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Abstract We study proximity (resp. integrality gap), that is, the distance (resp. difference) between the
optimal solutions (resp. optimal values) of convex integer programs (IP) and the optimal solutions (resp.
optimal values) of their continuous relaxations. We show that these values can be upper bounded in terms
of the recession cone of the feasible region of the continuous relaxation when the recession cone is full-
dimensional. If the recession cone is not full-dimensional we give sufficient conditions to obtain a finite
integrality gap. We then specialize our analysis to second-order conic IPs. In the case the feasible region
is defined by a single Lorentz cone constraint, we give upper bounds on proximity and integrality gap in
terms of the data of the problem (the objective function vector, the matrix defining the conic constraint,
the right-hand side, and the covering radius of a related lattice). We also give conditions for these bounds
to be independent of the right-hand side, akin to the linear IP case. Finally, in the case the feasible region
is defined by multiple Lorentz cone constraints, we show that, in general, we cannot give bounds that are
independent of the corresponding right-hand side. Although our results are presented for the integer lattice
Zn, the bounds can be easily adapted to work for any general lattice, including the usual mixed-integer
lattice Zn1 × Rn2 , by considering the appropriate covering radius when needed.

Keywords mixed-integer programming · convex programming · conic programming · proximity · integrality
gap
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1 Introduction

Let S ⊆ Rn be a convex set and α ∈ Zn. Consider the convex integer program (IP)

ϑIP (S) := inf{αTx :x ∈ S ∩ Zn}. (1)

Convex IPs have a wide range applications (e.g., in location and inventory management [2,17], power distri-
bution systems [19,16,28], options pricing [25], engineering design [10] and Euclidean k-center problems [8])
but they are challenging to solve in general. As a proxy, one might solve the so-called continuous relaxation

ϑ(S) := inf{αTx :x ∈ S}, (2)

which is obtained after relaxing the integrality constraints in (1) and can be efficiently solved under mild
conditions. Two natural questions arise:
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– Proximity: Assuming that the continuous relaxation (2) is solvable, how to find the closest integral
vector in S to a given optimal solution x̂:

Proxx̂(S) := min
x∈S∩Zn

‖x− x̂‖.

– Integrality Gap: Assuming that the continuous relaxation has a finite value, how to find the difference
between the optimal values:

IG(S) := ϑIP (S)− ϑ(S).

The classical motivation to study proximity analysis for IPs is that the integrality gap can be interpreted as
a measure to quantify the relaxation quality. Recently, another interesting application of proximity analysis
is utilized in the context of pure-integer convex quadratic games in [27].

The two questions posed above have been studied in the literature for linear IPs in which the convex
set S(u) = {x ∈ Rn : Ax ≥ u} is a polyhedron defined by integral data. For instance, in [9], the authors
provide a bound for a version of the proximity question that depends only on the constraint matrix A and
the number of variables n, and is independent of the right-hand side vector u:

Theorem 1 ([9]) Let ∆ denote the largest absolute value of any determinant of a square submatrix of A.
Assume that S(u) ∩ Zn 6= ∅ and that ϑ(u) > −∞. Then

(i) For each optimal solution x̂ of (2), there exists an optimal solution x∗ of (1) with ‖x̂− x∗‖∞ ≤ n∆.
(ii) For each optimal solution x∗ of (1), there exists an optimal solution x̄ of (2) with ‖x∗ − x̂‖∞ ≤ n∆.

As a consequence of Theorem 1, the integrality gap can be bounded above by a constant that is independent
of the right-hand side u as IG(u) ≤ n‖c‖1∆. This result has been recently refined for linear mixed-integer
programs (MIPs) where the proximity bounds are shown to depend on the number integer variables [24]
or the number of constraints [13,21] only. Other recent works in this direction focus on integrality gap
calculations for integer knapsack problems [1] and random linear IPs [7].

Proximity analysis for nonlinear IPs is limited. To the best of our knowledge, the only examples in this
direction involve minimizing a convex separable function [15,29] or a convex separable quadratic function
[14] subject to linear constraints, which can be put in the form (1) through an epigraph formulation (also see
[11] for an example with a concave quadratic minimization objective). In such cases, the analysis explicitly
uses the polyhedral structure of the feasible region, much like the analysis in [9].

In this paper, we carry out proximity analysis for several special cases of problem (1) involving nonlinear
constraints. For example, we analyze the case in which the recession cone of the set S is full-dimensional or
the set S is the feasible region of a (simple) second-order conic program. We pay special attention to be able
derive bounds for proximity and integrality gap similar to [9], in the sense that these bounds are independent
of the optimal solution of the continuous relaxation x̂ or right-hand side vector u defining the conic set. Our
contributions are summarized as follows:

– Illustrative examples in the nonlinear case: In Section 3, we provide examples in which the inte-
grality gap for a conic IP defined with rational data is infinite or depends on the right-hand side vector;
this is in contrast with the case of linear IPs. These examples give intuition for the types of results we
can expect to obtain.

– Proximity results for general convex IPs: In Section 4, we prove that if the recession cone of the
convex set S is full-dimensional, then we can find explicit upper bounds for proximity and integrality
gap independent of the optimal solution of the continuous relaxation. We also give sufficient conditions
for having a finite integrality gap in the case the recession cone is not necessarily full-dimensional.

– Structural results for simple second-order conic sets: In Section 5, we obtain structural results
for simple second-order conic sets (i.e., ellipsoid, paraboloid, hyperboloid, translated cone) that will be
crucial for the proximity analysis later.

– Proximity results for simple second-order conic IPs: In Section 6, we derive upper bounds for
proximity and integrality gap when S is a simple second-order conic set. Depending on the set considered
and the approach taken, the bounds obtained may or may not depend on the right-hand side vector.

– A proximity result for a non-simple second-order conic IP: In Section 7, we obtain an integrality
gap bound when S is the intersection of two spheres based on the ratio of the sum of their radii to the
distance between the centers of these spheres.
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Remark 1 Before proceeding with the rest of the paper, we would like to clarify two important points.

– Bounds for general (mixed-integer) lattices. For simplicity, in the presentation of our results we
consider pure integer programs, that is, the lattice in the optimization problem (1) is Zn. However, as we
will see later, the bounds we obtain for proximity and integrality gap are stated in terms of the covering
radius of a certain lattice generated by the integer variables and the data of the problem. If we consider
a more general mixed-integer lattice (see Section 2.3) in problem (1), for instance, the mixed-integer
lattice Zn1 × Rn2 , our bounds can be easily adapted. The only difference is that the bounds will depend
on the covering radius of a mixed-integer lattice generated by both the integer and continuous variables.
Interestingly, the covering radius of a mixed-integer lattice only depends on its integer components (see
Fact 1 in Section 2.3). Therefore, as in the case of mixed-integer linear programming [24], our bounds
only depend on the number of integer variables.

– Proximity between optimal solutions. We note that there is a subtle difference between our results
on proximity and the one in [9]: we consider the distance of the optimal solution of the continuous
relaxation (2) to the closest feasible solution of convex IP (1) whereas the result in [9] involves the
distance between the optimal solutions of (2) and (1). However, it is easy to see that any proximity bound
that we give can be used to find a bound between optimal solutions, and vice versa. We also remark that
both proximity results lead to straightforward bounds for the integrality gap.

2 Preliminaries

2.1 Definitions and notation

We will use the Euclidean norm ‖·‖2 as the norm in the definition of proximity unless otherwise stated. For a
set X, we will denote its interior as int(X), its boundary as ∂X, its convex hull as conv(X), its conic hull as
cone(X). The recession cone of a convex set S is the set rec.cone(S) = {d ∈ Rn :x+λd ∈ S for all λ ∈ R+, x ∈
S}. The lineality space of a convex set S is the set lin.space(S) = {d ∈ Rn :x+λd ∈ S for all λ ∈ R, x ∈ S}.

2.2 Conic programming

A cone K ⊆ Rm is called a regular cone if it is full-dimensional, closed, convex, and pointed (it does not
contain lines). The conic inequality a �K b is defined as a − b ∈ K. If K is a regular cone, its dual cone is
defined as K∗ = {x ∈ Rn :xT y ≥ 0 for all y ∈ K} and it can be shown that K = (K∗)∗.

In addition to general convex IPs, we also study conic IPs, whose feasible region involves a conic rep-
resentable set S(u) = {x ∈ Rn : Ax ≥K u} for a regular cone K. The associated conic IP is defined as
ϑIP (u) := inf{αTx :x ∈ S(u) ∩ Zn}, and its continuous relaxation is given as ϑ(u) := inf{αTx :x ∈ S(u)}
which is obtained after relaxing the integrality constraints x ∈ Zn in the conic IP. In the case of conic IPs, the
values ϑIP (u) := ϑIP (S(u)) and ϑ(u) := ϑ(S(u)) depend on the right-hand side u. In the case of conic IPs,
we define the integrality gap as the function IG : Rm → R ∪ {+∞,−∞} such that IG(u) = ϑIP (u)− ϑ(u).

An important subclass in conic programming is second-order cone programming, which involves the
Lorentz cone (or the second-order cone) as defined below.

Definition 1 We will denote the Lorentz cone in Rn as Ln :=
{
x ∈ Rn :xn ≥

√
x2

1 + · · ·+ x2
n−1

}
= {x ∈

Rn :xT Ĩx ≤ 0, xn ≥ 0}, where Ĩ is a diagonal n × n matrix with Ĩ11 = Ĩ22 = · · · = Ĩn−1,n−1 = 1 and

Ĩnn = −1.

Definition 2 We denote the subvector obtained from the first n− 1 components of the vector x ∈ Rn as x̄.
For example, x ∈ Ln is equivalent to ‖x̄‖2 ≤ xn.

A simple second-order conic set is a set of the form S = {x ∈ Rn : ‖Ax− b‖2 ≤ cTx− d}, where A is an
(m− 1)× n integer matrix and c ∈ Zn, b ∈ Rm−1 and d ∈ R.
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2.3 Mixed-integer lattices

Definition 3 (Mixed-integer lattice [6]) Let E ∈ Rm×n1 and F ∈ Rm×n2 , where
[
E F

]
has linearly

independent columns. Then, L(E,F) = {x ∈ Rm |x = Ez + Fy, z ∈ Zn1 , y ∈ Rn2} is said to be the mixed-
integer lattice generated by E and F. A mixed-integer lattice is said to be full-dimensional if rank([E F]) =
n1 + n2. If the columns of E are in the orthogonal subspace to the linear subspace generated by the columns
of F, then we say that L(E,F) is an orthogonal representation of the mixed-integer lattice generated by E
and F.

When E ∈ Qm×n1 and F ∈ Qm×n2 , then there exists E′ ∈ Qm×n1 such that L(E′,F) is an orthogonal
representation of the mixed-integer lattice L(E,F) (see, for instance, Proposition 3.11 in [26]).

Definition 4 (Covering radius) The covering radius µ(E,F) of a full-dimensional mixed-integer lattice
L(E,F), is defined as

µ(E,F) = max
x

{
min
x′
{‖x− x′‖2 :x′ ∈ L(E,F)} :x ∈ Rn

}
.

The following fact states that the covering radius only depends on the structure of the lattice generated
by the integer components of the mixed-integer lattice.

Fact 1 It follows from the definition of covering radius that if L(E,F) ⊆ Rn is a full-dimensional mixed-
integer lattice with an orthogonal representation, then µ(E,F) = µ(E) where L(E) ⊆ Rn1 is the n1-dimensional
lattice obtained by computing the orthogonal projection of L(E,F) onto {Ex :x ∈ Rn1}. Indeed, we have

µ(E,F) = max
x,u,v

{
min
x′,z,y

{‖x− x′‖2 :x′ = Ez + Fy, z ∈ Zn1 , y ∈ Rn2} :x = Eu+ Fv, u ∈ Rn1 , v ∈ Rn2

}
= max

u,v

{
min
z,y
{‖E(u− z)‖2 + ‖F(v − y)‖2 : z ∈ Zn1 , y ∈ Rn2} :u ∈ Rn1 , v ∈ Rn2

}
= max

u

{
min
z
{‖E(u− z)‖2 : z ∈ Rn1} :u ∈ Zn1

}
= µ(E),

where the first equality follows from L(E,F) being full-dimensional, the second equality is a consequence of
the the orthogonality of the columns of E and F and the third equality is obtained by taking y = v.

We will often use the following result, which also follows from the definition of covering radius.

Fact 2 If r ≥ µ(E,F), then the (full-dimensional) ellipsoid E = {(x, y) ∈ Rn1 × Rn2 : ‖Ex + Fy − p‖2 ≤ r}
must contain at least one point in L(E,F).

The following example illustrate the concept of covering radius of a mixed-integer lattice and that it can
be computed as the covering radius of the associated lower-dimensional lattice.

Example 1 Consider the mixed-integer lattice L := L
([

1
0

]
,

[
1
1

])
=

{[
1
0

]
x+

[
1
1

]
y : x ∈ Z, y ∈ R

}
and

the point w =

[
1
2
0

]
. If the continuous component is kept the same, one of the closest mixed lattice points

is w1 =

[
1
0

]
0 +

[
1
1

]
0 =

[
0
0

]
with ‖w − w1‖2 = 1

2 , which matches the covering radius of the integer lattice

defined by

[
1
0

]
. On the other hand, if the continuous component is optimally chosen, one of the closest mixed

lattice points is w2 =

[
1
0

]
0 +

[
1
1

]
1
4 =

[
1
4
1
4

]
with ‖w−w2‖2 = 1

2
√

2
. In fact, it can be shown that an orthogonal

representation for L is L
([

1
2−1
2

]
,

[
1
1

])
=

{[
1
2−1
2

]
x+

[
1
1

]
y : x ∈ Z, y ∈ R

}
with

[
1
2−1
2

]T [
1
1

]
= 0. Then, the

covering radius of L can be simply computed as the covering radius of

[
1
2−1
2

]
, which is precisely 1

2
√

2
, in other

words, µ

([
1
0

]
,

[
1
1

])
= µ

([
1
2−1
2

])
.
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2.4 Integrality gap and lineality space

In this section we show that the lineality space does not play a role in the value of the integrality gap
whenever the lineality space is a rational linear subspace.

Lemma 1 Let S ⊆ Rn be a convex set and let L = lin.space(S) be a rational subspace. Then

(i) If c /∈ L⊥, then ϑ(S) = ϑIP (S) = −∞.

(ii) If c ∈ L⊥, then ϑ(S) = ϑ(S ′) and ϑIP (S) = ϑIP (S ′) for a convex set S ′ ⊆ Rdim(L⊥) such that
lin.space(S ′) = {0}.

Proof We start by proving (i). It suffices to show that ϑIP (S) = −∞. Since L is a rational linear subspace,
without loss of generality, we may assume that there exists l ∈ L ∩ Zn such that cT l < 0. Let z ∈ S ∩ Zn,
then z + λl ∈ S ∩ Zn for any λ ∈ Z+, as cT l < 0 we have that cT (z + λl) goes to −∞ as λ increases, so we
conclude ϑIP (S) = −∞, as desired.

