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Abstract
The increasing penetration of renewable energy into power systems necessitates the devel-
opment of effective methodologies to integrate initially disconnected generation sources
into the grid. This paper introduces the Longest Shortest-Path-Connection (LSPC) algo-
rithm, a graph-based method to enhance the mixed-integer linear programming disjunctive
formulation of Transmission Expansion Planning (TEP) using valid inequalities (VIs).
Traditional approaches for determining big-M coefficients in disconnected TEP networks
typically rely on solving the computationally intensive Longest Path Problem (LPP). In
contrast, LSPC circumvents these limitations by efficiently identifying relevant power flow
paths between disconnected buses within the expansion network. We demonstrate that the
VIs generated from these identified paths dominate those derived from LPP-based methods
and other existing approaches.

Keywords: Transmission expansion planning, Mixed-integer linear programming, Valid inequalities,
Renewable energy sources integration

1 Introduction

The Transmission Expansion Planning (TEP) problem entails adding transmission lines
within and between systems to accommodate future demand growth at the lowest possi-
ble cost [1]. The strategic importance of TEP in power systems cannot be overstated, given
its long-term implications for system operations. The evolving landscape, characterized by
renewable energy integration, large-scale generation projects, and market integration, has
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significantly elevated the complexity of TEP problem, demanding more effective solution
methods [2].

TEP problem is often addressed via a linear approximation model, namely Direct Current
Optimal Power Flow (DC-OPF), which is widely applied in power system optimization (e.g.
[3],[4],[5]). This linearization is obtained by assuming uniform voltage magnitudes, minimal
angle differences, and disregarding reactive power, considering the low conductance of trans-
mission lines [6]. These simplifications provide an effective trade-off between simplicity and
accuracy, making them suitable for TEP, where operational considerations are less critical
due to the long-term planning horizon and extensive power transmission distances [7].

The introduction of discrete decisions to DC-OPF transforms it from a linear program
(LP) into a mixed-integer linear program (MILP), which is generally intractable (i.e., NP-hard
[8]). Its complexity explains the current emphasis on metaheuristics and other approximate
methods ([9],[10],[11]), even though these approaches do not provide formal guarantees
of the solution quality. Hybrid methods for DC-TEP that couple heuristics with branch-
and-bound algorithms (e.g., [12],[13],[14]) have been explored. However, despite having
theoretical guarantees, their high computational cost limits them to smaller problems, hinder-
ing their practical scalability. Benders’ decomposition is another popular method for solving
DC-TEP that guarantees optimal solutions ([15],[16],[17],[18]), but it suffers from slow
convergence in large-scale problems.

Cutting planes offer another exact approach for accelerating the solution process of
DC-TEP. They have been extensively investigated for various power systems optimiza-
tion problems involving discrete decisions, such as DC OPF-based Optimal Transmission
Switching (DC-OTS) and Unit Commitment (DC-UC), with their computational benefits
widely corroborated ([19],[20],[21],[22]). However, cutting plane methods for DC-TEP have
received relatively less attention. Tsamasphyrou [23] and Binato [15] conducted pioneering
research on the use of cutting planes to enhance the MILP disjunctive formulation of DC-
TEP. However, the cutting planes they developed prove to be either too loose or limited in
scope to translate into significant computational improvements. Skolfield et al. [24] provide
the most in-depth study to date, deriving a broader set of cutting planes that incorporate a
wide range of variables to further strengthen the problem formulation. Nonetheless, real-
world transmission expansion situations, particularly those involving the integration of new
buses into the existing network, remain unexplored. To bridge this gap, this paper proposes
an efficient graph-based methodology for deriving new classes of cutting planes, leveraging
the structural properties of the DC-TEP disjunctive formulation.

The rest of the paper is organized as follows. Section 2 presents the DC-TEP formulation
and introduces background concepts. Section 3 motivates the featured methodology, denoted
as the longest shortest-path-connection algorithm, to tackle situations that require new-bus
integration. Section 4 provides a detailed description of this algorithm, along with proofs of
correctness and complexity.

2 Modeling framework and background

This section provides the notation and underlying mathematical model that serves as the
basis for the methodology developed in this work. In power systems, buses (i.e., nodes) rep-
resent connection points for various electrical components (e.g., power plants, substations)
and are linked by corridors, which are transmission pathways between buses. This work
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distinguishes between established corridors, which connect buses solely through existing
transmission lines, and expansion corridors, which incorporate candidate lines for potential
network expansion. For simplicity, it is assumed that each corridor can accommodate only a
single existing line or a candidate line.

2.1 Notation overview

Sets

n ∈ B Buses (i.e., nodes)
(i, j) ∈ Ω0 Established corridors: corridors containing only an established line
(i, j) ∈ Ω1 Expansion corridors: corridors containing only a candidate line

Parameters

cij Cost of installing a line in corridor (i, j) ∈ Ω1

cn Cost per unit of power generation at bus n
gn Upper limit of power generation at bus n
dn Active power demand at bus n
θij Limit on the angle difference between buses i and j
P ij Maximum capacity of (candidate) line within corridor (i, j) ∈ Ω1

P
0

ij Maximum capacity of (existing) line within corridor (i, j) ∈ Ω0

xij Reactance of line in corridor (i, j)
σ A scaling factor for aligning generation costs with transmission investment costs

Variables

P 0
ij Active power transmitted through the existing line in corridor (i, j)

Pij Active power transmitted through the candidate line in corridor (i, j)
gn Active power produced by the generator at bus n
θn Voltage angle at bus n

yij

{
1 If a candidate line within corridor (i, j) is purchased
0 Otherwise

2.2 MILP disjunctive formulation of DC-TEP

This paper employs the MILP disjunctive model of DC-TEP [25] with a single investment
period. This formulation is as follows:

min
∑

(i,j)∈Ω1

cijyij +
∑
n∈B

σcngn (1a)

∑
(i,n)∈Ω0

P 0
in +

∑
(i,n)∈Ω1

Pin −
∑

(n,i)∈Ω0

P 0
ni −

∑
(n,i)∈Ω1

Pni + gn = dn ∀n ∈ B (1b)

