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Abstract

We study multi-follower bilevel optimization problems with binary linking variables where
the second level consists of many independent integer-constrained subproblems. This problem
class not only generalizes many classical interdiction problems but also arises naturally in
many network design problems where the second-level subproblems involve complex routing
decisions of the actors involved. We propose a novel branch-and-cut decomposition method
that starts by solving the first level and then iteratively generates second-level feasibility
and optimality cuts that are obtained by solving a slightly adjusted second-level problem.
Compared to many other existing solution methods, we do not rely on solving the High Point
Relaxation of the bilevel problem but fully project out the second level, resulting in significant
computational advantages when the second-level problem is very large or possesses a weak
LP relaxation. Also, our approach can be fully automated within a MIP solver, making it
very easy to apply for those who do not want to design problem-tailored algorithms for their
bilevel problem. Computational results for a bilevel network design problem demonstrate
that our approach efficiently solves instances with hundreds of subproblems in a few minutes,
significantly outperforming the Benders-like decomposition from the literature on challenging
instances.

1 Introduction
Bilevel optimization is a highly popular tool to model hierarchical decision-making processes. It
involves actors acting on two levels, referred to as the first and second level, acting within a
hierarchical setting where each actor behaves according to its individual objective function. The
first level makes the initial decisions, and the second level reacts by adjusting its strategy, which
then influences the first-level pay-off. The objective is to find the first-level strategy that maximizes
pay-off.
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In this work, we focus on (optimistic) bilevel problems with binary linking variables. Within
this setting, the linking variables are associated with resources, e.g., arcs within a network, shared
by both levels, where the first level decides which of these resources are made available to the
second level. This class of bilevel problems captures many existing optimization problems including
(generalized) discrete interdiction games (Caprara et al., 2016; Della Croce & Scatamacchia, 2020;
Fischetti et al., 2018; Israeli & Wood, 2002; Mattia, 2024), blocking problems (Bazgan et al.,
2012; Mahdavi Pajouh, 2019), variants of the facility location and prize-collecting problems (cf.
Fischetti et al., 2019), and various network design problems with routing decisions (Amaldi et al.,
2011; Arslan et al., 2018; Cerulli et al., 2024; Fontaine & Minner, 2014, 2016; Gao et al., 2005;
Kara & Verter, 2004; Marković et al., 2014, 2017).

If the second level is an LP, the bilevel optimization problem can be solved by a state-of-the-
art MIP solver by applying the strong duality theorem to reformulate the bilevel problem into a
single-level formulation. Because the resulting single-level MIP combines the first level with both
the primal and dual formulations of the second level into a single model, the obtained MIP can be
challenging to solve. Recently, Byeon and Van Hentenryck (2022) showed that the reformulated
MIP can be efficiently addressed by Benders decomposition. The resulting Benders subproblem
can be decomposed into a sequence of MIPs where one first solves the second level problem with
a penalty term and afterwards the first level problem conditioned to the second level reaction.
This approach significantly reduces the size of the individual MIPs while also preserving most of
the structure of the first and second level in the intermediate solution steps, overall resulting in a
highly effective, easy to understand and easy to implement approach.

If the second level involves integer variables, it generally becomes a non-convex optimization
problem, and the strong duality reformulation can no longer be employed. While there exist some
computational methods and general purpose solvers that can tackle the MIP-MIP bilevel structure
(Avraamidou & Pistikopoulos, 2019; Fischetti et al., 2017; Kleniati & Adjiman, 2015; Poirion et al.,
2020; Tahernejad et al., 2020; Taninmis & Sinnl, 2022; Tavaslıoğlu et al., 2019; Wang & Xu, 2017;
Xu & Wang, 2014), they are designed for those with special structures, are hard to implement, or
expect an MIP representation of the second level, making them hard to apply to instances where
the second-level problem is hard to formulate as an MIP or possesses a weak LP relaxation.

An alternative approach to tackle interdiction and blocking games is the use of Benders-like
cuts (cf. Israeli, 1999; Kleinert et al., 2021). These cuts can be directly implemented as a cutting
plane procedure within modern MIP solvers, making them particularly popular among application-
oriented users who wish to apply bilevel optimization in practice without designing tailored algo-
rithms for their specific problems. One advantage of this Benders-like decomposition is that the
separation problem involves solving the second-level problem, which is often well understood. Ad-
ditionally, they can be effectively applied within a multi-follower bilevel setting, where the second
level decomposes into multiple independent subproblems. In such cases, Benders-like cuts can be
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generated independently for each subproblem, leading to an overall stronger formulation. Despite
these benefits, Benders-like cuts are still primarily applied to specific problem classes (Caprara et
al., 2016; Della Croce & Scatamacchia, 2020; Fischetti et al., 2019), e.g., satisfying the downwards
monotonicity property, as they require a good understanding of the underlying problem structure
to derive high-quality big M values needed to make them computationally viable.

Against this background, we extend the Benders-like decomposition approach by a smart ap-
plication of classical Benders and Dantzig-Wolfe decomposition to obtain what we call a Hier-
archical Decomposition, which combines the strengths of all the involved decompositions. The
Dantzig-Wolfe step is used to project out the challenging integer variables from the second level to
strengthen the MIP formulation, while the Benders step projects out the exponential number of
variables, making our approach easy to implement within modern MIP solvers as a cutting plane
procedure. Compared to the Benders-like cuts approach, our Hierarchical Decomposition preserves
the original but also offers multiple additional advantages: First, the Benders step significantly
reduces the size of the initial MIP formulation that must be solved, while the Dantzig-Wolfe de-
composition leads to the generation of significantly stronger cutting planes in each step. Second,
we offer high flexibility in the implementation. On the one hand, our approach can be implemented
within a MIP solver without any understanding of the underlying problem structure. On the other
hand, we can often transfer specialized solvers for the second-level optimization problem to solve
the Dantzig-Wolfe induced pricing problems, and we present a detailed theoretical study of when
this transformation is possible. Third, as we build directly on the Benders and Dantzig-Wolfe
decompositions, we can leverage various existing techniques from these well-studied decomposition
methods to further improve computational performance.

The Hierarchical Decomposition can efficiently address multi-follower bilevel problems, for
which algorithmic solutions are still sparse (cf. Tavaslıoğlu et al., 2019), by integrating it into a
multi-cut Benders framework. To demonstrate these computational strengths, we apply the Hier-
archical Decomposition to bilevel network design problems involving a large number of second-level
actors making (complex) routing decisions. We provide an efficient implementation for the Haz-
mat Network Design Problem with Capacity Constraints (HNDPwCC), which generalizes many
network design problems with resource constraints. Computational results show that our approach
can solve instances with a few hundred second-level actors within a few minutes, while the original
Benders-like decomposition requires more that ten times the runtime for challenging instances.

