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Abstract. Explainable artificial intelligence is one of the most important
trends in modern machine-learning research. The idea is to explain the outcome
of a model by presenting a certain change in the input of the model so that the
outcome changes significantly. In this paper, we study this question for linear
optimization problems as an automated decision-making tool. This leads to a
new class of linear bilevel optimization problems that have more nonlinearities
in their single-level reformulations compared to traditionally studied linear
bilevel problems. For this class of problems, we present a tailored penalty
alternating direction method and present its convergence theory that mainly
ensures that we compute stationary points of the single-level reformulation.
Finally, we illustrate the applicability of this method using the example of
a real-world energy system model as well as by computing counterfactual
explanations for a large set of linear optimization problems from the NETLIB
as it has been proposed in the recent literature.

1. Introduction

In today’s societies, artificial intelligence (AI) and automated systems are playing
an increasingly important role in decision making. To name just a few examples, AI
is used for medical diagnosis (Zeng et al. 2016), homeless individual house allocation
(Azizi et al. 2018), or credit risk evaluation (Baesens et al. 2003). As these systems
continue to have a profound impact on critical decisions, the demand for transparency
and explainability is growing. This need becomes even more pronounced when AI
is used in social areas. Specifically, it is known that such techniques may lead to
unfair outcomes with respect to a subset of individuals in a given dataset (Besse
et al. 2021; Miron et al. 2021).

Developing explainable models or methods is not only essential to ensure fairness
and accountability in AI, but also for enhancing public trust and providing a
foundation for regulation. This need is further emphasized by recent legislative
initiatives such as those of the European Commission (EUR-Lex 2021; Goodman
and Flaxman 2017) and in the White House Office of Science and Technology Policy
(OSTP 2022).

As a result, significant attention has been devoted to the issue of explainability
in AI, leading to a new field of research known as explainable artificial intelligence
(XAI). For a comprehensive overview of XAI, we refer to Yang et al. (2023). One
promising approach to achieve explainability is through the use of counterfactual
explanations (CEs); see, e.g., Wachter et al. (2017). Counterfactual explanations
offer an intuitive way to understand AI decisions by showing how changes in input
data lead to a different, and perhaps more favorable, outcome. Notably, this

Date: December 19, 2024.
2020 Mathematics Subject Classification. 90-XX, 90-08,90C05, 90C59, 90C90.
Key words and phrases. Explainability, Linear optimization, Counterfactual explanations,

Bilevel optimization, Penalty alternating direction method.

1



2 H. LEFEBVRE, M. SCHMIDT

approach does not require technical knowledge of the underlying AI system. Instead,
it offers a more accessible and understandable argument for specific decisions.

Mathematically, computing a CE can be formulated as a mathematical optimiza-
tion problem aiming for the smallest data modification such that a desired outcome
is produced by the underlying AI system. For instance, one may ask for the smallest
increase in annual salary (all other things being equal) so that a trained classification
model approves a loan for a given individual that has been rejected before. Arguably,
the concept of CEs has been mainly developed and applied to machine-learning
algorithms. For more details, we refer to the recent surveys by Artelt and Hammer
(2019) and Verma et al. (2020).

In this paper, we focus on the computation of CEs for automated systems
derived from mathematical optimization problems. Specifically, we consider linear
optimization problems and seek the minimal change in the constraint matrix of the
problem that makes a desired outcome optimal. In such settings, computing a CE
can be formulated as a bilevel optimization problem as shown in Korikov et al. (2021)
and Kurtz et al. (2024). Bilevel optimization is a field of mathematical optimization
in which two optimization problems are intertwined: the upper-level and the lower-
level problem. The upper-level problem minimizes a given objective function taking
into account the solution to the lower-level problem, which is parameterized by the
upper-level’s decision. There is a vast literature on bilevel optimization, and we refer
to Dempe (2002) for a thorough introduction, as well as to Dempe and Zemkoho
(2020) for more recent contributions in the field. Mathematically, a standard linear
bilevel problem is given by

min
x,y

c⊤x+ d⊤y

s.t. Ax+By ≥ a,

y ∈ argmin
{
f⊤y : Dy ≥ b− Cx

}
.

(BO-RHS)

This class of problems is known to be strongly NP-hard (Hansen et al. 1992)
and NP-complete (Buchheim 2023). For this reason, heuristic approaches have
been developed for (BO-RHS). In particular, the use of metaheuristics in bilevel
optimization has recently been surveyed in Camacho-Vallejo et al. (2024) and a
matheuristic based on a penalty alternating direction method has been introduced
by Kleinert and Schmidt (2021).

In the context of CEs, the lower-level problem represents the underlying automated
system (here, a linear optimization problem), while the upper-level problem seeks a
minimal change to the input data that leads to a more desirable outcome. In contrast
to (BO-RHS), the upper level should therefore be able to modify the constraint
matrix D of the lower-level problem; see Kurtz et al. (2024) for a more thorough
discussion. This motivates the following new bilevel formulation, which considers
matrix modifications in the lower-level problem:

min
x,y

c⊤x+ d⊤y

s.t. Ax+By ≥ a,

y ∈ argmin
{
f⊤y : D(x)y ≥ b

}
.

(BO-MAT)

Matrix modifications in the lower-level problem introduce a new class of problems,
which has only seldomly been studied in the literature. Yet, note the lower level still
is a linear optimization problem for a fixed upper-level decision. Hence, standard
techniques from bilevel optimization such as the Karush–Kuhn–Tucker (KKT) or the
strong-duality reformulation still apply. By using them, one reformulates the bilevel
problem (BO-MAT) as a single-level optimization problem using the lower-level opti-
mality conditions. Unfortunately, these approaches lead to a new type of nonlinearity
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compared to those obtained for (BO-RHS). As a consequence, the reformulated
single-level model is considerably harder to solve from a computational point of
view. To be more specific, the KKT-based single-level reformulation of (BO-RHS)
is a linear problem with complementarity constraints while that of (BO-MAT) is a
nonconvex quadratically constrained problem with complementarity constraints.