− P
0

ij ≤ P 0
ij ≤ P

0

ij ∀(i, j) ∈ Ω0 (1c)

− P ijyij ≤ Pij ≤ P ijyij ∀(i, j) ∈ Ω1 (1d)
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xijP
0
ij = (θi − θj) ∀(i, j) ∈ Ω0 (1e)

− θij(1− yij) ≤ xijPij − (θi − θj) ≤ θij(1− yij) ∀(i, j) ∈ Ω1 (1f)
gn ≤ gn ∀n ∈ B (1g)

yij ∈ {0, 1} ∀(i, j) ∈ Ω1 (1h)
gn ≥ 0, θn unr. ∀n ∈ B (1i)

P 0
ij , Pij unr. ∀(i, j) ∈ Ω0 ∪ Ω1 (1j)

Objective function (1a) minimizes the total cost of adding new lines and power generation;
generation costs are scaled by a factor of σ to ensure comparability to investment costs.
Constraint (1b) enforces Kirchoff’s Current Law (KCL), also known as the flow balance
equations. They ensure that at each bus, the inflow and generation are together equal to
the summed outflow and demand. Constraints (1c) and (1d) are capacity limits for existing
and candidate lines, respectively. Constraints (1e) and (1f) enforce Kirchhoff’s Voltage Law
(KVL) for existing and candidate lines, respectively, by equating the product of line reactance
and power flow to the corresponding bus angle difference within a corridor. Here, the sus-
ceptance parameter bij from the standard DCOPF formulation is replaced with the reactance
xij = −1

bij
to simplify the notation in the formulations. Constraint (1f) employs a sufficiently

large disjunctive parameter, i.e., θij , to guarantee inequality redundancy for unconstructed
corridors. Previous studies use a big-M parameter for the disjunctive coefficient; this work
uses the parameter θij to generalize its application to all bus pairs (the standard TEP formu-
lation defines this parameter only for adjacent buses). The remaining constraints specify the
domain of values for the decision variables.

2.3 Review of TEP formulation improvement approaches

In constraint (1f), the disjunctive parameter θij imposes an upper limit on the angle difference
between buses connected by expansion corridor (i, j) ∈ Ω1. The selection of θij significantly
contributes to the quality of the problem formulation. These coefficients must be sufficiently
large not to cut off any integer-feasible solution. However, they should be kept as small as
possible to provide tighter LP relaxations, thereby expediting solution times (and mitigating
numerical issues [26]). To elaborate, consider a pair of buses i and j, succinctly represented
as [i, j], that are connected by an established corridor. A valid upper bound on the angle
difference between the pair can be derived by incorporating the line capacity constraint (1c)
into the KVL constraint (1e) as:

|θi − θj | ≤ xijP
0

ij , (2)

from the fact that |P 0
ij | ≤ P

0

ij . Henceforth, the capacity-reactance product of a line (i, j)

(e.g., see the right-hand side of (2), xijP
0

ij) is abbreviated as CRij .
The above bound is valid when a transmission line is constructed between buses i and j,

but it may not apply to corridors not already connected via an established corridor. Nonethe-
less, it is possible to utilize (2) to establish bounds on buses that can be connected via
expansion lines. A simple bound was derived by Tsamasphyrou et al. [23], who calculate a
single bound γ that is applicable to any pair of adjacent buses in Ω1 and is given by:
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Fig. 1: Identifying relevant paths between bus pairs based on their connectivity in G0 and G:
(a) Bus pair [i1, i3] is adjacent in G and connected in G0; (b) Bus pair [i0, i1] is adjacent in
G but disconnected in G0; (c) Bus pair [i0, in] is non-adjacent in G yet connected in G0; (d)
Bus pair [i0, in] is non-adjacent in G and disconnected in G0.

|θi − θj | ≤
∑

(k,l)∈Ω0∪Ω1

CRkl = γ, ∀(i, j) ∈ Ω1. (3)

Upper bound γ effectively represents a worst-case scenario where any flow traveling between
i and j would traverse all the corridors (Ω0∪Ω1) in the network. It is obtained by sequentially
applying the angle difference inequality (2) to each corridor and summing the results.

Upper bound γ is straightforward to compute, but its magnitude becomes excessive even
for very small instances, meaning it does not provide real computational advantages. To derive
tighter upper bounds, it is necessary to restrict attention to more relevant power flows between
bus pairs. This entails identifying and analyzing only the relevant paths that power flow can
take between buses i and j, which may either be an established path, denoted by ρ0ij , com-
posed of existing lines, or a potential path, denoted by ρij , consisting of expansion corridors
with or without existing corridors. The general approach involves efficiently identifying such
paths between bus pairs, and calculating their lengths — by summing the lines’ capacity-
reactance products (see 2) — to refine θij . To help explain the applicability of this approach,
let G = (B,Ω0 ∪ Ω1) be the expansion network associated with the inclusion of poten-
tial investment decisions in TEP. Additionally, it is necessary to define the initial network
G0 = (B,Ω0), which consists solely of existing lines.

Figure 1 illustrates different network structures and expansion situations, to motivate the
applicability and limitations of existing approaches for identifying relevant paths between bus
pairs and deriving their angle difference bounds. In the figure, the network G is composed of
both established corridors, depicted by solid edges, and expansion corridors, shown by dashed
edges, with edge weights denoting the capacity-reactance product of the lines. When buses
i and j within expansion corridor (i, j) are connected via an established path ρ0ij in G0, a
valid upper bound on their voltage angle difference is obtained by traversing the path. That is,
starting from one endpoint of the expansion corridor, i, and following path ρ0ij to the opposite
endpoint j, summing the inequalities (2) creates a telescoping effect on the left-hand side,
resulting in the angle difference |θi − θj |. Simultaneously, the right-hand side accumulates
the capacity-reactance products (CRij) of the traversed lines.
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Example 1. Figure 1a depicts expansion corridor (i1, i3) and established path ρ0i1i3 :=
⟨(i1, i5), (i5, i4), (i4, in), (in, i3)⟩. Summing the angle difference inequalities along ρ0i1i3 ,
represented by the dotted arrows, yields the angle difference upper bound for [i1, i3]:

|
∑

(i,j)∈ρ0
i1i3

(θi − θj)|≤ |θi1 − θi5 |︸ ︷︷ ︸
≤CRi1i5

+ |θi5 − θi4 |︸ ︷︷ ︸
≤CRi5i4

+ |θi4 − θin |︸ ︷︷ ︸
≤CRi4in

+ |θin − θi3 |︸ ︷︷ ︸
≤CRini3

(4a)