The remainder of this paper is structured as follows: In Section 2, we formally introduce the
bilevel problem with binary linking variables and briefly recap the Benders-like cuts reformulation.
The Hierarchical Decomposition is presented in Section 3. We discuss the technical details, includ-
ing various speed-up techniques and structural analysis of the involved MIPs, in Section 4. The
efficient implementation for the HNDPwCC is detailed in Section 5, where we also demonstrate
how our approach can be efficiently extended to multi-follower bilevel problems. Computational
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results are presented in Section 6, and Section 7 offers concluding remarks.

2 Problem Setting

2.1 Bilevel Problems with Binary Linking Variables
We consider the following optimistic bilevel setting. Let A be the set of shared resources, and let xa

be the binary linking variables indicating whether resource a is available (xa = 1) or not (xa = 0)
at the second level. We use bold notation to indicate vectors/matrices of variables/parameters,
e.g., x represents the vector of all x-variables. The second level contains variables 0 ≤ ya ≤ Ca,
a ∈ A, that correspond to the consumption of resource a, and both levels are linked by the
condition that xa = 0 implies ya = 0. Further, we allow for additional purely first level variables
within H(x) = {h : Whh + Wxx ≥ w; h ∈ Rnh × Nmh} and purely second level variables within
Z(y) = {z : Vyy + Vzz ≥ v; z ∈ Rnz × Nmz}. Especially, the second level variables z ∈ Z(y) can
be integer.

Assuming that the second level evaluates its decisions based on a (linear) objective function
c(y, z), and the first level evaluates the pay-off based on (linear) functions r(h, x) for their own
decisions and r(y, z) for the second-level decisions, we can formally state our bilevel setting as

min r(h, x) + r(y, z) (1a)

h ∈ H(x) (1b)

xa ∈ {0, 1} ∀a ∈ A (1c)

(y, z) ∈ S(x) (1d)

where S(x) is the set of optimal solutions for a fixed x of the second level

min c(y, z) (2a)

s.t. ya ≤ Caxa ∀a ∈ A (2b)

ya ≥ 0 ∀a ∈ A (2c)

z ∈ Z(y) (2d)

Remark 1. The above partition of the second level into two variables, y and z, is only for our
convenience, as it allows us to present the following ideas more clearly. As we discuss in Appendix
A, we can transform any general second-level problem into the above interdiction structure with
the y-variables. Specifically, the y can also be subject to some integrality constraints, e.g., by
adding constraints y = z to the second level and forcing z to be integer.

Remark 2. Note that the above bilevel formulation does not include coupling constraints, which
are first-level constraints that explicitly depend on second-level variables. While we can handle
coupling constraints to some extent, they introduce complex notation and case distinctions. There-
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fore, we present our main ideas using the formulation without coupling constraints but discuss their
impact in Appendix B.

Also, we make the following assumption within the remainder of this paper:

Assumption 1. Both H(x) and Z(y) are bounded, and Ca are finite for all a ∈ A. Therefore,
the first level is bounded and the second level is either bounded or infeasible, depending on the
selected first level solution.

Kleinert et al. (2021) and Xu and Wang (2014) provide an in detail discussion on why this is
necessary for the Benders-like cuts approach that we discuss next.

2.2 Recap: Benders-like Cuts
Note that MIP-MIP bilevel problems are typically ΣP

2 -hard (Jeroslow, 1985). This means the
problem can be solved in nondeterministic polynomial time given an oracle that solves the second
level in constant time. Therefore, we cannot expect to find a compact single-level formulation if y
or z variables have integrality restrictions. Instead, we can first solve the High Point Relaxation
(HPR), i.e., the problem variant where the second-level objective is ignored and full cooperation
between the two levels is assumed. We then sequentially add a potentially exponential number
of Benders-like cuts to ensure that the found solution is optimal with respect to the second-level
objective function.

To obtain the Benders-like cuts, assume that for a given x, the second level contains a feasible
solution. Then we can find coefficients Ma such that Model (2) is equivalent to

min c(y, z) +
∑
a∈A

Ma(1 − xa)ya (3a)

s.t. ya ≤ Ca ∀a ∈ A (3b)

y ≥ 0 ∀a ∈ A (3c)

z ∈ Z(y) (3d)

The linking variables are shifted from the constraints (2b) to the objective function. If xa = 0, the
big M cost Ma are set so high that any feasible solution with ya > 0 is no longer optimal.

Remark 3. Computing good big M values is highly challenging even when the second level is an
LP (Kleinert & Schmidt, 2023; Kleinert et al., 2020). This is also why applying Benders-like cuts
to general bilevel problems with binary linking constraints is hard to automate, as using a trial-
and-error approach to find these large constants can lead to highly suboptimal solutions (Pineda
& Morales, 2019).

As the feasibility region P = conv{(y, z); ya ≤ Ca ∀a ∈ A; y ≥ 0; z ∈ Z(y)} of Model (3) is
again a polytope that no longer depends on the x-variables, we can enumerate all of its extreme
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points P . The notation conv indicates that when H(x) or Z(y) restrict variables to be integer,
P also contains only the necessary integer points. To link the extreme points p ∈ P with the
original ya and z variables, we write yp

a as the components of ya, and zp as the components of z, in
p. Also, we define cp := c(yp, zp) as the cost of point p with respect to the second-level objective
function. With this notation, we can combine Model (1) with the constraints from Model (2) into
the following Benders-like reformulation

min r(h, x) + r(y, z) (4a)

s.t. ya ≤ Caxa ∀a ∈ A (4b)

c(y, z) ≤ cp +
∑
a∈A

Ma(1 − xa)yp
a ∀p ∈ P (4c)

h ∈ H(x) (4d)

xa ∈ {0, 1} ∀a ∈ A (4e)

y ≥ 0 ∀a ∈ A (4f)

z ∈ Z(y) (4g)

Constraints (4b) and (4d)-(4g) ensure that we select a solution (h, x, y, z) that is both first- and
second-level feasible. Note that constraints (4b) are the original second-level constraints (2b) where
the x-variables explicitly forbid the y-variables. The Benders-like cuts (4c) then enforce that the
selected solution is also optimal with respect to the second-level objective.

Model (4) combines an easy-to-implement framework with the advantage that generating the
Benders-like cuts (4c) requires solving the second level, for which fast, specialized algorithms are
often available (cf. Fischetti et al., 2019; Furini et al., 2019). However, the initial HPR, i.e., Model
(4) without Benders-like cuts (4c), suffers from a poor LP relaxation (Moore & Bard, 1990).