To the best of our knowledge, the only computational work considering (BO-MAT)
is the unpublished short paper by Hajikazemi and Steinke (2024), which is based
on approximating products between the upper- and lower-level decisions. However,
no convergence analysis is conducted and the approach is only tested on a single
academic example.

Contributions and Structure of the Paper. In this paper, we introduce a
heuristic approach to compute CEs of linear optimization problems. This approach
is inspired by the work of Kleinert and Schmidt (2021), which applies to (BO-RHS).
Note that a direct extension to (BO-MAT) is not possible due to the presence of
new nonlinearities in the single-level reformulation. To circumvent this fact, we use
a different variable split resulting in a different penalty alternating direction method
(PADM).

In Section 2, we formally introduce the problem class under consideration and
derive a single-level reformulation of the original bilevel problem. Section 3 reviews
the framework of PADM for general optimization problems as introduced in Geißler
et al. (2017). In Section 4, we apply the PADM to the single-level reformulation
derived in Section 2 and discuss its convergence properties. Finally, in Section 5, we
report on computational results on two test sets. First, we consider a real-world
application arising from the energy sector. Then, we compute CEs of general linear
problems taken from the NETLIB (Netlib 2024), as defined in Kurtz et al. (2024).

2. Problem Statement and Reformulations

2.1. Problem Statement. We start by considering a linear optimization problem
with data D̃ ∈ Rmy×ny , b ∈ Rmy , and f ∈ Rny , given by

min
y∈Rny

f⊤y s.t. D̃y ≥ b. (LP)

The objective in what follows is to minimally modify the matrix D̃ so that at least
one optimal point to the perturbed problem is within a predefined “favored solution
space” Y ⊆ Rny . Following the terminology of Kurtz et al. (2024), we are therefore
interested in finding a weak counterfactual explanation to the question:

“Why are the optimal points of (LP) not in the favored solution
space Y ?”

To answer this question, we look for the smallest modification to the matrix D̃,
parameterized by the vector x ∈ Rnx , so that an optimal point of the perturbed
problem

min
y

f⊤x s.t. D(x)y ≥ b, (LPx)

is in Y . Here, D : Rnx → Rmy×ny is a given function that maps x to a matrix D(x).
For instance, we may assume that D(·) is such that each row is parameterized by x
in an affine way. We let S(x) denote the set of optimal points of the x-parameterized
problem (LPx). Given a scoring function J : Rnx → R, finding a weak counterfactual
explanation for (LP) can be stated as the bilevel problem

inf
x,y

J(x) (1a)

s.t. x ∈ X, (1b)
y ∈ Y ∩ S(x). (1c)
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Here, Constraint (1b) enforces that the modification x to the matrix D̃ belongs
to the set of admissible modifications X ⊆ Rnx . Constraint (1c) ensures that there
exists an optimal solution to the perturbed problem, which belongs to the favored
solution space Y . Finally, the objective (1a) is to minimize the scoring function J(x)
of the selected matrix modification x. Note that the feasible region (1b)–(1c) does
not need to be closed as shown by Example 3.1 in Kurtz et al. (2024). This holds
even if X and Y are compact sets and if S is compact-valued, i.e., if S(x) is compact
for all x ∈ X. Hence, we write Problem (1) as an infimum instead of a minimization
problem.

We now briefly discuss the generality of Model (1). First, consider the lower-
level problem (LPx). Although it is presented here with “≥”-constraints, this is
without loss of generality. The lower-level model can readily accomodate “≤”- and
“=”-constraints by well-known transformations. Additionally, bounds on the decision
variables y can be incorporated in the more general constraints. Second, Problem (1)
considers only modifications of the left-hand side of Problem (LP). Yet this is
also without loss of generality since objective and/or right-hand side changes can
easily be incorporated in (1). Clearly, the objective function can be moved to the
constraints and right-hand side modifications can be treated by augmenting the
matrix D to include an additional column D·,ny+1 = b, fixing yny+1 = 1, and setting
the right-hand side to zero. Consequently, Problem (1) can represent traditional
bilevel problems in which either the constraints’ right-hand sides or the objective
function is influenced by the upper-level’s decision.

2.2. Single-Level Reformulation. We now derive a single-level formulation for
the bilevel problem (1). To this end, let φ(x) denote the value of the x-parameterized
Problem (LPx), i.e., let

φ(x) := min
y

{
f⊤y : D(x)y ≥ b

}
.

It is clear that a point y ∈ Rny belongs to S(x) if and only if D(x)y ≥ b and
f⊤y ≤ φ(x) are satisfied. Hence, Problem (1) can be reformulated as

inf
x,y

J(x)

s.t. x ∈ X, y ∈ Y, D(x)y ≥ b,

f⊤y ≤ φ(x).

This reformulation is well-known and is called the value-function reformulation.
Unfortunately, even for simpler bilevel problems with right-hand side modifications,
the absence of a closed-form expression for φ often prevents practical implementations
of this model. To circumvent this, we resort to duality theory. As mentioned before,
the x-parameterized lower-level problem (LPx) is a linear optimization problem.
Hence, for any x ∈ Rnx such that the lower level is feasible, strong duality implies

φ(x) = max
λ∈Rmy

{
b⊤λ : D(x)⊤y = f, λ ≥ 0

}
.

This leads to the equivalent reformulation

inf
x,y

J(x)

s.t. x ∈ X, y ∈ Y, D(x)y ≥ b,

f⊤y ≤ max
λ

{
b⊤λ : D(x)⊤λ = f, λ ≥ 0

}
,
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which, in turn, can be easily shown to be equivalent—on the level of (projected)
solutions—to the so-called strong-duality reformulation

inf
x,y,λ

J(x)

s.t. x ∈ X, y ∈ Y, D(x)y ≥ b,

f⊤y ≤ b⊤λ,

D(x)⊤λ = c, λ ≥ 0.