⇒ |θi1 − θi3 |≤CRi1i5 + CRi5i4 + CRi4in + CRini3 = 1 + 1 + 1 + 1 = 4 (4b)

The presence of multiple established paths connecting i and j results in multiple inequal-
ities similar to (4b). Binato [15] proposes solving the Shortest Path Problem (SPP) within
G0 to identify the tightest bound on θij . In Example 1, the shortest established path ρ0

i1i3
:=

⟨(i1, i5), (i5, i3)⟩ (indicated by blue solid arrows) yields an upper bound of 2 on the angle
difference for buses i1 and i3, dominating the previously determined bound.

Skolfield et al. [24] extended the application of this approach, which was previously lim-
ited to adjacent buses (i.e., those with a single expansion corridor between them), to establish
angle difference bounds, θij , for any i, j ∈ B, connected within G0 (i.e., buses that can reach
each other via existing lines). The authors derive a valid upper bound θij by solving SPP
across all simple established paths, where the associated capacity-reactance product sum is
denoted as CR(ρ0ij) := min

r
{CR(ρ0ijr )}. Figure 1c illustrates non-adjacent buses i0 and in

connected within G0, where the shortest path between them yields an upper bound. Consid-
ering all bus pairs enables the derivation of many additional angle difference bounds beyond
those in Binato’s work, thereby enhancing the DC-TEP formulation.

The cutting planes derived by Binato and Skolfield et al. require established paths connect-
ing buses in G0 to efficiently establish angle difference upper bounds. However, such paths
may not exist in certain network configurations and expansion decisions, for example, when
the expansion of transmission grids involves integrating new buses. Figures 1b and 1d show-
case two relevant situations, which can be motivated by the need to connect renewable energy
sources. For instance, the integration of wind farms, as exemplified by ERCOT’s CREZ ini-
tiative to deliver remote wind power to high-demand regions in Texas ([27],[28]), requires
the addition of new buses (e.g., buses i0 and in in Figure 1d). The rise of distributed gen-
eration (e.g., rooftop solar panels [29]) and the expansion of transmission grids through line
branching are additional drivers for adding new buses in TEP. While angle difference bounds
analogous to those obtained for connected bus pairs can be derived for disconnected pairs,
obtaining the respective coefficients proves impractical. This is because any single potential
path between the disconnected bus pairs in G could be relevant, depending on the solution to
the problem, and thus solving the SPP is inapplicable in these cases.

3 Motivating the longest shortest-path-connection algorithm

It is inefficient to use the aforementioned power flow-path based approaches to derive angle
difference upper bounds for bus pairs that are disconnected in the initial network. The com-
putational difficulties arise from the combinatorial nature of the expansion decisions — that
is, not knowing a priori whether these decisions will affect the connectivity of currently dis-
connected bus pairs — leading to numerous potential connection scenarios. Indeed, Binato
proposes employing a total enumeration approach, meaning evaluating all potential paths in
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Fig. 2: Tightening SPP- and LPP-based angle difference bounds using path-based VIs: (a)
Bus pair [i0, in] is connected in G0 and a potential path (dotted arrows) shorter than the SPP-
based path exists; (b) Bus pair [i0, in] is disconnected in G0 and a potential path (dotted
arrows) shorter than the LPP-based path exists.

G connecting the disconnected bus pair and selecting the longest one to ensure no feasi-
ble solutions are excluded ([15],[24],[30]). In contrast, Skolfield et al. [24] introduce a more
sophisticated approach that leverages parallel paths between the bus pair to further tighten
the angle difference bound from what is possible with total enumeration. However, both
approaches still necessitate solving the Longest (Simple) Path Problem (LPP), which is NP-
hard [31]. Apart from this computational difficulty, the lengths of LPP-based paths often
exceed reasonable lengths of plausible power flows between the disconnected bus pair due to
the meshed structure and the size of transmission grids, leading to overly conservative angle
difference bounds. Such aspects hinder the effectiveness of both Binato’s total enumeration
approach and Skolfield’s bound-tightening technique.

Next, we explain how LPP can often be circumvented in practical situations where, aside
from the new disconnected buses, the initial network is well-connected and can be lever-
aged to reduce the relevant connection possibilities. To motivate this insight, it is necessary
to formally define valid inequalities (VIs). For an integer programming problem, written suc-
cinctly as min{cx : x ∈ X}, with feasible region S = {x ∈ Zn : Ax ≤ b}, an inequality
πx ≤ π0 is valid if it holds for all feasible solutions x ∈ S [32]. A VI is deemed effec-
tive if it reduces the feasible region of the relaxed problem represented by polyhedral set
P = {x ∈ Rn : Ax ≤ b}. For instance, Skolfield et al. introduce path-based VIs to tighten
the angle difference bounds derived from SPP or LPP. For potential paths ρi0in parallel to the
original SPP- or LPP-based path connecting i0 and in, these VIs can be written as

|θi0 − θin | ≤ CR(ρi0in) + (1− yρi0in
)(θi0in − CR(ρi0in)), (5)

where yρi0in
∈ {0, 1}. Without loss of generality, path-based VI (5) is presented in a simpli-

fied form from Skolfield’s exposition, associating a binary variable with a path; in contrast,
the original path-based VI enumerates all corridors along the path, with one binary variable
for each expansion corridor. In (5), binary variable yρi0in

equals 1 if the potential path ρi0in
is constructed, and 0 otherwise. When yρi0in

= 1, the tighter upper bound CR(ρi0in) is
enforced. If yρi0in

= 0, the initial upper bound θi0in is maintained, which equals CR(ρ0i0in)

when i0 and in are connected in G0, and CR(ρi0in) (representing the longest path length)
otherwise. Figures 2a and 2b show example candidate paths for deriving path-based VIs (indi-
cated by the dotted arrows) when a bus pair is connected (left subfigure) and disconnected in
G0 (right subfigure).

