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Abstract

A convex cone K is said to be homogeneous if its group of automorphisms acts transitively
on its relative interior. Important examples of homogeneous cones include symmetric cones and
cones of positive semidefinite (PSD) matrices that follow a sparsity pattern given by a homoge-
neous chordal graph. Our goal in this paper is to elucidate the facial structure of homogeneous
cones and make it as transparent as the faces of the PSD matrices. We prove that each face of
a homogeneous cone K is mapped by an automorphism of K to one of its finitely many so-called
principal faces. Furthermore, constructing such an automorphism can be done algorithmically
by making use of a generalized Cholesky decomposition. Among other consequences, we give a
proof that homogeneous cones are projectionally exposed, which strengthens the previous best
result that they are amenable. Using our results, we will carefully analyze the facial structure
of cones of PSD matrices satisfying homogeneous chordality and discuss consequences for the
corresponding family of PSD completion problems.

Keywords: Homogeneous cones, facial structure, projectional exposedness, homogeneous chordal graphs,

PSD completion

1 Introduction

A convex cone is said to be homogeneous if its group of automorphisms acts transitively on its
relative interior. Conic programming over homogeneous cones is a corner stone of the modern
optimization landscape as it contains as special cases semidefinite programming (i.e., optimization
over positive semidefinite matrices) and linear programming (i.e., optimization over the nonnegative
orthant). However, the positive semidefinite matrices and nonnegative orthants are only merely
two very special examples of homogeneous cones, as they are also self-dual under an appropriate
choice of inner product and, therefore, are symmetric cones.

An important class of homogeneous but not necessarily symmetric cones include the positive
semidefinite matrices with certain sparsity patterns. Let G be a graph on n vertices and consider
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the cone S+(G) of n × n symmetric positive semidefinite (PSD) matrices whose sparsity pattern
follows G, i.e., x ∈ S+(G) if and only if x is an n × n PSD matrix with xij = 0 for all i 6= j such
that (i, j) is not an edge of G. The case where G is a chordal graph has been extensively studied in
the literature as it is typically more efficient to solve problems exploiting chordal sparsity instead
of seeing it simply as a SDP instance, e.g., [FKMN01, NFF+03]. The dual of S+(G) is also an
important object, since it corresponds to the PSD completable matrices with pattern given by G.

If G is not only chordal but has no induced subgraph that is a path on four vertices, then S+(G)
becomes a homogeneous cone [Ish13] and such graphs were called homogeneous chordal in [TV23].
PSD matrices that follow a homogeneous chordal sparsity pattern have remarkable properties that
may fail in general for chordal graphs. A notable example is that, under an appropriate ordering
of the vertices, inverses of Cholesky factors still respect the sparsity pattern defined by G, see
[TV23, Theorem 3.1] for more details. Therefore, for homogeneous chordal graphs, S+(G) and its
dual form important classes of homogeneous cones that have practical relevance and potential for
interesting applications.

Motivated by the particular case of homogeneous chordality, our goal in this paper is to elucidate
the facial structure of general homogeneous cones and make it as clear as the facial structure of
PSD matrices, which we will now briefly review. Let Sn+ denote the set of real n × n symmetric
positive semidefinite matrices. If F is a face of Sn+, then there exists exists a n × n orthogonal
matrix q and r ≤ n such that

qFq∗ =

{(
a 0
0 0

)
| a ∈ Sr+

}
, (1.1)

where q∗ denotes the transpose of q, see [BC75, Section 6]. That is, each face of Sn+ is linearly
isomorphic to a smaller PSD cone and this isomorphism can be realized as an automorphism of
Sn+ since the map Q that takes x to qxq∗ satisfies Q(Sn+) = Sn+. The matrix q does not come from
thin air: the kernel of matrices in the relative interior of F is unique and correspond to some fixed
subspace V ⊆ Rn. With that, F = {x ∈ Sn+ | kerx ⊇ V } holds. Therefore, computing q is an
entirely constructive endeavour, as it is enough to pick any x ∈ riF and let q be such that its rows
are orthogonal and the last n− r rows form an orthonormal basis for kerx.