One often ignored, but important additional challenge, is that we must explicitly include the
second-level constraints (4g) in the Benders-like cuts reformulation to ensure that the found first-
level solutions are feasible for the second level. These additional constraints are undesirable for two
reasons. First, we often want to apply specialized algorithms to solve the second-level problem,
while the MIP formulation with constraints (4g) may suffer from a poor LP relaxation. This leads
to the second problem: we have to invest a significant amount of additional computational effort to
solve the HPR, e.g., by branching on the y or z variables or generating cutting planes to strengthen
the current formulation, in order to find some second-level feasible solutions. Such solutions are
often directly cut off by the Benders-like cuts (4c), as they are not second-level optimal.
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3 Hierarchical Decomposition
To address the mentioned drawbacks, we extend the Benders-like cuts approach with additional
decomposition methods from the literature. The necessary steps are shown in Figure 1. First, we
employ Dantzig-Wolfe decomposition to project out the integer variables from the second level. As
the resulting Dantzig-Wolfe reformulated model suffers from an exponential number of variables
(and constraints), we use Benders decomposition to partition the first and second level parts. The
Benders master problem preserves the first-level decisions, while the second-level variables are
projected out into the Benders subproblem. To deal with the exponential number of variables in
the Benders subproblem, we find a polynomial subset of these variables that provably yield an
optimal solution. The resulting reduced Benders subproblem still contains an exponential number
of constraints that can be separated by an auxiliary version of the second-level problem where the
use of certain resources is penalized.

Figure 1: Decomposition steps employed to obtain the Hierarchical Decomposition.

As our new approach fully decomposes the hierarchical structure within the two levels into
independent subproblems, we refer to it as Hierarchical Decomposition. This new approach extends
the results from Byeon and Van Hentenryck (2022) with convex followers to our setting where the
second level can contain integer variables.

From a computational point of view, this new approach offers multiple benefits:

• By fully projecting out the second level from the Benders master problem, we significantly
reduce its size and computational complexity compared to the previously necessary HPR.
This is especially advantageous if the second-level problem is hard to formulate as an MIP
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or possesses a weak LP relaxation, while it can be efficiently solved with, e.g., dynamic or
constraint programming.

• The constraint separation model strongly preserves the structure of the second level. There-
fore, theoretical and algorithmic results can be directly transferred from the second level—which
is often a well-understood optimization problem—to the constraint separation model.

• The generated Benders optimality and feasibility cuts are far less dependent on the involved
big M constants, and we show later how numeric stable bounds for the cut coefficients can
be obtained with (low) computational effort.

• Because our Hierarchical Decomposition is based directly on classical Benders decomposition,
we are able to transfer many well-known speed-up techniques like partial decomposition or
Pareto-optimal Benders cuts that further improve runtime.

• If the second level decomposes into multiple independent subproblems, i.e., we have a multi-
follower bilevel problem, we can extend Step 2 to a multi-cut Benders decomposition to
generate optimality and feasibility cuts independently for each second-level actor.

Next, we present the technical details for each decomposition step and point out structural prop-
erties that enable a more efficient implementation.

4 Danzig-Wolfe-like Decomposition
In this section, we detail each step of the Hierarchical Decomposition. Step 1 including the Dantzig-
Wolfe reformulated model is presented in Section 4.1, while the Benders decomposition (Step 2) is
shown in Section 4.2. Section 4.3 focuses on the constraint separation model, and in Section 4.4
we briefly discuss how to address the big M contained in the generated cut coefficients.

4.1 Dantzig-Wolfe Decomposition
We apply a Dantzig-Wolfe decomposition (Desrosiers & Lübbecke, 2006) by aggregating the y and
z variables into the extreme point variables fp ∈ {0, 1} for p ∈ P (see Section 2.2). We naturally
extend the notation rp = r(yp, zp) to represent the cost component of p in the first-level objective.
We also write Pa = {p ∈ P : yp

a > 0} for a fixed a ∈ A as the subset of all extreme points where
resource a is used, and Ap = {a ∈ A : yp

a > 0} for the set of resources that are used in solution
p ∈ P . Note that p ∈ Pa if and only if a ∈ Ap. Applying the Dantzig-Wolfe decomposition step
on Model (4), we obtain
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min r(h, x) +
∑
p∈P

rpfp (5a)

s.t.
∑
p∈P

fp = 1 (5b)

∑
p∈Pa

fp ≤ Caxa ∀a ∈ A (5c)

∑
p′∈P

cp′fp′ ≤ cp +
∑
a∈A

Ma(1 − xa)yp
a ∀p ∈ P (5d)

fp ≥ 0 ∀p ∈ P (5e)

h ∈ H(x) (5f)

xa ∈ {0, 1} ∀a ∈ A (5g)

Constraints (5b)-(5d) ensure that the extreme point p ∈ P that is second-level optimal for the
chosen x-variables is selected. Because these constraints model the simple selection of the fp-
variable where p ∈ P is feasible for the current x-variable selection and has the lowest cost among
them, we do not need to enforce integrality on the f -variables.

Because P are the extreme points of the convex hull of the second-level problem, we expect the
LP relaxation of Model (5) to be stronger than that of the original Benders-like cuts Model (4).
However, this additional strength comes at the expense of an exponential number of both variables
and constraints. For a solution approach that does not require an exponential number of variables,
observe that Model (5) can be partitioned into first-level constraints (5f) and (5g), which include
integer variables, and second-level constraints (5b)-(5d), which induce an LP when parameterized
by the x-variables. This structure motivates the application of (classical) Benders decomposition.

4.2 Benders Decomposition
The Benders decomposition projects out the inner optimization problem

Φ(x) = min
f

 ∑
p∈P

rpfp | (5b) − (5d); fp ≥ 0 ∀p ∈ P

, where Φ(x) is the optimal objective value for

given x. By Assumption 1, there exists an L with Φ(x) ≥ L. Model (5) can then be rewritten into

min r(h, x) + σ (6a)

s.t. h ∈ H(x) (6b)

xa ∈ {0, 1} ∀a ∈ A (6c)

σ ≥ Φ(x) (6d)

σ ≥ L (6e)
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Here, the auxiliary variable σ replaces ∑
p∈P

rpfp in the objective function. Because the inner

optimization problem is an LP, we can replace Φ(x) by a set of linear constraints obtained from
the dual problem. Let s, ka, and gp be the dual variables of constraints (5b), (5c), and (5d),
respectively. To simplify notation, we also define θp(x) = cp + ∑

a∈A
Ma(1 − xa)yp

a. For a fixed x, the
dual of the inner optimization problem is then

max s −
∑
a∈A

Caxaka −
∑
p∈P

θp(x)gp (7a)

s.t. s −
∑

a∈Ap

ka − cp

∑
p′∈P

gp′ ≤ rp ∀p ∈ P (7b)

s free (7c)

ka ≥ 0 ∀a ∈ A (7d)

gp ≥ 0 ∀p ∈ P (7e)

Because of Assumption 1, the feasibility region of Model (7) is non-empty and does not depend
on x. Therefore, it can be partitioned into a set of extreme rays C and extreme points O. The
Benders decomposition approach then iteratively by first solving the relaxed Model (6) without
constraints (6d), which is called the Benders master problem in the literature. Model (7) is then
solved for the given x. If Model (7) is unbounded, it proofs that the original inner optimization
problem was infeasible, and we add an constraint that limits the movement in the direction of the
associated extreme ray. Otherwise, we compute the optimal solution Φ(x), and add a constraint
ensuring that σ ≥ Φ(x) if x is selected as solution.