As a first contribution, we add a condition for ensuring the validity of the path-based
inequalities, namely, {ρi0in ∈ CGi0in | CR(ρi0in) < θi0in}, (6)
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where CGi0in represents the set of all paths connecting i0 to in in the network G. Violating this
condition, which is missing from the original expression by Skolfield et al., could lead to (5)
generating invalid inequalities. Proposition 4 in Appendix 5 presents the complete expression
of inequality (5) (i.e., using expansion corridor variables) and demonstrates that it is valid only
for potential paths that meet condition (6). In addition, Proposition 5 in Appendix 5 demon-
strates that for potential paths ρi0in within the angle difference effective domain — defined
as |θi0 − θin | ≥ CR(ρi0in) (representing the tightest achievable bound through ρi0in) — the
path-based VIs constructed using an LPP-based initial bound are dominated by those initial-
ized with the bounds developed in Section 4. This proposition indicates that the effectiveness
of path-based VIs diminishes as the initial angle difference bound θi0in grows, with exces-
sively large bounds failing to tighten the LP relaxation. This underscores the significance of
identifying the shortest relevant paths between initially disconnected bus pairs. Indeed, LPP
is unnecessary and ineffective when the existing network between two disconnected buses
has a high degree of connectivity. In such cases, shorter connections can often be identified.
In practice, very few buses are disconnected; hence, the number of potential corridor combi-
nations for connecting them is small. This is justified by the fact that, in large-scale power
systems, bus degrees follow an exponential distribution with a mean of 2 [33], indicating a
low number of incident lines.
Example 2. Figure 2b illustrates the longest path between buses i0 and in, namely
ρi0in := ⟨(i0, i1), (i1, i3), (i3, i5), (i5, i2), (i2, i4), (i4, in)⟩, which is represented by solid
arrows and has a length of 6. However, assuming the construction of corridors (i0, i1) and
(i4, in), a shorter and more relevant path with a length of 4 can be identified: ρi0in :=
⟨(i0, i1), (i1, i5), (i5, i4), (i4, in)⟩. Both paths traverse the terminal corridors (i0, i1) and
(i4, in), but the latter employs a shorter path through the existing grid to connect the
intermediate buses i1 and i4.

Building upon these observations, we introduce the Longest Shortest-Path-Connection
(LSPC) algorithm for deriving tight angle difference upper bounds for new-bus integration
situations. For a given disconnected pair, the algorithm circumvents the prohibitive computa-
tional effort needed to solve LPP by evaluating connections between the disconnected buses
and their neighboring buses. These neighboring buses are then linked through the shortest
path within G0. By merging the connections with the neighbors and the SPP-based sub-paths
between them, complete paths between the original buses are formed. The longest of these
shortest-path-connections is then selected to establish a valid angle difference bound.

Before proceeding, it is crucial to distinguish the proposed concept from the diameter of
graph G(V,E), denoted as diam(G) := max

u,v∈V
d(u, v) [34]. In words, the diameter represents

the maximum shortest path distance between any two nodes in a static graph. This metric
fails to guarantee a feasible bound due to the variable nature of the network in expansion
planning. When applied to the expansion graph G, the diameter may result in overly conser-
vative estimates by considering the bus pair with the longest shortest path among all pairs in
the network. While it evaluates shortest paths between all buses, which may or may not be
constructed, the LSPC algorithm focuses only on the part of the graph that is relevant to the
specific disconnected bus pair.
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4 The longest shortest-path-connection algorithm

This section introduces the LSPC algorithm, a novel graph-based approach for tightening the
formulation of the DC-TEP problem. The algorithm has two phases, which are applicable to
different expansion situations. The results from the first phase are used to derive additional
bounds for the second phase.

4.1 LSPC Phase I: Bridging-bus integration

The LSPC algorithm establishes an upper bound on the angle difference between discon-
nected buses in minimally disconnected networks, where a small number of investments in
candidate lines would integrate the new buses into the existing network. Phase I focuses on
the simplest case, common to many real-world situations, where a new bus is separated from
the existing grid by a single expansion corridor.

To proceed, let NG(i) denote the set of buses adjacent to bus i in G. Phase I applies to
disconnected bus pair [i, j], where, for all neighboring pairs [ni, nj ] with ni ∈ NG(i) and
nj ∈NG(j), if a path exists between ni and nj in the expansion network (i.e., CGninj

̸= ∅), a

corresponding path also exists in the initial network (i.e., CG0

ninj
̸= ∅). The existence of these

paths ensures that all potential paths between i and j can be realized by connecting i to ni and
j to nj . In such cases, a relevant path between i and j that extends the connection between ni

and nj is determined by first identifying the shortest path between ni and nj in G0 and then
adding the lengths of the corresponding terminal corridors, (i, ni) and (nj , j), to the length
of the latter sub-path.

Phase I iterates over all connected neighboring bus pairs [ni, nj ] in G to construct all
relevant paths between buses i and j. Nevertheless, given the typically low degree of buses
in a power grid, this usually yields a small number of options. The longest among them is
extracted to establish θij . To proceed, we introduce two concepts:
Definition 1. A node-isolated graph of G with respect to node i, excludes all edges connecting
node i to its neighbors, that is, Gi := (B, {Ω0 ∪ Ω1}\{(i,NG(i))}).