Now we prove assertion (ii). Let p = dim(L⊥). Since L is a rational subspace, then there exists an
unimodular matrix U ∈ Rn×n such that UL = {0}×Rn−p and UL⊥ = Rp×{0}. Note that since c ∈ L⊥, we
have that Uc ∈ Rp × {0}. Let c′ and S ′ the projection of c and US, respectively, onto the first p variables.
Then, ϑIP (S) = inf{cTx :x ∈ S ∩ Zn} = inf{cTUTx :x ∈ (US) ∩ Zn} = inf{c′Tx :x ∈ S ′ ∩ Zp}, where the
second equality uses the fact that UZn = Zn and the third equality follows from the optimization problem
only depending on the first p variables. Similarly, one can prove that ϑ(S) = ϑ(S ′). ut

In view of Lemma 1, if a convex set S has a rational lineality space L⊥, we can compute its integrality gap
by projecting S onto L⊥. Therefore, in the remaining sections, we will assume that the following condition
holds:

Assumption 1 The convex set S and the conic set S(u) satisfy the condition lin.space(S) = {0} and
lin.space(S(u)) = {0}.

3 Illustrative examples in the nonlinear case

3.1 Polyhedral approximations do not suffice

We begin this section with the following remark.

Remark 2 Note that if P = {x ∈ Rn : Ax ≤ b} is a rational polyhedral outer-approximation of S such that
S ∩ Zn = P ∩ Zn, then

IG(S) = inf{αTx :x ∈ S ∩ Zn} − inf{αTx :x ∈ S} ≤ inf{αTx :x ∈ P ∩ Zn} − inf{αTx :x ∈ P} ≤ n‖α‖1∆,

where as before ∆ denotes the largest absolute value of any determinant of a square submatrix of A.

In virtue of Remark 2, one might be tempted to use a rational polyhedral outer-approximation of the
second-order cone (see, [18]) and then utilize the proximity results obtained for linear IP with rational data
(e.g. [9,24]) to obtain a similar IG bound that is independent of the right-hand side. However, such an
approach is not directly viable as we will illustrate in the next example.

Example 2 Let BR := {x ∈ Rn : ‖x‖2 ≤ R} be ball with radius R > 0 and consider the second-order conic
IP

ϑIP (R) := inf{αTx :x ∈ BR ∩ Zn}, (3)

together with its continuous relaxation ϑ(R) := inf{αTx :x ∈ BR}. As we will see later in Proposition 7,
the integrality gap of the second-order conic IP (3) can be bounded as IG(R) = ϑIP (R)− ϑ(R) ≤ ‖α‖2

√
n,

which is a constant that does not depend on the right-hand side R.
Now, let us consider a (1 + ε) rational polyhedral outer-approximation PR ⊆ Rn of the ball BR, that

is, BR ⊆ PR ⊆ (1 + ε)BR, given by an extended formulation of the form proposed in [18]. In order for
the approximation to contain the same integer points, that is, BR ∩ Zn = PR ∩ Zn, a rational ε should be
selected from the interval (0,

√
1 + 1/R2 − 1) (see [18] for details); notice that ε tends to 0 as R increases
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so the approximation depends on the right-hand side. Then, the integrality gap of the linear IP ϑIP
′(R) :=

inf{αTx :x ∈ PR ∩ Zn},and its linear programming relaxation ϑ′(R) := inf{αTx :x ∈ PR},computed as
IG′(R) := ϑIP

′(R) − ϑ′(R), gives an upper bound on IG(R) as ϑIP
′(R) = ϑIP (R) and ϑ′(R) ≤ ϑ(R).

However, the size of the rational polyhedral extended formulation defining PR as well as its constraint matrix
entries and the right-hand side vector in its inequality description explicitly depend on ε (see Section 5 of
[18] for a discussion). This suggests that the upper bound for IG′(R) given by Theorem 1 will depend on R
whereas the upper bound we give for IG(R) does not.

3.2 Examples of conic IPs with infinite integrality gap

For a general cone K, it could be the case that ϑIP (u) > −∞ but ϑ(u) = −∞, so that, IG(u) = +∞. This
could happen even when the matrix A and vector u are defined by integral data, as the issue is typically
caused by an inherent irrationality of the extreme rays of the cone K as the following example shows.

Example 3 (A conic representable set with infinite integrality gap) Consider the set S = {x ∈
R2 :x = λ(1,

√
2), for some λ ≥ 0} which is a ray with irrational slope emanating from the origin. Clearly,

inf{−x1 − x2 :x ∈ S} = −∞, and inf{−x1 − x2 :x ∈ S ∩ Z2} = 0 and thus IG(u) = +∞. Note that S can
be represented as a conic set of the form

S =

x ∈ R2 :

1 0
0 1
0 0

x �K

0
0
0


either by using the polyhedral cone K = cone({(1,

√
2, 0); (1, 0, 1); (0, 1, 1)}) or by using the cone K =

cone({x ∈ R3 : (x1 − 1)2 + (x2 −
√

2)2 + (x3 − 1)2 ≤ 1}) which is generated by an ellipsoid.

Unfortunately, even if we restrict ourselves to second-order conic IPs defined by rational data, the inte-
grality gap might still be infinitely large as illustrated by the following example taken from [23]:

Example 4 (Another conic representable set with infinite integrality gap) Consider the set

S = conv({x ∈ R3 :x3 = 0, x1 = 0, x2 ≥ 0} ∪ {x ∈ R3 :x3 = ε, x2 ≥ x2
1} ∪ {x ∈ R3 :x3 = 1, x1 = 0, x2 ≥ 0}),

with ε ∈ (0, 1). It can be shown that the following is a second-order conic representation (SOCr) of the set S
in an extended space:

x3,0 = 0, x1,0 = 0, x2,0 ≥ 0; x3,ε = ελε,

2x1,ε

x2,ε

x2,ε

 �L3

 0
λ.5
−λε

 , x2,ε ≥ 0; x3,1 = λ1, x1,1 = 0, x2,1 ≥ 0;

xj = xj,0 + xj,ε + xj,1 j = 1, 2, 3; λ0 + λε + λ1 = 1, λ0, λε, λ1 ≥ 0.

However, since inf{x1 :x ∈ S} = −∞ and inf{x1 :x ∈ S ∩ Z3} = 0 > −∞, we obtain that IG(u) = +∞.

3.3 Example of a simple second-order conic IP with right-hand side dependent integrality gap

In the example below, the feasible region of the second-order conic IP is a parabola in the plane and the data
is defined with rational (but not integer) numbers. This example shows that even for a second-order conic
IP defined by rational data and with only two variables, the integrality gap may depend on the right-hand
side (b, d) and not only on A, c, α.

Example 5 Consider the following second-order conic IP:

inf
x∈Z2

{
α1x1 + α2x2 :

∥∥∥∥[ x1 − b1
1
2x2 − b2

]∥∥∥∥
2

≤ 1

2
x2 − d

}
.
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Notice that the constraint can be written as (x1− b1)2 + (b22−d2) ≤ (b2−d)x2. Assuming that the continuous

relaxation is bounded below, its optimal solution x̂ can be computed as x̂1 = b1 − 1
2
α1(b2−d)

α2
and x̂2 =

(x∗1−b1)2

b2−d + b2 + d = 1
4
α2

1(b2−d)

α2
2

+ b2 + d. Now, let N ∈ Z++ and consider the following instance:

α =

[
1
1

]
, b =

[
4N + 1

2
4N

]
, d = 4N − 1

4N
. (4)

One can verify that the optimal solution of the continuous relaxation is x̂1 = 4N + 1
2

(
1− 1

4N

)
and x̂2 =

8N − 3
16N . It is easy to see that the optimal solution of the integer program is x∗1 = bx̂1c = 4N and

x∗2 =
⌈

(x∗1−b1)2

b2−d + b2 + d
⌉

=
⌈
9N − 1

4N

⌉
= 9N . Finally, we obtain the integrality gap, as a function of N :

IG(N) = (x∗1 + x∗2)− (x̂1 + x̂2) = N + 5
16N −

1
2 .

3.4 Examples of non-simple second-order conic IPs with right-hand side dependent integrality gap

In this section, we provide two examples of non-simple second-order conic IPs whose integrality gap depends
on the right-hand side unlike the case of linear IPs (see Theorem 1). Throughout this section, we will
denote an optimal solution of the conic IP and an optimal solution of its continuous relaxation as x∗ and x̂,
respectively (when there are multiple optimal solutions, we only consider one such solution).

In the next example, the feasible region of the conic IP is the intersection of a half-space, an ellipsoid
and the standard lattice. This is arguably one of the “simplest” nonlinear convex IP in which the integrality
gap depends on the right-hand side.

Example 6 Let N ∈ Z+ and consider the following second-order conic IP:

inf
x∈Z2
{x2 :x2

1 + x2
2 ≤ (N + 1)2, x1 ≥ 1/2} = inf

x∈Z2

x2 :

1 0
0 1
0 0

[x1

x2

]
�L3

 0
0

−(N + 1)

 , x1 ≥
1

2

 .

Since we have x̂ =
(
N + 1

2 ,−
√
N + 3

4

)
and x∗ = (N + 1, 0), the integrality gap, as a function of N , is

computed as IG(N) =
√
N + 3

4 .

x1

x2

x1 = N + 1
2

x̂ =
(
N + 1

2
,−
√
N + 3

4

)
x∗ = (N + 1, 0)

Fig. 1 The feasible region of the continuous relaxation of the conic IP in Example 6.

In the next example, the feasible region of the conic IP, is the intersection of two non-degenerate ellipsoids
with the standard lattice. This example is interesting for at least two reasons: i) It features two bounded
nonlinear sets, and ii) the integer hull of the feasible region is full-dimensional.
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Example 7 Let N ∈ Z+ and consider the following second-order conic IP:

inf
x∈Z2
{x2 : (x1 − (1−N))2 + (x2 − 1/2)2 ≤ N2 + 1/4, (x1 −N)2 + (x2 − 1/2)2 ≤ N2 + 1/4}

= inf
x∈Z2

x2 :

1 0
0 1
0 0

[x1

x2

]
�L3

 1−N
1/2

−
√
N2 + 1/4

 ,
1 0

0 1
0 0

[x1

x2

]
�L3

 N
1/2

−
√
N2 + 1/4

 .

Since we have x̂ =
(

1
2 ,

1
2 −
√
N
)

and x∗ = (0, 0), the integrality gap, as a function of N , is computed as

IG(N) =
√
N − 1

2 .

x1

x2

x1 = 1
2

x̂ =
(
1
2
, 1
2
−
√
N
)

x∗ = (0, 0)

Fig. 2 The feasible region of the continuous relaxation of the conic IP in Example 7. Note that the set of integer feasible points
is {(0, 0), (1, 0), (0, 1), (1, 1)}.

In addition to the ones discussed in this section, we have also constructed several examples in which a non-
simple second-order conic IP has a right-hand side dependent integrality gap (see Appendix A for details).

4 Proximity results for general convex IPs

4.1 Convex sets with full-dimensional recession cones

Our main result in this section is that if the recession cone of S is a full-dimensional convex cone, then
proximity and integrality gap bounds can be obtained for the convex IP (1) that are independent of the
optimal solution of the continuous relaxation (2). For this purpose, we first need a lemma that quantifies a
key parameter for a regular cone.

Lemma 2 Let K ⊆ Rn be a regular cone and define

ΨK,‖·‖ := max
d∈K

{
min
f∈K∗

{fT d : ‖f‖∗ = 1} : ‖d‖ = 1

}
,

where ‖x‖∗ = sup{xT y : ‖y‖ = 1} is the norm dual to ‖ · ‖. Then, the maximizer is attained at an interior
point d∗ of K, ΨK,‖·‖ > 0 and B(θd∗, r) ⊆ K for all θ ≥ r

ΨK,‖·‖
.

Proof In order prove the assertion of the proposition, we first let d ∈ int(K) such that ‖d‖ = 1 and show that
θd + rε ∈ K for every ε ∈ Rn such that ‖ε‖ = 1, where θ ≥ r/ψd with ψd := min{fT d : f ∈ K∗, ‖f‖∗ = 1}.
In fact, we have that

θd+ rε ∈ K ∀ε : ‖ε‖ = 1 ⇐⇒ fT (θd+ rε) ≥ 0 ∀ε : ‖ε‖ = 1,∀f ∈ K∗ : ‖f‖∗ = 1

⇐⇒ θfT d+ rmin{fT ε : ‖ε‖ = 1} ≥ 0 ∀f ∈ K∗ : ‖f‖∗ = 1

⇐⇒ θfT d− r ≥ 0 ∀f ∈ K∗ : ‖f‖∗ = 1 ⇐⇒ θ ≥ r

ψd
.

8



In the first line we use the fact that K = (K∗)∗ and in third line, we use the fact that min{fT ε : ‖ε‖ = 1} =
−‖f‖∗ = −1. Notice that ψd > 0 since d ∈ int(K) and f ∈ K∗.

On the other hand, if d ∈ ∂(K), then there exists f ∈ K∗ such that fT d = 0. In this case, the inner mini-
mization would give an optimal value of 0. Hence, we conclude that the optimizer of the outer maximization
should be in the interior of cone K.

Finally, we let ΨK,‖·‖ := max{ψd : d ∈ K, ‖d‖ = 1} > 0. ut

Theorem 2 Consider a convex set S and assume that its recession cone K := rec.cone(S) is regular. Let
x̂ ∈ S. Then, we have

Proxx̂(S) := min
x∈S∩Zn

‖x− x̂‖2 ≤
√
n

2

(
1

ΨK,‖·‖2
+ 1

)
.

Moreover, assuming that ẑ = infx∈S α
Tx is bounded below for α ∈ Rn, we have

IG(S) = min
x∈S∩Zn

αTx− ẑ ≤ ‖α‖2
√
n

2

(
1

ΨK,‖·‖2
+ 1

)
.

Proof The first statement directly follows as a consequence of Lemma 2 by choosing r =
√
n/2, and noting

that {x ∈ Zn : ‖x− (x̂+ θd∗)‖2 ≤
√
n/2} 6= ∅. For the second statement, we look at two cases:

If problem infx∈S α
Tx is solvable, then the upper bound on integrality gap is obtained as a direct conse-

quence of the upper bound on proximity due to the Cauchy-Schwarz inequality,

If problem infx∈S α
Tx is bounded below but not solvable, then we proceed as follows: Notice that for all

ε > 0, there exists x̂ε ∈ S such that αT x̂ε − ε ≤ ẑ, and there exists x′ε ∈ S ∩ Zn such that ‖x′ε − x̂ε‖2 ≤√
n

2

(
1

ΨK,‖·‖2
+ 1
)

, which implies that αT (x′ε − x̂ε) ≤ ‖α‖2
√
n

2

(
1

ΨK,‖·‖2
+ 1
)

. Therefore, we obtain that

IG(S) = inf
x∈S∩Zn

αTx− ẑ ≤ αTx′ε − ẑ ≤ ‖α‖2
√
n

2

(
1

ΨK,‖·‖2
+ 1

)
+ ε,

for all ε > 0. The result follows by letting ε→ 0+. ut

Note that the constant ΨK,‖·‖ only depends on K. In particular, for a conic set S(u) = {x ∈ Rn : Ax ≥K u}
whose recession cone is full-dimensional, this constant only depends on the matrix A and the cone K, and
not on the right-hand side u since rec.cone(Su) = {x ∈ Rn : Ax ≥K 0}.

4.2 Convex sets with recession cones that are not necessarily full-dimensional

As Example 4 shows, the integrality gap of a convex set could be infinite even if the recession cone is a
rational ray. Thus, in the case in which the recession cone is not full-dimensional, finding conditions for the
integrality gap to be finite is more complicated. In this section, we give sufficient conditions for the integrality
gap to be finite.

