Algo-
rithm 3.5, and show that solving it takes O(N6) addition, multiplication and sort operations.
For each i = 1, . . . , N , by Lemma 3.4, (1) needs to be solved at most i(i + 1)/2 times. Each
time (1) is solved, it involves solving (2) and (3). For i = 1, . . . , N and i+ 1 ≤ j ≤ N + 1, the
expression in the minimization problem in (2) requires at most 1 + 2(j − i) multiplications,
9 + 6(j − i) +

∑j−1
k=i+1(k − i) +

∑j−1
k=i+1(j − k) = 9 + 6(j − i) + (j − i− 1)(j − i) additions to

evaluate, hence leading to a total of O((N − i + 1)3) multiplications and additions. Finding
the minimum in the minimization problem in (2) requires O((N − i+ 1)2) operations. Hence,
for i = 1, . . . , N , solving (2) requires a total of O((N − i + 1)3) multiplication, addition and
sort operations. On the other hand, for i = 1, . . . , N and i + 1 ≤ j ≤ N + 1, evaluating the
expression within the minimization problem in (3) requires at most 2+2(j− i) multiplications,
7 + 3(j − i) +

∑j−2
k=i(k− i) +

∑j−1
k=i+1(j − k) = 7+ 3(j − i) + (j − i− 1)(j − i) additions, hence

leading to a total of O((N−i+1)3) multiplications and additions. Finding the minimum in the
minimization problem in (3) requires O((N − i+ 1)2) operations. Therefore, for i = 1, . . . , N ,
solving (3) requires a total of O((N − i + 1)3) multiplication, addition and sort operations.
Taking into account various values of Ji and Ii involved in (1), we require O(i2(N − i + 1)3)
operations altogether to solve (1) for each i = 1, . . . , N , which then implies a total multiplica-
tion, addition and sort operations of O(N6) summing i from 1 to N . Hence, DLSP can be
solved using O(N6) multiplication, addition and sort operations. 2

Corollary 3.7 PPi can be solved using O(n6) multiplication, addition and sort operations.

Proof: Follows from Theorems 2.2 and 3.6, noting that DLSPp is a special case of DLSP.
2

8



References

[1] S. A. Cook. The complexity of theorem-proving procedures. In M. A. Harrison, R. B.
Banerji, and J. D. Ullman, editors, STOC’71: Proceedings of the Third Annual ACM
Symposium on Theory of Computing, pages 151–158. Association for Computing Machinery,
1971.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., Madison Avenue, New York, 1979.

[3] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W.
Thatcher, and J. D. Bohlinger, editors, Complexity of Computer Computations, pages 85–
103. Springer, 1972.

[4] W. van den Heuvel. On the complexity of the economic lot-sizing problem with remanufac-
turing options. Econometric Institute Report EI 2004-46, Erasmus University Rotterdam,
2004.

[5] H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size model. Man-
agement Science, 5:89–96, 1958.

9