Using a node-isolated graph ensures that only the neighbors of i and j with a potential
path uniting them (i.e., CGi∩Gj

ninj ̸= ∅) are considered in identifying candidate paths between
i and j. Absent this, if one pair of neighbors is connected by a path in G, other neighboring
pairs may be incorrectly deemed to be connected by the same path, reaching it through the
corridors (i,NG(i)) and (NG(j), j).
Definition 2. The reachability set CNij for buses i and j includes [ni, nj ], whenever ni and nj

are connected in Gi ∩Gj , and it includes [i, j] if (i, j) ∈ Ω1; in mathematical notation, its
elements are given by

{[ni, nj ]|ni ∈ NG(i), nj ∈ NG(j), ni ̸= j, nj ̸= i, CGi∩Gj
ninj

̸= ∅}∪{[i, j]|(i, j) ∈ Ω1}. (7)

The length of the path ρij corresponding to each element [ηi, ηj ] ∈ CNij , where ηi ∈
{i, ni}, yields a lower bound for θij (since the path may or may not be chosen in the TEP
solution). Specifically, the set CNij includes two types of elements, distinguished by the number
of corridors along the corresponding path. For each element [ηi, ηj ], the lower bounds are
given by:
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Fig. 3: Examples of situations where the reachability set should be refined: (a) In CNi0i1 ,
{[i2, i3], [i3, i3]} are replaced by [i0, i3], as {(i0, i2), (i0, i3)} ∈ Ω0; (b) In CNi0i6 , [i4, i4],
[i4, i5], and [i2, i4] are replaced by [i0, i4], since {(i0, i2), (i0, i4)} ∈ Ω0, and since [i0, i4] is
connected in G0, [i0, i4] also replaces [i1, i4].

i. Adjacent: The path consists of a single expansion corridor, specifically ρij[i,j] :=

⟨(i, j)⟩. Therefore, θij ≥ CR(ρij[i,j]) = CRij .
ii. Non-adjacent (connection via extended path): For a neighboring pair [ni, nj ], an SPP

is solved to obtain θninj
= CR(ρ0ninj

). Subsequently, the terminal-corridor lengths
CRini

and CRnjj are added to obtain the length of the full potential path CR(ρij[ni,nj ]
),

resulting in the lower bound

θij ≥ CR(ρij[ni,nj ]
) = xini

P ini
+ CR(ρ0ninj

) + xnjjPnjj . (8)

Example 3. Consider the disconnected bus pair i0 and i1 in Figure 3a. Given that (i0, i1) ∈
Ω1, case (i) is applicable to the element [i0, i1] ∈ CNi0i1 , resulting in lower bound θi0i1 ≥
CR(ρi0i1[i0,i1]

) = CRi0i1 = 1. Additionally, for the neighbor pair [i4, i5] ∈ CNi0i1 , which
corresponds to case (ii), the algorithm extends the shortest path between i4 and i5 to create
a full path that connects i0 to i1, giving the lower bound

θi0i1 ≥ CR(ρi0i1[i4,i5]
) = xi0i4P i0i4 + CR(ρ0i4i5) + xi5i1P i5i1 = 1 + 1 + 1 = 3.

When bus i from a disconnected pair [i, j] is connected to the initial grid (e.g., bus i0 in
Figures 3a and 3b), it is necessary to factor the existing connections between bus i and G0 to
ensure the inclusion of all potential paths and to expand the applicability of Phase I.
Example 4. In Figure 3b, if the elements [i4, i4], [i4, i5], [i2, i4], and [i2, i5] are included in
CNi0i6 , the shortest potential path, namely ρi0i6(1)

:= ⟨(i0, i2), (i2, i4), (i4, i6)⟩, is excluded
from consideration. Instead, the longer paths ρi0i6(2)

:= ⟨(i0, i4), (i4, i6)⟩, ρi0i6(3)
:=

⟨(i0, i4), (i4, i2), (i2, i5), (i5, i6)⟩, and ρi0i6(4)
:= ⟨(i0, i2), (i2, i5), (i5, i6)⟩ are obtained

from case (ii) of Definition 2. In effect, enumerating all ordered neighboring pairs [ni0 , ni6 ]
connected in G to construct CNi0i6 impedes obtaining the tightest value for θi0i6 . Additionally,
including [i1, i4] in CNi0i6 requires an established path between i1 and i4. However, since i4
is already reachable from i0, requiring connections from any ni0 ∈ NG(i0) to i4 becomes
unnecessary and restrictive. In summary, listing all pairs [ni0 , ni6 ] may limit the applicability
of Phase I based on the existing connectivity of i0.

Definition 3. For a disconnected bus pair where one bus is connected to the current network,
the reachability set is refined by replacing [ni, nj ] with [i, nj ] if (i, ni) ∈ Ω0 or CG0

inj
̸= ∅, and

with [ni, j] if (nj , j) ∈ Ω0 or CG0

nij
̸= ∅.
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To simplify the upcoming lemma and proof, connections of the form [i, nj ] and [ni, j] are
jointly represented as [i, nj ] since G and G0 are undirected (i.e., [i, j] is equivalent to [j, i]).
Lemma 1. Refining the reachability set CNij by replacing [ni, nj ] with [i, nj ] when (i, ni) ∈
Ω0 or CG0

inj
̸= ∅ ensures that all necessary connections are included to capture the relevant

paths between buses i and j through nj .

Proof. Pairs [ni, nj ] are replaced with [i, nj ] in two cases:
Case 1: (i, ni) ∈ Ω0. Let N0(i) ⊆ NG(i) denote the neighbors of bus i with (i, ni) ∈ Ω0.

It is correct to replace [ni, nj ] with [i, nj ] since the SPP accounts for traversing all neighbors
ni ∈ N0(i), when determining the shortest existing path from i to nj . When bus i and at least
two of its neighbors, say n1

i and n2
i , form a cycle of established corridors c := ⟨i, n1

i , n
2
i , i⟩,

there is a path with at least two corridors connecting each ni ∈ N0(i) to i by traversing
through other neighbors in N0(i). In other words, this refinement ensures that the reachabil-
ity set captures all paths that pass through multiple neighbors. As a result, all sub-paths in the
refined reachability set are no more than one corridor away from the original buses.

Case 2: CG0

inj
̸= ∅ (i.e., bus i has a path to nj in G0). Assume that n′

i ∈ N0(i), and
therefore the neighbor pair [n′

i, nj ] ∈ CNij is replaced with [i, nj ] due to case 1. We demon-
strate that the potential path through [ni, nj ] ∈ CNij , where {(i, ni), (nj , j)} ∈ Ω1, should be
excluded from CNij . Constructing the full path through [ni, nj ] requires adding lines across
both corridors (i, ni) and (nj , j), whereas constructing the path corresponding to [i, nj ] only
necessitates building the corridor (nj , j). More specifically, the construction of both lines is
redundant and restrictive in this case: when the path for [ni, nj ] is constructed, the path for
[i, nj ] is automatically formed, whereas connections where only (nj , j) is constructed are
incorrectly discarded (since a path between i and j is still formed).