Theorem 3 Let α ∈ Zn and let S be a convex set such that its integer hull is the non-empty rational
polyhedron P = {x ∈ Rn : Ax ≤ b}. Assume that rec.cone(S) = {x ∈ Rn : Ax ≤ 0} and ϑ(S) > −∞, then

IG(S) ≤ n‖α‖1∆(1 + ‖b− b′‖∞),

where ∆ denote the largest absolute value of any determinant of a square submatrix of A and the vector
b′ < +∞ is defined for all i = 1, . . . ,m as:

b′i = sup{aTi x :x ∈ S},

where ai denotes the ith row of A.
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Proof Clearly, b′i < +∞ since rec.cone(S) = {x ∈ Rn : Ax ≤ 0}. Now, note that the polyhedron P ′ = {x ∈
Rn : Ax ≤ b′} satisfies P ⊆ S ⊆ P ′. Therefore, we have

IG(S) = inf{αTx :x ∈ P} − inf{αTx :x ∈ S} ≤ inf{αTx :x ∈ P} − inf{αTx :x ∈ P ′}
= (inf{αTx :x ∈ P ′ ∩ Zn} − inf{αTx :x ∈ P ′}) + (inf{αTx :x ∈ P} − inf{αTx :x ∈ P ′ ∩ Zn}).
≤ n‖α‖1∆+ (inf{αTx :x ∈ P} − inf{αTx :x ∈ P ′})
≤ n‖α‖1∆+ n‖α‖1∆‖b− b′‖∞ ≤ n‖α‖1∆(1 + ‖b− b′‖∞),

where line 3 follows from Theorem 1 and line 4 follows from Theorem 5 in [9]. ut

Sufficient and necessary conditions are given in [12] for a convex set S to satisfy the assumptions of
Theorem 3. In particular, the conditions are satisfied if rec.cone(S) is a rational polyhedron and inf{αTx :x ∈
S} = −∞ if and only if there exists r ∈ rec.cone(S) such that αT r < 0.

A convex set S ⊆ Rn is said to satisfy the ‘finiteness property’ if inf{αTx :x ∈ S} > −∞ if and only if
inf{αTx :x ∈ S ∩ Zn} > −∞. The following result is straightforward, and we omit its proof.

Theorem 4 S satisfy the ‘finiteness property’ if and only if IG(S) < +∞.

Conditions for a set to satisfy the finiteness property has been studied in [22,23,20]. In particular, if
S = P ∩X, where P is a Dirichlet convex set (see [22,20]), X is a convex set such that P ∩ int(X)∩Zn 6= ∅,
then S satisfy the ‘finiteness property’ (see [20]). Examples of Dirichlet convex sets are: bounded convex sets,
rational polyhedra, closed strictly convex sets, and closed convex sets whose recession cone are generated by
integral vectors.

We can use Theorems 2 and 4 to show that for certain conic sets the integrality gap is always finite except
if they are an irrational ray. We start with some definitions.

A generator for a pointed closed convex cone K ⊆ Rm is a bounded closed convex set G ⊆ Rm of
dimension dim(K)− 1 such that K = cone(G). We say that K is generated by G.

We need the following result, which is a restatement of Lemma 3.10 in [26].

Lemma 3 Let K ⊆ Rm be a regular cone that is generated by a closed strictly convex set and let S(u) =
{x ∈ Rn : Ax ≥K u}. Assume that lin.space(S(u)) = {0}. Then

(i) If u is not in the image space of A, then S(u) is a singleton or a full-dimensional strictly convex set.
(ii) If u is in the image space of A, then S(u) is a translated cone of dimension equal to d = dim({Ax ∈

K :x ∈ Rn}. Moreover, if d ≥ 2, then d = dim({Ax :x ∈ Rn} = n.

Corollary 1 Let K be a cone generated by a strictly convex set and consider the conic IP associated to
S(u) = {x ∈ Rn : Ax ≥K u}. Then, if S(u) is not an irrational ray, the conic IP has finite integrality gap.

Proof By Lemma 3, the set S(u) is either a singleton, a full-dimensional strictly convex set, a full-dimensional
cone or a ray (thus a rational polyhedron by assumption). If it is a full-dimensional cone, then by Theorem 2,
we obtain that the integrality gap is finite. In all the other cases, S(u) is a Dirichlet convex set, and hence,
by Theorem 4, we also conclude that the integrality gap is finite. ut

5 Structural results for simple second-order conic sets

In the rest of the paper, we will derive proximity results for simple second-order conic IPs. Such a set can
be written in its second-order cone representation (SOCr) form as

S = {x ∈ Rn : ‖Ax− b‖2 ≤ cTx− d}, (SOCr)

or equivalently,

S = {x ∈ Rn :xT (ATA− ccT )x− 2(AT b− cd)Tx+ bT b− d2 ≤ 0, cTx ≥ d}. (5)

It is well-known that the matrix ATA − ccT has at most one negative eigenvalue (see, for instance, [3,
4]). This motivates us to study the closely quadratic related set

Q = {x ∈ Rn : xTMx− 2βTx+ γ ≤ 0}, (Qr)
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where M is a matrix with at least n − 1 positive eigenvalues. We will refer to this set as the quadratic
representation (or Qr in short). A characterization of these sets has been given in [3,4]. We summarize their
results in Proposition 1 below.

If the smallest eigenvalue of M , denoted λn, is negative, and βTM−1β − γ ≤ 0, then the set Q is a
nonconvex quadratic set that can be represented as the union of two convex sets (see Proposition 1); we call
these sets branches of Q. In this case we are also interested in understanding sets of the form

H = {x ∈ Rn : xTMx− 2βTx+ γ ≤ 0, gTx ≥ h}, (Br)

where the linear constraint is such that the set H is a branch of Q; we will characterize such linear inequalities
later in Proposition 2.

5.1 Properties of set Q

In this section we will study properties of the quadratic set Q = {x ∈ Rn : xTMx − 2βTx + γ ≤ 0}, where
M ∈ Sn, β ∈ Rn and γ ∈ R.

5.1.1 Quadratic sets with at most one negative eigenvalue

In this section we assume that the eigenvalues of M are λ1 ≥ · · ·λn−1 > 0. And we let un denote the
eigenvector corresponding to the eigenvalue λn.

The following proposition provides a full characterization of quadratic sets with at most one negative
eigenvalue, which is of interest to our study.

Proposition 1 ([3,4]) The set Q is one of the following types:

– If λn > 0, we denote q∗ = βTM−1β − γ. Then Q is either a full-dimensional ellipsoid (q∗ > 0), a
singleton (q∗ = 0) or empty (q∗ < 0).

– If λn = 0 and the system Mx = β has no solution, then Q is a paraboloid. Otherwise, let x̂ such that
Mx̂ = β and denote q̂ = x̂TMx̂ − γ, then Q is either a cylinder with its center line through x̂ in the
direction of un (q̂ > 0), a line through x̂ in the direction of un (q̂ = 0) or empty (q̂ < 0).

– If λn < 0, we denote q∗ = βTM−1β − γ. Then Q is either a one-sheet hyperboloid (q∗ > 0), a translated
cone (q∗ = 0) or a two-sheet hyperboloid (q∗ < 0).

In this paper, we are interested in convex sets arising from a set of the form Q. In particular, we are not
concerned with one-sheet hyperboloids since they are nonconvex sets. In the case Q is the union two disjoint
convex sets (branches), they can be separated from each other with a linear inequality. The next proposition
provides the characterization of such linear inequalities.

Proposition 2 Assume λn < 0. Let q∗ = βTM−1β − γ ≤ 0, and let Q+ and Q− be the two branches of
Q. Denote H≥ = {x ∈ Q : gTx ≥ h} and H≤ = {x ∈ Q : gTx ≤ h} where g ∈ Rn \ {0} and h ∈ R. Let
h± = gTM−1β ±

√
(βTM−1β − γ)gTM−1g. Then, we have the following:

(i) If gTM−1g = 0, then for all ε > 0, we have that {x ∈ Q+ : |gT (x − M−1β)| = ε} 6= 0 and {x ∈
Q− : |gT (x −M−1β)| = ε} 6= 0. In particular, if Q is a two-sheet hyperbola (q∗ < 0), then g defines
asymptotes of Q+ and Q−.

(ii) If gTM−1g < 0, then either we have inf{gTx :x ∈ Q+} = h+ and sup{gTx :x ∈ Q−} = h− and
sup{gTx :x ∈ Q+} = − inf{gTx :x ∈ Q+} = +∞, or we have sup{gTx :x ∈ Q+} = h− and inf{gTx :x ∈
Q−} = h+ and sup{gTx :x ∈ Q−} = − inf{gTx :x ∈ Q−} = +∞. Moreover, whenever one of the
optimization problems considered is bounded, then there is a unique optimal solution.

(iii) If gTM−1g > 0, then sup{gTx :x ∈ Q+} = − inf{gTx :x ∈ Q+} = sup{gTx :x ∈ Q−} = − inf{gTx :x ∈
Q−} = +∞.

(iv) Let Q be a translated cone (q∗ = 0). Then
(a) H≥ ∩H≤ = {M−1β} if and only if gTM−1g < 0 and h = gTM−1β.
(b) The sets {x ∈ Q : gTx ≥ 0} and {x ∈ Q : gTx ≤ 0} are the two distinct branches of Q if and only if

gTM−1g < 0.
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(v) Let Q be a two-sheet hyperbola (q∗ < 0). Then
(a) H≥ ∩H≤ = ∅ if and only if gTM−1g < 0 and h ∈ (h−, h+) or gTM−1g = 0 and h = gTM−1β.
(b) The sets {x ∈ Q : gTx ≥ h1} and {x ∈ Q : gTx ≤ h2} are the two distinct branches of Q if and only if

gTM−1g ≤ 0 and h1, h2 ∈ [h−, h+] and h1 < h2.

Proof We start by proving the results for a special case.

Proof in the special case M = Ĩ and β = 0.

Let k ≤ 0 and define Qk = {x ∈ Rn :xT Ĩx ≤ k}, H≥k = {x ∈ Qk : gTx ≥ h} and H≤k = {x ∈
Qk : gTx ≤ h}. The two branches of Qk are in this case Q+

k = Qk ∩ Ln and Q−k = Qk ∩ −Ln. Note that
since Qk = −Qk, we obtain that Q−k = −Q+

k , inf{gTx :x ∈ Q+
k } = − sup{gTx :x ∈ Q−k } and sup{gTx :x ∈

Q+
k } = − inf{gTx :x ∈ Q−k }. With this in mind, we can prove the results for only one case, depending on

the branch considered and whether we are computing a supremum or an infimum; the proof for the other
case will be analogous. For instance, when assuming g ∈ ∂(Ln) ∪ ∂(−Ln) (that is, gT Ĩg = 0), we can first
prove the result for g ∈ ∂(Ln) and then prove the result for g ∈ ∂(−Ln) by following the argument used for
−g ∈ ∂(Ln).

(i) It suffices to show that if g ∈ ∂(Ln), then for all ε > 0, we have that {x ∈ Q+
k : gTx = ε} 6= 0.

Indeed, consider the point x(ε, λ) = ε g
gT g

+ λĨg. Then since gT Ĩg = 0, we obtain x(ε, λ)T Ĩx(ε, λ) =

(ε g
gT g

+λĨg)T Ĩ(ε g
gT g

+λĨg) = ε2 g
T Ĩg
gT g

+2λε g
T g
gT g

+λ2gT Ĩg = 2λε. Therefore, for λ ≤ k
2ε we have x(ε, λ) ∈ Qk.

On the other hand, observe that gTx(ε, λ) = gT (ε g
gT g

+ λĨg) = ε. Hence, {x ∈ Q+
k : gTx = ε} 6= 0.

(ii) It suffices to show that if g ∈ int(Ln), then inf{gTx :x ∈ Q+
k } = h+ =

√
kgT Ĩ−1g and sup{gTx :x ∈

Q+
k } = +∞. Since g ∈ int(Ln), then we have gTx > 0 for all nonzero x ∈ Q+

k ⊆ Ln. Therefore, since
rec.cone(Q+

k ) = Ln we obtain sup{gTx :x ∈ Q+
k } = +∞ and z∗ = inf{gTx :x ∈ Q+

k } > −∞ since gTx ≥
0 on Q+

k . Let δ > 0 and Qδk = {x ∈ Q+
k : gTx ≤ z∗ + δ}. Since rec.cone(Qδk) = {x ∈ Ln : gTx ≤ 0} = {0},

we obtain that the set Qδk is a compact convex set and therefore, inf{gTx :x ∈ Q+
k } is solvable. The

optimal solution x∗ is unique since Q+
k is either a pointed cone (Q+

k = Ln) or a strictly convex set. By

the first order optimality conditions, there exists λ ∈ R such that λg = Ĩx∗ and (x∗)T Ĩ(x∗) = k. Since

x∗ = λĨg, we obtain the following quadratic equation for λ: (λĨg)T Ĩ(λĨg) = k. Thus, λ = ±
√

k
gT Ĩ−1g

.

Since z∗ ≥ 0, we obtain that z∗ = gTx∗ = gT
(√

k
gT Ĩ−1g

Ĩg
)

=

√
kgT Ĩ−1g.

(iii) It suffices to show that if g /∈ Ln∪−Ln, then sup{gTx :x ∈ Q+
k } = − inf{gTx :x ∈ Q+

k } = +∞. Note that
f g /∈ Ln ∪ −Ln, since these cones are self-dual, there exist d, d′ ∈ Ln such that gT d < 0 and gT d′ > 0.
The results follows by noting that rec.cone(Q+

k ) = Ln, so the optimization problems have the directions
d, d′ as unboundedness certificates.

(iv) We start by proving the following:
Claim. The hyperplane gTx = h separates Q+

k and Q−k if and only if g ∈ Ln ∪ −Ln and

−
√
kgT Ĩ−1g ≤ h ≤

√
kgT Ĩ−1g.

Proof of the Claim. If the hyperplane separates Q+
k and Q−k , there are two cases, either H≥k ⊇

Q+
k and H≤k ⊇ Q

−
k or H≥k ⊇ Q

−
k and H≤k ⊇ Q

+
k . We will prove the claim for the first case, the proof

of the other case is analogous. Note that if H≥k ⊇ Q
+
k , then since the recession cone of Q+

k is Ln,
we must have Ln ⊆ {x ∈ Rn : gTx ≥ 0} and h ≤ inf{gTx :x ∈ Q+

k } (otherwise, gTx ≥ h cannot
be a valid inequality for Q+

k ). In particular, since Ln is self-dual, we obtain g ∈ Ln. Similarly,

if H≤k ⊇ Q
−
k , we must have −Ln ⊆ {x ∈ Rn : gTx ≤ 0} and h ≥ sup{gTx :x ∈ Q−k }. Since

sup{gTx :x ∈ Q−k } = − inf{−gTx :x ∈ Q−k } = − inf{gTx :x ∈ Q+
k }, by parts (i) and (ii), we

conclude −
√
kgT Ĩ−1g ≤ h ≤

√
kgT Ĩ−1g. Assume now that g ∈ Ln ∪ −Ln and −

√
kgT Ĩ−1g ≤

h ≤
√
kgT Ĩ−1g. We will show the case g ∈ Ln as the proof of the other case is analogous. If

g ∈ Ln, then by parts (i) and (ii), we conclude that inf{gTx :x ∈ Q+
k } =

√
kgT Ĩ−1g. Since

sup{gTx :x ∈ Q−k } = − inf{gTx :x ∈ Q+
k } = −

√
kgT Ĩ−1g, we obtain H≥k ⊇ Q

+
k and H≤k ⊇ Q

−
k .
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(a) We only prove part (iv.a) as part (iv.b) follows directly from it. We need to show that H≥0 ∩H
≤
0 = {0}

if and only if gT Ĩg < 0 and h = 0. We first assume that H≥0 ∩ H
≤
0 = {0}. Since H≥0 ∩ H

≤
0 = {x ∈

Q0 : gTx = h}, we must have h = 0. If g /∈ Ln∪−Ln, by part (iii) we obtain then sup{gTx :x ∈ Q+
0 } =

− inf{gTx :x ∈ Q+
0 } = +∞. Thus, there exists a point u ∈ Q+

0 = Ln, u 6= 0 such that gTu = 0,

so u ∈ H≥0 ∩ H
≤
0 , a contradiction. So we have that g ∈ Ln ∪ −Ln and thus gT Ĩg ≤ 0. If we have

that gT Ĩg = 0, then (Ĩg)T Ĩ(Ĩg) = 0, and thus Ĩg ∈ H≥0 ∩ H
≤
0 , a contradiction. We conclude that

gT Ĩg < 0 and h = 0. We assume now that gT Ĩg < 0 and h = 0. Then by the Claim, we obtain that
the hyperplane gTx = 0 separates Ln and −Ln. Now, since g ∈ int(Ln)∪ int(−Ln), the only solution

to the system gTx = 0 and gT Ĩg ≤ 0 is x = 0, so we conclude H≥0 ∩H
≤
0 = {0}.