(2)

Although Problem (2) is now a single-level optimization problem, it remains
challenging to solve due to the bilinear terms involving the variable x and the
lower-level’s primal and dual variables y and λ. In the following section, we recall
and apply the PADM framework to Problem (2) to compute feasible points of good
quality.

An alternative approach to derive a single-level reformulation of (1) would be to
exploit the KKT optimality conditions of the x-parameterized lower-level problem.
However, in doing so, one obtains even more nonlinearities than in the strong-duality
reformulation (2). Indeed, the KKT conditions read

D(x)y ≥ b, D(x)⊤λ = f, λ ≥ 0, λ⊤(D(x)y − b) = 0,

where we see that the complementarity constraints involve products of three variables;
namely, x, y, and λ. Hence, the strong duality reformulation (2) is preferred.

3. The Penalty Alternating Direction Method

In this section, we review the alternating direction method (ADM) and its
penalized version (PADM). For more details, we refer to the work of Geißler et al.
(2017) and Gorski et al. (2007). To this end, let us consider the general optimization
problem

min
x,y

F (x, y)

s.t. x ∈ X , y ∈ Y,
g(x, y) ≤ 0.

(3)

The ADM is an optimization method in which variables are split in two (or more)
disjoint blocks, namely x and y, and which iteratively solves the respective sub-
problems over each block. Given a current iterate (xℓ, yℓ), Problem (3) is solved by
fixing variables y to yℓ. This leads to the next x-iterate xℓ+1. Then, Problem (3) is
solved by fixing variables x to xℓ+1 to obtain yℓ+1. We then repeat these two steps
by increasing ℓ. The complete procedure is given in Algorithm 1.

Algorithm 1 Alternating Direction Method (ADM) for Problem (3)

1: Given: Initial values (x0, y0) ∈ X × Y.
2: for ℓ = 0, 1, . . . do
3: Compute

xℓ+1 ∈ argmin
{
F (x, yℓ) : g(x, yℓ) ≤ 0, x ∈ X

}
.

4: Compute

yℓ+1 ∈ argmin
{
F (xℓ+1, y) : g(xℓ+1, y) ≤ 0, y ∈ Y

}
.

5: end for
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Under mild conditions, it can be shown that Algorithm 1 may converge to a
partial minimizer of Problem (3), i.e., to a point (x∗, y∗) such that

F (x∗, y∗) ≤ F (x, y∗) for all x ∈ X with g(x, y∗) ≤ 0,

F (x∗, y∗) ≤ F (x∗, y) for all y ∈ Y with g(x∗, y) ≤ 0.

The following convergence results are due to Gorski et al. (2007).

Theorem 1 (Theorem 4.9, Gorski et al. (2007)). Let X and Y be closed sets and
let F : X × Y → R be continuous and biconvex, i.e., F (x, ·) and F (·, y) are convex
functions for fixed x and y, respectively. Let each subproblem in Algorithm 1 be
solvable.

(1) If the sequence of iterates {(xℓ, yℓ)}ℓ∈N of Algorithm 1 is contained in a
compact set, then it has at least one accumulation point (x∗, y∗).

(2) If, in addition, all accumulation points (x∗, y∗) are such that one of the
two subproblems for x = x∗ or y = y∗ has a unique solution, then all
accumulation points are partial minimizers of (3) and have the same value.

(3) If, in addition, all accumulation points (x∗, y∗) are such that both of the
subproblems for x = x∗ or y = y∗ have a unique solution, then (xℓ, yℓ)→
(x∗, y∗) for ℓ→∞.

Corollary 1 (Corollary 4.10, Gorski et al. (2007)). Let the assumptions of Theo-
rem 1, Case (3) hold, and suppose that F is differentiable. Then, all accumulation
points (x∗, y∗) which lie in the interior of X × Y are stationary points of (3).

The main idea of the ADM is that each subproblem will be (much) easier to solve
than the original problem (3). Indeed, under the biconvex assumption of Theorem 1,
both subproblems are convex while Problem (3) is not. In practice, it can be
observed that further decoupling of the blocks x and y leads to better performance;
see, e.g., Boyd (2010). Hence, we now consider a variant of Problem (3) in which the
coupling constraints “g(x, y) ≤ 0” are penalized by a weighted ℓ1 penalty function,
i.e., we consider

min
x∈X ,y∈Y

F (x, y) +

m∑
i=1

µi[gi(x, y)]
+. (4)

Here, [u]+ = max{0, u} and µ ∈ Rm
≥0 is a vector of penalty parameters. We let

ϕ(·, ·;µ) denote the objective function of (4).
At every iteration, the PADM solves Problem (4) using the ADM as described in

Algorithm (1). If a partial minimizer of Problem (4) is found by the ADM, we check
if the coupling constraints are satisfied. If so, the PADM terminates. Otherwise, the
penalty parameters µ are increased and the process is repeated. The full procedure
is given in Algorithm 2.

The following convergence result is due to Geißler et al. (2017).

Theorem 2. Let the assumptions of Theorem 1 hold and assume µk
i ↗∞ for all

i = 1, . . . ,m. Moreover, let {(xk, yk)}k∈N be a sequence of partial minimizers of (4)
for µ = µk generated by the inner loop of Algorithm 2 with (xk, yk) → (x∗, y∗).
Then, there exists µ̄ ∈ Rm

≥0 such that (x∗, y∗) is a partial minimizer of the weighted
feasibility measure

χµ̄(x, y) =

m∑
i=1

µ̄i[g(x, y)]
+.