This refinement leads to a third type of elements in CNij :
iii. Non-adjacent (existing connection via neighbor): For connections of the form [i, nj ],

θinj is obtained as CR(ρ0inj
) by solving the SPP for [i, nj ]. Then, the terminal corridor

length CRnjj is added to create the candidate path ρij[i,nj ]
, providing the corresponding

lower bound:
θij ≥ CR(ρij[i,nj ]

) = CR(ρ0inj
) + xnjjPnjj . (9)

Example 5. In Example 3, the reachability set CNi0i1 = {[i0, i1], [i2, i3], [i3, i3], [i4, i5]} is
refined to CNi0i1 = {[i0, i1], [i0, i3], [i4, i5]} by replacing [i2, i3] and [i3, i3] with [i0, i3], as
{(i0, i2), (i0, i3)} ∈ Ω0. The lower bound for θi0i1 corresponding to the element [i0, i3] is
established as

θi0i1 ≥ CR(ρi0i1[i0,i3]
) = CR(ρ0i0i3) + xi3i1P i3i1 = 1 + 1 = 2.

The following theorem formally establishes the tightest angle difference bound for an initially
disconnected bus pair by computing the lengths of candidate paths associated with the three
types of elements of the reachability set.
Theorem 1. For an initially disconnected bus pair [i, j], if all pairs in CNij \{[i, j]} are con-
nected in G0, the tightest bound on the angle difference is determined by the longest shortest
path within refined CNij (considering cases i, ii, iii) as:
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Algorithm 1 Longest Shortest-Path-Connection Algorithm (LSPC) - Phase I

1: Inputs: G,G0, [i, j], γ
2: Output: A tighter upper bound on the angle difference between buses i and j
3: θij ← 0 ▷ Initialize θij
4: Construct CNij ▷ Construct the reachability set by applying Definition 2
5: if ∃[ni, nj ] ∈ CNij | (i, ni) ∈ Ω0 or CG0

inj
̸= ∅ then

6: Refine CNij ▷ Refine the reachability set by applying Definition 3
7: end if
8: if CG0

[ηi,ηj ]
̸= ∅,∀ [ηi, ηj ] ∈ CNij \{[i, j]} then ▷ Verify Phase I’s applicability to [i, j]

9: for all [ηi, ηj ] ∈ CNij do ▷ Compute CR(ρij[ηi,ηj ]) using cases (i),(ii), and (iii)

10: θij ← max(θij , CR(ρij[ηi,ηj ]))

11: end for
12: else
13: θij ← γ ▷ Phase I fails
14: end if

|θi − θj | ≤ max
[ηi,ηj ]∈CN

ij

{CR(ρij[ηi,ηj ])}; (10)

where, the length of each path ρij[ηi,ηj ] is computed as:

CR(ρij[ηi,ηj ]) = xijP ij , ∀ [ηi, ηj ] = [i, j] (11a)

CR(ρij[ηi,ηj ]) = CR(ρ0inj
) + xnjjPnjj , ∀ [ηi, ηj ] ∈ {[i, nj ]} (11b)

CR(ρij[ηi,ηj ]) = xini
P ini

+ CR(ρ0ninj
) + xjnj

P jnj
, ∀ [ηi, ηj ] ∈ {[ni, nj ]} (11c)

Proof. To ensure the reachability set CNij captures all relevant paths between buses i and j, all
ordered neighboring pairs [ni, nj ] connected in G, as well as the pair [i, j] when (i, j) ∈ Ω1,
are enumerated by applying (7). To extend the applicability of the LSPC algorithm and derive
the tightest upper bound, CNij is refined following Definition 3, as established by Lemma 1.
Assuming all [ηi, ηj ] ∈ CNij \ {[i, j]} are connected in G0, the length of the candidate path
corresponding to [ηi, ηj ] ∈ CNij is calculated as follows:

Case i: For [i, j] ∈ CNij , if a line is established along the expansion corridor (i, j), the
inequality

|θi − θj | ≤ CR(ρij[i,j]) = CRij (12)
follows from (2).

Case ii: For [ni, nj ] ∈ CNij , we employ the SPP to determine their angle difference bounds
θninj

. By extending the terminal expansion corridors (with lengths CRini
and CRnjj) on

both sides of each SPP-based sub-path, a potential path between i and j is formed. Assuming
the construction of both (i, ni) and (nj , j), the path is added to the network, yielding the
angle difference VI

12



|θi − θj | ≤ |θi − θni |︸ ︷︷ ︸
≤CRini

+ |θni − θnj |︸ ︷︷ ︸
≤CR(ρ0

ninj
)

+ |θnj − θj |︸ ︷︷ ︸
≤CRnjj

(13a)

⇒ |θi − θj | ≤ CRini + CR(ρ0ninj
) + CRnjj = CR(ρij[ni,nj ]

). (13b)

Case iii: For the candidate paths represented by [i, nj ], constructing the corridor (nj , j)
extends the SPP-based sub-path from i to nj and is required to guarantee that

|θi − θj | ≤ |θi − θnj
|︸ ︷︷ ︸

≤CR(ρ0
inj

)

+ |θnj
− θj |︸ ︷︷ ︸

≤CRnjj

(14a)

⇒ |θi − θj | ≤ CR(ρ0inj
) + CRnjj = CR(ρij[i,nj ]

). (14b)

Since the inequalities (12),(13), and (14) are derived from prospective paths not yet included
in the current network, it is essential to ensure that θij ≥ ∪

[ηi,ηj ]∈CN
ij

CR(ρij[ηi,ηj ]). To maintain

the validity and tightness of θij , it must be at least as large as the maximum lower bound,
thereby establishing inequality (10).

To show that (10) is the tightest achievable angel difference VI for [i, j], it is important to
note that a smaller θij would require a shorter path for at least one pair in CNij . However, this is
impossible, as the SPP is solved to connect all pairs in the reachability set and form sub-paths.
Subsequently, sub-paths are merged with at most one candidate line on each side to form full
paths, as supported by case 2 in Lemma 1, leaving no room for further improvement.