Another interesting property is that if we let v := q∗
(
er 0
0 0

)
q , where er is the r × r identity

matrix and define the map P(x) := vxv, we have that P is a projection (i.e., P2 = P) satisfying
P(Sn+) = F . In this way, not only the faces of Sn+ are isomorphic to smaller PSD cones, they
are also projected versions of it. Cones for which each face arises as a projection of the original
cone are known as projectionally exposed and were first described by Borwein and Wolkowicz in
the context of their facial reduction approach in [BW81]. One of the main goals of this paper is to
prove analogous results to (1.1) for homogeneous cones and discuss their consequences.

Another motivation for this work comes from the study of facial exposedness in general cones.
We recall that a closed convex cone K is said to be facially exposed if every face arises as the inter-
section of K with one of its supporting hyperplanes. Although facial exposedness is useful, certain
applications require stronger facial exposedness properties such as niceness (also known as facial
dual completeness) [Pat07, Pat13a, Pat13b], amenability [Lou21, LRS22] or the aforementioned
projectional exposedness [BW81, ST90].

Every projectionally exposed (p-exposed) cone is amenable, every amenable cone is nice and
every nice cone is facially exposed. In dimension at most three, facial exposedness implies p-
exposedness, see [PL88, Theorem 3.2] or [ST90, Theorem 4.6]. In dimension four, there exists a
facially exposed cone that is not amenable [Ros14] and a nice cone that is not amenable [LRS22].

Regarding homogeneous cones, Truong and Tunçel showed that they are facially exposed [TT03,
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Theorem 6]. Later, Chua and Tunçel showed that homogeneous cones are nice [CT06, Proposition 4
and Section 4.2]. Then, in [LRS22] it was shown that homogeneous cones are amenable. In this
work, we take another step and show that homogeneous cones are, in fact, p-exposed. In this way,
homogeneous cones form a large family of p-exposed cones and it is not currently known if there are
any other interesting classes of p-exposed cones strictly containing homogeneous cones. Notably,
homogeneous cones are also hyperbolicity cones [Gül97, Section 8], which is another important
class of cones [G̊ar59, Ren06]. However, the strongest result so far is that hyperbolicity cones are
amenable [LRS23] and it is not known whether they are p-exposed in general.

Our main results are as follows.

(i) We will show that results analogous to (1.1) hold for general homogeneous cones, see Theo-
rem 3.5. In particular, given a homogeneous cone K of rank r (see Section 2.1), there are 2r

distinguished faces called principal faces that play a role similar to the right-hand-side of (1.1)
in the sense that every face F of K can be mapped to a principal face via an automorphism
of K. Similarly to the case of PSD matrices, the automorphism can be explicitly constructed
given any x ∈ riF by making use of a generalized Cholesky factorization (Algorithm 1).

This will allow us to easily obtain certain results that are intuitive but are not trivial to extract
from the existing literature. For example, Theorem 3.5 contains as a particular consequence
the fact that proper faces of homogeneous cones are also homogeneous cone themselves and
must have strictly smaller rank, which, as far as we know, has never been formally stated or
verified previously. One application of this is the computation of the length of a longest chain
of faces of homogeneous cones, see Corollary 3.7. We will also show that conjugate faces have
complementary ranks, see Proposition 3.10.

(ii) Among the consequences of our discussion, of particular note is the fact that homogeneous
cones are projectionally exposed, which strengthens previous results in [TT03, CT06, LRS22].

(iii) We discuss in the detail the facial structure of PSD matrices with sparsity pattern given by
a homogeneous chordal graph G, see Section 4. In particular we show that every face of
S+(G) is isomorphic to some face that arises by considering induced subgraphs of G and this
isomorphism can be realized by an automorphism of S+(G), see Theorem 4.2. We will also
prove analogous results to the dual cone of S+(G) which corresponds to the PSD completable
matrices determined by G. Then, we will check that when Algorithm 1 is specialized to
the dual of S+(G), it will allow us to compute PSD completions having certain desirable
properties, see Theorem 4.3.

This work is divided as follows. In Section 2, we recall some properties of convex sets and its
faces and then we discuss the T-algebraic framework of Vinberg for handling homogeneous cones.
Section 3 contains the main results of this paper regarding the facial structure of homogeneous
cones. In Section 4, we discuss several applications of the results in Section 3 to the facial structure
of S+(G) and its dual. We conclude this work in Section 5 with a list of open questions and some
remarks on how our discussion can be useful in facial reduction approaches.