(v) (a) We only prove part (v.a) as part (v.b) follows directly from it. We need to show that for k > 0

we have H≥k ∩ H
≤
k = ∅ if and only if gT Ĩg < 0 and h ∈ (h−, h+), where h± = ±

√
kgT Ĩ−1g or

gT Ĩg = 0 and h = 0. We first assume that H≥k ∩ H
≤
k = ∅. If g /∈ Ln ∪ −Ln, by part (iii) there exists

xh ∈ Q+
k ⊆ Qk such that gTxh = h, contradicting the fact that H≥k ∩H

≤
k = {x ∈ Qk : gTx = h} = ∅.

Hence, gT Ĩg ≤ 0. If gT Ĩg < 0, by part (ii), if h /∈ (h−, h+), then there exists xh ∈ Qk such that

gTxh = h, a contradiction with H≥k ∩ H
≤
k = ∅. If gT Ĩg = 0, then without loss of generality, we

have g ∈ ∂(Ln). So, by part (i), we have inf{gTx :x ∈ Q+
k } =

√
kgT Ĩ−1g = 0 and we conclude

that h = 0. We assume now that gT Ĩg < 0 and h ∈ (h−, h+). By the Claim, we obtain that the
hyperplane gTx = h separates Q+

k and Q−k . Without loss of generality, since h ∈ (h−, h+), we
may assume that Q+

k ⊆ {x ∈ Rn : gTx < h} and Q−k ⊆ {x ∈ Rn : gTx > h}. This implies that

H≥k = (Q+
k ) and H≤k = (Q−k ). Therefore, H≥k ∩ H

≤
k = Q+

k ∩ −Ln = Qk ∩ {0} = ∅ since k < 0.

Now we assume that gT Ĩg = 0 and h = 0. By the Claim, gTx = 0 separates Ln and −Ln. We may
assume that Ln ⊆ {x ∈ Rn : gTx ≥ 0} and −Ln ⊆ {x ∈ Rn : gTx ≤ 0}. Since 0 /∈ Qk, we obtain

Q+
k ⊆ {x ∈ Rn : gTx < 0} and Q−k ⊆ {x ∈ Rn : gTx > 0}, which as before implies that H≥k ∩H

≤
k = ∅.

Proof of the general case. Let us consider the eigenvalue decomposition of M = UΛUT . Notice that we
can write the matrix M as M = UΛ̃ĨΛ̃UT for a diagonal matrix Λ̃ with Λ̃ii =

√
λi for i = 1, . . . , n− 1 and

Λ̃nn =
√
−λn. We have

Q = {x ∈ Rn :xTMx− 2βTx+ γ ≤ 0}
= M−1β + {x ∈ Rn : (x+M−1β)TM(x+M−1β)− 2βT (x+M−1β) + γ ≤ 0}
= M−1β + {x ∈ Rn :xTMx ≤ βTM−1β − γ}
= M−1β + {x ∈ Rn :xTUΛ̃ĨΛ̃UTx ≤ βTM−1β − γ}
= M−1β + UΛ̃−1{x ∈ Rn :xT Ĩx ≤ βTM−1β − γ}.

Therefore, we conclude that x ∈ Q if and only if x̃ ∈ Qk, where x = M−1β +UΛ̃−1x̃ and k = βTM−1β − γ.
Notice that the inequality gTx ≥ h is equivalent to g̃T x̃ ≥ h̃ with g̃ = Λ̃−1UT g and h̃ = h − gTM−1β. As
a consequence, the general case is obtained from the special case by applying this mapping. For instance,
g̃T Ĩ g̃ < 0 and h̃ = 0 is equivalent to gTUΛ̃−1ĨΛ̃−1UT g < 0 and h − gTM−1β = 0 which is equivalent to
gTM−1g < 0 and h = gTM−1β. The other expressions are obtained in a similar manner. ut

We will now specialize the computation of the parameter ΨK,‖·‖ defined for regular cones in Lemma 2 to
the Lorentz cone in Lemma 4 and to a linear transformation of the Lorentz cone in Proposition 3.

Lemma 4 We have

ΨLn,‖·‖2 = max
d∈Ln

{
min
f∈Ln

{fT d : ‖f‖2 = 1} : ‖d‖2 = 1

}
= 1.

Moreover, the maximizer of the outer-problem is d∗ = en. In addition, given d = d∗, the minimizer of the
inner problem is f∗ = en.

Proof Due to Lemma 2, we know that the maximizer of the outer-problem is attained at an interior point d
of Ln (i.e., d̄T d̄ < d2

n). Given such d, the optimal solution f of the inner minimization is such that f̄ = −d̄
and fn = dn and we compute the objective function as fT d = −d̄T d̄ + d2

n. Finally, we can easily conclude
that the optimal solution of the outer-maximization is d∗ = en. ut
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Proposition 3 Assume that λn < 0. Let g be a nonzero rational n-vector such that gTM−1g < 0. Consider
the set K = {x ∈ Rn :xTMx ≤ 0, gTx ≥ 0}. Then, we have

ΨK,‖·‖2 = max
d∈K

{
min
f∈K∗

{fT d : ‖f‖2 = 1} : ‖d‖2 = 1

}
= − 1

λn
.

Proof Let us consider the eigenvalue decomposition of M = UΛUT . Notice that we can write the matrix M
as M = UΛ̃ĨΛ̃UT for a diagonal matrix Λ̃ with Λ̃ii =

√
λi for i = 1, . . . , n − 1 and Λ̃nn =

√
−λn. Then,

we apply the one-to-one transformation y := Λ̃UTx to obtain the set K̃ = {y ∈ Rn : yT Ĩy ≤ 0, g̃T y ≥ 0}
with g̃ := Λ̃−1UT g. It is easy to see that K̃ = Ln. Due to Lemma 4, we know that the maximizer of the
outer-problem and the minimizer of the inner-problem are both attained at en in the y-space, which is equal
to UΛ̃−1en = − un√

−λn
in the x-space. Computing the objective function gives us (− un√

−λn
)T (− un√

−λn
) = − 1

λn
,

as stated in the statement of the proposition. ut

5.1.2 Large balls contained in quadratic sets

We now show a nice property of unbounded quadratic sets that is crucial to obtain our main results. The
main part states that (unbounded) quadratic sets of the form Q that are defined by a matrix M whose largest
eigenvalue λ1 is positive contain arbitrarily large full-dimensional balls. We obtain this result by studying
the following optimization problem:

Γx0(M,β, γ, r) := min
w∈Rn

{‖w‖2 :φ(x0 + w + rv) ≤ 0 ∀v ∈ Rn : ‖v‖2 ≤ 1} , (6)

where φ(x) := xTMx − 2βTx + γ. In the proposition below we obtain upper bounds for the optimal value
of (6) and give some of its basic properties. We will use the following fact.

Fact 3 If Q = {x ∈ Rn : xTMx− 2βTx + γ ≤ 0} is a paraboloid (see its characterization in Proposition 1
below), then rec.cone(Q) = {x ∈ Rn :Mx = 0, βTx ≤ 0}. Moreover, rec.cone(Q) is the ray generated by un,
the eigenvector corresponding to the only nonpositive eigenvalue λn = 0 of M chosen such that βTun > 0.

Proposition 4 Consider the unbounded a point x0 ∈ Q and r > 0. Let λn ≤ 0 be the smallest eigenvalue
of M and un be the corresponding eigenvalue with βTun ≥ 0 and ‖un‖2 = 1. Assume that λ1 the largest
eigenvalue of M is positive. Then,

(i) Let λn = 0. Then, for all θ ≥ Θ0 := r2λ1+2r‖Mx0−β‖
2βTun

, we have that B(x0 + θun, r) ⊆ Q.

(ii) Let λn < 0. Then, for all θ ≥ Θ− :=
−(λnx

T
0 un−βTun+r|λn|)−

√
(λnxT

0 un−βTun+r|λn|)2−λn(r2λ1+2r‖Mx0−β‖2)

λn
,

we have that B(x0 + θun, r) ⊆ Q.
(iii) The optimization problem (6) is solvable.
(iv) By denoting an optimal solution of the optimization problem (6) as w∗, we have that B(x0 +w∗, r) ⊆ Q.

Proof By plugging in w = θun, we obtain that

φ(x0 + w + rv) = (x0 + w + rv)TM(x0 + w + rv)− 2βT (x0 + w + rv) + γ

= φ(x0) + wTMw + 2(Mx0 − β)Tw + r2vTMv + 2rvTM(x0 + w)− 2rβT v

≤ λnθ2 + 2λnθx
T
0 un − 2θβTun + r2λ1 + 2r‖Mx0 − β‖2 + 2r|λn|θ,

(7)

where we use the facts that x0 ∈ Q, uTnMun = λ1, Mun = λun, λ1 = max{vTMv : ‖v‖ ≤ 1} and
max{ωT v : ‖v‖ ≤ 1} = ‖ω‖2.

(i) Due to Fact 3, un ∈ rec.cone(Q), i.e., we have that Mun = 0 and βTun > 0. Then, from equation (7),
we obtain

φ(x0 + θun + rv) ≤ r2λ1 + 2r‖Mx0 − β‖2 − 2θβTun ≤ 0,

where the inequality follows from the lower bound on θ. The result follows since B(x0 + θun, r) ⊆ Q is
equivalent to φ(x0 + θun + rv) ≤ 0 for all v with ‖v‖ ≤ 1.
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(ii) Notice that the last line in equation (7) is a quadratic function in θ, whose largest root is exactly Θ− > 0.
Hence, we obtain φ(x0 +w+rv) ≤ 0 for θ ≥ Θ−. The result follows since B(x0 +θun, r) ⊆ Q is equivalent
to φ(x0 + θun + rv) ≤ 0 for all v with ‖v‖ ≤ 1.

(iii) Let ŵ be a feasible solution of problem (6), which exists due to Parts (i) and (ii). Then, by adding the
constraint ‖w‖2 ≤ ‖ŵ‖2, we can make the feasible region of problem (6) compact without changing its
optimal value. Since problem (6) reduces to the minimization of a continuous function over a compact
feasible region, the minimizer is attained.

(iv) Part (iv) directly follows from the definition of problem (6) and due to the fact that its minimizer exists.
ut

In the next result, we show that if Q is a paraboloid, then the optimization problem (6) can be solved
efficiently.

Proposition 5 If M is positive semidefinite, problem (6) can be solved in polynomial time.

Proof Due to equation (7), the condition φ(x0 + w + rv) ≤ 0 for all v such that ‖v‖2 ≤ 1 can be written
equivalently as

φ(x0) + wTMw + 2(Mx0 − β)Tw + π ≤ 0, (8)

where π ≥ maxv{r2vTMv + 2rvTM(x0 + w)− 2rβT v : vT v ≤ 1}. Notice that this problem has a quadratic
maximization objective subject to a single quadratic constraint. Due to the Inhomogeneous S-Lemma [5], its
semidefinite programming (SDP) relaxation is exact, hence, we obtain the following equivalent inequality:

π ≥ max
v,V

{
r2Tr(MV ) + 2rvT [M(x0 + w)− β] : Tr(V ) ≤ 1,

[
V v
vT 1

]
� 0

}
.

Passing to the dual problem, we obtain π ≥ minγ1,γ2{γ1 + γ2 : (9)}, where[
Iγ1

γ2

]
�
[

r2M rM(x0 + w − β)
r(x0 + w − β)TM 0

]
, γ1 ≥ 0. (9)

Finally, we can rewrite problem (6) as minw,π,γ1,γ2{‖w‖2 : π ≥ γ1 +γ2, (8), (9)}. Notice that this problem has
an `2-norm minimization objective subject to linear, convex quadratic and positive semidefinite constraints.
Therefore, it can be solved as an SDP, a problem known to be polynomially solvable [5]. ut

5.1.3 Inner-approximating a quadratic set by an ellipsoid

Lemma 5 Consider a point x̂ ∈ Q with d̂ := Mx̂ − β. Let D ∈ S++ such that D2 � M . Then, the set
defined as

Q̌ :=
{
x ∈ Rn :

∥∥∥Dx− (Dx̂−D−1d̂)
)∥∥∥

2
≤ ‖D−1d̂‖2

}
,

is an inner-approximation of Q, that is, Q̌ ⊆ Q.

Proof Notice that the set Q̌ can be written as

Q̌ =

{
x ∈ Rn :

[
Dx−

(
Dx̂−D−1d̂)

)]T [
Dx−

(
Dx̂−D−1d̂)

)]
≤ [D−1d̂]T [D−1d̂]

}
= {x ∈ Rn : xTD2x− 2xTD2x̂+ 2xT d̂+ x̂TD2x̂− 2x̂T d̂+ d̂TD−2d̂ ≤ d̂TD−2d̂}

= {x ∈ Rn : (x− x̂)TD2(x− x̂) + 2(x− x̂)T d̂ ≤ 0}.

In addition, we have

2(x− x̂)T d̂ = 2(x− x̂)T (Mx̂− β) = (−x̂TMx̂+ 2xTMx̂)− 2βTx+ (−x̂TMx̂+ 2βT x̂)

≥ −[(x− x̂)TM(x− x̂)− xTMx]− 2βTx+ γ = −(x− x̂)TM(x− x̂) + xTMx− 2βTx+ γ,

as d̂ = Mx̂− β and γ ≥ −x̂TMx̂+ 2βT x̂ (since x̂ ∈ Q). Then, we obtain that

Q̌ ⊆ Q̌′ :={x ∈ Rn : (x− x̂)TD2(x− x̂)− (x− x̂)TM(x− x̂) + xTMx− 2βTx+ γ ≤ 0}
={x ∈ Rn : (x− x̂)T (D2 −M)(x− x̂) + xTMx− 2βTx+ γ ≤ 0}.

Finally, since D2 �M , we have Q̌′ ⊆ Q, hence, we obtain Q̌ ⊆ Q. ut
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5.2 Translation between different set representations

We conclude this section by providing “translations” between different set representations. Our first result
shows that the linear inequality in (5) of an ellipsoid or a paraboloid can simply be omitted, hence, the SOCr
set, in fact, has a trivial Qr representation in these cases.

