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It is well known that the performance of the classical Markowitz model for portfolio optimization is extremely

sensitive to estimation errors on the expected asset returns. Robust optimization mitigates this issue. We

focus on ellipsoidal uncertainty sets around a point estimate of the expected asset returns. An important

issue is the choice of the parameters that specify this ellipsoid, namely the point estimate and the estimation-

error matrix. We show that there exist diagonal estimation-error matrices that achieve an arbitrarily small

loss in the expected portfolio return as compared to the optimum. We empirically investigate the sample

size needed to compute the point estimate. We also conduct an empirical study of different estimation-error

matrices and give a heuristic to choose the size of the uncertainty set. The results of our experiments show

that robust portfolio models featuring a family of diagonal estimation-error matrices outperform the classical

Markowitz model.

Key words : robust optimization, portfolio optimization, optimization under uncertainty

1. Introduction

Consider a portfolio optimization problem where we allocate capital across n assets to maximize

the return on investment. If the return vector r∈Rn is known, the problem can be formulated as

maxx∈Rn
+
{r⊤x : 1⊤x= 1}, where x denotes the fraction of investment in each asset assuming long

positions only. In this case, the problem has a trivial optimal solution: invest only in the asset with

the largest return.

In practice, however, investors must consider that the assets are risky and that the return vector

r∼D belongs to some probability distribution. The classical mean-variance portfolio optimization

problem introduced by Markowitz (1952) addresses this uncertainty by maximizing the expected

return of the portfolio subject to a constraint on the risk modeled as the variance of the portfolio

return. Let µ∈Rn and Σ∈Rn×n denote the expectation vector and covariance matrix of the asset

returns, respectively. Then the Markowitz model is formulated as

max
x∈Rn

+

µ⊤x (1)
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subject to x⊤Σx≤ v (2)

1⊤x= 1. (3)

Despite the theoretical promise of this mean-variance model, practitioners face an overwhelming

challenge. The true expectation vector µ and covariance matrix Σ of the random asset returns are

unknown. Therefore, one can only optimize (1)-(3) with estimated parameters.

It has been observed that even small errors in estimating µ produce large changes in the returns of

portfolio holdings (see, for example, Best and Grauer 1991, Chopra and Ziemba 1993, Michaud and

Michaud 2008). The issue of obtaining reliable estimates for µ and Σ has been studied extensively,

leading to a vast literature. Several papers advocate the use of shrinkage estimators, such as the

James-Stein (James and Stein 1992), Jobson (Jobson 1979), Jorion (Jorion 1986), Frost-Savarino

(Frost and Savarino 1986), and Ledoit-Wolf (Ledoit and Wolf 2003, 2004a,b, 2020) estimators. The

James-Stein, Jobson, and Jorion procedures are estimators for the mean asset returns, the Frost-

Savarino procedure is a joint estimator of the means and covariances, and the Ledoit-Wolf procedure

is an estimator of the covariance. Shrinkage is often interpreted as a form of empirical Bayesian

procedure, which assumes a prior to establish an exogenous structure on potential estimates. We

refer the reader to Avramov and Zhou (2010) for a survey of Bayesian procedures used in portfolio

selection. An interesting approach to addressing estimation errors is the Black-Litterman model

(Black and Litterman 1990, 1992), which combines market information and investor views into

the mean-variance optimization problem. Other works have incorporated diversification across

market and estimation risk into the model (Jagannathan and Ma 2003, ter Horst et al. 2006,

Kan and Zhou 2007). ter Horst et al. (2006) also suggest portfolio weight adjustments. DeMiguel

et al. (2009), Brodie et al. (2009), Gotoh and Takeda (2011) additionally study the imposition

of norm constraints to regularize the optimal portfolio against large errors. There have also been

studies on the intersection of machine learning and portfolio optimization in the context of error

mitigation (Lim et al. 2012, Ban et al. 2018). Finally, we name robust portfolio optimization. Robust

optimization has been well-studied in the portfolio management literature Goldfarb and Iyengar

(2003), Tütüncü and Koenig (2004), Natarajan et al. (2008), Calafiore and Monastero (2012),

Bertsimas et al. (2018). This paper contributes to the stream of robust portfolio optimization

literature, focusing on errors on the estimates for µ.

We assume that the true expected return vector µ that parametrizes the real-world returns

distribution is unknown and belongs to an ellipsoidal uncertainty set given by

U := {µ∈Rn : (µ− µ̂)⊤Ξ−1(µ− µ̂)≤ κ2}

where µ̂ is an estimated expected return vector and Ξ is a positive definite matrix referred to

as the estimation-error matrix. The robust optimization problem hopes to find a portfolio that
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maximizes the expected returns of the investment in a worst-case scenario µ ∈ U . That is, the

robust optimization problem is formulated as

max
x∈X

min
µ∈U

{
µ⊤x

}
where X is the feasible region characterized by constraints (2) and (3) over the non-negative

orthant. Estimation errors in the mean µ have a greater impact on portfolio performance than

those in the covariance matrix Σ or other parameters (Jagannathan and Ma 2003, DeMiguel et al.