2 Preliminaries

Let E be a finite dimensional Euclidean space equipped with an inner product 〈·, ·〉 and correspond-
ing induced norm ‖·‖. Let C ⊆ E be a convex set. We denote its relative interior and closure by
riC and clC, respectively. The smallest subspace of E containing C is denoted by spanC.
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Let F ⊆ C be convex. Then, F is said to be a face of C if x, y ∈ C and αx+ (1− α)y ∈ F for
some α ∈ (0, 1) implies that x, y ∈ F . In this case, we write F E C and, by convention, we will
only consider non-empty faces. In the particular case where C is a convex cone, we have that a
nonempty convex cone F ⊆ C is a face if and only if x, y ∈ C and x + y ∈ F implies x, y ∈ F . A
face F is said to be proper if F 6= C and it is maximally proper if there is no proper face F̂ E C
such that F ⊆ F̂ and F 6= F̂ .

Let K ⊆ E be a closed convex cone. We say that K is pointed if K ∩ −K = {0} holds. Two
convex cones K1,K2 are said to be linearly isomorphic if there exists a linear bijection A such that
A(K1) = K2 holds.

Next, let x ∈ K. We denote by Face(x,K) the minimal face of K containing x, i.e., Face(x,K) =⋂
FEK,x∈F F . Let F E K be a face and x ∈ K, then

F = Face(x,K)⇔ x ∈ riF , (2.1)

e.g., see [Pat00, Proposition 3.2.2] or (2.1) can also be inferred by the discussion in [Bar73].
An extreme ray of K is a face of dimension 1, i.e., it is of the form F = {αx | α ≥ 0} for some

nonzero x ∈ K. In this case, we say that x generates an extreme ray of K.
The dual cone of K is denoted by K∗ := {y ∈ E | 〈x, y〉 ≥ 0, ∀x ∈ K}. A face F E K is said to

be exposed if there exists y ∈ K∗ such that F = K∩{y}⊥ holds. In this case, we say that y exposes
the face F . The conjugate face of F is defined as F∆ := K∗ ∩ F⊥ and satisfies

F∆ = K∗ ∩ {x}⊥, ∀x ∈ riF , (2.2)

which follows from [Roc97, Theorem 6.4]. In view of (2.1) and (2.2), if F is exposed by y, then F
is precisely the face that is conjugated to Face(y,K∗). We will also need a well-known lemma that
connects extreme rays and maximal proper faces via conjugacy.

Lemma 2.1. If F E K is an exposed extreme ray, then F∆ is a maximal proper face of K∗.

Proof. In this proof we need the well-known fact that a face is facially exposed if and only if
F∆∆ = F holds. In addition, all maximal proper faces are facially exposed, e.g., see [Tam85,
Corollary 2.2]. With these facts in mind, suppose that F̂ E K∗ is a maximally proper face containing
F∆. As conjugacy inverts inclusion, we have F̂∆ E F∆∆ = F , so F̂∆ = {0} or F̂∆ = F . In the
former case we have F̂ = F̂∆∆ = K∗, which contradicts the properness of F̂ . So, we must be in
the latter case and F̂ = F̂∆∆ = F∆ holds.

A face F E K is said to be projectionally exposed (or p-exposed) if there exists a linear map
P : E → E such that P(K) = F and P2 = P. If all faces of K are p-exposed, then K is said to be p-
exposed. P-exposedness was proposed in [BW81] and a comprehensive discussion on p-exposedness
is given in [ST90].

If the projection P can be taken to be self-adjoint with respect to 〈·, ·〉, then F is said to be
orthogonally projectionally exposed (or o.p.-exposed). Clearly, this is a notion that depends on the
choice of inner product, so to emphasize this choice, we will sometimes say that F is o.p.-exposed
under 〈·, ·〉. If all faces of K are o.p.-exposed with respect the same inner product, then K is said to
be o.p.-exposed. Being o.p.-exposed is a more restrictive property and, for example, an o.p.-exposed
polyhedral cone must be linearly isomorphic to a nonnegative orthant, see [ST90, Theorem 3.7 and
pg. 233] and [BLP87]. That said, all symmetric cones are o.p.-exposed under an appropriate inner
product [Lou21, Proposition 33].
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2.1 Homogeneous cones and T-algebras

Let K ⊆ E be a convex cone. The automorphisms of K, denoted by Aut(K), are the group of linear
bijections Q : E → E satisfying Q(K) = K, where the group operation is the function composition.
We say that K is homogeneous if Aut(K) acts transitively on the relative interior of K, i.e., for
every x, y ∈ riK, there must exist Q ∈ Aut(K) satisfying Q(x) = y.