If, in addition, (x∗, y∗) is feasible for the original problem (3), the following holds:
(1) If F is continuous, then (x∗, y∗) is a partial minimizer of (3).
(2) If F is continuously differentiable, then (x∗, y∗) is a stationary point of (3).
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Algorithm 2 Penalty Alternating Directioon Method (PADM) for Problem (3)

1: Given: Initial values (x0,0, y0,0) ∈ X × Y and µ0 ∈ Rm
≥0.

2: for k = 0, 1, . . . do
3: Set ℓ← 0.
4: while (xk,ℓ, yk,ℓ) is not a partial minimizer of (4) with µ = µk do
5: Compute

xk,ℓ+1 ∈ argmin
{
ϕ(x, yk,ℓ;µk) : x ∈ X

}
.

6: Compute

yk,ℓ+1 ∈ argmin
{
ϕ(xk,ℓ+1, y;µk) : y ∈ Y

}
.

7: Increase ℓ← ℓ+ 1.
8: end while
9: Choose new penalty parameters µk+1 ≥ µk.

10: end for

(3) If F is continuously differentiable and convex and the feasible region of (3)
is convex, then (x∗, y∗) is a global minimizer of (3).

4. Computing Counterfactual Explanations Using the PADM

In this section, we apply the PADM to the strong-duality reformulation (2) of
Problem (1) to avoid the bilinearities between x, y, and λ. To this end, we introduce
two vectors of penalty parameters, ρ ∈ Rmy

≥0 and µ ∈ Rny

≥0, to penalize the primal and
dual feasibility constraints, respectively. The reason for penalizing these constraints
is twofold: (i) They are the only nonconvex constraints, and (ii) they are the only
constraints coupling x, on the one hand, and y and λ, on the other hand. The
penalized problem reads

min
x,y,λ

J(x) +

my∑
i=1

ρi [bi − di·(x)y]
+
+

ny∑
j=1

µj

∣∣fj − d·j(x)
⊤λ

∣∣ (5a)

s.t. x ∈ X, (5b)

y ∈ Y, λ ≥ 0, f⊤y ≤ b⊤λ. (5c)

Now, observe that the penalized problem (5) has a feasible region which is
polyhedral if X and Y are, themselves, polyhedral. Hence, the feasible region of (5)
is “as nice as it can be” from a computational perspective. However, the objective
function remains nonconvex and nonsmooth. Nevertheless, Problem (5) becomes a
convex albeit nonsmooth optimization problem for x being fixed. The same holds
true for fixed y and λ if J is a convex function. Thus, a natural splitting of variables
is to consider the blocks (y, λ) and x. More specifically, we identify the sets X and Y
from Section 3 as

x ∈ X ←→ x satisfies (5b),
y ∈ Y ←→ (y, λ) satisfies (5c).

We highlight here that this splitting of variables differs from the one suggested
by Kleinert and Schmidt (2021) in the context of right-hand side modifications. In
the latter, the authors consider the upper- and lower-level primal variables x and y
on the one hand, and the lower-level dual variables λ on the other hand. However,
such a split would not eliminate the bilinearities between x and y in the current
setting. Hence, the (x, y)-subproblem would then be intractable, which we avoid by
using a different block decomposition.
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Assuming that x is fixed to some value x̂, the (y, λ)-subproblem reads

min
y,λ

my∑
i=1

ρi [bi − di·(x̂)y]
+
+

ny∑
j=1

µj

∣∣fj − d·j(x̂)
⊤λ

∣∣
s.t. (y, λ) ∈ Y × Rmy

≥0 , f⊤y ≤ b⊤λ.

Essentially, this problem minimizes the (weighted) primal and dual infeasibility
by choosing appropriate values for y and λ. Let (ŷ, λ̂) denote one of its optimal
points. It is clear that an optimal value of 0 with strictly positive weights implies
that ŷ ∈ S(x̂) holds and (x̂, ŷ) is a feasible point of Problem (1). Otherwise, the
x-subproblem

min
x∈X

J(x) +

my∑
i=1

ρi [bi − di·(x)ŷ]
+
+

ny∑
j=1

µj

∣∣∣fj − d·j(x)
⊤λ̂

∣∣∣ ,
is solved, which produces a new candidate for x.

We note that, although the two subproblems in x and (y, λ) are nonsmooth
convex problems, they can be smoothed by representing the penalty functions | · |
and [·]+ using linear constraints (in a higher dimensional space).

We now discuss some convergence results, which are directly obtained from
Theorem 1 and 2. We start with the inner loop of Algorithm 2 applied to the
strong-duality reformulation (2).

Theorem 3. Let X and Y be closed sets and let J be a continuous and convex
function. Consider the kth inner loop of Algorithm 2 applied to Problem (2) for
fixed penalty parameters µ ∈ Rmy

≥0 and ρ ∈ Rny

≥0 and let {(xk,ℓ, yk,ℓ, λk,ℓ)}ℓ∈N be the
generated sequence of iterates. Let each subproblem be solvable.

(1) If the sequence of iterates {(xk,ℓ, yk,ℓ, λk,ℓ)}ℓ∈N is contained in a compact
set, then it has at least one accumulation point (xk∗, yk∗, λk∗).

(2) If, in addition, all accumulation points (xk∗, yk∗, λk∗) are such that one of
the two subproblems has a unique solution, then all accumulation points are
partial minimizers of the penalized problem (2).

(3) If, in addition, all accumulation points (xk∗, yk∗, λk∗) are such that both
subproblems have a unique solution, then (xk,ℓ, yk,ℓ, λk,ℓ)→ (xk∗, yk∗, λk∗).