The structure of the generated constraints depends on that of the extreme rays C and extreme
points O. While Model (7) posses an exponential number of variables, we are able to show that
most of these variables are zero within an optimal solution (or unbounded ray).

Lemma 1 (Reduced Benders Subproblem). Let x be fix and let Model (7) be bounded for this x.
Then S(x) is non-empty, and for all p∗ ∈ S(x) ∩ P there exists an optimal solution (s, k, g) ∈ O
to Model (7) with gp = 0 for all p ̸= p∗.

Proof. Proof First note that because of Assumption 1 and the fact that Model (7) is bounded, there
exists a feasible second level solution for x, i.e., S(x) is non empty. Fix an arbitrary p∗ ∈ S(x).
By definition of S(x), fp∗ = 1 and fp = 0; ∀p ̸= p∗ is an optimal solution for the inner optimization

problem min
f

 ∑
p∈P

rpfp | (5b) − (5d); fp ≥ 0 ∀p ∈ P

, where the first level decisions are fixed to x.

For this solution, the Benders-like cut ∑
p′∈P

cp′fp′ ≤ cp∗ + ∑
a∈A

Ma(1 − xa)yp∗
a corresponding to p∗ is

tight, i.e., satisfied by equality. All other Benders-like cuts are redundant for the optimality in the
sense that they are either not tight for this solution, or correspond to p ∈ P with the same second
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level objective value as p∗. By a complementary slackness argument, the dual variables gp with
p ∈ P , p ̸= p∗ are also redundant and can be assumed to be 0.

Lemma 2 (Extreme Ray Classification). Let x be fix and let Model (7) be unbounded. Then we
can find an unbounded ray (s, k, g) ∈ C with s = 1 and g = 0.

Proof. Proof By duality theory, the inner optimization problem min
f

 ∑
p∈P

rpfp | (5b) − (5d); fp ≥ 0 ∀p ∈ P


is infeasible, as Model (7) is unbounded. To proof that S(x) is empty, we only have to check
weather there exists an p ∈ P satisfying constraints (5b) and (5c). The minimal such p (with
respect to the second level objective function) then also satisfies the Benders-like cuts constraints
(5c). Therefore, constraints (5b) are irrelevant for the question of feasibility. By a complementary
slackness argument, if Model (7) is unbounded, we can always find an unbounded ray (s, k, g) ∈ C
with g = 0. The lemma follows by rescaling this ray by 1

s
.

Combining the results from Lemma 1 and 2, we first solve the second level (Model (2)) for a
given master solution x, followed by solving the following reduced dual problem

max s −
∑
a∈A

Caxaka − θp∗(x)gp∗ (8a)

s.t. s −
∑

a∈Ap

ka − cu
pgp∗ ≤ rp ∀p ∈ P (8b)

s free (8c)

ka ≥ 0 ∀a ∈ A (8d)

gu
p∗ ≥ 0 (8e)

where p∗ is the found optimal second level solution, or gp∗ = 0 if the second level is infeasible.
If Model (7) is unbounded, we find the extreme ray (s, k, g) ∈ C with s = 1, k ≥ 0, and g = 0,

resulting in a Benders feasibility cut ∑
a∈A

kaxa ≥ 1 (9)

that is added to Model (6) to cut of the current infeasible x solution. These feasibility cuts closely
resemble combinatorial Benders cuts (cf. Codato & Fischetti, 2006; Rahmaniani et al., 2017). The
xa with ka > 0 form a (minimal) set of interdicted variables that result in the infeasibility of the
second level, and constraints (9) exclude such sets from the master problem.

If Model (5) is feasible, we find an optimal solution (s, k, gp∗) ∈ O and add (if violated) an
optimality constraint

s − θp∗(x)gp∗ −
∑
a∈A

kaxa ≤ σ (10)
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that ensures that σ ≥ ∑
p∈P

rpfp holds. Replacing θp(x) by its definition results in the cutting plane

to be added.
The advantage of the Benders approach compared to Model (5) is that we only need an ex-

ponential number of constraints, i.e., we require only row generation and no column generation,
which is significantly easier to implement in most current MIP solvers like Gurobi or IBM CPLEX.
However, we do not fully remove the additional complexity of column generation but rather shift
it from the Benders master to the subproblem (Model 7). Next, we discuss how we can still solve
the Benders subproblem efficiently.

4.3 Constraints Separation Model
The exponential number of constraints (7b) can be addressed by an iterative separation procedure.
Let s, ka, and gp∗ , be the current Model (8) solution. If Model (8) is unbounded, let it be the
undounded ray with gp∗ = 0. Then, we find a violated constraint (7b) by solving the following
auxiliary MIP:

min c(y, z)gp∗ + r(y, z) +
∑
a∈A

kaϕa (11a)

s.t. ya ≤ Caϕa ∀a ∈ A (11b)

ϕa ∈ {0, 1} ∀a ∈ A (11c)

y ≥ 0 (11d)

z ∈ Z(y) (11e)

If the found solution (y, z, ϕ), with p being the extreme point associated with (y, z), has value
smaller than s, the constraint s − ∑

a∈Ap

ka − cpgp∗ ≤ rp is violated. Otherwise, we have proven

optimality of the solution.
If we find a violated constraint (7b), we add it to Model (8), resolve its, and then run Model (11)

with the new obtained solution again. To ensure that we do not generate the constraints associated
with the same extreme point p ∈ P twice, we employ the following warm start procedure.

Remark 4 (Warm Start). Observe that only the objective function, but not the feasibility region,
of Model (8) depends on the current master solution x. Therefore, instead of constructing a new
Benders subproblem for each new x, we only change the objective function while retaining the
constraints generated from previous runs.

Model (11) corresponds to the second-level Model (2) with an adjusted objective function
where the coefficient vector c is replaced with c + r, and where resources a ∈ A are not explicitly
allowed or forbidden, but costs ka are charged for usage. This changes the problem from a classical
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interdiction setting to a pricing problem, where Model (8) sets the resource prices and then Model
(11) decides whether to buy these resources or not.

Assuming that we have an efficient algorithm for solving the second level problem, we ask the
question whether Model (11) can be solved with the same algorithm, and if not, how the complexity
class of the underlying problem changes. We motivate this study with the following two results.