Symmetric cones are homogeneous cones that are self-dual under some inner product and the
theory of Euclidean Jordan algebras [Koe99, FK94] seems to be the standard algebraic framework
to deal with them. For homogeneous cones, there are different, albeit closely related, algebraic
frameworks described in many foundational works [Vin63, Rot66, Gin92]. Brief overviews of this
state of affairs can be seen in [YN15, Section 1] and [TV23, Section 6].

Our goal in this paper is to describe the facial structure of homogeneous cones, which as far
as we know, has not been described explicitly before. Nevertheless, there are previous works
describing polynomials that are closely related to the boundary structure of homogeneous cones
[Ish01, Nak14, Nak18, GIL24, Nak24]. A previous work by Ishi also contains important information
on the action of the automorphism group on the boundary of the cone, see [Ish00]. We will revisit
this point later in Section 3. In optimization, the study of homogeneous cones seems to have been
initially motivated by self-concordant barriers and interior-point methods [G9̈6, GT98, Chu09],
with other works focusing on geometric and representational aspects [TX01, Chu03, TT03, CT06].

In this work, we will use the theory of T-algebras of Vinberg [Vin63] as it seems to be the most
natural for our purpose. Unfortunately, as of this writing, although the original russian text of
[Vin63] is freely available on the internet, it is not completely trivial to get a copy of the English
translation. Because of that, as we review T-algebras, we refer extensively to more accessible
references in English such as [Chu03, CT06, Chu09, KTX12].

To start, we say that a matrix algebra of rank r is an algebra A over R equipped with a
bigradation, i.e., a decomposition as a direct sum A =

⊕r
i,j=1Aij where the Aij are subspaces

satisfying the following properties:

AijAjk ⊆ Aik
AijAkl = {0} if j 6= k.

(2.3)

Given a ∈ A, we can write a =
∑r

i,j=1 aij in a unique way with aij ∈ Aij . We will refer to aij as
the (i, j) component of a. Multiplication in A is analogous to the usual matrix multiplication since
(2.3) implies that

(ab)ij =

r∑
k=1

aikbkj (2.4)

holds for a, b ∈ A. A matrix algebra with involution is a matrix algebra equipped with a linear
bijection ∗ : A → A such that for

a∗∗ = a, (ab)∗ = b∗a∗ and A∗ij = Aji, for all i, j ∈ {1, . . . , r}. (2.5)

With that, we have (a∗)ij = a∗ji, where “a∗ji” should be read as (aji)
∗.

Then, a T-algebra of rank r is a matrix algebra of rank r with involution such that the following
additional axioms are satisfied.

(a1) For each i, Aii is a subalgebra isomorphic to R.

Let ρi : Aii → R denote the algebra isomorphism and let ei denote the unit element in Aii, i.e., the
element satisfying ρi(ei) = 1. Furthermore, define the function tr : A → R by tr(a) :=

∑r
i=1 ρi(aii).
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(a2) For all a ∈ A and all i, j ∈ {1, . . . , r} we have eiaij = aij and ajiei = aji.

(a3) For all a, b ∈ A, tr(ab) = tr(ba).

(a4) For all a, b, c ∈ A and we have tr((ab)c) = tr(a(bc)).

(a5) For all a ∈ A, we have tr(aa∗) ≥ 0 with equality if and only if a = 0.

(a6) For all a, b, c ∈ A and 1 ≤ i ≤ j ≤ k ≤ l ≤ r, we have aij(bjkckl) = (aijbjk)ckl.

(a7) For all a, b ∈ A, 1 ≤ i ≤ j ≤ k ≤ r and 1 ≤ l ≤ k ≤ r, we have aij(bjkb
∗
lk) = (aijbjk)b

∗
lk.