2009, Gotoh and Takeda 2011). This paper focuses on the estimation of µ and on how to deal with

estimation errors in µ. For the remainder of the paper, we assume that the true covariance matrix

Σ is known.

Following Ben-Tal and Nemirovski (1999), the robust optimization problem can be reformulated

as a quadratically constrained convex programming problem

max
x∈X

{
µ̂⊤x−κ

√
x⊤Ξx

}
. (4)

The term
√
x⊤Ξx can be interpreted as an estimation risk that must be considered in addition to

the market risk x⊤Σx (see Fabozzi et al. 2007, p. 371). While κ can be absorbed into Ξ in the

reformulation, we maintain a distinction between the two terms as κ may be interpreted as the

weight on the estimation risk relative to the expected return term in the objective.

In this paper we assume that we have access to historical data on asset returns over an extended

period. A fascinating question in data science is to estimate µ and Ξ from this data, especially

when one can expect some degree of obsolescence in the older data.

1.1. Contributions

A common critique of robust portfolio models is that they often lack guidance on how to define

the uncertainty set. Indeed, the literature on constructing U in portfolio management is scarce.

Stubbs and Vance (2005) provide a comprehensive overview of the practical impacts of computing

suitable estimation-error matrices. Additionally, there have been studies in which a scalar multiple

of Σ is used as the estimation-error matrix (Scherer 2007, Garlappi et al. 2007). Among these,

Scherer (2007) has a skeptical take on robust optimization and shows that such a choice for Ξ is

equivalent to some other well known shrinkage approaches.

The primary contribution of this paper is a practical framework for constructing the uncertainty

set U for the expected return vector µ. We focus on constructing U based on observed historical

asset returns. We conduct theoretical and empirical analyses on the choice of the estimation-error

matrix Ξ and the parameter κ, and provide empirically strong choices for the sample size of histori-

cal data used to estimate µ. We first give theoretical results on the class of diagonal estimation-error
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matrices for the choice of Ξ in Section 2. In particular, we show that one can achieve an arbitrarily

small loss in the expected portfolio return as compared to the optimal portfolio. We accomplish

this by showing that there exists a choice of parameters for the diagonal estimation-error matrix

Ξ such that the resulting solution to (4) is arbitrarily close to the optimal portfolio. This is an

existential result. In the following sections, we address constructive aspects of the uncertainty set.

In Section 3, we evaluate different sample sizes for constructing the estimate µ̂ of µ from historical

returns. Our results highlight the existence of a gap between the expected returns of the Markowitz

mean-variance portfolio, constructed using the estimated µ̂, and the optimal portfolio, constructed

using the true µ, across all sample sizes. We observe that, surprisingly, larger sample sizes do not

produce superior portfolios; rather, an “intermediate” sample size achieves the best results. We

explore choices for the estimation-error matrix Ξ through empirical experiments and present a

heuristic calibrate κ in Section 4. We perform computational experiments on simulated, synthetic

data drawn from distributions with parameters constructed from historical asset returns and devise

choices for Ξ and κ that lead to statistically significant improvements. Given that it is impossible

to obtain valid and statistically significant results on real-world returns, we validate our findings

on additional synthetic data with added temporal uncertainty in the asset returns. Our results

demonstrate that a robust portfolio model featuring a family of diagonal estimation-error matrices

and an appropriate choice for κ found using our proposed heuristic can significantly improve the

performance of the Markowitz model. Section 5 contains some concluding remarks.

2. Diagonal Estimation-Error Matrices

In this section, we analyze the class of diagonal estimation-error matrices. Such matrices were first

studied by Stubbs and Vance (2005), where the authors argue that a simple diagonal estimation-

error matrix is easier to generate than a dense estimation-error matrix. However, a natural question

arises: does there exist a trade-off in the performance of the robust portfolio if constructed with

the simpler diagonal estimation-error matrix? We address this question by presenting our main

theoretical result, which states that for any estimate µ̂ of µ, one can always choose a diagonal,

positive definite matrix Ξ and a positive parameter κ such that the resulting robust portfolio has

an expected return arbitrarily close to that of the optimal portfolio. This is an existential theorem.

Constructive aspects will be considered in later sections.

Given a feasible portfolio x̂ and an optimal portfolio x∗, we define the loss in expected returns

as

loss(x̂) =µ⊤x∗−µ⊤x̂,
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where µ is the true expected return. A solution x̂R to the robust portfolio problem

max
x

µ̂⊤x−κ
√
x⊤Ξx (5)

subject to x⊤Σx≤ v (6)

1⊤x= 1 (7)

x≥ 0 (8)

depends on the expected return estimate µ̂, the estimation-error matrix Ξ, and the parameter κ.

In this case, assuming feasibility, we write

loss(µ̂,Ξ, κ) =µ⊤x∗−µ⊤x̂R.

Theorem 1. Given ϵ > 0, for every µ̂ there exists a diagonal, positive definite matrix Ξ and

κ> 0 such that loss(µ̂,Ξ, κ)< ϵ.