Lemma 3 (Elementary Shortest Path). Let the second level be an Elementary Shortest Path
Problem that asks for the shortest cycle-free path in the network. Then the Model (11) is again
an Elementary Shortest Path Problem.

Proof. Proof Let consider that the second level level is a Elementary Shortest Path Problem on a
network (N , A) where variables ya indicate whether arc a ∈ A is contained in the shortest path
or not. Let o ∈ N be the origin, t ∈ N the destination, and S = {S ⊆ N \{t} : |S| ≥ 2} the set
of node subsets necessary for the subtour elimination constraints. Then the Model (11) can be
formulated as

min
∑
a∈A

(ca + ra)ya +
∑
a∈A

kaϕa (12a)

s.t.
∑

a∈δ+(i)
ya −

∑
a∈δ−(i)

ya = di ∀i ∈ N (12b)

∑
a∈δ+(S)

ya ≥
∑

a∈δ+(i)
ya ∀i ∈ S, S ∈ S (12c)

ya ≤ ϕa ∀a ∈ A (12d)

ϕa ∈ {0, 1} ∀a ∈ A (12e)

ya ≥ 0 ∀a ∈ A (12f)

where do = 1, dd = −1, and otherwise di = 0 for all i ∈ N \{s, t}. Note that the subtour elimination
constraints (12c) are only required when the graph with arc cost (ca+ra)ya+kaϕa contains negative
cycles. As we only “buy” an arc a if we also use it in the shortest path, it holds ya = ϕa for all
a ∈ A. Hence, the Model (11) reduces back to an elementary shortest path problem.

The complexity of the Elementary Shortest Path Problem strongly depends on the existence of
negative cycles. Depending on the initial cost structure of arc costs ca and the new cost function
ca +ra +ka, the complexity can jump between being polynomially solvable when no negative cycles
exist and strongly NP-hard otherwise (cf. Boland et al., 2006).

We consider this a positive result, as the structure of the second-level problem directly transfers
to that of Model (11). However, this is not always necessarily the case, as shown in the following.

Lemma 4 (Multi-Commodity Flow). Let the second level be the Fractional Multi-Commodity
Flow Problem. Then the Model (11) is the Multicommodity Capacitated Fixed-Charge Network
Design.
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Proof. Proof If the second level is the Fractional Multi-Commodity Flow Problem with U being
the set of commodities, (N , A) the underlying network, zu

a the continuous variable modeling the
flow over arc a for commodity u, and yu the auxiliary variable modeling the aggregated flow over
arc a. We also make the common assumption that the arc-cost cu

a ≥ 0 are non-negative. Then, we
can formulate Model (11) as follows:

min
∑
u∈U

∑
a∈A

cu
azu

a +
∑
a∈A

kaϕa (13a)

s.t.
∑

a∈δ+(i)
zu

a −
∑

a∈δ−(i)
zu

a = du
i ∀u ∈ U , i ∈ N (13b)

∑
u∈U

zu
a = ya ∀a ∈ A (13c)

ya ≤ Caϕa ∀a ∈ A (13d)

ϕa ∈ {0, 1} ∀a ∈ A (13e)

yu
a ≥ 0 ∀u ∈ U , a ∈ A (13f)

zu
a ≥ 0 ∀u ∈ U , a ∈ A (13g)

Here, du
i are again the demand variables for each commodity u ∈ U . This MIP model is exactly

the Multicommodity Capacitated Fixed-Charge Network Design (Chouman et al., 2017).

The Multicommodity Capacitated Fixed-Charge Network Design is known to be NP-hard, while
the Fractional Multi-Commodity Flow Problem is polynomial-time solvable. This strong jump in
the complexity of the problem can be traced back to the ya-variables that link the resource cost
with the remainder. In the Elementary Shortest Path Problem, these variables are binary (due to
the total unimodular structure of the second level constraint matrix) and can therefore directly
substitute the ϕa-variables. Conversely, in the Fractional Multi-Commodity Flow Problem, these
variables link the binary investment decisions with the flow decisions of multiple commodities. In
this latter case, it is the binary decisions ϕa that lead to a significant increase in complexity.

We generalize these observations in the following theorem.

Theorem 1 (Binary Second Level). Let the second-level problem be given in the interdiction form
presented in Model (2). If the second level variables y model only binary decisions, the Model (11)
reduces to exactly the second level problem with all resources a ∈ A available and the objective
function

c(y, z)gp∗ + r(y, z) +
∑
a∈A

kaya

Proof. Proof If the y variables model only binary decisions, we conclude from constraints (11b)
that ϕa = 1 if and only if ya = 1, as w.l.o.g. we would never invest in buying a if we do not require
it in a solution. Therefore, we can replace any recurrence of ϕa with ya, from which the theorem
follows.
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Linking our results with the Dantzig-Wolfe decomposition, Theorem 1 classifies when con-
straints (5c) and (5d) are robust (cf. Clautiaux & Ljubić, 2024), i.e., preserve the difficulty of the
pricing problem. Hence, results from the literature on the robustness of specific constraints can be
transferred to our problem setting, and vice versa.

4.4 Improving big M Coefficients
As mentioned in Remark 3, it is computationally challenging to determine good values for the big
M’s contained in the optimality cuts (10). The main advantage of our approach is that the big
M are required only for the theoretical reformulation steps, while alternative numerically stable
coefficients for the cuts can be computed easily (in comparison).

Consider the auxiliary model

min r(y, z) (14a)

s.t. ya ≤ Ca ∀a ∈ A (14b)

ya ≥ 0 ∀a ∈ A (14c)

z ∈ Z(y) (14d)

that is the penalty second-level Model (3) where we replace the objective function with r(y, z).
Note that the feasibility region of this auxiliary model is P . Let ξ be the value of the optimal
solution of this auxiliary problem. Then ξ is a lower bound on the variable σ in Model (6).
Therefore, it holds that

ξ ≤ s − θp∗(x)gp∗ −
∑
a∈A

kaxa ≤ σ

After resolving the definition of θp∗(x) = cp∗ + ∑
a∈A

Ma(1−xa)yp∗
a , this implies that (s−cp∗gp∗ −ξ)

is a valid upper bound on all coefficients in the optimality cuts, as σ ≥ 0. Hence, if a coefficient
exceeds this bound, we can trim these coefficients to (s − cp∗gp∗ − ξ) without losing optimality.
Note that when solving the Benders reduced subproblem Model (8), we do not require the Ma-
coefficients, as it holds that xa = 1 for all a ∈ p∗.