We note that these axioms are sometimes stated in different but equivalent forms, see [Chu09,
Remarks 2-7] for some equivalences.

Defining e := e1 + · · ·+ er, Axiom (a2) implies that ea = a and ae = a holds for all a ∈ A, so e
plays the role of identity element.

Given a T-algebra A, the bilinear function

〈a, b〉 := tr(ab∗) =
∑

1≤i,j≤r
ρi(aijb

∗
ij) (2.6)

is an inner product on A due to Axiom (a5), which induces the norm ‖a‖ :=
√
〈a, a〉 over A. The

subspaces Aij are orthogonal to each other under this inner product by (2.3) and Axiom (a3).

Remark 2.2 (Analogy with the usual matrices). The space Mn×n of real n×n matrices can be seen
as a T-algebra in a natural way, however, an important difference is that for a ∈Mn×n, aij is not

a scalar, but a matrix as well. For example, for a :=

(
1 2
3 4

)
, we have the following decomposition

a = a11 + a12 + a21 + a22 =

(
1 0
0 0

)
+

(
0 2
0 0

)
+

(
0 0
3 0

)
+

(
0 0
0 4

)
.

Now, we define certain subsets of A. The subspace of “Hermitian” matrices of A is given by

H := {a ∈ A | a∗ = a}.

We also define sets of upper triangular submatrices, so that

T :=
⊕

1≤i≤j≤r
Aij ,

T+ := {a ∈ T | ρi(aii) ≥ 0 if 1 ≤ i ≤ r},
T++ := {a ∈ T | ρi(aii) > 0 if 1 ≤ i ≤ r}.

When it is necessary to emphasize the underlying algebra, we will alternatively write H(A), T (A),
T+(A) or T++(A). Finally, the homogeneous cone in H associated to the T-algebra A is defined as

K(A) := {tt∗ | t ∈ T++}.

and its closure is given by
clK(A) = {tt∗ | t ∈ T+}.

Each element in K(A) has a unique representation as tt∗ for t ∈ T++, see [Chu09, Proposition 4] or
[Vin63, Chapter III, Proposition 2]. This is analogous to the fact that a positive definite symmetric
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matrix has a unique Cholesky factorization in terms of upper triangular matrices. This uniqueness
breaks down for elements of clK(A) and, in general, tt∗ = uu∗ for t, u ∈ T+ does not imply u = t.
Nevertheless, we will discuss how to recover uniqueness in Section 3.1.

An important result by Vinberg establishes the correspondence between homogeneous cones
and T-algebras as follows.

Theorem 2.3 ([Vin63, Chapter III, §2 and Theorem 4]). Let K be a pointed open homogeneous
convex cone contained in a real finite dimensional space. Then, there is a T-algebra A for which
K(A) = K. Conversely, if K(A) = K for some T-algebra A, then K is an open homogeneous convex
cone.

Dual cone Let B be the matrix algebra

B :=
r⊕

i,j=1

Bij , where Bij := Ar+1−i,r+1−j , (2.7)

endowed with the same involution as A, which forms a T-algebra of rank r. Then the following
identity holds [Vin63, p. 390].

K(A)∗ = clK(B) = {t∗t | t ∈ T+(A)}. (2.8)

Automorphisms We now describe how T++ can be seen as a group acting over K(A), see [Chu09,
Section 2.2] or [Vin63, Chapter III, §2] for more details. Let u ∈ T++ and for x ∈ K(A) denote by
tx the unique element in T++ such that x = txt

∗
x holds. We define the map Q̃u : K(A) → K(A)

satisfying
Q̃u(x) := (utx)(utx)∗, ∀x ∈ K(A). (2.9)

Then, Q̃u is a bijection over K(A) and it turns out that

Q̃u(x) = u((txt
∗
x)u∗) + u(u(txt

∗
x))− (uu)(txt

∗
x) = u(xu∗) + u(ux)− (uu)(x) (2.10)

holds, see [Chu09, Proposition 2]. In particular, the map Q̃u is linear over K(A).
Next, for a ∈ A, define aH := a+ a∗. Taking (2.10) as a starting point, we define the quadratic

map Qa : H(A)→ H(A) for a ∈ A as the linear map satisfying

Qa(b) :=
1

2
(a(ba∗) + a(ab)− (aa)b)H , (2.11)

e.g., see [Chu09, Definition 8]. In view of (2.10), Q̃u(x) = Qu(x) holds for x ∈ K(A) and Qu can
be seen as a linear extension of Q̃u.