We now discuss the assumptions of Theorem 3. First, note that closedness of X
and Y are not strong assumptions in practice. In fact, further assuming that X
and Y are compact is mild and ensures that each subproblem is solvable so that
all conditions in Theorem 3 are satisfied. Ensuring that the sequence of iterates
{(xk,ℓ, yk,ℓ, λk,ℓ)}i∈N is contained in a compact set is more challenging, even if X
and Y are compact. Still, note that all iterates satisfy

(xk,ℓ, yk,ℓ, λk,ℓ) ∈ levαk(ϕ) with αk = ϕ(xk,0, yk,0, λk,0; ρk, µk),

where ϕ denotes the objective function of (5) and levα(ϕ) denotes the sub-level set
of the function ϕ over the feasible region of (2). Hence, it is enough to ensure that
levαk(ϕ) is compact to obtain the first statement of Theorem 3. One way to achieve
this is to add a strictly convex regularizer to the objective function in (5). By doing
so, one would also enforce that the (y, λ)-subproblem always has a unique solution,
and, therefore, that all accumulation points are partial minimizers of the regularized
penalized problem (5).

We are now ready to state the convergence result regarding the PADM applied
to Problem (2).

Theorem 4. Let X and Y be closed sets and let J be a continuous and convex
function and assume ρki ↗ ∞ and µk

j ↗ ∞ for all i = 1, . . . ,my and all j =
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1, . . . , ny. Moreover, let {(xk, yk, λk)}k∈N be a sequence of partial minimizers of (2)
for µ = µk and ρ = ρk generated by the inner loop of Algorithm 2 with (xk, yk, λk)→
(x∗, y∗, λ∗). Then, there exist ρ̄ and µ̄ such that (x∗, y∗, λ∗) is a partial minimizer
of the weighted primal-dual feasibility measure

χρ̄,µ̄ :=

my∑
i=1

ρ̄i[bi − di·(x)y]
+ +

ny∑
j=1

µ̄j |fj − d·j(x)
⊤λ|.

If, in addition, (x∗, y∗, λ∗) is feasible for the strong-duality reformulation (2), then
(x∗, y∗, λ∗) is a partial minimizer of (2), and (x∗, y∗) is feasible for the original
bilevel problem (1). If, in addition, J is continuously differentiable, then (x∗, y∗, λ∗)
is a stationary point of (2).

We close this section with a brief discussion of this theorem. In particular,
note that the theorem only regards stationary points of the strong-duality refor-
mulation (2) and not about stationary points of the original bilevel problem (1).
Nevertheless, if (x∗, y∗, λ∗) is feasible for Problem 2, then (x∗, y∗) is feasible for the
bilevel problem (1). Hence, the algorithm computes a CE. Moreover, we highlight
that J being continuously differentiable can be weakened so that J is only required
to be continuous and closed, i.e., that its epigraph is closed. If this is the case,
one can always reformulate Problem (2) by moving the objective function to the
constraints. By Theorem 2.2 in Stein (2024), the two formulations are completely
equivalent.

5. Numerical Results

In this section, we apply the PADM presented in Section 4 to two sets of instances.
After discussing some implementation details, we first study a real-world application
stemming from the energy sector. Then, we consider the general instances derived
from the NETLIB as considered in Kurtz et al. (2024).

5.1. Implementation. Our implementation was done in C++ using the idol li-
brary (Lefebvre 2023) with all underlying optimization problems solved by Gurobi
version 10.0.1. In addition to the standard scheme presented in Algorithm 2, several
practical modifications were implemented to improve numerical stability and com-
putational efficiency. Note that these modifications do not impact the convergence
theory presented in Section 4. The following subsections detail these modifications.

5.1.1. Update Rules and Rescaling of Penalty Parameters. In Line 9 of Algorithm 2,
the penalty parameters are updated. However, when the penalty parameters get
too large, numerical instabilities may arise. To avoid this, we perform a systematic
rescaling of the penalty parameters (ρ, µ) as soon as ∥(ρ, µ)∥∞ exceeds the threshold
of 109. This rescaling uses a sigmoid function, denoted by σ, as suggested by Schewe
et al. (2020). Formally, we perform the rescaling as follows:

ρi ← σ(ρi, (ρ, µ)), i = 1, . . . ,my,

µj ← σ(µj , (ρ, µ)), j = 1, . . . , ny,

where σ is defined by

σ(ui, u) := 5×
(

ui − ∥u∥∞
∥u∥∞ + |ui − ∥u∥∞|

+ 1

)
.

Initially, a straightforward penalty update rule is used, which doubles every
penalty parameter corresponding to a violated constraint. Yet, while rescaling
prevents numerical instabilities, it can sometimes introduce undesired cycles in
which the penalty parameters repeat after rescaling. To prevent this, we check
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Grid

Household

(a) Traditional Energy System

Grid

Household

PV

Battery

(b) Modern Energy System (Favored Solution)

Figure 1. Traditional and Modern Energy Systems

for cycling at every rescaling operation. Any time a cycle is detected, the penalty
parameter update rule is changed.

More formally, let Q := {i : [bi−(ai·+δi·)x]
+ > 0} and let R := {j : |fj−x⊤(a·j−

δ·j)| > 0} be the set of indices of primal and dual constraints that are violated.
Then, the following update rules are used:
Rule 1: ρi ← 2× ρi for i ∈ Q, µj ← 2× µj for j ∈ R;
Rule 2: ρi ← 1.5× ρi for i ∈ Q, µj ← 1.5× µj for j ∈ R;
Rule 3: ρi ← ρi(1+ ρi/∥(ρ, µ)∥∞) for i ∈ Q, µj ← µj(1+µj/∥(ρ, µ)∥∞) for j ∈ R;
Rule 4: ρi ← ρi + 500 for i ∈ Q, µj ← µj + 500 for j ∈ R.
Note again that the update rule only changes if a cycle is detected.

5.1.2. Initialization, Warmstart, and Restart. All penalty parameters have an initial
value of 500. Unfortunately, Algorithm 2 may occasionally converge to a stationary
point of Problem (5) that is infeasible for Problem (1). To address this, we therefore
check for feasibility improvements throughout the execution. If the feasibility error
does not improve over 1000 iterations, the algorithm is restarted with initial penalty
parameters set to 1/500. If the situation repeats, the algorithm stops and reports a
failure status.