5 Multi-Cut Benders Approach for Bilevel Network Design with Rout-
ing

If the second level decomposes into multiple independent subproblems, our Hierarchical Decompo-
sition can be easily implemented within a multi-cut Benders framework. This structure commonly
appears, e.g., in many network design problems, where the first level designs a transport net-
work and the second level involves multiple users selecting paths within it. Here, we present
a highly efficient implementation for the Hazmat Network Design Problem with Capacity Con-
straints (HNDPwCC), which generalizes numerous problems where paths are subject to capacity
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constraints, while also demonstrating the necessary adjustments to extend our approach to a
multi-cut Benders setting and integrate various speed-up techniques.

The classical Hazmat Network Design Problem (HNDP) is a well-studied, NP-hard bilevel
problem (Amaldi et al., 2011; Fontaine & Minner, 2018; Kara & Verter, 2004) defined on a network
graph G = (N , A) where the first level makes binary decisions if an arc a ∈ A is contained in the
network (xa = 1) or not (xa = 0). The second level then consists of multiple truck drivers u ∈ U ,
each selecting the shortest path in the resulting network from a given origin to their destination.
The truck drivers select their path based on arc-cost cu

a ≥ 0, while the objective of the first level
is to minimize the risk ru

a ≥ 0 of the selected paths.
In the HNDPwCC, we extend this problem setting to truck drivers that solve the Constrained

Shortest Path Problem (CSP). For each arc a, we define additional resources lu
a for each truck

driver u ∈ U and restrict their consumption on a path to Qu. The HNDPwCC is then formally
formulated as a bilevel problem where the first level is defined as

min
∑
u∈U

∑
a∈A

ru
ayu

a (15a)

s.t. xa ∈ {0, 1} ∀a ∈ A (15b)

y ∈ S(x) (15c)

while the truck routes given as arc-flows y are determined by an (optimistic) optimal solution
of the second level

min
∑
u∈U

∑
a∈A

cu
ayu

a (16a)

s.t.
∑

a∈δ+(i)
yu

a −
∑

a∈δ−(i)
yu

a = du
i ∀u ∈ U , i ∈ N (16b)

yu
a ≤ xa ∀u ∈ U , a ∈ A (16c)∑

a∈A
lu
ayu

a ≤ Qu ∀u ∈ U (16d)

yu
a ∈ {0, 1} ∀u ∈ U , a ∈ A (16e)

Constraints (16b) are the flow conservation constraints, where du
i is an auxiliary parameter

that is 1 for the origin and −1 for the destination of truck driver u ∈ U . Constraints (16c) link
the first and second level decisions, and capacity constraints (16d) ensure that each path satisfies
the resource limit Qu.

The extension to the CSP allows us to model more realistic routing decisions of the truck
drivers. For example, lu

a can represent travel time or energy consumption of electric trucks, and
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Qu then restricts the routes to a fixed time window or battery capacity, respectively. However,
as the CSP is NP-hard, the existence of a compact LP is highly unlikely as it would lead to
the polynomial hierarchy collapsing, making the classical approaches for HNDP based on strong
duality not applicable to this setting.

Hence, we apply the Dantzig-Wolfe-like decomposition on the HNDPwCC. The master problem
corresponds to the first-level Model (15). However, in our initial experiments, we observed that this
formulation results in a high number of feasibility cuts being generated, as the master problem lacks
any information that the xa variables represent a network that should connect origin-destination
pairs for truck drivers. Motivated by the partial Benders decomposition approach in Fontaine and
Minner (2018), we include shortest path constraints into the master problem but relax integrality
constraints on the yu

a , resulting in

min
∑
u∈U

σu (17a)

s.t.
∑

a∈δ+(i)
yu

a −
∑

a∈δ−(i)
yu

i = du
i ∀u ∈ U , ∀i ∈ N (17b)

yu
a ≤ xa ∀u ∈ U , a ∈ A (17c)∑

a∈A
ru

ayu
a = σu ∀u ∈ U (17d)

xa ∈ {0, 1} ∀a ∈ A (17e)

y ≥ 0 (17f)

σu ≥ 0 (17g)

The advantage of this new master formulation is that we provide the solver with additional
information on the structure of the solution space while omitting the challenging resource con-
straints. Therefore, feasibility cuts are no longer needed to ensure connectivity in the network but
only to ensure that each truck driver can select a resource-feasible path.

For the separation of the Dantzig-Wolfe-like cuts, observe that the second level Model (16)
decomposes into |U| independent CSPs. Therefore, we generate Dantzig-Wolfe-like optimality and
feasibility cuts for each of the subproblems independently, resulting in a higher number, but also
stronger cuts. For the optimality cuts, we use variables σu to represent the optimal solution of
truck driver u, and constraints (17d) link these with the included yu

a -variables to strengthen the
master problem relaxation.

For each truck driver u, we define Pu as the set of all resource-feasible paths and solve the
following LP to obtain the Dantzig-Wolfe cuts for the current master solution xa:



Stadnichuk, Koster: Solving Multi-Follower Mixed-Integer Bilevel Problems with Binary Linking Variables 18

max su −
∑
a∈A

xaku
a − θp∗(x)gu

p∗ (18a)

s.t. su −
∑

a∈Ap

ku
a − cu

pgu
p∗ ≤ ru

p ∀p ∈ Pu (18b)

su free (18c)

ku
a ≥ 0 ∀a ∈ A (18d)

gu
p∗ ≥ 0 (18e)

From Theorem 1, we know that the separation problem for constraints (18b) corresponds to
solving the CSP with the new objective function ru

a +cu
agp∗ +ka. As both cu

p and ru
a are non-negative,

we can solve it efficiently with an exact labeling algorithm/A∗-search for CSP (cf. Boland et al.,
2006).

Model (18) contains multiple equivalent optimal solutions that result in cuts of highly varying
quality. As we are highly interested in optimal solutions that result in cuts with low coefficient
values, we apply a heuristic approach to generate Pareto-Optimal Benders cuts (cf. Rahmaniani
et al., 2017). After solving Model (18) and obtaining an optimal solution value δu, we solve the
following auxiliary LP:

min
∑
a∈A

ku
a + max

a∈A
{Mu

a }gu
p∗ (19a)

s.t. su −
∑

a∈Ap

ku
a − cu

pgu
p∗ ≤ ru

p ∀p ∈ Pu (19b)

su − θp∗(x)gu
p∗ −

∑
a∈A

xaku
a = δu (19c)

su free (19d)

ku
a ≥ 0 ∀a ∈ A (19e)

gu
p∗ ≥ 0 (19f)

Constraint (19c) ensures that the found new solution remains optimal, while the objective
function (19a) aims to minimize the coefficients in the resulting cut.