A useful property is that for a ∈ A, the adjoint map Q∗a satisfies

Q∗a = Qa∗ , (2.12)

e.g., see [Chu09, Section 2.3].
The linear maps Qu for u ∈ T++ form a subgroup of the automorphism group of K(A) acting

transitively on K(A). In fact, for any u ∈ T++, there exists a unique u−1 ∈ T++ such that that
uu−1 = u−1u = e holds, see [Chu09, Proposition 1]. More generally, we have

QuQt = Qut, ∀u, t ∈ T+, (2.13)

Q−1
u = Qu−1 , ∀u ∈ T++, (2.14)

Qu(tt∗) = (ut)(ut)∗, ∀u, t ∈ T+, (2.15)
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where (2.13) follows from [Chu09, Corollary 1] by taking limits, (2.14) follows from [Chu09, Propo-
sition 1 and Corollary 1] and (2.15) can be obtained by taking limits in (2.9) or by invoking [Chu09,
Proposition 2] and (2.11).

In what follows, we will say that an automorphism Q of K(A) is triangular if there exists
u ∈ T++ such that Q = Qu holds.

Principal subalgebras Let I ⊆ {1, . . . , r} be a subset of indices. We will identify certain
subalgebras of A that correspond to “principal submatrices”. We define AI to be the following
subalgebra

AI := {a ∈ A | aik = aki = 0,∀i ∈ I, ∀k ∈ {1, . . . , r}}.

For example, a ∈ A{r} if and only if the r-th “column” and the r-th “row” of a vanishes. We will
say that AI is a principal subalgebra of A.
AI can be seen as a T-algebra of rank s := r−|I| in a natural way using the structure inherited

from A, where |I| is the number of elements of I. Let J := {1, . . . , r} \ I be the remaining indices
ordered as

n1 < n2 < · · · < ns.

This implies that i < j ⇔ ni < nj , for all i, j ∈ {1, . . . , s}. In essence, we are “renaming” the
remaining indices in J to indices in the set {1, . . . , s}, in such a way that their ordering in J is
preserved. This will be important to ensure compatibility with the T-algebra structure of A.

The bigradation of AI inherited from A is given by AI =
⊕s

i,j=1 Āij , where Āij := Aninj . For
i, j, k, l ∈ {1, . . . , s}, we have

ĀijĀlk = AninjAnknl
.

Since nj = nk holds if and only if j = k, we have

ĀijĀjk ⊆ Āik
ĀijĀkl = {0} if j 6= k.

Defining ρ̄i := ρni ,ēi := eni and restricting the trace and involution functions to AI , it is straightfor-
ward (albeit tedious) to check that Axioms (a1) through (a7) still hold. For example, the restriction
of the involution ∗ is still an idempotent bijection from AI to AI , because if aik = aki = 0, then
a∗ik = aki = 0 must also hold. Furthermore, we have

Ā∗ij = A∗ninj
= Anjni = Āji

For the rest of the axioms the idea is that since they are true over A for all the possible indices
{1, . . . , r} they must be true for any subset J ⊂ {1, . . . , r} of those indices. This takes care of
the validity of axioms (a1) to (a5) over AI . Next, if 1 ≤ i ≤ j ≤ k ≤ l ≤ s, then we must have
1 ≤ ni ≤ nj ≤ nk ≤ nl ≤ s, so Axiom (a6) is also valid for AI . A similar argument holds for
Axiom (a7).

Finally, we take a look at the automorphisms of K(AI). As before, the triangular matrices
T++(AI) induce a group that acts transitively on K(AI) and in the next result we will see that
they can be seen as restrictions of automorphisms of K(A).

Proposition 2.4. Given a triangular automorphism Qu of K(AI), there exists a triangular auto-
morphism Qũ of K(A) such that the restriction of Qũ to H(AI) coincides with Qu.
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Proof. We “complete” u by adding 1’s to the diagonal by letting ũ = u +
∑

i∈I ei. In this way,
ũ ∈ T++(A). Next, let t ∈ T++(AI). By (2.15) we have Qũ(tt∗) = (ũt)(ũt)∗. As a consequence of
the multiplication rules in (2.4) and Axiom (a2) we have

ũt =

(
u+

∑
i∈I

ei

)
t = ut+

∑
i∈I

r∑
j=1

tij .