Lemma 6 Assume that S = {x ∈ Rn : ‖Ax−b‖2 ≤ cTx−d} is nonempty, ATA−ccT is positive semidefinite

and that

[
b
d

]
does not belong to the image space of

[
A
cT

]
. Then, we have

S = {x ∈ Rn :xT (ATA− ccT )x− 2(AT b− cd)Tx+ bT b− d2 ≤ 0}.

Proof Let Q = {x ∈ Rn :xT (ATA− ccT )x− 2(AT b− cd)Tx+ bT b− d2 ≤ 0}. Note that the set Q is convex
as its quadratic term is defined by a positive semidefinite matrix. Since S = {x ∈ Q : cTx ≥ d}, to prove the
lemma it suffices to show that cTx ≥ d is a valid inequality for Q. Assume for a contradiction that there
exists a point x̂ ∈ Q such that cT x̂ < d. Since S 6= ∅ and S ⊆ Q, by convexity of Q, we obtain that there
must exist x′ ∈ Q such that cTx′ = d. Note that x′ ∈ S since x′ ∈ Q and cTx′ ≥ d. We conclude that

‖Ax′ − b‖2 ≤ 0 = cTx′ − d, and therefore

[
A
cT

]
x′ =

[
b
d

]
, a contradiction. ut

The following fact states that an SOCr set can always be put in the Qr or Br forms.

Fact 4 Let S = {x ∈ Rn : ‖Ax− b‖2 ≤ cTx−d} be a set. Then, we can write S = {x ∈ Rn :xTMx−2βTx+
γ ≤ 0, gTx ≥ h}, where M = ATA− ccT , β = AT b− cd, γ = bT b− d2, g = c and h = d. Moreover, if M is
positive semidefinite, then gTx ≥ h is redundant due to Lemma 6.

The following fact states that an ellipsoid can always be put in the ellipsoid representation (Er) form
even if it is given in its SOCr form.

Fact 5 Let S = {x ∈ Rn : ‖Ax− b‖2 ≤ cTx− d} be a bounded set. Then, we can write

S = {x ∈ Rn : ‖Qx− p‖2 ≤ r}, (Er)

where Q is such that QTQ = ATA− ccT , p = Q−T (AT b− dc), and r2 = (AT b− dc)T (ATA− ccT )−1(AT b−
dc)− bT b+ d2.

The following fact states that an ellipsoid can always be put in the Er form even if it is given in its Qr
form.

Fact 6 Let S = {x ∈ Rn :xTMx − 2βTx + γ ≤ 0} be a bounded set. Then, we can write S = {x ∈
Rn : ‖Qx− p‖2 ≤ r}, where Q is such that QTQ = M , p = Q−Tβ, and r2 = pT p− γ.

Notice that Facts 5 and 6 are not applicable in the case of paraboloids and hyperboloids as the matrix
ATA− ccT is not positive definite in those cases.

6 Proximity results for simple second-order conic IPs

In this section, we will focus on the proximity analysis for simple second-order conic IPs. We do not analyze
directly a set of the form S = {x ∈ Rn : ‖Ax − b‖2 ≤ cTx − d} but choose the representation that is most
convenient for our purposes, namely we consider sets in Er and Qr form. The results for SOCr sets follow
from Section 5.2: If an ellipsoid is given in the SOCr or Qr form, we can first translate it to the Er form
using Facts 5 and 6, respectively. If a paraboloid, hyperboloid or translated cone is given in the SOCr form,
we can first translate it to the Qr form using Fact 4.

We propose two different approaches to obtain our proximity results: i) proximity-driven, ii) integrality
gap-driven.
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6.1 Proximity-driven approach

The main idea behind the proximity-driven approach is as follows: Suppose that x̂, a boundary point of
the continuous relaxation (potentially representing its optimal solution), is at hand. Then, we aim to find a
large-enough ellipsoid inside the feasible region of the continuous relaxation close to x̂ so that it contains an
integer point. This will lead to proximity bounds, using which we also derive integrality gap bounds.

6.1.1 Ellipsoid

Proposition 6 Consider an ellipsoid S = {x ∈ Rn : ‖Qx−p‖2 ≤ r} with Q ∈ Rm×n, rank(Q) = n, p ∈ Rm,
r > 0, and assume that S ∩ Zn 6= ∅. Let α ∈ Rn. Suppose that a point x̂ ∈ ∂S is given. Then,

Proxx̂(Q, p, r) = min
x∈S∩Zn

‖x− x̂‖2 ≤ 2‖Q(QTQ)−1‖2µ(Q).

Moreover, we have

IG(Q, p, r) = min
x∈S∩Zn

αTx−min
x∈S

αTx ≤ 2‖Q(QTQ)−1‖2‖α‖2µ(Q).

Proof Let us fix the notation and establish some facts used in the proof. Firstly, let x̌ ∈ S ∩ Zn. Secondly,
since Q ∈ Rm×n and rank(Q) = n, the matrix (QTQ)−1 exists. Thirdly, due to the definition of covering
radius (see Fact 2), there exists µ(Q) such that for all x ∈ Rn, there exists x′ ∈ Zn with ‖Qx−Qx′‖2 ≤ µ(Q).

The remainder of the proof is divided into two cases:

Case 1: r ≤ µ(Q). Then,

Proxx̂(Q, p, r) = min
x∈S∩Zn

‖x− x̂‖2 ≤ ‖x̌− x̂‖2 = ‖(QTQ)−1(QTQ)(x̌− x̂)‖2 = ‖(QTQ)−1QT (Qx̌−Qx̂)‖2

≤ ‖Q(QTQ)−1‖2‖(Qx̌− p)− (Qx̂− p)‖2 ≤ ‖Q(QTQ)−1‖2(r + r) ≤ 2‖Q(QTQ)−1‖2µ(Q),

where the first inequality follows since x̌ ∈ S ∩ Zn.

Case 2: r > µ(Q). In this case, we first choose x̃ ∈ Rn such that Qx̃ ∈ [p,Qx̂] and ‖(Qx̃− p)− (Qx̂− p)‖2 =
µ(Q). Note that x̃ ∈ S. Also, we have that there exists x′ ∈ Zn such that ‖Qx′ −Qx̃‖2 ≤ µ(Q). Then,

Proxx̂(Q, p, r) = min
x∈S∩Zn

‖x− x̂‖2 ≤ ‖x′ − x̂‖2 = ‖(QTQ)−1(QTQ)(x′ − x̂)‖2 = ‖(QTQ)−1QT (Qx′ −Qx̂)‖2

= ‖(QTQ)−1QT [(Qx′ − p)− (Qx̃− p) + (Qx̃−Qx̂)]‖2
= ‖Q(QTQ)−1‖2(‖(Qx′ − p)− (Qx̃− p)‖2 + ‖(Qx̃−Qx̂)‖2) ≤ 2‖Q(QTQ)−1‖2µ(Q),

where the first inequality follows since x′ ∈ S ∩ Zn. In both cases, we conclude that Proxx̂(Q, p, r) ≤
2‖Q(QTQ)−1‖2µ(Q).

Finally, the upper bound on integrality gap is obtained as a direct consequence of the upper bound on
proximity assuming that x̂ is the optimal solution of the continuous relaxation. ut

We remark that upper bounds on proximity and integrality gap derived above are independent of p, r and x̂

Under the same setting as in Proposition 6, it turns out that the bound on the integrality gap can be
improved to 2‖Q(QTQ)−1α‖2µ(Q). We formalize this fact in Proposition 7, whose proof is omitted here and
given in Appendix B instead, due to its similarity to the proof of Proposition 6.

Proposition 7 Assume that the assumptions of Proposition 6 hold true. Then,

IG(Q, p, r) = min
x∈S∩Zn

αTx−min
x∈S

αTx ≤ 2‖Q(QTQ)−1α‖2µ(Q).
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6.1.2 Paraboloid

Proposition 8 Consider a paraboloid S = {x ∈ Rn :xTMx− 2βTx+ γ ≤ 0} with M ∈ Sn+, β ∈ Rn, γ ∈ R.
Assume that S ∩ Zn 6= ∅ and let x̂ ∈ ∂S. Then,

Proxx̂(M,β, γ) = min
x∈S∩Zn

‖x− x̂‖2 ≤
√
n

2
+ Γx̂

(
M,β, γ,

√
n

2

)
,

where Γ is defined as in (6). Moreover, assuming that problem min{αTx : x ∈ S} > −∞ with its unique
minimizer x̂, we have

IG(M,β, γ) = min
x∈S∩Zn

αTx−min
x∈S

αTx ≤ ‖α‖2
[√

n

2
+ Γx̂

(
M,β, γ,

√
n

2

)]
.

Proof The proximity result follows directly from Proposition 4-(iv) with x0 = x̂ and r =
√
n

2 , and the
integrality gap result is a consequence of the proximity result. ut

Recall that the calculation of the parameter Γ requires solving an SDP as mentioned in the proof of Propo-
sition 5. It can be replaced by a closed-form but weaker bound stated in Proposition 4-(i).

We remark that Proposition 8 implies that the upper bounds on both proximity and integrality gap depend
on all problem parameters. However, under some special conditions, we can eliminate the dependence on all
problem parameters, except the dimension, as stated in the next proposition.

Proposition 9 Assume that the conditions of Proposition 8 hold. Let λ1 be the largest eigenvalue of M and
let un be the nonzero element of rec.cone(S) with ‖un‖2 = 1 (see Fact 3). Then, for any x̌ ∈ ∂S, we have

‖Mx̌− β‖2 ≥ λ1

√
n

2
=⇒ Proxx̌(M,β, γ) = min

x∈S∩Zn
‖x− x̌‖2 ≤

√
n.

Moreover, assuming that α ∈ Rn with uTnα > 0, for x̂ we have

uTnα

‖α‖2
≤ uTnβ

λ1

√
n

2

⇔ ‖Mx̌− β‖2 ≥ λ1

√
n

2
.

As a consequence, we obtain IG(M,β, γ) = minx∈S∩Zn αTx−minx∈S α
Tx ≤ ‖α‖2

√
n.

Proof Let ď := Mx̌−β. Consider the set Š = {x ∈ Rn : xTMx−2βTx+γ+ (x− x̌)T (λ1I−M)(x− x̌) ≤ 0}.
Due to Lemma 5 with D =

√
λ1I, we have that

S ⊇ Š =

{
x ∈ Rn :

∥∥∥∥x− (x̌− ď

λ1

)∥∥∥∥
2

≤ ‖ď‖2
λ1

}
.

Now, consider problem (6). Since x̌ ∈ ∂S, we must have that Γx̌(M,β, γ,
√
n/2) ≥

√
n/2. Notice that

w = x̌ − ď
λ1

is a feasible solution with an objective function of
√
n/2. Therefore, it must be an optimal

solution as well. Hence, we conclude that the proximity result follows.
We will now prove the integrality gap result. Let d̂ := Mx̂−β. Note that we have Mun = 0 and βTun > 0.

Since uTnα > 0, the problem minx∈S α
Tx is solvable. By the optimality condition, we must have that d̂ = φα

for some φ < 0. Now, notice that we have

uTn d̂ := uTnM︸ ︷︷ ︸
=0

x̂− uTnβ = φuTnα =⇒ φ = −u
T
nβ

uTnα
.

Therefore, we have d̂ = −uT β
uTα

α. By taking norm on both sides, we obtain that ‖d̂‖2 =
uT
nβ
uT
nα
‖α‖2 and thus the

equivalence of the inequalities follow. The condition stated in the proposition guarantees that there exists
x′ ∈ S ∩ Zn such that ‖x̂− x′‖2 ≤

√
n. Finally, the integrality gap result follows. ut

Proposition 9 leads to two interesting observations: i) if the norm of the tangent is “large” at a boundary
point for a quadratic set, then there exists a close by integer point and proximity is independent of the
problem parameters, ii) if the angle between the objective vector and the recession cone is “large” for a
parabola, then the norm of the tangent of the optimizer is “large” so that the integrality gap is independent
of all the problem parameters.
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6.1.3 Hyperboloid and translated cone

The following result is a consequence of Theorem 2 and Proposition 3.

Proposition 10 Consider the set S = {x ∈ Rn :xTMx − 2βTx + γ ≤ 0, gTx ≥ h} with M ∈ Sn, β ∈ Rn,
γ ∈ R, h ∈ Rn, g ∈ R and assume that it is one branch of a two-sheet hyperboloid or a translated cone.
Assume that S ∩ Zn 6= ∅ and let x̂ ∈ ∂S. Then,

Proxx̂(M,β, γ) = min
x∈S∩Zn

‖x− x̂‖2 ≤
√
n

2
(1− λn(M)).

Moreover, assuming that the problem ẑ := infx∈S α
Tx is bounded below for α ∈ Rn, we have

IG(M,β, γ) = inf
x∈S∩Zn

αTx− ẑ ≤ ‖α‖2
√
n

2
(1− λn(M)).

Proof Due to Proposition 3, we have that ΨK,‖·‖2 = − 1
λn(M) , where K = rec.cone(S) = {x : xTMx ≤

0, βTx ≥ 0}. Then, the results follow due to Theorem 2. ut

The following result is similar to the proximity result stated in Proposition 9, hence, its proof is omitted.

Proposition 11 Assume that the conditions of Proposition 10 hold. Let λ1 be the largest eigenvalue of M .
Then, for any x̌ ∈ ∂S, we have

‖Mx̌− β‖2 ≥ λ1

√
n

2
=⇒ Proxx̌(M,β, γ) = min

x∈S∩Zn
‖x− x̌‖2 ≤

√
n.

We remark that upper bounds on proximity and integrality gap derived above are independent of β, γ, g
and h.

6.2 Integrality gap driven approach

For i = 1, . . . , n, we denote ei the ith vector in the canonical basis of Rn, that is, ei is the vector with a
1 in the ith component and zeros otherwise. Let U be an unimodular n × n matrix such that UTα = en.
Then for any set S ⊆ Rn we have inf{αTx :x ∈ S} = inf{xn :x ∈ US}. Since U is unimodular, inf{αTx :x ∈
S ∩ Zn} = inf{xn :x ∈ US ∩ Zn}, and thus and we obtain IG(S) = IG(US). For simplicity, in this section
we will assume that α = en, which can be done without loss of generality by the previous discussion.

In this section, we want to find an upper bound for IG(S), consequently, the main goal is to find a vector
z ∈ S ∩Zn such that zn− inf{xn :x ∈ S} is as small as possible, as IG(S) ≤ zn− inf{xn :x ∈ S}. Note that
the integral vector z maybe be far away from the set of optimal solutions to the continuous relaxation, and
thus the bound on proximity given by z, in terms of distance between optimal solutions to the integer and
continuous optimization problem, could be very large.

Throughout this section, unless explicitly noted, we will assume the following:

Assumption 2

– M is an n× n matrix with at least n− 1 positive eigenvalues, β ∈ Rn and γ ∈ R.
– The quadratic set Q = {x ∈ Rn : xTMx−2βTx+γ ≤ 0} is not a one-sheet hyperboloid (see Proposition 1

for a characterization of all possible cases for the set Q).
– The convex set S we study in this section is S = Q (if M is positive semidefinite) or S is a branch of

the nonconvex set Q (if M has a negative eigenvalue).
– S 6= ∅ and inf{xn :x ∈ S} > −∞.