Algorithm 2 requires an initial value for x. We initially set it to 0. Alternatively,
we implemented a “warmstart” initialization as follows. First, we apply Algorithm 2
to Problem (5) with J = 0. If a feasible point (x̄, ȳ, λ̄) is found, we use x̄ as a
starting point for another run of Algorithm 2 using the true objective function J .

5.2. Modern Household Energy System: A Case Study. In this section we
apply the concept of CEs to a model for the optimal operation of a household that
manages its own energy production via photovoltaic (PV) panels and a battery.
To this end, we consider a dwelling having a certain predicted electricity demand.
In traditional settings, this demand is met by purchasing power from the grid.
However, in today’s more decentralized energy systems, states or their regulatory
authorities try to incentivize consumers to consider the integration of PV panels and
a battery in their household’s energy system. In our setup, we then also consider
the possibility to sell energy back to the grid, as it occurs in modern energy systems.
Figure 1 depicts the traditional and the favored design.

The goal of this case study is to show how CEs can be used to identify parameters
that need to be adjusted to make the integration of PV panels advantageous for the
household. This is a setup of high practical importance as it shows that CEs can
give guidance to regulatory authorities w.r.t. what needs to be changed so that a
desired change in the energy system is achieved.

The rest of this section is organized as follows. Section 5.2.1 presents an LP to
optimize the energy system of a given household and Section 5.2.2 then discusses
the optimal solution obtained using real-world data. In Section 5.2.3, we finally use
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CEs to compute small changes of the parameters of the model so that a desired
solution is obtained, which is not the case in the unmodified setup.

5.2.1. The Underlying LP. We use an LP model based on Hülsmann et al. (2023)
to optimize the energy system of a given household. This model uses a finite and
discretized time horizon {1, . . . , T}. At every time step t ∈ {1, . . . , T}, the predicted
energy demand dt as well as prices for buying and selling energy, c+t and c−t , are
known. The level of exploitable sunshine for the PV panel is called ρt and is
assumed to be given. This parameter also includes the efficiency of the PV module.
Furthermore, we let cPV and cB denote the investment costs for the PV panel and
the battery, respectively.

The main decision variables are the following. We use z+t and z−t to denote the
amount of energy bought and sold at time t while qPV and qB refer to the capacity
of the PV panel and the battery. To keep track of the energy flow in the model,
we also introduce the following variables. The energy produced by the PV panel at
time t is denoted by yt and st denotes the amount of energy stored in the battery at
time t. Finally, we use u+

t and u−
t to model the flow of energy leaving and entering

the battery.
With this notation at hand, we can state the overall model, which reads

min
y,z,u,s,q

cPVqPV + cBqB +

T∑
t=1

(
c+t z

+
t − c−t z

−
t

)
(6a)

s.t. z+t + yt + u+
t = z−t + dt + u−

t , t = 1, . . . , T, (6b)

st = st−1 + u−
t − u+

t , t = 1, . . . , T, (6c)
yt ≤ ρtqPV, t = 1, . . . , T, (6d)
st ≤ qB, t = 1, . . . , T, (6e)

z+t , z
−
t , u+

t , u
−
t , yt, st, qPV, qb ≥ 0, t = 1, . . . , T, (6f)

qPV, qB ≥ 0. (6g)

Constraints (6b) enforce the energy balance in the overall system: At any point in
time, the energy z+t bought from the grid, the energy yt produced by the PV, and
the energy u+

t taken from the battery is equal to the energy z−t sold to the grid, the
energy demand dt, and the energy u−

t used to charge the battery. Constraints (6c)
model the storage level of the battery. The storage level st at time t is given by the
storage level of the previous time step and the (dis)charge u±

t of the battery. By
convention, we use s0 = sT to obtain a periodic battery profile. Constraints (6d) links
the PV capacity qPV to the PV panels power output yt. Constraints (6e) enforces
that the battery capacity qB is not exceeded. Finally, the objective function (6a)
minimizes the investment and operational costs over the entire time horizon.

5.2.2. Traditional Solution. For the numerical study, we consider an instance of
Model (6) with a time horizon of one week discretized into hours. To this end, we
use the following data:
Energy Demand: Demand profiles are taken from the Open Power System

Data website (https://data.open-power-system-data.org/household_
data/2020-04-15) and correspond to a usual residential building.

Exploitable Sunshine Ratios: The levels of exploitable sunshine for the PV
panels are taken from the simulation tool accessible at https://www.
renewables.ninja/ and are associated to the city of Darmstadt in Ger-
many.

Energy Prices: The prices for buying and selling energy are assumed to be constant
and set to 0.25e/kWh and 0.05e/kWh.

https://data.open-power-system-data.org/household_data/2020-04-15
https://data.open-power-system-data.org/household_data/2020-04-15
https://www.renewables.ninja/
https://www.renewables.ninja/


12 H. LEFEBVRE, M. SCHMIDT

Figure 2. Traditional solution with an amortized cost for PV
panel cells of 34e/kWh.

PV Panel Prices: The cost of photovoltaic cells per kWh is assumed to be
36140e/kWh. Note that this price is intentionally high and is in line
with the average price in 1980; see, e.g., https://ourworldindata.org/
grapher/solar-pv-prices. We assume a life time of 20 years. Hence, cPV
is set to

36140e/kWh
20 years× 365 days

× 7 days ≈ 34 e/kWh.

Battery Costs: The cost for the battery is assumed to be 500e/kWh with a life
time of 5 years. Hence, cB is set to

500 e/kWh
5 years× 365 days

× 7 days ≈ 2 e/kWh.