Because we generate individual cuts for each truck driver u, we cannot directly apply the
approach from Section 4.4 to improve the big M induced by the reformulation. Instead, we solve
the CSP for each u on the original network G with the objective to minimize risk. This risk-minimal
solution is a natural lower bound on σu that we use to prune the cut coefficients.
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6 Computational Results
To demonstrate the computational efficacy of our Hierarchical Decomposition approach, we im-
plemented the presented framework for the HNDPwCC and compared it with the Benders-like
approach (Israeli, 1999; Wood, 2011). Our Hierarchical Decomposition implementation includes
the presented multi-cut Benders framework, including the warm start procedure from Remark 4,
partial Benders decomposition, Pareto-Optimal Benders cuts, and the improved cut coefficients.
The used Benders-like cuts model and details on the implementation are provided in Appendix C.

6.1 Test Instances
For our experiments, we extended the Sioux-Falls test instances with 24 nodes and 76 arcs from
Fontaine and Minner (2018) to our setting by generating all necessary arc parameters randomly
between 1 and 100 (same for all truck drivers) and generated 350 random origin-destination pairs,
each representing an individual truck driver.

To test different parameters Qu, we compute a lower bound Qu
min corresponding to the minimal

amount of resources any feasible path for u requires. Through preliminary experiments, we also
find that Qu

max = 240 is a good estimate where most (realistic) paths in the network are available.
Based on this, we define Qu = Qu

min + α(Qu
max − Qu

min), and report results for varying values of
α ∈ [0, 1]. Additionally, we consider the option no restriction, where we set Qu = 2400, which is
a sufficiently large value to ensure that no resource restrictions are enforced. The no restriction
setting therefore corresponds to the classical HNDP.

6.2 Computational Environment
All tests were implemented in Java and executed on a virtual machine with an AMD EPYC 9334
32-Core 2.70 GHz processor and 62.5 GB RAM. A time limit of 3600 seconds was used. Gurobi was
used to solve any incurring MIPs and LPs, while the CSP was solved by a basic implementation
(without parallelization) of an A∗-search algorithm. No parallelization was used in the separation;
i.e., in the separation step, the subproblems for each truck driver were solved sequentially. For
both Hierarchical Decomposition and Benders-like implementations, an initial solution where each
truck driver solves the CSP on the Sioux-Falls network was provided to Gurobi. The used Java
code is publicly available at Zenodo (https://doi.org/10.5281/zenodo.14253685).

6.3 Benders-like vs. Hierarchical Decomposition
Table 2 reports our computational results for increasing α in 0.1 steps. For each scenario, 10
instances were generated, and we report the average results over these 10 runs, while the de-
tailed results for each individual run can be found on Zenodo. We report the average runtime,
size of the Branch&Bound tree, time spent in the separation loop, and the overall number of
times we generated a new cut, for both Hierarchical Decomposition and Benders-like decompo-
sition. Additionally, Figure 3 shows the relative improvement of our Hierarchical Decomposi-

https://doi.org/10.5281/zenodo.14253685
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tion compared to the Benders-like approach, i.e., Runtime Benders-like
Runtime Hierarchical Decomposition for the runtime and

#Nodes Benders-like
#Nodes Hierarchical Decomposition for the number of generated Branch&Bound nodes.

Hierarchical Decomposition Benders-like Decomposition
α values Runtime B&B Nodes Separation Time #Cuts Runtime B&B Nodes Separation Time #Cuts

0 11,0 239 4,00 6230 2,8 165 0,37 3395
0,1 15,0 576 5,20 7805 7,3 1009 0,52 4690
0,2 19,3 871 6,70 10010 13,3 2540 0,72 6405
0,3 22,6 1211 6,96 10255 57,4 5728 0,90 8050
0,4 33,4 2037 9,58 13895 147,5 15981 1,19 10640
0,5 39,0 1921 9,77 13860 378,9 28663 1,37 12075
0,6 48,9 3108 11,04 15750 781, 9∗ 53119 1,46 12985
0,7 48,3 2830 10,88 15050 636,7 39946 1,55 13790
0,8 59,3 3358 9,92 13755 774, 4∗ 35092 1,86 16765
0,9 60,9 3579 11,14 15190 706, 6∗ 32088 1,76 15995
1 50,1 2583 9,41 13055 761, 6∗ 32499 1,66 14840

n.r. 38,9 1859 9,18 12390 488,4 17519 1,58 13895

Figure 2: Computational performance of Benders-like and Hierarchical Decomposition. The n.r. stands for no
restriction. All runtimes are given in seconds. ∗: Only 9 of the 10 instances were solved to optimality
by the Benders-like decomposition within the time limit.

The results clearly show that our new approach is superior to the Benders-like cuts for chal-
lenging instances with α ≥ 0.3. The main advantages come from the ability to project out the
integrality restrictions on the second-level variables from the master problem, resulting in signifi-
cantly smaller Branch&Bound trees. For Benders-like cuts, Gurobi is forced to extensively branch
on the second-level variables, which is highly ineffective. For the most challenging instances, we
achieve an improvement in runtime by a factor of 14 and generate Branch&Bound trees that are
over ten times smaller on average. However, it is also important to highlight that the Hierarchical
Decomposition significantly profits from being directly linked to the classical Benders framework,
allowing us to fall back on a rich literature base of speed-up techniques like Pareto-Optimal Benders
cuts that significantly improve performance.

For α ≤ 0.2, the Benders-like cuts outperform our Hierarchical Decomposition. The main
reason is the time spent in the separation loop is much higher for the Hierarchical Decomposi-
tion, which is expected as we need to solve an additional LP Model (18) for each truck driver,
involving solving the CSP multiple times. For Hierarchical Decomposition, separation takes up
around 10% of the overall runtime, while it is negligible for Benders-like cuts. Nonetheless, the
computational benefits obtained from the Hierarchical Decomposition clearly outweigh the draw-
back of longer separation times for challenging instances. Also, implementing parallelization in
the separation loop should strongly improve the separation of Hierarchical Decomposition if even
better computational performance is required.

The somewhat surprising result to us was the no restriction case. Despite the capacity pa-
rameter Qu being sufficiently large to invalidate the necessity to force the second-level variables to
be integer, Gurobi consequently fails to detect this and extensively branches on the second-level
variables. The only approach that successfully prevented Gurobi from branching was to remove
the capacity constraints from the Benders-like formulation, which we do not consider a fair com-
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Figure 3: The relative improvements for runtime and the reduction in the number of Branch&Bound nodes of
our Hierarchical Decomposition compared to Benders-like decomposition. The n.r. stands for no
restriction.

parison. If it is already known that the problem reduces to the HNDP, we would employ the
highly specialized algorithm from Fontaine and Minner (2018), and not Benders-like decomposi-
tion. However, these results indicate that our Hierarchical Decomposition can more easily deal
with redundant information in the second-level formulation.