The bounds we obtain depend on whether the continuous relaxation has a unique optimal solution or not.
We will present our results for these two cases next.
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6.2.1 The continuous relaxation has a unique optimal solution

Unless explicitly noted, in this section we assume the following:

Assumption 3 The optimization problem δinf = inf{xn :x ∈ S} has a unique optimal solution. In other
words, by Proposition 2 either S is a strictly convex set and xn = δinf does not define an asymptote for S,
or S is a translated cone and {x ∈ Rn :xn = δinf} only intersects the apex of S.

We denote δinf = inf{xn :x ∈ S} and δsup = sup{xn :x ∈ S} and for any δ ∈ R, we let Sδ = {x ∈ S :xn =
δ}. The following straightforward result implies that Sδ is a branch of the quadratic set Qδ in the hyperplane
defined by xn = δ.

Lemma 7 If Q is a quadratic set (not necessarily satisfying Assumption 3), then the set Qδ = {x ∈ Q :xn =
δ} is the following quadratic set in the hyperplane H = {x ∈ Rn :xn = δ}: Qδ = {(x̄, xn) ∈ Rn−1×R : x̄T M̄x̄+
2(δaT − β̄T )x̄+ (a0δ

2 − 2βnδ + γ) ≤ 0, xn = δ}.

The main idea of the approach is as follows (see Figure 3 for an illustration): we will show in Proposition 12
that under Assumptions 2 and 3 , the set Sδ is an ellipsoid. Then we will find the smallest integer δ∗ such that
the radius Sδ∗ is large enough so that this ellipsoid contains an n−1 dimensional integral vector (we will use
Fact 2 on the covering radius of a lattice). Then we will obtain the following upper bound: IG(S) ≤ δ∗−δinf .

x̂

Sδ∗ xn = δ∗

xn = δinf

Fig. 3 The main idea behind the IG-driven approach.

The following lemma is crucial to obtain our results.

Lemma 8 Let the matrix M be decomposed as M =

[
M̄ a
aT a0

]
. If δinf = inf{xn :x ∈ S} > −∞ and the

associated optimization problem has a unique optimal solution, then

(i) S = {x ∈ Rn :xTMx− 2βTx+ γ ≤ 0, xn ≥ δinf}.
(ii) M̄ is positive definite. As a consequence, det(M) = det(M̄)(a0 − aT M̄−1a).

Proof

(i) If Q = {x ∈ Rn :xTMx− 2βTx+ γ ≤ 0} is an ellipsoid or a paraboloid, then Q is a convex set and there
is nothing to show. If Q is a translated cone or an hyperboloid, then the result follows from Proposition 2.

(ii) We will prove the statement via a case-by-case analysis by using the Schur’s complement of the given
block decomposition of M .
Case 1: Assume M has a zero eigenvalue. First observe that by Sylvester’s criterion, we have a0 ≥ 0.
If a = 0 and a0 = 0, then by the block decomposition of M , we obtain that M̄ must have n − 1
positive eigenvalues, which implies M̄ is positive definite. Assume now that a 6= 0. Then we can compute
f(x) := xTMx = x̄T M̄x̄ + 2aT x̄xn + a0x

2
n. It follows that if a0 = 0 then for large enough λ ≥ 0

x̂ = (a,−λ) satisfies f(x̂) = aT M̄a − 2aTaλ < 0, a contradiction with M being positive semidefinite.
Therefore, a0 > 0, and hence for a fix x̄ ∈ Rn−1 we can minimize f(x̄, xn) as a function of xn. For

the minimizer x∗n, we obtain f(x̄, x∗n) = x̄T M̄x̄ − x̄T aaT x̄
a0

. Since M is positive semidefinite, we have

f(x̄, x∗n) ≥ 0 for all x̄ ∈ Rn−1. Which is equivalent to the matrix M̄ − aaT being positive semidefinite.
Since a 6= 0, we must have M̄ is positive definite.
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The final subcase is that a = 0 and a0 > 0. Notice that x ∈ S is equivalent to 0 ≥ xTMx− 2βTx+ γ =
a0x

2
n − 2βnxn + x̄T M̄x̄ − 2β̄T x̄ + γ. Due to Assumption 1 and Proposition 1, the system Mx = β does

not have a solution, meaning that the system M̄x̄ = β̄ does not have a solution. This implies that there

exists M̄x̄ = 0 and β̄T x̄ > 0. Finally, notice that for any xn ∈ R, there exists λ =
a0x

2
n−2βnxn+γ

β̄T x̄
such that

(λx̄, xn) ∈ S. This implies that the problem inf{xn :x ∈ S} is unbounded below, which is a contradiction.
Case 2: M has n positive eigenvalues. By the Eigenvalue Interlacing Theorem, all eigenvalues of M̄ must
be positive, and therefore, M̄ is positive definite.
Case 3: M has a negative eigenvalue. Firstly, notice that since M is invertible, we obtain

M−1 =
1

aT M̄−1a− a0

[
(aT M̄−1a− a0)M̄−1 − M̄−1aaT M̄−1 M̄−1a

aT M̄−1 −1

]
.

Since δinf > −∞ and the associated optimization problem is solvable, then by parts (i)-(iii) of Propo-
sition 2, we must have eTnM

−1en < 0, equivalently a0 − aT M̄−1a < 0. Since det(M) is the prod-
uct of the eigenvalues of M we must have det(M) < 0. On the other hand, by the Eigenvalue In-
terlacing Theorem, M̄ has at most one negative eigenvalue. Now since a0 − aT M̄−1a < 0, we have
det(M) = (a0 − aT M̄−1a) det(M̄). Therefore, we conclude that det(M̄) > 0, and thus all eigenvalues of
M̄ are positive. Hence, M̄ is positive definite.
The final assertion of the lemma follows from a property of Schur’s complement.

ut

In the next result we show that Sδ is an ellipsoid, and in particular, we find an expression for the square
of its radius.

Proposition 12 For any δ ∈ [δinf , δsup] with δ ∈ R, the set Sδ = {x ∈ S :xn = δ} can be written as
Sδ = Eδ × {δ}, where Eδ = {x ∈ Rn−1 : ‖Q̄x − p(δ)‖2 ≤ rE(δ)} is a nonempty ellipsoid defined by the
following parameters:

– An invertible matrix Q̄ such that M̄ = Q̄T Q̄.
– r2
E(δ) = q2δ

2 + q1δ + q0, where q2 = aT M̄−1a− a0, q1 = 2(βn − β̄T M̄−1a) and q0 = β̄T M̄−1β̄ − γ.
– p(δ) = −Q̄−1(δa− β̄).

Proof First, observe that Assumption 3 implies that Sδinf is a singleton, hence a compact set. Since the
recession cone of the convex set Sδ is independent of δ ∈ [δinf , δsup], as δ only affects the right-hand side of
the equality xn = δ in the definition of Sδ, we obtain that Sδ is a nonempty bounded set.

On the other hand, by Lemmas 7 and 8, Qδ = Sδ and there exists an invertible matrix Q̄ such that
M̄ = Q̄T Q̄. Therefore, we obtain

Sδ = {(x̄, xn) ∈ Rn−1 × R : x̄T Q̄T Q̄x̄+ 2(δaT − β̄T )Q̄−1Q̄x̄+ (a0δ
2 − 2βnδ + γ) ≤ 0, xn = δ}

= {(x̄, xn) ∈ Rn−1 × R : x̄T Q̄T Q̄x̄+ 2[Q̄−1(δa− β̄)]T Q̄x̄+ (a0δ
2 − 2βnδ + γ) ≤ 0, xn = δ}

= {(x̄, xn) ∈ Rn−1 × R : [Q̄x̄+ Q̄−1(δa− β̄)]T [Q̄x̄+ Q̄−1(δa− β̄)] + (a0δ
2 − 2βnδ + γ)− [Q̄−1(δa− β̄)]T Q̄−1(δa− β̄) ≤ 0, xn = δ}

= {(x̄, xn) ∈ Rn−1 × R : ‖Q̄x̄+ Q̄−1(δa− β̄)‖2 ≤ (δa− β̄)T Q̄−T Q̄−1(δa− β̄)− (a0δ
2 − 2βnδ + γ), xn = δ} = Eδ × {δ},

where Eδ = {x̄ ∈ Rn−1 : ‖Q̄x̄+ Q̄−1(δa− β̄)‖2 ≤ (δa− β̄)T Q̄−T Q̄−1(δa− β̄)− (a0δ
2 − 2βnδ + γ)}.

Since Sδ is a nonempty bounded set it follows that Eδ is a nonempty bounded set, and therefore we
obtain that Eδ is a nonempty ellipsoid. Moreover, by Fact 6, we obtain the square of the radius of Eδ as
r2
E(δ) = (δa−β̄)T M̄−1(δa−β̄)−(a0δ

2−2βnδ+γ) = (aT M̄−1a−a0)δ2 +2(βn−β̄T M̄−1a)δ+(β̄T M̄−1β̄−γ) =
q2δ

2 + q1δ + q0, and the center of Eδ as p(δ) = −Q̄−1(δa− β̄). ut

For the quadratic function r2
E(δ) = q2δ

2 + q1δ + q0, we have that the solutions to the equation r2
E(δ) = υ

for any υ ∈ R with q2
1 − 4q2(q0 − υ) ≥ 0 are given by δυ1,2 =

−q1±
√
q21−4q2(q0−υ)

2q2
, where we will assume that

δυ1 ≤ δυ2 . We use these facts in the proofs below without explicitly referring to them.
The bounds for the integrality gap when S is an ellipsoid are given in the following proposition.

Proposition 13 Let S := {x ∈ Rn : xTMx− 2βTx+ γ ≤ 0} be an ellipsoid. Then
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(i) If r2
E(−q1/2q2) =

q21−4q2q0
−4q2

< µ(Q̄)2 − q2/4, then

IG(S) ≤
√
q2
1 − 4q2q0

−q2
≤ 2

√
µ(Q̄)2

−q2
+

1

4
.

(ii) If r2
E(−q1/2q2) =

q21−4q2q0
−4q2

≥ µ(Q̄)2 − q2/4, then

IG(S) ≤

⌈
−q1 +

√
q2
1 − 4q2(q0 − µ(Q̄)2)

2q2

⌉
− −q1 +

√
q2
1 − 4q2q0

2q2
≤ µ(Q̄)√

−q2
+ 1.

Proof Since Sδ = {x ∈ S :xn = δ} 6= ∅ for any δ ∈ [δinf , δsup], by Proposition 12, we can write Sδ = Eδ × {δ}
and the square of the radius of the ellipsoid Eδ is given by r2

E(δ) = q2δ
2 + q1δ + q0. Moreover, since the

matrices M and M̄ are positive definite (by Lemma 8) and det(M) = det(M̄)(−q2), we obtain that q2 < 0.
Also, note that δinf = δ0

1 ≤ δ0
2 = δsup since Sδinf and Sδsup are a singleton so the radii of the associated

ellipsoids Eδinf and Eδsup
are equal to zero.

(i) We assume that r2
E(−q1/2q2) =

q21−4q2q0
−4q2

< µ(Q̄)2 − q2/4, then

IG(S) ≤ δsup − δinf =

√
q2
1 − 4q2q0

−q2
≤
√
−4q2(µ(Q̄)2 − q2/4)

−q2
= 2

√
µ(Q̄)2

−q2
+

1

4
.

(ii) We assume that r2
E(−q1/2q2) =

q21−4q2q0
−4q2

≥ µ(Q̄)2 − q2/4. Let δ
µ(Q̄)
1 ≤ δ

µ(Q̄)
2 be such that r2

E(δ
µ(Q̄)
1 ) =

r2
E(δ

µ(Q̄)
2 ) = µ(Q̄)2, then we obtain

δ
µ(Q̄)
2 − δµ(Q̄)

1 =

√
q2
1 − 4q2(q0 − µ(Q̄)2)

−q2
≥
√
−4q2µ(Q̄)2 + q2

2 + 4q2µ(Q̄)2

−q2
= 1.

This implies that zn := dδµ(Q̄)
1 e ∈ [δ

µ(Q̄)
1 , δ

µ(Q̄)
2 ]. Therefore, since r2

E(·) is a concave parabola, we have
r2
E(zn) ≥ µ(Q̄)2 and thus by definition of µ(Q̄) (see Fact 2), there is a feasible solution z̄ ∈ Zn−1 in the n−1

dimensional ellipsoid Ezn . Since Szn = Ezn×{zn}, we obtain the feasible solution (z̄, zn) ∈ S ∩ (Zn−1×Z)

with objective function value zn = dδµ(Q̄)
1 e.

Therefore, we conclude

IG(S) ≤ dδµ(Q̄)
1 e − δinf =

⌈
−q1 +

√
q2
1 − 4q2(q0 − µ(Q̄)2)

2q2

⌉
− −q1 +

√
q2
1 − 4q2q0

2q2

≤
√
q2
1 − 4q2q0

−2q2
−
√
q2
1 − 4q2(q0 − µ(Q̄)2)

−2q2
+ 1 ≤

√
−4q2q0 + 4q2(q0 − µ(Q̄)2)

−2q2
+ 1

=

√
−4q2µ(Q̄)2

−2q2
+ 1 =

µ(Q̄)√
−q2

+ 1.

ut

In the following proposition we obtain the bounds for the integrality gap when S is a paraboloid.

Proposition 14 Let S := {x ∈ Rn : xTMx− 2βTx+ γ ≤ 0} be a paraboloid. Then,

IG(S) ≤
⌈
µ(Q̄)2 − q0

q1

⌉
− −q0

q1
≤ µ(Q̄)2

q1
+ 1. (10)

Proof Since S is a parabola and δinf > −∞, we conclude that δsup = +∞ for otherwise S does not contain
arbitrarily large balls and thus we obtain a contradiction to Proposition 4-(i). Therefore, we obtain that
Sδ = {x ∈ S :xn = δ} 6= ∅ for any δ ≥ inf{xn :x ∈ S}. Now by Proposition 12, we can write Sδ = Eδ × {δ}
and the square of the radius of the ellipsoid Eδ is given by r2

E(δ) = q2δ
2 +q1δ+q0. Moreover, since the matrix
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M is not invertible, M̄ is positive definite (by Lemma 8) and det(M) = det(M̄)(−q2), we obtain that q2 = 0,
so we have that the square of the radius is r2

E(δ) = q1δ + q0.
We show next that q1 = 2(βn − β̄T M̄−1a) > 0. By Fact 3, rec.cone(S) = {x ∈ Rn :Mx = 0, βTx ≥ 0}.

By using the block decomposition of M , the solution of the system Mx = 0 is the linear subspace generated
by the eigenvector un = (−M̄−1a, 1) associated to λn = 0. Now, since inf{xn :x ∈ S} > −∞, we must have
that eTnd ≥ 0 for all d ∈ rec.cone(S). Hence, we obtain rec.cone(S) = {λ(−M̄−1a, 1) :λ ≥ 0}. This implies
that βTunβn− β̄T M̄−1a ≥ 0. Moreover, since S is a paraboloid, the system Mx = β does not have a solution
(see Proposition 1), so we must have βTun = βn − β̄T M̄−1a > 0.

Now δinf = inf{xn :x ∈ S} satisfies r2
E(δinf) = 0 as Sδinf is a singleton, so the radius of the associated

ellipsoid Eδinf
is equal to zero. We then have δinf = −q0

q1
. Also, δµ(Q̄) = µ(Q̄)2−q0

q1
is such that r2

E(δ
µ(Q̄)) = µ(Q̄)2

and δµ(Q̄) ≥ δinf as r2
E(·) is an increasing function (q1 > 0).