Figure 2 illustrates an optimal solution to Model (6). The dotted curve represents
the household’s electricity demand over the week, while the shaded areas indicate
the sources of energy supply. The blue area represents energy bought from the grid,
which satisfies the entire demand in this solution. The absence of orange (PV panel
production) and green (battery contribution) areas indicates that no investment is
made in PV panels or battery installation at all.

This shows that, given the high amortized costs of PV panels (34 e/kWh) and
batteries (2 e/kWh), it is more advantageous to satisfy the demand by solely buying
energy from the grid.

5.2.3. Counterfactual Explanation. In this section, we use the PADM presented in
Section 4 to answer the following question:

Given that users should be incentivized to invest in PV panels, how
should the situation change from an economical or technological
viewpoint so that it becomes advantageous to do so?

In particular, we will focus on the economical parameters. More precisely, we ask
for a minimal change in the PV and battery investment costs qPV and qB so that a
user invests in a battery of at least 20 kWh and installs a PV panel large enough to
produce at least 1000 kWh of energy during one week. To this end, we introduce
two variables xPV and xB used to modify the investment costs in the underlying

https://ourworldindata.org/grapher/solar-pv-prices
https://ourworldindata.org/grapher/solar-pv-prices
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Model (6). The bilevel formulation reads

min
x,y,z,u,s,q

|xPV|+ |xB| (7a)

s.t.
T∑

t=1

yt ≥ 1000, qB ≥ 20, (7b)

(y, z, u, s, q) ∈ S(xPV, xB), (7c)

where S(xPV, xB) denotes the set of solutions to the problem

min
y,z,u,s,q

(cPV + xPV)qPV + (cB + xB)qB +

T∑
t=1

(
c+t x

+
t − c−t x

−
t

)
s.t. (6b)–(6g).

Here, Constraints (7b) models the favored solution space. Note further that we do
not modify the matrix of the originally given LP but its objective function, which is
a special case of the more general setup studied in the last sections.

Applying the PADM from Section 4 to Model (7) leads to an upper-level solution
(xPV, xB) ≈ (−23, 0), corresponding to a new price for PV panels of 11e/kWh. In
particular, it is not required to modify all parameters to achieve the overall goal as
xB = 0. Figure 3 illustrates an optimal solution if the prices are changed accordingly.
Under this scenario, it can be seen that a PV panel of capacity 18.59 kWh is installed
and used to produce a total of 1000 kWh during the week. It can also be seen that
it becomes advantageous for the user to invest in a battery of capacity 22.13 kWh,
and to store the excess of energy produced during the day for when the level of
exploitable sunshine becomes too low.

Hence, we have shown that the PADM presented in Section 4 can be used for
computing counterfactual explanations for a simple energy system model. By doing
so, we compute a necessary change of investment prices so that users are incentivized
to invest in PV panels and battery storage. Hence, this case study shows that
counterfactual explanations cannot only be used for explainability in AI, but also
help practitioners in designing systems so that a more favorable output is accepted
by its users.

5.3. NETLIB. In this section, we analyze the performance of the PADM on instances
taken from the literature. We consider the set of instances introduced in Kurtz et al.
(2024), which are based on the NETLIB instances (Netlib 2024). These instances
are generated as follows. For each NETLIB instance, we randomly select 1, 5,
or 10 columns associated with non-negative variables to be impacted by matrix
modification. In doing so, we make sure that columns which are selected in a smaller
group (e.g., 5-mutable-columns) are also part of larger groups (e.g., 10-mutable-
columns). Given a selected column, only fractional coefficients are considered
mutable. Instances with only integer coefficients are dealt with in a different way:
coefficients whose absolute value is larger than 10 and not a multiple of 10 are
considered mutable. Every mutable coefficient is allowed for a maximum deviation
of ±100%. The favored solution space X is generated from an optimal point y∗

of the unperturbed problem. Three variables are randomly selected. Then, for
a selected variable yj , we add the constraint yj ≥ 1.05y∗j to the favored space if
this does not violate the variable’s upper bound, otherwise we add yj ≤ 0.95y∗j . If
y∗j = 0, we add yj ≥ 0.05 or yj ≤ −0.05 if the former leads to conflicting bounds.
We highlight that all instances are publicly available in the GitHub repository
https://github.com/JannisKu/CE4LOPT. In Table 1, we recall the classification
of NETLIB instances in terms of size as described in Kurtz et al. (2024).

https://github.com/JannisKu/CE4LOPT
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Figure 3. Solution for an amortized cost for PV panel cells of
11e/kWh.

All our experiments were run on an Intel XEON SP 6126 (2.60 GHz) on a single
core and with 4 GB of RAM. In total, 5760 instances were tested with a time limit
of 30 minutes each.

We first compare our results with those obtained in Kurtz et al. (2024). Note,
however, that the authors do not consider the same type of CEs. Indeed, they
consider relative CEs, which are defined as a minimal change to the constraint
matrix so that at least one point in the desired space becomes feasible for the
modified problem while, at the same time, having a similar objective value as the
unperturbed problem. This is in contrast to the weak CEs considered in this paper
defined as a minimal change to the constraint matrix so that at least one solution
of the modified problem belongs to the desired space. The reason for this is that
computing optimal weak CEs was shown by Kurtz et al. (2024) to be out of reach
of state-of-the-art solvers in reasonable time. This was also the main motivation
for considering a heuristic approach for weak CE in the current work. Hence, while
Kurtz et al. (2024) consider a global optimization approach for a relaxed notion of
CEs, the PADM presented in Section 4 is a heuristic approach for a stronger type
of CEs. The main differences between these two works are summarized in Table 2.
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Type Category Intervals
# Variables small 0 ≤ n ≤ 534

medium 534 ≤ n ≤ 2167
large 2167 ≤ n ≤ 22275

# Constraints small 0 ≤ m ≤ 351
medium 351 ≤ m ≤ 906

large 906 ≤ m ≤ 16675

Table 1. Categorization of NETLIB instances according to (Kurtz
et al. 2024). Note that each category is defined by closed intervals
so that some instances may belong to two categories. Nevertheless,
we keep these definitions to compare our results with those reported
in Kurtz et al. (2024).