Proof. Let X := {x ∈ Rn
+ : 2 x⊤Σx≤ v, 1⊤x= 1}, let I0 := {i ∈ {1,2, . . . , n} : xi = 0 for all x ∈

X} and I+ := {1,2, . . . , n}\ I0. Note that I0 may be nonempty when v is the minimum variance of

a portfolio x ∈Rn
+ such that 1⊤x= 1. Pick x̃ ∈ rint(X ). Note that x̃i = 0 for i ∈ I0 and x̃i > 0 for

i∈ I+. Let x̃∗ = (1− ϵ)x∗ + ϵx̃ for ϵ∈ (0,1). Then x̃∗ ∈ rint(X ).

Observe that x̃∗→ x∗ as ϵ→ 0. This implies µ⊤x̃∗→ µ⊤x∗ as ϵ→ 0. Therefore, the loss corre-

sponding to x̃∗ is arbitrarily small. We now show that there exists a choice of Ξ and κ such that

the solution to the robust optimization problem is arbitrarily close to x̃∗.

First, suppose µ̂= 0. By choosing κ> 0, ξi =
1
x̃∗i

for i∈ I+ and ξi = 1 for i∈ I0, it is easy to check

using the Kuhn-Tucker conditions that x̃∗ solves the problem maxx∈X −κ
√
x⊤Ξx≡minx∈X ′ x⊤Ξx,

where X ′ := {x∈Rn
+ : x⊤Σx≤ v,

∑
i∈I+ xi = 1}.

For any given µ̂, again let ξi =
1
x̃∗i

for i ∈ I+ and ξi = 1 for i ∈ I0. Consider the problem

maxx∈X µ̂⊤x− κ
√
x⊤Ξx≡minx∈X

√
x⊤Ξx− ηµ̂⊤x=: g(η) with an optimal solution x∗(η) where

η = 1
κ
. Since the objective function is strictly convex and X is a convex set, x∗(η) is unique.

Define M := maxx∈X µ̂⊤x. The existence of the maximum follows from the boundedness of X .

Let h(η) := minx∈X
√
x⊤Ξx− ηM =

√
x̃∗⊤Ξx̃∗ − ηM . Clearly, h(η) ≤ g(η) ≤

√
x̃∗⊤Ξx̃∗ − ηµ̂⊤x̃∗.

Taking the limit as η→ 0, we get
√
x̃∗⊤Ξx̃∗ ≤ limη→0 g(η) ≤

√
x̃∗⊤Ξx̃∗. Therefore limη→0 g(η) =

√
x̃∗⊤Ξx̃∗ = g(0). Thus, the solution x∗(η) to the robust optimization problem is arbitrarily close

to x̃∗. □

We now give an example to show that it is not always possible to choose a diagonal positive

definite matrix Ξ and a κ such that loss(µ̂,Ξ, κ) = 0.
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Example 1. Consider a two asset portfolio optimization problem. Let σ11 < v, σ22 > v, and

µ1 > µ2. Suppose µ̂1 < µ̂2. Then there does not exist a diagonal positive definite matrix Ξ and a

parameter κ such that loss(µ̂,Ξ, κ) = 0.

It is easy to see that the optimal portfolio to the problem (1)-(3) is x∗ = (x1 = 1, x2 = 0) and

that it is unique. Moreover, we observe that both constraint (6) and the constraint x1 ≥ 0 are not

tight for x∗. Then the Lagrangian dual of the robust portfolio problem can be written as

min
λ∈R, τ∈R+

max
x1,x2

µ̂1x1 + µ̂2x2−κ
√
x2
1ξ1 +x2

2ξ2 +λ(1− (x1 +x2))+ τx2

with the optimality conditions

x1 +x2 = 1 (9)

µ̂1−
κx1ξ1√

x2
1ξ1 +x2

2ξ2
−λ= 0 (10)

µ̂2−
κx2ξ2√

x2
1ξ1 +x2

2ξ2
−λ+ τ = 0. (11)

Since κ≥ 0, Ξ≻ 0 and τ ≥ 0, the optimality conditions imply that µ̂1 = λ+ κ
√
ξ1 ≥ λ and µ̂2 =

λ− τ ≤ λ for x∗ for any choice of ξ1, ξ2. However, this is a contradiction to since µ̂1 < µ̂2.

Despite it not being possible to achieve zero loss generally, our next result states a sufficient

condition for obtaining zero loss.

Theorem 2. If all the assets are active in the true optimal solution, then for every µ̂ there

exists a diagonal, positive definite matrix Ξ and κ> 0 such that loss(µ̂,Ξ, κ) = 0.

Proof. The result follows by observing x∗ ∈ rint(X ) and by using the fact that x∗ solves the

problem maxx∈X −κ
√
x⊤Ξx≡minx∈X x⊤Ξx when ξ= 1

x∗ in the proof of Theorem 1. □

3. Estimating the Expected Return Vector Using Observed Historical
Asset Returns

In this section, we address the estimation of the vector µ of expected asset returns when we

have access to historical data. If the historical returns are independent and identically distributed

(i.i.d.) random variables, then certainly, by the law of large numbers, we obtain the best estimate

for µ by using all of the data. However, in reality, the historical returns may become obsolete

over time. Therefore it may not be appropriate to assume time independence over long periods.

Our focus is on determining an appropriate sample size for estimating µ from historical returns.