Proposition 2. Assuming n = |B| and P (deg(i) > K) ∼ exp(−0.5K) for all i ∈ B and
K∈ N, the worst-case time complexity of determining θij with LSPC Phase I is O(n2).

Proof. In the worst-case, buses i and j are connected to all other buses in the network through
an expansion corridor, meaning that |NG(i) \ {j}| = |NG(j) \ {i}| = n − 2. With all
neighboring buses fully connected in G0, the cardinality of the set CNij reaches its maximum
value of (n− 2)2 +1. Dijkstra’s algorithm is applied to each of (n− 2) neighbors to find the
shortest path to all n−3 other neighboring buses. The set CNij contains (n−2)(n−3) elements,
to which case (ii) applies giving a total of 2(n− 2)(n− 3) additions. Furthermore, there are
(n − 2) pairs in CNij to which case (iii) applies, each requiring a single addition operation.
Afterwards, maximizing the obtained bounds requires (n − 2)2 + 1 comparisons. Given the
quadratic time complexity of Dijkstra’s algorithm for both additions and comparisons, the
worst-case time complexity of Phase I is O(n3). However, based on the assumed bus-degree
distribution, the number of invocations of Dijkstra’s algorithm is decreased to a constant,
reducing the overall complexity to O(n2).

4.2 Phase II: Tree-structured bus integration

Other new-bus integration situations of interest may involve a tree-like structure of new buses,
such as wind farms and intermediate substations, or interconnected components, such as
another isolated existing network, to be added to the grid.
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Fig. 4: Integration of new buses from network-expansion trees into the grid: (a) Buses within
trees T1 and T2 to be integrated into the network; (b) Phase II combines the Phase I-based
sub-paths ρt0i0 := ⟨(t0, i0)⟩ and ρi0in := ⟨(i0, i1), (i1, i5), (i5, i4), (i4, in)⟩ to link t0 to in
via the intermediary bus i0.

Definition 4. A network-expansion tree T (BT ,Ω1
T ) is defined as an acyclic, connected

subgraph of G, rooted at a bus that is separated from G0 by a single expansion corridor.
LSPC Phase II leverages the fact that any path to a new bus in a network-expansion

tree must pass through a certain intermediary neighboring bus. Formally, Phase II applies
to disconnected buses i and j, for which relevant paths to an intermediary bus λ, with
corresponding bounds θiλ and θλj , can be identified through Phase I.
Example 6. In Figure 4a, T1 and T2 exemplify network-expansion trees, where the buses in
these trees illustrate the applicability of Phase II. In this network, when power flows into bus
in from i3 or i4, the only pathway for the power to reach bus t′1 is through bus t′0. As a result,
once a path to in is built, it can be easily extended along the tree structure rooted at in to
reach additional new buses located deeper in the tree.
Consider now the buses t0 and t′0. Once power flows into bus i0 from t0, the sub-network
between i0 and in can be bypassed through the Phase I-based path ρi0in (the dotted arrows
originating from i0) to reach t′0. Specifically, by merging this sub-path with two Phase I-based
sub-paths, ρt0i0 := ⟨(t0, i0)⟩ and ρint′0 := ⟨(in, t′0)⟩, a relevant path connecting t0 and t′0,
denoted as ρt0t′0 := ⟨(t0, i0), ρi0in , (in, t′0)⟩, is obtained.

From the set of all buses reachable from both i and j, the intermediate bus λ that pro-
vides the shortest complete path, formed by combining ρiλ and ρλj , should be selected to
avoid non-simple paths, i.e., traversing a bus more than once, and thereby prevent loose upper
bounds. This implies that Phase II can be applied iteratively, utilizing previously established
connections to construct paths to new buses located deeper into network-expansion trees.
Example 7. Consider the bus pair [t0, in] in Figure 4b. Although Phase I is not directly
applicable — as no established path connects i0 ∈ NG(t0) to buses in NG(in) — it can be
applied to another bus in the tree, namely i0, to establish bounds θt0i0 = 1 and θi0in = 4.
Using λ = i0 as the intermediate bus and merging these paths, the angle difference bound
associated with the resulting complete path is determined as:

|θt0 − θin | ≤ |θt0 − θi0 |︸ ︷︷ ︸
≤θt0i0=1

+ |θi0 − θin |︸ ︷︷ ︸
≤θi0in=4

≤ 5 (15)

The path obtained between t0 and in can be merged with the path ρint′0 in the subsequent
iteration of Phase II, thereby building a connection between t0 to t′0.
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Algorithm 2 Longest Shortest-Path-Connection Algorithm (LSPC) - Phase II

1: Inputs: {i, j} ∈ B, γ, θij ▷ SPP or Phase I bounds (or the γ bound, if they fail)
2: Outputs: A tighter bound on the angle difference between buses i and j
3: for all λ ∈ B\{i, j} do
4: if θiλ < γ and θλj < γ then
5: θij ← min(θij , θiλ + θλj)
6: end if
7: end for

Proposition 3. Consider buses i and j that are disconnected in the initial network, with
at least one of them belonging to a network-expansion tree. If bounds θiλ and θλj can be
determined for at least one λ ∈ B\{i, j}, then θij can be obtained as:

|θi − θj | ≤ min
λ∈{1,...,|B|}\{i,j},(θiλ<γ ∧ θλj<γ)

{θiλ + θλj}. (16)

Proof. With the angle difference bounds θiλ and θλj obtained from LSPC Phase I, a complete
path between i and j can be formed by linking the paths connecting them to λ. Traversing
this full path creates a telescoping effect on the left side, with the sum of the lengths of the
sub-paths, θiλ + θλj , yielding an upper bound on the overall angle difference:

|θi − θj | ≤ |θi − θλ|︸ ︷︷ ︸
≤θiλ

+ |θλ − θj |︸ ︷︷ ︸
≤θλj

≤ θiλ + θλj . (17)

The presence of multiple intermediary buses λ results in multiple upper bounds. The smallest
is selected to yield the strongest valid upper bound from these options, yielding inequality
(16).