Quality of the Solution

Contribution CE Type Upper Level Lower Level

Kurtz et al. (2024) Relative Optimal Feasible
This paper Weak Stationary* Optimal

*Stationary point of the strong-duality reformulation.

Table 2. Comparison of the solution quality with the literatrue.

In Table 3, we report the percentage of instances for which a feasible relative
CE was found by Kurtz et al. (2024), and the percentage of instances for which
a feasible weak CE was found by the PADM. Note that there are (at least) two
reasons for which no feasible point is found by the PADM. First, it may be the case
that the problem is actually infeasible. Second, the PADM may have terminated
with a stationary point, which is not feasible for the original problem while feasible
points exist. Admittedly, a drawback of the PADM is that infeasibility cannot be
proven. Nevertheless, it can be observed that the number of feasible relative and
weak CEs, which are computed by Kurtz et al. (2024) and ourselves are comparable.
This is an interesting result that shows the strength of the PADM because weak
CEs are a much stronger notion than relative CEs.

Regarding computation times, we present in Figure 4 the empirical cumulative
distribution of runtimes depending on the number of mutable columns. The solid
curve is associated to the default version of PADM while the dotted curve corresponds
to the PADM with warmstart. For a better readability, we consider only those
instances for which at least one of the two methods (with and without warmstart)
solve at least one version of the instance (with 1, 5, or 10 mutable columns). Hence,
all three plots in Figure 4 refer to the same set of instances with an increasing
number of mutable columns. First, we can see that increasing the number of mutable
columns increases the number of feasible weak CEs that we can compute. This is
to be expected since any point that is feasible with one mutable column remains
feasible if the number of mutable columns is increased. However, it can also be
seen that the number of feasible CEs with 10 mutable columns does not represent
100 % of the set of instances. This unfortunately shows that the PADM occasionally
terminated with an infeasible point even though a feasible point could be computed
when solving that instance with 1 or 5 mutable columns.

Figure 4 also shows that warmstart has a significant impact on the PADM
runtime. For instance, the default PADM computes a feasible CE for around 70 %
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n m
# mut.
columns # inst.

# mutable
objective
param.

# mutable
constraint
param.

% feasible
relative CE

(α = 1)

% feasible
weak CE

found

sm
al

l sm
al

l 1 28 0.30 4.38 38.00 32.32
5 28 1.55 21.18 54.00 50.00

10 28 4.06 54.96 59.00 57.50

m
ed

iu
m 1 7 0.79 5.09 36.00 30.00

5 7 4.11 31.64 61.00 57.14
10 7 10.86 79.63 64.00 65.00

m
ed

iu
m

sm
al

l 1 4 0.61 5.92 84.00 51.25
5 4 2.59 22.57 100.00 80.00

10 4 6.75 54.13 100.00 90.00

m
ed

iu
m 1 22 0.48 10.42 35.00 36.59

5 22 2.46 19.01 51.00 46.59
10 22 6.39 35.56 58.00 51.36

la
rg

e 1 8 0.53 2.85 31.00 32.50
5 8 2.05 10.68 55.00 50.00

10 8 5.45 26.21 63.00 59.38

la
rg

e

sm
al

l 1 2 0.43 12.43 25.00 25.00
5 2 0.93 74.13 48.00 47.50

10 2 2.03 199.40 50.00 50.00

m
ed

iu
m 1 6 0.53 2.25 43.00 26.67

5 6 2.76 8.97 49.00 35.83
10 6 7.33 22.02 53.00 44.17

la
rg

e 1 21 0.55 5.13 45.00 45.71
5 21 2.37 20.79 58.00 53.33

10 21 6.07 53.09 65.00 55.71

Table 3. Number of computed CEs in the relative sense with
α = 1 (Kurtz et al. 2024) and in the weak sense (this paper) for
the NETLIB instances. The second last column is directly taken
from Kurtz et al. (2024).

of the instances with 10 mutable columns while the PADM with warmstart is able
to compute one for more that 95% of the same instances within the time limit.
Moreover, it can be seen that the PADM with warmstart finds a feasible CE for most
of the instances in less than 300 seconds, including the time needed to compute the
starting point. Finally, Figure 5 presents a boxplot of the ℓ1-norm of the computed
CEs over those instances for which both the PADM with and without warmstart
could compute a feasible CE. It can be seen that using a warmstart typically leads
to larger CEs (measured in the ℓ1 norm) than the default version. This, again, is to
be expected given that the starting point is computed by disregarding the original
objective function and by solely focusing on feasibility.
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Figure 4. Empirical cumulative distribution of computation times
with J = ∥·∥1.
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Figure 5. Boxplot of the ℓ1-norm of the computed CE

6. Conclusion

Counterfactual explanations are important tools to increase the explainability of
machine learning models or other automated systems that are based on mathematical
optimization. In this paper, we show that computing CEs for linear optimization
problems leads to a new and highly challenging class of linear bilevel optimization
problems. We presented a tailored penalty alternating direction method to compute
feasible points of this problem quickly and applied it to two different fields in order
to highlight its applicability. First, we analyzed CEs for energy system models and,
second, computed CEs for general linear optimization problems from the NETLIB.

There are many interesting open topics left for future research. First, one could
think about designing tailored algorithms that solve the new class of bilevel problems
to global optimality. The method presented in this paper can then be used, e.g.,
as a primal heuristic to speed of the solution process. Second, existence theory for
the new class of problems is not yet settled. Third, it might be interesting to also
consider the pessimistic variant of the bilevel problem under consideration, which
would lead to an approach of computing so-called strong CEs as it is defined in
Kurtz et al. (2024).
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