Suppose r1, r2, . . . , rH are the vectors of historical asset returns observed in the real world in some

time horizon 1,2, . . . ,H, possibly over several decades. It is natural to estimate the expected asset

returns as the average of the N most recent observations. But then we should ask: what choice
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of N gives the best estimates for µ? To this end, we investigate the performance of portfolios

constructed using the Markovitz model based on estimates of µ obtained using different sample

sizes. To be able to repeat the experiments and obtain statistically significant results, we generate

a set of synthetic, simulated asset returns.

We generate simulated returns r̂t ∼N (µt,Σ), following a multivariate normal distribution with

a “true” expected return vector µt and covariance matrix Σ. That is, the simulated returns r̂t

are independent random variables, drawn from different distributions for each t = 1, . . . ,H. We

refer the reader to Appendix A for our construction of the parameters µt and Σ. To summarize,

µt is computed from the real data ri by averaging over T consecutive time periods, centered at

t. Asset returns r̂i are then generated using the distribution N (µi,Σ). A Markowitz portfolio

x̂t is constructed at time t using the estimate µ̂t = 1
N

∑t

i=t−N+1 r̂
i. This portfolio is then held

until period t+T and evaluated using µt+T , which is derived from future returns not used in the

portfolio’s construction at time t. Clearly, if the data ri were independent over time, the vector

µt+T would be independent of the values µi for i≤ t. Therefore, estimates µ̂t that are averaged

over larger N would provide better estimates of µt+T and therefore better Markowitz portfolios

x̂t. Our experiments below show that this is not the case.

In addition to the portfolio x̂t :=maxx∈X µ̂t⊤x, we also construct the optimal portfolio at time t,

namely xt∗ :=maxx∈X µt⊤x. We compute its true expected return µt+T⊤
xt∗, assuming we hold it for

the next T periods, and, for each choice of N , we compute the estimated expected return µ̂t+T⊤
x̂t of

the Markowitz portfolio x̂t, and its actual expected return µt+T⊤
x̂t, all averaged over the simulated

runs and over the time periods t. We evaluate the average performance of these portfolios over

several simulated runs using efficient frontiers that plot the expected returns against different risk

thresholds v. We achieve a standard error less than 0.05 for each reported value. A comprehensive

overview of our experimental setup can be found in Appendix A.

Figures 1 and 2 present the experimental results for an 11-asset dataset with monthly returns and

a 12-asset dataset with daily returns. The average expected returns for the equal-weight portfolios

were 1.21% per month and 0.049% per day, respectively, while the minimum variance portfolios

yielded 1.23% and 0.034% on average, respectively. The corresponding minimum variances were

11.46 and 0.84. Figure 1 plots efficient frontiers for Markowitz portfolios obtained for different

choices of N in the estimation of µ̂t. Note that for any N > 1, the Markowitz optimal portfolios

outperform the equal-weight portfolio when the risk threshold is v ≥ 21.25. This trend is also

observed in Figure 2 for v ≥ 1.75. Both figures reveal a significant gap between true and actual

expected returns for all values of N . This gap quantifies the value of information: Knowing µ

improves the expected portfolio return from around 1.3% per month to about 2% per month for a

risk level v= 20. Interestingly, the actual expected returns initially improve with increasing N , but
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Figure 1 Efficient frontiers of portfolios constructed on the 11-asset GICS monthly returns dataset.
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Figure 2 Efficient frontiers of portfolios constructed on the 12-asset Fama-French daily returns dataset.

then deteriorate for larger N . The best results are achieved by choosing N = 24 months (Figure

1) and N = 50 days (Figure 2). Large values of N produce poor portfolios. In fact, Figure 2 shows

that portfolios constructed with N = 1 can outperform portfolios generated with N = 250 and

N = 300. We repeated the experiments on other data sets summarized in Appendix C. The results

are similar. The gap between true and actual expected portfolio returns is very significant. The

quality of the Markowitz portfolios improves as N increases up to some value N∗, and then it

deteriorates as N increases further. For monthly data, averaging over 5 data sets and 3 risk levels,

we find N∗ ≈ 28 albeit with substantial variation; for daily data, averaging over 4 data sets and 3

risk levels, N∗ ≈ 100 again with much variation. In Section 4 we use N∗ = 24 for monthly datasets
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and N∗ = 100 for daily datasets. These values for N∗ are not intended to be prescriptive across all

datasets, but their existence demonstrates that one cannot mitigate the effects of estimation errors

on µ by using a large N . This lends further support to the usefulness of a robust optimization

framework.

While there exist several other methods for estimating the expected return vector, Jagannathan

and Ma (2003), DeMiguel et al. (2009) show that estimation errors in the sample mean persist

regardless of the estimation technique used. In our study, we limit our analyses to estimators

obtained with observed historical asset returns.

The significant gap between the true and actual frontiers observed in Figures 1 and 2 highlights

the potential for better portfolios. We show in the next section that robust optimization can indeed

deliver superior portfolios.