We have zn := dδµ(Q̄)e ≥ δµ(Q̄). Therefore, since r2
E(·) is an increasing function, we have r2

E(zn) ≥ µ(Q̄)2

and thus by definition of µ(Q̄) (see Fact 2), there is a feasible solution z̄ ∈ Zn−1 in the n − 1 dimensional
ellipsoid Ezn . Since Szn = Ezn ×{zn}, we obtain the feasible solution (z̄, zn) ∈ S ∩ (Zn−1×Z) with objective
function value zn = dδµ(Q̄)e.

Therefore, we conclude

IG ≤ dδµ(Q̄)e − δinf =

⌈
µ(Q̄)2 − q0

q1

⌉
− −q0

q1
≤
(
µ(Q̄)2 − q0

q1
+ 1

)
− −q0

q1
=
µ(Q̄)2

q1
+ 1.

ut

Remark 3 We note that the bound in Proposition 14 is tight for Example 5 under the choices of parameters

given in (4). In fact, our bound in (10) is (1/2)2

1/(4N) + 1 = N + 1, which converges to the actual integrality gap

of IG = N + 5/(16N)− 1/2 for large N .

The bounds for the integrality gap when S is an hyperboloid or translated cone are given in the following
proposition.

Proposition 15 Let S := {x ∈ Rn : xTMx − 2βTx + γ ≤ 0, xn ≥ δinf} be one branch of a two-sheet
hyperboloid or a translated cone. Then,

IG(S) ≤

⌈
−q1 +

√
q2
1 − 4q2(q0 − µ(Q̄)2)

2q2

⌉
− −q1 +

√
q2
1 − 4q2q0

2q2
≤ µ(Q̄)
√
q2

+ 1.

Proof Since M is not positive definite, we conclude that δsup = +∞ for otherwise S does not contain
arbitrarily large balls and thus we obtain a contradiction to Proposition 4-(iv). Therefore, we obtain that
Sδ = {x ∈ S :xn = δ} 6= ∅ for any δ ≥ δinf . Now by Proposition 12, we can write Sδ = Eδ × {δ} and the
square of the radius of the ellipsoid Eδ is given by r2

E(δ) = q2δ
2 + q1δ + q0. Moreover, since the matrix M is

not positive definite and the matrix M̄ is positive definite (by Lemma 8), by Sylvester’s criterion we must
have that det(M) < 0. Since det(M) = det(M̄)(−q2), we obtain that q2 > 0.

Now δinf satisfies r2
E(δinf) = 0 as Sδinf

is a singleton, so the radius of the associated ellipsoid Eδinf is equal

to zero. By Proposition 2, since δinf > −∞ and δsup = +∞, we obtain δinf =
−q1+
√
q21−4q2q0

2q2
(the largest

root of r2
E(δinf) = 0 since the function r2

E(·) must be increasing for δ ≥ δinf).

Let δ
µ(Q̄)
1 ≤ δµ(Q̄)

2 be such that r2
E(δ

µ(Q̄)
1 ) = r2

E(δ
µ(Q̄)
2 ) = µ(Q̄)2. In particular, δ

µ(Q̄)
2 =

−q1+
√
q21−4q2(q0−µ(Q̄)2)

2q2

and therefore δ
µ(Q̄)
2 > δinf . We have zn := dδµ(Q̄)

2 e ≥ δ
µ(Q̄)
2 . Therefore, since r2

E(·) is an increasing function
for δ ≥ δinf , we have r2

E(zn) ≥ µ(Q̄)2 and thus, by definition of µ(Q̄) (see Fact 2), there is a feasible solution
z̄ ∈ Zn−1 in the n − 1 dimensional ellipsoid Ezn . Since Szn = Ezn × {zn}, we obtain the feasible solution

(z̄, zn) ∈ S ∩ (Zn−1 × Z) with objective function value zn = dδµ(Q̄)
2 e.

Therefore, we conclude

IG(S) ≤ dδµ(Q̄)
2 e − δinf =

⌈
−q1 +

√
q2
1 − 4q2(q0 − µ(Q̄)2)

2q2

⌉
− −q1 +

√
q2
1 − 4q2q0

2q2
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≤

(√
q2
1 − 4q2(q0 − µ(Q̄)2)

2q2
+ 1

)
−
√
q2
1 − 4q2q0

2q2
≤
√

4q2µ(Q̄)2

2q2
+ 1 =

µ(Q̄)
√
q2

+ 1.

ut

Remark 4 Note that in Propositions 13, 14 and 15 we give two different bounds for the integrality gap, one
weaker than the other. The stronger bound always depend on the parameters M , β and γ since the bounds
depend on q0, q1, q2 and Q̄. In the case of ellipsoids, hyperboloids and translated cones, the weaker bound
depends only on q2 and Q̄ and thus by Fact 4, the integrality gap of the set S = {x ∈ Rn : ‖Ax−b‖2 ≤ cTx−d}
does not depend on the right-hand side u = (b, d). This is not the case of paraboloids as the weaker bound
depends on q1 and Q̄.

6.2.2 The continuous relaxation has multiple optimal solutions or it is not solvable

We show next that under the assumptions in this section, the integrality gap is always bounded by 1, and
thus it is independent of the data of the problem.

Proposition 16 Let S = {x ∈ Rn : xTMx − 2βTx + γ ≤ 0, xn ≥ δinf} be one branch of a two-sheet
hyperboloid or a translated cone. Assume that δinf > −∞ but that the optimization problem has multiple
optimal solutions or it is not solvable. Then IG(S) ≤ 1.

Proof Consider the set Sdδinfe = {x ∈ S :xn = dδinfe}. We will show that Sdδinfe ∩ Zn 6= ∅. Since δinf > −∞,
by Proposition 2 we obtain that if S is an hyperboloid, then xn = δinf defines an asymptote of S, and if S is
a translated cone then xn = δinf intersects S in a ray. Therefore, the set Sdδinfe must be unbounded. Thus,
by Lemma 7, we obtain that Sdδinfe is an unbounded quadratic set in the hyperplane {x ∈ Rn :xn = dδinfe}.
By Proposition 4-(iv), we obtain that Sdδinfe contains n − 1 dimensional balls of arbitrarily large radius
in the hyperplane {x ∈ Rn :xn = dδinfe}. This implies that Sdδinfe ∩ (Zn−1 × {dδinfe}) 6= ∅. Therefore,
inf{xn :x ∈ S ∩ Zn} ≤ dδinfe. We conclude that IG(S) ≤ dδinfe − δinf ≤ 1. ut

6.3 Comparison of bounds and tightness for the ellipsoid case

We use Examples 8 and 9 to compare the bounds from Propositions 7 and 13 when the convex set S is an
ellipsoid.

Example 8 Consider the following second-order conic IP

inf
x∈Zn

xn :

n−1∑
j=1

x2
j +N2

(
xn −

1

2
− 1

N

)2

≤
(
N

(
1

2
− 1

N

))2
 ,

for N > n ≥ 2. Notice that the optimal solution of the continuous relaxation is at x̂ = 2
N en, where ej is the

j-th unit vector, while the only integer feasible solution is at x∗ = en. Therefore, we compute the integrality
gap as IG = 1− 2

N .
With respect to Proposition 7, we are in Case 1 since the covering radius of the diagonal matrix Q =

I + Nene
T
n is µ(Q) =

√
n−1+N2

2 , which is larger than r. The rhs-independent IG bound is computed B1 =

2 1
N

√
n−1+N2

2 =
√

n−1
N2 + 1.

With respect to Proposition 12, we obtain q2 = N2, q1 = N2 + 2N, q0 = −2N,µ(Q̄) =
√
n−1
2 . With respect

to Proposition 13, we are in Case 1 and the rhs-independent IG bound is computed as B2 =
√

n−1
N2 + 1,

whereas the rhs-dependent IG bound is computed as B′2 = 1− 2
N .

Notice that the rhs-dependent bound B′2 precisely matches the actual IG, whereas the rhs-independent
bounds B1 and B2, which happen to be equal to each other, asymptotically match the actual IG as N tends
to +∞. Hence, we have the following relationship: IG = B′2 ≤ B1 = B2.
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Example 9 Consider the following second-order conic IP

inf
x∈Zn

xn :

n−1∑
j=1

x2
j +N2

(
xn −

1

2
− 1

N

)2

≤
(
N

(
1

2
+

1

N

)
− 1

N

)2
 ,

for N > n ≥ 2. Notice that the optimal solution of the continuous relaxation is at x̂ = 1
N2 en while the only

integer feasible solution is at x∗ = en. Therefore, we compute the integrality gap as IG = 1− 1
N2 .

With respect to Proposition 7, we are in Case 2 since the covering radius of the diagonal matrix Q =

I +Nene
T
n is µ(Q) =

√
n−1+N2

2 , which is smaller than r. The rhs-independent IG bound is computed B1 =

2 1
N

√
n−1+N2

2 =
√

n−1
N2 + 1.

With respect to Proposition 12, we obtain q2 = −N2, q1 = N2 +2N, q0 = 1
N2 − 2

N −1, µ(Q̄) =
√
n−1
2 . With

respect to Proposition 12, we are in Case 2 and the rhs-independent IG bound is computed as B2 =
√
n−1
2N +1,

whereas the rhs-dependent IG bound is computed as B′2 =

√
N2+4N+ 4

N2− 8
N−

√
N2+4N+ 4

N2− 8
N−(n−1)

2N + 1.
Notice that all of these three bounds matches the actual integrality gap when N tends to +∞. However,

we notice the following relationship: IG ≤ B′2 ≤ B1 ≤ B2.

7 A proximity result for a non-simple second-order conic IP

Let us consider the set
S := {x ∈ Rn : ‖x‖2 ≤ r1, ‖x− pe1‖2 ≤ r2}. (11)

We will assume that S 6= ∅ (or equivalently, r1 + r2 ≥ p) and p > 0. As Example 7 demonstrates, even with
two circles in R2, the integrality gap cannot be bounded, in general, independent of the radii of these two
circles (r1 and r2) and the distance between their centers p. In this section, we will analyze the case in which
these three parameters are related as

r1 + r2

p
≥ κ,

for some fixed parameter κ >
√
n− 1.

7.1 Preliminary Results

Let us first establish some preliminary results.

Lemma 9 Consider the set S defined in (11) with r1 + r2 ≥ p > 0. Then, we have the following:

(i) For every x ∈ S, we have |xj | ≤ H, j = 2, . . . , n, where

H =
1

2p

√
[(r1 + r2)2 − p2][p2 − (r1 − r2)2]. (12)

(ii) Assuming that r1 + r2 ≥ p+ ν, the height xn = h at which the line segment along the x1-axis in S is of
length ν is given as

h = ± 1

2(p+ ν)

√
[(r1 + r2)2 − (p+ ν)2][(p+ ν)2 − (r1 − r2)2]. (13)

Proof (i) We first find the intersection points of the boundary of two spheres by simultaneously solving

‖x‖2 = r1 and ‖x − pe1‖2 = r2, which gives us x1 := W =
r21−r

2
2+p2

2p .To obtain the bound on the absolute
value of any coordinate xj of the intersection, denoted by H, we compute

H =
√
r2
1 −W 2 =

√[
r1 +

r2
1 − r2

2 + p2

2p

] [
r1 −

r2
1 − r2

2 + p2

2p

]
=

1

2p

√
[(r1 + p)2 − r2

2][r2
2 − (r1 − p)2]

=
1

2p

√
[(r1 + r2)2 − p2][p2 − (r1 − r2)2].
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(ii) The height h must satisfy the condition p + ν =
√
r2
1 − h2 +

√
r2
2 − h2. By squaring both sides and

rearranging the terms, we obtain (p + ν)2 − r2
1 − r2

2 + 2h2 = 2
√
r2
1 − h2

√
r2
2 − h2. By squaring both sides

once again and eliminating some terms, we then obtain

4h2(p+ ν)2 = 4r2
1r

2
2 − [(p+ ν)2 − r2

1 − r2
2]2 = [2r1r2 − (p+ ν)2 + r2

1 + r2
2][2r1r2 + (p+ ν)2 − r2

1 − r2
2]

= [(r1 + r2)2 − (p+ ν)2][(p+ ν)2 − (r1 − r2)2],

which gives h as in (13). ut

The proof of the following lemma is given in Appendix B.

Lemma 10 Let κ > ν be given and define the set P = {(a, b, c) ∈ R3
++ : a+b ≥ κc, a+b ≥ c+ν}. Consider

the function f : P → R defined as f(a, b, c) := 1
2c

√
[(a+ b)2 − c2][c2 − (a− b)2]. Then,

max{f(a, b, c)− f(a, b, c+ ν) : (a, b, c) ∈ P} =
ν

2

√
κ+ 1

κ− 1
. (14)

Proposition 17 Under the assumptions of Lemma 9 and κ >
√
n− 1, we have H − h ≤

√
n−1
2

√
κ+1
κ−1 .

Proof The proof of the statement directly follows from Lemma 10 with ν =
√
n− 1. ut

7.2 Main Result

Our main result in this section is the following proposition:

Proposition 18 Consider the set S defined in (11) with r1 +r2−p ≥
√
n− 1 and assume that κ >

√
n− 1.

Let α ∈ Rn. Then, the integrality gap can be upper-bounded as a function of κ as follows:

IG(κ) = min
x∈S∩Zn

αTx−min
x∈S

αTx ≤ ‖ᾱ‖2
√
n− 1 + |αn|

⌈√
n− 1

2

√
κ+ 1

κ− 1

⌉
.

Proof Firstly, let us denote x̂ ∈ argmin{αTx : x ∈ S}. Consider a solution x′ ∈ Zn obtained as

x′n =


bhc if x̂n ≥ h
bx̂nc if 0 ≤ x̂n ≤ h
dx̂ne if 0 ≥ x̂2 ≥ −h
d−he if x̂n ≤ −h

.

Here, h is the positive height at which the line segment along the x1-axis in S is of length ν =
√
n− 1 as in

Lemma 9. Such a selection guarantees that there exists (x′1, . . . , x
′
n−1) ∈ Zn−1 such that x′ ∈ S ∩ Zn (note

that the covering radius of the standard lattice in Rn−1 is
√
n− 1/2). Due to Proposition 17, we have

|x′n − x̂n| ≤

⌈√
n− 1

2

√
κ+ 1

κ− 1

⌉
and ‖(x′1, . . . , x′n−1)− (x̂1, . . . , x̂n−1)‖2 ≤

√
n− 1.

Finally, we compute

IG(κ) = min
x∈S∩Zn

αTx−min
x∈S

αTx ≤ αTx′ − αT x̂ = αT (x′ − x̂) ≤ ‖ᾱ‖2
√
n− 1 + |αn|

⌈√
n− 1

2

√
κ+ 1

κ− 1

⌉
,

where the first inequality follows since x′ ∈ S ∩ Zn. ut

Although we choose the n-th dimension as the “height” in Proposition 18, the same argument can be
repeated for any dimension j∗, j∗ = 2, . . . , n to obtain the following corollary.
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Corollary 2 Under the assumptions of Proposition 18, we have

IG(κ) = min
x∈S∩Zn

αTx−min
x∈S

αTx ≤ min
j∗=2,...,n


√√√√√ n∑

j=1
j 6=j∗

α2
j

√
n− 1 + |αj∗ |

⌈√
n− 1

2

√
κ+ 1

κ− 1

⌉ .

We now use Example 10 to illustrate the use of the bound derived above.