5 Conclusion

This paper introduces the Longest Shortest-Path-Connection (LSPC) algorithm to determine
tight upper bounds on voltage angle differences between disconnected bus pairs within trans-
mission expansion planning networks. LSPC is a polynomial-time algorithm that overcomes
the practical drawbacks of the longest path problem approach, which is the only existing
option for generating valid upper bounds for new-bus integration scenarios. The paper demon-
strates that path-based VIs initialized with LSPC dominate those derived from LPP or any
other larger initial bound. In future work, we will focus on evaluating the computational
benefits of the proposed inequalities to solve large-scale power systems expansion planning
problems.

Appendix A

We define ρij as a candidate path in G connecting buses i and j that includes at least one
expansion corridor. Let Ne(ρij) be the count of such expansion corridors along ρij . The com-
plete form of the path-based VIs (see (5)) for potential paths ρij is provided in the following
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proposition. We also demonstrate that when CR(ρij) exceeds the initial angle difference
bound θij , it may exclude integer-feasible solutions.
Proposition 4. The following expression, which provides the complete form of the path-based
inequalities, is valid only for potential paths ρij ∈ CGij with CR(ρij) < θij:

|θi − θj | ≤ CR (ρij) +
(
θij − CR (ρij)

)Ne (ρij)−
∑

(k,l)∈ρij

Iklykl

 . (18)

Here, the indicator function Ikl takes a value of 1 if (k, l) ∈ ρij ∩ Ω1 and 0 otherwise.

Proof. We will show that absent the condition CR(ρij) < θij , inequalities (18)
may eliminate integer-feasible solutions. For succinctness, define the variable ν :=(
Ne (ρij)−

∑
(k,l)∈ρij

Iklykl
)

and use it to reformulate inequality (18) as

|θi − θj | ≤ (1− ν) CR(ρij) + ν θij . (19)

When CR(ρij) > θij and ν > 1 (i.e., more than one unbuilt expansion corridor exists along
ρij), the right-hand side of (19) becomes smaller than the initial upper bound θij , despite
no path shorter than θij having been constructed. Consequently, inequality (19) becomes
invalid.

Appendix B

Let LSPCij represent the angle difference bound obtained using the LSPC algorithm for
buses i and j. Proposition 5 evaluates the LSPC-based bound against the LPP-based bound to
compare the tightness of the resulting path-based VIs associated with their respective bounds.
Proposition 5. Let ρij be a candidate path connecting buses i and j in G, defining the effec-
tive domain for their angle difference as |θi − θj | ≥ CR(ρij). The path-based VI associated
with ρij , constructed using LSPCij , dominates those derived with LPP as well as other
initial bounds greater than LSPCij .

Proof. Consider the path-based VIs derived using LSPCij and CR(ρij) as the initial bound
θij , respectively:

Ne∑
(k,l)∈ρij

Iklykl ≤ Ne(ρij) +
CR(ρij)− |θi − θj |
LSPCij − CR(ρij)

(20)

Ne∑
(k,l)∈ρij

Iklykl ≤ Ne(ρij) +
CR(ρij)− |θi − θj |
CR(ρij)− CR(ρij)

(21)

These inequalities can be represented as πx ≤ π1
0 and πx ≤ π2

0 . We need to demonstrate
that π1

0 , i.e., the right-hand side of (20), is smaller than π2
0 , i.e., the right-hand side of (21)

within the effective domain, namely, whenever |θi − θj | ≥ CR(ρij). From the definition of
the longest path, we have that LSPCij ≤ CR(ρij), with equality indicating the worst-case
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scenario in which all simple paths between i and j have identical lengths. Excluding the case
of equality, two distinct cases arise for the resulting path-based VIs to be comparable:

Case 1: CR(ρij) = LSPCij < CR(ρij). The path ρij offers no further improvement
to the LSPC-based bound, and a path-based VI can only be derived setting θij = CR(ρij).
The VI eliminates solutions from the relaxed problem’s space when |θi − θj | ≥ CR(ρij),
but this removal is redundant, as the VI |θi − θj | ≤ LSPCij = CR(ρij) dominates it.
Furthermore, the VI becomes ineffective when |θi− θj | ≤ CR(ρij), as it is dominated by the
trivial corridor enumeration VI, formulated as

∑Ne

(k,l)∈ρij
Iklykl ≤ Ne(ρij). This is because

Ne(ρij) ≤ Ne(ρij) +
CR(ρij)− |θi − θj |
CR(ρij)− CR(ρij)

(22)

(the numerator is guaranteed to be non-negative, and the denominator is positive in this case).
Therefore, (21) does not provide a tighter VI than the LSPC-based and the corridor enumer-
ation VI.

Case 2: CR(ρij) < LSPCij < CR(ρij). Both initial bounds LSPCij and CR(ρij), can
be used to derive the path-based VIs (20) and (21), respectively. When |θi − θj | ≤ CR(ρij),
both VIs are dominated by

∑
(k,l)∈ρij

Iklykl ≤ Ne(ρij), that is,

Ne(ρij) ≤ Ne(ρij) +
CR(ρij)− |θi − θj |
CR(ρij)− CR(ρij)

≤ Ne(ρij) +
CR(ρij)− |θi − θj |
LSPCij − CR(ρij)

, (23)

since the fractions have an identical numerator, and CR(ρij) − CR(ρij) > LSPCij −
CR(ρij) > 0. Conversely, when |θi − θj | ≥ CR(ρij), the LSPC-based VI dominates the
other two, as a larger fraction term is subtracted from Ne(ρij):

Ne(ρij) +
CR(ρij)− |θi − θj |
LSPCij − CR(ρij)

≤ Ne(ρij) +
CR(ρij)− |θi − θj |
CR(ρij)− CR(ρij)

≤ Ne(ρij). (24)

This demonstrates that when |θi − θj | ≥ CR(ρij), the LSPC-based VI provides a tighter
bound than that derived using CR(ρij) or any path longer than LSPCij .

Consequently, within the effective domain, the LPP-based VIs are either dominated by
LSPC-based angle difference VIs (case 1) or the path-based VIs with LSPC-based initial
bounds (case 2).
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