4. Empirical Study of the Estimation-Error Matrix

In this section, we investigate choices for the estimation-error matrix Ξ in (4) and the associated

parameter κ. While robust optimization techniques have been previously employed in the context of

portfolio management, there is little guidance on constructing Ξ. Following our theoretical results

from Section 2, we explore the class of diagonal estimation-error matrices. Such a choice for Ξ

requires practitioners to only calibrate n+ 1 parameters. We conduct experiments on simulated

streams of i.i.d. returns.

Following the works of Scherer (2007) and Garlappi et al. (2007), we are initially motivated to

examine candidate choices for a diagonal Ξ that involve the covariance matrix Σ. Consider the

family of matrices Ξ(k) = diag
(

1

σk
i

)
, where k ∈R. We consider the following choices for Ξ(k).

1. Ξ(0) = I: The identity matrix may be appealing to decision-makers because it requires cali-

brating only one parameter, κ. A large value of κ corresponds to choosing a solution close to

the equally weighted portfolio. As κ decreases more emphasis is put on the estimates µ̂. This

trade off makes the tuning of the parameter κ fairly intuitive.

2. Ξ(−2) = diag(σ2
i ): This choice of Ξ appeals to a fundamental intuition: assets with a higher

variance tend to have a poorer estimate of their expected returns.

3. Ξ(2) = diag
(

1
σ2
i

)
: This choice of Ξ incorporates the notion of a “risk premium”. This approach

is particularly relevant when investors believe in the Capital Asset Pricing Model (CAPM),

suggesting that assets with a greater variance in their return also have a greater expected

return.

Selecting an appropriate value for κ is critical. Given the objective function µ̂⊤x− κ
√
x⊤Ξx

in (4), we may consider κ to be the weight imposed on the penalty term
√
x⊤Ξx, relative to the

expected return term µ̂⊤x. Therefore, we design a heuristic to calibrate κ such that a target ratio
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r between these two terms µ̂⊤x√
x⊤Ξx

is achieved. We present the heuristic as Algorithm 1 in Appendix

B. We evaluate three potential choices for the target r, namely 2,3,4.

Our experimental framework is based on real-world stocks in the S&P 500 index and the Fama-

French industry portfolio data library. We assume that the returns follow a multivariate normal

distribution with mean µ and variance Σ computed as follows. Using the observed historical asset

returns ri for i= 1, . . . ,H, we set µ= 1
H

∑H

t=1 r
i, and Σ to be the covariance matrix of the returns.

The estimated vector µ̂ is then the sample average of N random samples generated from the

distribution N (µ,Σ). Based on the results previously presented in Section 3, we let N = 24 for our

data on monthly returns, and N = 100 for our data on daily returns. Our goal is to investigate the

various choices for Ξ and κ mentioned above. We construct portfolios over four evenly-spaced risk

thresholds v for each dataset, denoted by Very Low, Low, Medium, and High.

We present the results of the experiments as the percentage gap closed by the robust portfo-

lio compared to the Markowitz portfolio. More specifically, we report (R̄ − M̄)/(T − M̄) where

R̄ denotes the expected returns of the robust portfolio, M̄ denotes the expected returns of the

Markowitz portfolio, and T denotes the true optimal expected return obtained by solving the prob-

lem in (1)-(3). The values for R̄ and M̄ are averages of 10000 simulated runs. Consequently, the

standard error of each reported percentage gap closed is less than 0.1. The optimal target ratio r

was chosen by conducting a grid search for each Ξ(k), with the returns for the optimal parame-

ters presented. We further consolidate the results by presenting the average percentage gap closed

across all datasets at four different risk thresholds in Table 1. The optimal target ratio was found

to be r = 4 for the three rows corresponding to monthly data. For daily data, the ratio was r = 4

for Ξ(−2), and r= 2 for Ξ(0) and Ξ(2).

Monthly

Risk Threshold, v Very Low Low Medium High

Gap Closed (%) with Ξ(−2) 0.5 -1.7 -4.6 -7.1
Gap Closed (%) with Ξ(0) 2.8 2.7 1.0 -1.0
Gap Closed (%) with Ξ(2) 3.5 5.2 4.9 3.6

Daily

Risk Threshold, v Very Low Low Medium High

Gap Closed (%) with Ξ(−2) 6.4 3.1 -0.1 -1.0
Gap Closed (%) with Ξ(0) 10.8 6.7 2.5 1.0
Gap Closed (%) with Ξ(2) 11.7 8.6 5.6 5.2

Table 1 Average percentage gap closed by the robust portfolio compared to the Markowitz portfolio for

different choices of estimation-error matrices: Ξ(−2) = diag(σ2
i ), Ξ(0) = I, and Ξ(2) = diag

(
1
σ2
i

)
. The percentages

are averages across 5 datasets with varying number of assets.

The largest percentage gaps closed for each risk threshold are highlighted in Table 1. Our sim-

ulations demonstrate that significant gains can be achieved over the Markowitz model with an
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appropriately chosen estimation-error matrix and parameter κ. Notably, even the simple choice of

the identity matrix, Ξ(0), yields portfolios that outperform the Markowitz portfolio for Very Low,

Low, and Medium risk levels. On the other hand, we find that Ξ(−2) is not a strong choice for

the estimation-error matrix, suggesting that errors in estimating the expected returns cannot be

corrected based directly on the variance of the returns. Interestingly, robust portfolios constructed

using Ξ(2) consistently outperform the Markowitz portfolio across all risk thresholds in datasets

with both monthly and daily returns, closing the largest gaps.