Example 10 Let N ∈ Z+ and consider the following second-order conic IP:

inf
x∈Z2
{x2 :x2

1 + x2
2 ≤ (N + 1)2, (x1 − 2N)2 + x2

2 ≤ N2}.

Notice that the intersection of the ellipsoids are contained in the strip {x ∈ R2 : N ≤ x1 ≤ N + 1} and the
only integer points in the intersection are (N, 0) and (N + 1, 0), which both give an objective function value
of 0. On the other hand, the optimal solution of the continuous relaxation is the following point:

(x̂1, x̂2) =

(
N +

2N + 1

4N
,−
√

2N + 1

4N

(
2N − 2N + 1

4N

))
.

Therefore, the integrality gap, as a function of N , is computed as follows:

IG(N) =

√
2N + 1

4N

(
2N − 2N + 1

4N

)
=

√
N +

1

4
− 1

4N
− 1

16N2
.

Let us now compute our bound from Proposition 18 for this example (note that we have n = 2, r1 = N ,
r2 = N + 1, p = 2N and κ = 1 + 1

2N ). In fact, we obtain⌈
1

2

√
1 + 1

2N + 1

1 + 1
2N − 1

⌉
=

⌈
1

2

√
4N + 1

⌉
=

⌈√
N +

1

4
,

⌉
which approximately matches the integrality gap derived above.

A Additional Examples

In this appendix, we present additional examples of second-order conic IPs in which the integrality gap depends on the right-hand
side.

In Example 11, the feasible region of the conic IP, which is the intersection of a parabola and a half-space with the standard
lattice, is unbounded. This is arguably one of the “simplest” unbounded sets defined by a pair of nonlinear and linear inequalities,
yet the integrality gap cannot be upper bounded independent of the right-hand side.

Example 11 Let N ∈ Z++ and ε ∈ (0, 1). Consider the following second-order conic IP:

inf
x∈Z2

{x2 :N − ε ≤ x1, x21 ≤ x2} = inf
x∈Z2

x2 :

2 0
0 1
0 1

[x1
x2

]
�L3

 0
1
−1

 , x1 ≥ N − ε
 .

Since we have x̂ = (N − ε, (N − ε)2) and x∗ = (N,N2), the integrality gap, as a function of N , is computed as IG(N) =
N2 − (N − ε)2 = 2εN − ε2.

x1

x2

x1 = N − ε

x̂ = (N − ε, (N − ε)2)

x∗ = (N,N2)

Fig. 4 The feasible region of the continuous relaxation of the conic IP in Example 11.
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In Example 12, the feasible region of the conic IP, which is the intersection of a parabola and a non-redundant polytope
with the standard lattice, is bounded.

Example 12 Let N ∈ Z++ and consider the following second-order conic IP:

inf
x∈Z2

{x2 :N − 1/2 ≤ x1 ≤ N, x21 ≤ x2, (N − 1/4)2 ≤ x2 ≤ N2 + 1}

= inf
x∈Z2

x2 :

2 0
0 1
0 1

[x1
x2

]
�L3

 0
1
−1

 ,


1 0
−1 0
0 1
0 −1

[x1x2
]
≥


N − 1/2
−N

(N − 1/4)2

−(N2 + 1)


 .

Since we have x̂ =
(
N − 1

2
, (N − 1

4
)2
)

and x∗ = (N,N2), the integrality gap, as a function of N , is computed as IG(N) =

N2 −
(
N − 1

4

)2
= N

2
− 1

16
.

x1

x2

N − 1
2
N

N2 + 1

(N − 1
4

)2

x̂ =
(
N − 1

2
, (N − 1

4
)2
)

x∗ = (N,N2)

Fig. 5 The feasible region of the continuous relaxation of the conic IP in Example 12.

In Example 13, the feasible region of the conic IP, which is the intersection of a parabola and one branch of a hyperbola
with the standard lattice, is unbounded. This example is interesting since both nonlinear sets are unbounded and so is their
intersection.

Example 13 Let N ∈ Z+ and consider the following second-order conic IP:

inf
x∈Z2

{x2 :x21 ≤ x2, (x1 −N)
(
x2 + 2− (N + 1/2)2

)
≥ 1, x1 ≥ N}

= inf
x∈Z2

x2 :

2 0
0 1
0 1

[x1
x2

]
�L3

 0
1
−1

 ,
0 0

1 −1
1 1

[x1
x2

]
�L3

 −2
−N2 + 3/4

N2 + 2N − 3/4

 , x1 ≥ N
 .

Since we have x̂ = (N + 1/2, (N + 1/2)2) and x∗ = (N + 1, (N + 1)2), the integrality gap, as a function of N , is computed as
IG(N) = (N + 1)2 − (N + 1/2)2 = N + 3/4.

x1

x2

x1 = N + 1
2

x̂ = (N + 1
2
, (N + 1

2
)2)

x∗ = (N + 1, (N + 1)2)

Fig. 6 The feasible region of the continuous relaxation of the conic IP in Example 13.
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In Example 14, the feasible region of the conic IP, which is the intersection of a parabola and a polyhedron with the standard
lattice, is bounded.

Example 14 Let N ∈ Z+ and consider the following second-order conic IP:

inf
x∈Z2

{x2 :N + 1/2 ≤ x1 ≤ N + 1, x21 ≤ x2 ≤ (N + 1)2}.

Notice that the conic MIPs in Examples 14 and 11 have the same integrality gap since the integrality gap computation in
Example 14 remains the same without constraints x1 ≤ N and x2 ≤ (N + 1)2.

Notice that constraints N + 1/2 ≤ x1 ≤ N + 1 in Example 14 define a degenerate ellipsoid (the feasible region defined by
them is an ellipsoid in the x1 component plus a lineality space in the x2 component). In Example 15, the feasible region of
the conic IP, which is the intersection of a parabola and a non-redundant, non-degenerate ellipsoid with the standard lattice, is
bounded.

Example 15 Let N ∈ Z+ and consider the following second-order conic IP:

inf
x∈Z2

{x2 :N + 1/4 ≤ x1, x21 ≤ x2, (x1 − (N + 1))2 + (x2 − (N + 1)2)2 ≤ R2},

where
R2 = [(N + 1)− (N + 1/2)]2 + [(N + 1)2 − (N + 1/2)2]2 = 1/4 + (N + 3/4)2.

In this case, the integrality gap, as a function of N , is computed as IG(N) = (N + 1)2 − (N + 1/2)2 = N + 3/4.

In Example 16, the feasible region of the conic IP, which is the intersection of a hyperbola and a strip (or a degenerate
ellipsoid) with the standard lattice, is unbounded.

Example 16 Let N ∈ Z+ and consider the following second-order conic IP:

inf
x∈Z2

{x2 :N − 1/2 ≤ x1 ≤ N, (N + 1− x1)x2 ≥ N}.

In this case, the integrality gap, as a function of N , is computed as IG(N) = 2N −N = N.

Notice that the constraint x1 ≤ N + 1 is only added to make the other branch of the hyperbola infeasible in Example 16. Any
other linear inequality (e.g. x2 ≥ 0) with the same property can be included instead.

In Example 17, the feasible region of the conic IP, which is the intersection of a (single branch of a) hyperbola and a
non-degenerate ellipsoid with the standard lattice, is bounded.

Example 17 Let N ∈ Z+ and consider the following second-order conic IP:

inf
x∈Z2

{
−x2 : (x1 +N)2 + x22 ≤ (N + 1)2, x1

(
x2 +

√
N +

3

4

)
≥
√
N +

3

4
, x1 ≥ 0

}
.

Notice that the only integer point in the feasible region is (1, 0) with an objective function value of 0. On the other hand, the

optimal solution of the continuous relaxation is the following point: (x̃1, x̃2) =

(
1
2
,
√
N + 3

4

)
. Therefore, the integrality gap,

as a function of N , is computed as IG(N) =
√
N + 3

4
.

In Example 18, the feasible region of the conic IP, which is the intersection of a parabola and a non-degenerate ellipsoid
with the standard lattice, is bounded.

Example 18 Let N ∈ Z+ and consider the following second-order conic IP:

inf
x∈Z2

{
−x2 : (x1 +N)2 + x22 ≤ (N + 1)2, x2 ≥

(
x1 −

3

4
−
√
N +

3

4

)2

−
(

1

4
−
√
N +

3

4

)2
}
.

We have IG(N) =
√
N + 3

4
.

B Omitted Proofs

B.1 Proof of Proposition 7

Firstly, let us denote x̂ ∈ argmin{αT x : x ∈ S}. Also, let x̌ ∈ S ∩ Zn. Secondly, since Q ∈ Rm×n and rank(Q) = n, the matrix
(QTQ)−1 exists. Thirdly, due to the definition of covering radius, there exists µ(Q) such that for all x ∈ Rn, there exists x′ ∈ Zn
with ‖Qx−Qx′‖2 ≤ µ(Q).

The remainder of the proof is divided into two cases:
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Case 1: r ≤ µ(Q). Then,

IG(Q, p, r) = min
x∈S∩Zn

αT x−min
x∈S

αT x ≤ αT x̌− αT x̂ = αT (x̌− x̂) = αT (QTQ)−1(QTQ)(x̌− x̂)

= αT (QTQ)−1QT (Qx̌−Qx̂) ≤ ‖Q(QTQ)−1α‖2‖(Qx̌− p)− (Qx̂− p)‖2
≤ ‖Q(QTQ)−1α‖2(r + r) ≤ 2‖Q(QTQ)−1α‖2µ(Q),

where the first inequality follows since x̌ ∈ S ∩ Zn.
Case 2: r > µ(Q). In this case, we first choose x̃ ∈ Rn such that Qx̃ ∈ [p,Qx̂] and ‖(Qx̃ − p) − (Qx̂ − p)‖2 = µ(Q). Note that
x̃ ∈ S. Also, we have that there exists x′ ∈ Zn such that ‖Qx′ −Qx̃‖2 ≤ µ(Q). Then,

IG(Q, p, r) = min
x∈S∩Zn

αT x−min
x∈S

αT x ≤ αT x′ − αT x̂ = αT (x′ − x̂) = αT (QTQ)−1(QTQ)(x′ − x̂)

= αT (QTQ)−1QT (Qx′ −Qx̂) = αT (QTQ)−1QT [(Qx′ − p)− (Qx̃− p) + (Qx̃−Qx̂)]

= ‖Q(QTQ)−1α‖2(‖(Qx′ − p)− (Qx̃− p)‖2 + ‖(Qx̃−Qx̂)‖2) ≤ 2‖Q(QTQ)−1α‖2µ(Q),

where the first inequality follows since x′ ∈ S ∩ Zn.
In both cases, we conclude that IG(Q, p, r) ≤ 2‖Q(QTQ)−1α‖2µ(Q), which is independent of p and r.

B.2 Proof of Lemma 10

We will prove this lemma with the help of the following three facts:

Fact 7 Let A > 0 and B > 0 with A ≥ B be given. Also let ν > 0. Consider the function g : [B,A]→ R defined as

g(C) =
1

2

√
A2 − C2

(
1−

√
1− (B/C)2

)
.

Then, the function g is decreasing in C.

Proof The statement follows since both
√
A2 − C2 and 1−

√
1− (B/C)2 are decreasing in C. ut

Fact 8 Let (a∗, b∗, c∗) be an optimal solution of problem (14). Then, we have a∗ = b∗.

Proof By contradiction, suppose that a∗ 6= b∗. Then, let us consider a new feasible solution (a, b, c∗) of problem (14) constructed

as a = b = a∗+b∗

2
.

We can compute the objective function value of solutions (a∗, b∗, c∗) as

O1 :=
1

2c∗

√
[(a∗ + b∗)2 − c∗2][c∗2 − (a∗ − b∗)2]−

1

2(c∗ + ν)

√
[(a∗ + b∗)2 − (c∗ + ν)2][(c∗ + ν)2 − (a∗ − b∗)2]

and (a, b, c∗) as

O2 :=
1

2

√
[(a∗ + b∗)2 − c∗2]−

1

2

√
[(a∗ + b∗)2 − (c∗ + ν)2].

We will now apply Fact 7 with A = a∗ + b∗, B = |a∗ − b∗| and C = c∗. Since O1 −O2 = g(C + ν)− g(C) and g is decreasing,
we conclude that O1 < O2. However, this is a contradiction to the fact that (a∗, b∗, c∗) is an optimal solution to problem (14).
Hence, the result follows. ut

Fact 9 Let (a∗, b∗, c∗) be an optimal solution of problem (14). Then, we have c∗ = ν
κ−1

.

Proof Due to Fact 8, problem (14) reduces to

1

2
max{

√
4a2 − c2 −

√
4a2 − (c+ ν)2 : 2a ≥ κc, 2a ≥ c+ ν, c ≥ 0}. (15)

We claim that at an optimal solution (a∗, c∗) of problem (15), we must have 2a∗ = κc∗ and 2a∗ = c∗ + ν. This implies that

c∗ = ν
κ−1

and a∗ = κν
2(κ−1)

, and the optimal value is ν
2

√
κ+1
κ−1

.

We will now prove this claim by contradiction. Suppose that (ã, c̃) is an optimal solution of problem (15) which does not
satisfy our claim. Let us look at the following four cases:

– c̃ = 0. Notice that the objective function of problem (15),

1

2

ν2

2a+
√

4a2 − ν2
,

is decreasing in a in this case. Hence, we obtain that ã = ν/2 and the optimal value is ν/2. However, this value is smaller

than ν
2

√
κ+1
κ−1

. Hence, we conclude that c̃ = 0 cannot be optimal.
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– 2ã > κc̃ and 2ã > c̃+ ν: Notice that the objective function of problem (15),

1

2

2cν + ν2
√

4a2 − c2 +
√

4a2 − (c+ ν)2
,

is increasing in c for fixed a. Hence, we can increase c small enough to obtain another feasible solution with a better objective
function value.

– 2ã > κc̃ and 2ã = c̃+ ν: Notice that the objective function of problem (15) along the direction a = c+ν
2

,

1

2

√
4a2 − c2 −

1

2

√
4a2 − (c+ ν)2 =

1

2

√
(c+ ν)2 − c2 =

1

2

√
2cν + ν2,

is increasing in c. Since this case happens when ã < a∗ and c̃ < c∗, we can simply increase c̃ (and ã accordingly) to obtain
another feasible solution with a better objective function value.

– 2ã = κc̃ and 2ã > c̃+ ν: We claim that the objective function of problem (15) along the direction a = κc
2

,

1

2

√
4a2 − c2 −

1

2

√
4a2 − (c+ ν)2 =

1

2
c
√
κ2 − 1−

1

2

√
c2(κ2 − 1)− 2cν − ν2 := φ(c),

is decreasing in c. To show this, observe that

0 > 2φ′(c) =
√
κ2 − 1−

c(κ2 − 1)− ν√
c2(κ2 − 1)− 2cν − ν2

⇐⇒ (κ2 − 1)[c2(κ2 − 1)− 2cν − ν2] < c2(κ2 − 1)2 − 2cν(κ2 − 1) + ν2

⇐⇒ κ2ν2 > 0.

Since this case happens when ã > a∗ and c̃ > c∗, we can simply decrease c̃ (and ã accordingly) to obtain another feasible
solution with a better objective function value.

ut

Due to Facts 8 and 9, we deduce that c∗ = ν
κ−1

and a∗ = b∗ = κν
2(κ−1)

. Hence, we conclude that the statement of the

lemma holds.
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