As a final remark, we would like to mention that we also conducted some experiments where
we added Hierarchical Decomposition optimality cuts to the Benders-like cuts model. While this
did not lead to better computational performance in most cases—in fact, the additional separation
time sometimes worsened runtimes—we clearly observed that adding Hierarchical Decomposition
optimality cuts improved the LP bound. This provides experimental proof that applying the
Dantzig-Wolfe aggregation step strengthens the resulting LP relaxation and that Hierarchical De-
composition are based on a stronger LP formulation than the initial Benders-like cut model.

7 Conclusion
In this paper, we present the Hierarchical Decomposition for bilevel problems with binary linking
variables. This novel decomposition approach partitions these bilevel problems into a sequence of
MIP models where the subsequent model is used as a separation oracle for the previous model.
These MIPs strongly preserve the original structure of the first- and second-level problems, enabling
the application of specialized algorithms.
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We present an efficient implementation of our framework for the HNDPwCC, demonstrating
how it can be adjusted to the case with multiple independent second-level problems, and how speed-
up techniques from classical Benders decomposition can be transferred to our framework. Our
computational results clearly show that the new framework provides significant runtime benefits
compared to Benders-like cuts.

While our computational results look promising, it is also important to highlight that the
structure of HNDPwCC is highly beneficial to decomposition approaches like Benders-like cuts
or our Hierarchical Decomposition. As a next step, we would like to extend our computational
experiments to a wider range of bilevel problems with varying properties From a theoretical point
of view, the question arises as to what extent the assumption of binary linking variables constraints
is truly binding, or if it could be extended to integer or even linear first-level variables. Also, we
address the optimistic bilevel case in this work. Future work should analyze whether it is possible
to extend our approach to the pessimistic case.
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A General Structure of Second Level
Here, we shortly want to address Remark 1 and demonstrate how an arbitrary second level problem
given as min

z∈Z
{cT

z z} with Z = {Vxx + Vzz ≥ v; z ∈ Rnz × Nmz} can be transformed into the
interdiction structure used in Model (2). To this end, we define an auxiliary variable ya ≥ 0,
a ∈ A, and substitute the constraints in Z with

Vxy + Vzz ≥ v

ya ≤ xa ∀a ∈ A

1 − ya ≤ 1 − xa ∀a ∈ A

where the last two constraints enforce ya = xa for all a ∈ A. By substituting ya
′ = 1 − ya and

x′ = 1−xa with additional auxiliary variables ya
′ and xa

′, we obtain the structure from Model (2).
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B Dealing with Coupling Constraints
In this section, we shortly discuss to which extend coupling constraints can be integrated into our
framework. Hence, assume that the first level is extended by additional coupling constraints

Qhh + Qxx + Qyy ≥ q.

Note that we can disregard the second level variables z following Remark 1.
If we employ our Dantzig-Wolfe decomposition approach from Section 4.1, we obtain the fol-

lowing reformulation including coupling constraints

min r(h, x) +
∑
p∈P

rpfp (20a)

s.t. Qhh + Qxx + Qyy ≥ q (20b)

ya =
∑
p∈P

yp
afp ∀a ∈ A (20c)

∑
p∈P

fp = 1 (20d)

∑
p∈Pa

fp ≤ Caxa ∀a ∈ A (20e)

∑
p′∈P

cp′fp′ ≤ cp +
∑
a∈A

Ma(1 − xa)yp
a ∀p ∈ P (20f)

fp ∈ {0; 1} ∀p ∈ P (20g)

h ∈ H(x) (20h)

xa ∈ {0, 1} ∀a ∈ A (20i)

The main addition are the coupling constraints (20b) and constraints (20c) that link the ya-
variables with their aggregated fp-variables counterpart. Merging the constraints (20b) and (20c)
results in

Qhh + Qxx + Qf f ≥ q (21)

for a fitting coefficient matrix Qf . Constraints (21) introduce a new complexity into the Dantzig-
Wolfe reformulated model (20), as the inner optimization problem

min
f

 ∑
p∈P

rpfp | (20c) − (20f); (21); fp ∈ {0, 1} ∀p ∈ P

 is no longer necessarily an LP. Before ap-

plying the Benders decomposition approach presented in Section 4.2, we therefore have to first
check if the integrality conditions on the fp-variables can be relaxed. If this is not the case,
we could still solve Model (20) with a Branch-Price-and-Cut approach, but the computational
challenges involved would most likely make it inferior to other solution methods.
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Nonetheless, there are many types of coupling constraints that do preserve the LP structure of
the inner optimization problem. For example, if the second-level variables y are binary, resource
requirement constraints ya = 1 for all a ∈ A′ ⊆ A, e.g., often found in partial inverse optimization
problems (Ley & Merkert, 2024), result in aggregated constraints ∑

p∈Pa

fa = 1 for all a ∈ A′ that

preserve this property. In summary, integrating coupling constraints into our approach requires us
to study the structure of the resulting inner optimization problem, making them hard to integrate
into an automated framework.
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C Bender-like Cuts Model for the HNDPwCC
For the Benders-like cuts approach to HNDPwCC presented in Section 5, we implemented the
following master MIP model

min
∑
u∈U

∑
a∈A

ru
ayu

a (22a)

s.t.
∑
a∈A

(1 − xa) ≤ B (22b)
∑

a∈δ+(i)
yu

a −
∑

a∈δ−(i)
yu

a = du
i ∀u ∈ U , ∀i ∈ N (22c)

yu
a ≤ xa ∀u ∈ U , a ∈ A (22d)∑

a∈A
lu
ayu

a ≤ Qu ∀u ∈ U (22e)

yu
a ∈ {0, 1} ∀u ∈ U , a ∈ A (22f)

xa ∈ {0, 1} ∀a ∈ A (22g)

We solve this model until all variables are integer, i.e, until a new MIP incumbent node is
found. Then, we solve for each truck driver u ∈ U the CSP in the network induced by the found
x-solution to find a path p ∈ Pu that induces a violated Benders-like cut

∑
a∈A

cu
ayu

a ≤
∑
a∈p

cu
a +

∑
a∈p

Mu
a (1 − xa).

If no violated cut is found, we terminate with the optimal solution.
The big M values Mu

a are naturally bounded by the length of the longest (according to cost cu
a)

path within the network (cf. Lim & Smith, 2007). As computing the simple longest path is strongly
NP-hard, we instead use a heuristic to estimate its length. The heuristic computes the maximum
spanning tree by negating the cost for each edge and applying Kruskal’s algorithm (Pemmaraju
& Skiena, 2003). The overall cost of the maximum spanning tree is then an upper bound on the
length of the longest path, as otherwise extending the longest path to a spanning tree would result
in a new spanning tree with higher cost, a contradiction.

In some initial parameter tuning, we observed that branching on the xa variables results in
better computational performance, as first fixing the network layout and then searching for the
CSP seems to be computationally beneficial. Therefore, we set the branching priorities within
Gurobi so that it first branches on the xa variables, and only if all are integer on the yu

a variables.
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