Overall, for the best choices of Ξ and κ, the gap between the expected returns of the Markowitz

portfolios and the optimal portfolios is reduced by an average of 6.1% across all datasets and risk

thresholds in our experiments. Based on these preliminary results, we propose that the family of

diagonal estimation-error matrices Ξ(k) = diag
(

1

σk
i

)
for positive k ∈ R+ yields robust portfolios

with improved expected returns over Markowitz portfolios. The intuition is that, for a desired level

of portfolio risk in the constraint, the objective should penalize assets with low volatility, which

tend to have lower returns, and favor meeting the risk constraint through diversification using

assets with greater volatility, which tend to have better returns.

We conclude the section by validating our choice through additional experiments by incorporating

a temporal component to the data. We utilize the same experimental setup as in Section 3 and

described in Appendix A. We consider k = 2,4,10 for the estimation-error matrices Ξ(k). We let

N = 24 for monthly returns and N = 100 for our daily returns, and consider an array of risk

thresholds v for each dataset, with κ calibrated with the optimal target ratios found with a grid

search. We present our results in Table 2 as the percentage gap closed by the robust portfolio

compared to the Markowitz portfolio for each dataset, with a standard error less than 0.05 for each

reported value.

Our findings once again show that robust portfolio with the appropriate estimation-error matrix

can improve upon the Markowitz portfolio. In particular, the choice of Ξ(4) results in robust

portfolios that consistently outperform the Markowitz portfolios across all datasets on average

for all risk thresholds, with Ξ(10) portfolios covering the largest gaps. For the best choices of Ξ

and κ, we observe that the gap between the expected returns of the Markowitz portfolios and

the optimal portfolios is closed by an average of 8% across all datasets and risk thresholds in

our experiments. Indeed, these experiments suggests that our recommendations for Ξ, and our

heuristic for choosing κ, can be extended and applied to settings where the historical returns are

not identically distributed random variables.

5. Conclusion

In this paper, we offer a framework for constructing an ellipsoidal uncertainty set of the expected

asset returns; this is needed in robust portfolio optimization. Our work addresses a gap in the
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Dataset Units Number
of Sectors

GICS Monthly 11

Risk Threshold, v Very Low Low Medium High

Gap Closed (%) with Ξ(2) 4.1 3.6 3.5 2.4
Gap Closed (%) with Ξ(4) 2.1 2.4 3.7 3.7
Gap Closed (%) with Ξ(10) -2.1 -2.4 2.7 6.3

Fama-French

Monthly

5

Gap Closed (%) with Ξ(2) 0.7 0.3 0.4 0.9
Gap Closed (%) with Ξ(4) 1.9 1.8 1.8 2.1
Gap Closed (%) with Ξ(10) 1.7 2.1 2.4 3.8

10

Gap Closed (%) with Ξ(2) 4.0 5.8 5.9 5.3
Gap Closed (%) with Ξ(4) 3.7 5.7 6.3 6.2
Gap Closed (%) with Ξ(10) 0.9 5.1 9.9 11.1

12

Gap Closed (%) with Ξ(2) 3.3 4.2 3.8 3.0
Gap Closed (%) with Ξ(4) 3.9 5.8 6.2 5.8
Gap Closed (%) with Ξ(10) 1.6 6.3 10.2 10.7

17

Gap Closed (%) with Ξ(2) 3.6 2.8 2.3 1.8
Gap Closed (%) with Ξ(4) 4.2 4.4 3.7 3.1
Gap Closed (%) with Ξ(10) 4.5 5.0 7.7 6.5

Daily

5

Gap Closed (%) with Ξ(2) 5.0 6.5 6.4 5.9
Gap Closed (%) with Ξ(4) 6.4 8.5 8.7 7.9
Gap Closed (%) with Ξ(10) 6.7 10.0 11.9 12.7

10

Gap Closed (%) with Ξ(2) 4.9 3.3 2.1 1.8
Gap Closed (%) with Ξ(4) 10.3 8.9 7.2 6.7
Gap Closed (%) with Ξ(10) 12.7 14.6 14.3 13.6

12

Gap Closed (%) with Ξ(2) 7.3 6.2 4.5 3.9
Gap Closed (%) with Ξ(4) 7.1 6.0 4.9 4.7
Gap Closed (%) with Ξ(10) 9.6 11.5 12.2 12.2

17

Gap Closed (%) with Ξ(2) 3.4 5.2 5.0 4.2
Gap Closed (%) with Ξ(4) 3.2 6.2 6.9 6.7
Gap Closed (%) with Ξ(10) 1.4 5.7 9.8 11.5

Table 2 Percentage gap closed by the robust portfolio with estimation-error matrices Ξ(2) = diag
(

1
σ2
i

)
,

Ξ(4) = diag
(

1
σ4
i

)
, and Ξ(10) = diag

(
1

σ10
i

)
compared to the Markowitz portfolio, with temporal uncertainty in the

data. Columns correspond to the portfolios constructed along various risk thresholds.

literature by providing both theoretical and empirical insights into the selection of the estimation-

error matrix Ξ and the weight κ assigned to the estimation risk. These choices are critical to the

performance of robust portfolio optimization models. We prove an existential theorem showing

that diagonal estimation-error matrices can yield robust portfolios with arbitrarily small loss in

expected return compared to an optimum portfolio. Additionally, we challenge the conventional

assumption that larger sample sizes from historical data invariably reduce estimation error, demon-

strating through empirical analysis that this is not always the case. Our empirical findings, based

on synthetic data reflecting historical asset returns, support the practical usefulness of robust port-

folio model as an alternative to the traditional Markowitz model. We find that the penalty term in

the objective function can help construct better portfolios by discouraging assets with low volatility

that also tend to have low returns. Instead, it encourages diversification by incentivizing assets with

greater volatility and expected returns. Thus the ellipsoid used in the robust formulation does more

than just model uncertainty. Our work paves the way for further investigations in constructing

estimation-error matrices for robust portfolio optimization, with implications for both academic

research and practical financial decision-making.
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Appendix A: Detailed Experimental Setup

We conduct our experiments using simulated data modeled on stocks in the U.S. equity market. We use data

on the historical returns of stocks in the S&P 500 index as consolidated by Kocuk and Cornuéjols (2020),

classified into 11 sectors according to the Global Industrial Classification Standard (GICS). Table 3 gives the

market-weighted averages and variances of their monthly returns over a 30-year period between January 1987

and December 2016. Additionally, we consider the 5-, 10-, 12-, and 17-sector datasets from the Fama-French

data library. These datasets include monthly returns, for which we consider a 30-year period between March

1994 and February 2024, and daily returns, for which we consider a 10-year period between March 2014 and

February 2024. The sectors are outlined in Tables 4-7 along with the market-weighted average and variance

of their returns.

Observations of the financial market suggest that assumptions about structural stationarity are weak.

Systemic changes to the market in recent history, such as the 1997 Asian financial crisis, the collapse of the

dot-com bubble, the 2008 financial crisis, and the 2020 COVID-19 pandemic substantiate this claim. These

events significantly impacted key industries across numerous sectors. Therefore, it seems more reasonable

to consider multiple distributions that evolves over time rather than assuming one static distribution that

describes the asset returns as a whole. Consequently, it is unlikely that the asset returns are i.i.d. random

variables. Instead, we model the asset returns for each time period as random variables drawn from possibly

different multivariate normal distributions.

A fundamental challenge is extracting the true expected returns that parameterize the distributions the

real-world observed historical data are drawn from. To address this concern and to obtain statistically signif-

icant results, we use simulated data in our experiments. We assume that the returns are normally distributed

over time with varying mean returns µt and a fixed variance Σ across all time periods, Normal(µt,Σ).

Consider planning horizon for t= 1, . . . ,H. We compute the true expected returns as µt = 1
T

∑t+T
2

i=t−T
2
+1

ri

for t= T
2
, . . . ,H− T

2
, where ri is the realization of returns observed in the ith time unit in the data and T is a

prescribed parameter. We chose T = 30 and T = 260 for our experiments on the monthly and daily datasets,

respectively. The parameter T was tuned in accordance with systemic changes in the market observed in

the data. We let the true covariance matrix Σ be the covariance of the asset returns in the stock market

data. We then sample r̂t ∼N (µt,Σ) to simulate additional streams of “observed” returns, and compute the

estimated expected return vectors as µ̂t = 1
N

∑t
i=t−N+1 r̂

t for t= T
2
+N − 1, . . . ,H − T

2
− T , where N is a

chosen parameter for the sample size of historical time-units to consider for the estimation. We simulated

50 runs for experiments on monthly returns where H = 360, and 10 runs for experiments on daily returns

where H = 2600.

We define the optimal portfolios as xt∗ :=maxx∈X µt⊤x for each t= T
2
, . . . ,H − T

2
. That is, for each time

period, we find the portfolio that maximizes the true expected return µt. Similarly, we define the estimated
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Markowitz portfolios as x̂t := maxx∈X µ̂t⊤x for each t = T
2
+ N − 1, . . . ,H − T

2
− T . We utilize efficient

frontiers to quantify the performance of the portfolios. An efficient frontier plots the maximum expected

return of a portfolio of assets as a function of the risk thresholds (Markowitz 1952). The true frontier is

computed using the true expected returns of the assets and the optimal portfolios. The estimated frontier is

computed by using the estimated expected returns and the estimated Markowitz portfolios, which describes

the expected return of the Markowitz portfolios should the estimated parameters be realized. The actual

frontier plots the expected return one actually observes on the true expected returns when one invests in the

portfolios constructed with the estimated expected returns. That is, for each choice of N , we compute the

true expected return µt+T⊤xt∗, the estimated expected return µ̂t⊤ x̂t, and the actual expected return µt+T⊤
x̂t,

all averaged over the simulated runs and over the time periods t. We evaluate the portfolios at time t+T to

negate any sampling bias in our set up.

All experiments were run on an Apple M3 processor with 8GB of memory, running Python version 3.12.4

and Gurobi Optimizer version 11.0.1 (Gurobi Optimization 2024).

Appendix B: A Heuristic to Calibrate κ

Algorithm 1 Heuristic to calibrate κ

Input: Estimates of the expected returns µ̂ ∈ Rn, a diagonal positive definite estimation-error

matrix Ξ∈Rn×n, a lower bound l ∈R and an upper bound u∈R for the ratio µ̂⊤x

κ

√
x⊤Ξx

.

Output: κ∈R.

1: Initialize x̄=
(

1
n
, . . . , 1

n

)
, ¯̄x=

( 1
ξi∑n

i=1
1
ξi

, . . . ,
1
ξi∑n

i=1
1
ξi

)
, r= u−l

2
.

2: Compute µ̂x̄,
√
¯̄x⊤Ξ¯̄x.

3: Choose κ= µ̂x̄

r

√
¯̄x⊤Ξ¯̄x

.

4: while Stopping condition not met do

5: Solve for xR the solution to (4).

6: if l≤ µ̂xR

κ

√
xR

⊤
ΞxR
≤ u then

7: return κ.

8: else

9: κ← µ̂xR

r

√
xR

⊤
ΞxR

.

10: end if

11: end while

Algorithm 1 first initializes the portfolios x̄ and ¯̄x. Here, x̄ is the equal-weight portfolio, ¯̄x is a portfolio

that is normalized relative to the inverse of ξi across all assets. The heuristic also initializes the target r for

the ratio µ̂x̄√
¯̄x⊤Ξ¯̄x

to the middle point in a target range [l, u]. It then chooses the corresponding κ and solves

for the associated robust portfolio xR. The heuristic returns κ if the ratio µ̂xR

κ

√
xR⊤ΞxR

falls in the target range

[l, u]. If not, κ is re-calibrated and the ratio is checked again. We evaluate three potential choices for the

range [l, u], namely [1,3], [2,4], [3,5], conducting a grid search to determine the optimal values.
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Appendix C: Data Summary

Energy Consumer
Discre-
tionary

Consumer
Staples

Real
Estate

Industrials Financials Telecomm-
-unications
Services

Information
Technology

Materials Health
Care

Utilities

µ 1.18 1.51 1.39 1.15 1.29 1.33 1.03 1.73 1.39 1.42 1.01
σ2 39.5 28.3 17.2 52.5 26.5 39.5 30.0 50.5 32.4 21.6 18.3

Table 3 Sample averages and variances of historical returns of the GICS 11-sector dataset.

Cnsmr Manuf HiTec Hlth Other

Daily
µ 0.0453 0.0457 0.0553 0.0500 0.0449
σ2 1.11 1.40 2.21 1.31 1.97

Monthly
µ 0.939 0.907 1.12 1.03 0.876
σ2 17.7 20.5 38.6 18.3 28.1

Table 4 Sample averages and variances of historical returns of the Fama-French 5-sector dataset.

NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

Daily
µ 0.0410 0.0480 0.0494 0.0516 0.0630 0.0316 0.0489 0.0500 0.0384 0.0449
σ2 0.885 3.17 1.45 2.83 2.69 1.63 1.42 1.31 1.23 1.97

Monthly
µ 0.887 1.01 1.02 1.04 1.29 0.646 1.02 1.05 0.813 0.900
σ2 14.1 75.2 25.0 46.2 48.3 27.4 21.6 18.1 17.3 28.1

Table 5 Sample averages and variances of historical returns of the Fama-French 10-sector dataset.

NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money Other

Daily
µ 0.0410 0.0480 0.0527 0.0516 0.0433 0.0632 0.0316 0.0384 0.0489 0.0500 0.0493 0.0364
σ2 0.885 3.17 1.75 2.83 1.25 2.70 1.63 1.23 1.42 1.31 2.45 1.59

Monthly
µ 0.887 1.01 1.09 1.04 0.877 1.29 0.646 0.813 1.02 1.05 0.969 0.739
σ2 14.1 75.2 31.6 46.2 18.5 48.4 27.4 17.3 21.6 18.1 32.5 25.8

Table 6 Sample averages and variances of historical returns of the Fama-French 12-sector dataset.

Food Mines Oil Clths Durbl Chems Cnsum Cnstr Steel FabPr Machn Cars Trans Utils Rtail Finan Other

Daily
µ 0.0405 0.0534 0.0507 0.0419 0.0306 0.0445 0.0504 0.0574 0.0473 0.0504 0.0638 0.0528 0.0500 0.0384 0.0492 0.0493 0.0453
σ2 0.951 3.79 2.83 2.20 1.83 2.21 1.13 2.24 4.27 1.75 2.84 2.94 1.66 1.23 1.53 2.46 1.57

Monthly
µ 0.880 1.01 1.03 0.897 0.633 0.874 1.08 1.19 0.959 1.05 1.31 1.08 1.01 0.813 1.03 0.969 0.935
σ2 14.8 67.5 46.8 39.6 37.2 36.7 15.8 37.2 83.7 32.8 52.3 65.2 29.6 17.3 23.3 32.5 25.6

Table 7 Sample averages and variances of historical returns of the Fama-French 17-sector dataset.
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