However, since t ∈ T++(AI), we have tij = 0 whenever i ∈ I, so the second summation is zero and
we have ũt = ut. Therefore

Qũ(tt∗) = (ut)(ut)∗ = Qu(tt∗)

holds which implies that Qũ and Qu coincide over K(AI) = {tt∗ | t ∈ T++(AI)} and must coincide
over H(AI) = spanK(AI).

3 Facial structure of homogeneous cones

In this section, we prove our main results on the facial structure of general homogeneous cones.
Before that, we must discuss the generalized Cholesky decomposition in homogeneous cones.

3.1 Unique Cholesky factorization in homogeneous cones

Every element in the interior of a homogeneous cone has a unique representation as tt∗, with
t ∈ T++. Then, a limiting argument tells us that elements in the boundary can be represented as
tt∗ with t ∈ T+, however this factorization is not unique in general. We will address this issue in
this subsection.

We say that t ∈ T+ is proper if tii = 0 implies that the i-th “column” of t vanishes, i.e., tki = 0
for all k < i. It turns out that each x ∈ clK(A) has a unique decomposition in terms of proper
triangular matrices. In order to prove that, first we need the following proposition.

Proposition 3.1. Let A be a T-algebra of rank r. Each ei generates extreme rays of both clK(A)
and K(A)∗. The proper face (clK(A)) ∩ {ei}⊥ of clK(A) is equal to cl (K(A{i})).

Proof. We first prove that (clK(A)) ∩ {ei}⊥ = cl (K(A{i})). Let x ∈ (clK(A)) ∩ {ei}⊥, then
0 = 〈x, ei〉 = ρi(xii), so that xii = 0. Next we do some computations similar to the ones appearing
in the proof of [KTX12, Proposition 2.4]. First, let t ∈ T+ be such that x = tt∗ holds. Then,

0 = xii =

r∑
j=1

tijt
∗
ij .

Taking the trace, we get

0 = tr(xii) =

r∑
j=1

tr(tijt
∗
ij).

By Axiom (a5), each tr(tijt
∗
ij) is nonnegative and therefore they must be zero. Again by Axiom (a5),

we conclude that all the tij are zero for j ∈ {1, . . . , r}. In particular, t belongs to the set of upper
triangular matrices of the principal subalgebra A{i} and thus x ∈ cl (K(A{i})) holds. The converse
is clear. Overall, this also shows that cl (K(A{i})) is an exposed face, since ei = e∗i also belongs to
K(A)∗ by (2.8).

Next, we verify that ei generates an extreme ray of clK(A). Suppose that x+ y = ei holds for
x, y ∈ clK(A). Then, ρk(xkk) + ρk(ykk) = 0 for k 6= i. Since ρk(xkk) and ρk(ykk) are nonnegative,
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we have ρk(xkk) = ρk(ykk) = 0 = 〈x, ek〉 = 〈y, ek〉. From [KTX12, Proposition 2.4], this implies
that 0 = xlk = xkl = ylk = ykl, for all k 6= i and all l ∈ {1, . . . , r}. In particular, only xii and yii
can be nonzero and therefore, they must be in the half-line generated by ei.

We recall that the dual cone is the cone corresponding to the T-algebra B defined in (2.7) and
each ei is the identity element of Br+1−i,r+1−i. Applying what we proved so far to clK(B) = K(A)∗

shows that the ei are also extreme rays of K(A)∗.

The following proposition was essentially proven by Gindikin [Gin92, Chapter 2, §1, Lemma 7],
but we provide a different proof here from which we will be able to extract an algorithm.

Proposition 3.2 (Unique Cholesky factorization). Let x ∈ clK(A), then x = tt∗ for an unique
proper t ∈ T+.

Proof. We proceed by induction on the rank r of the T-algebra. The proposition is true if r = 1.
So let us assume that it holds for all T-algebras of rank (r − 1) ≥ 1 and let us show that it holds
for T-algebras of rank r, for r ≥ 2.

Let A be a T-algebra of rank r and let x ∈ clK(A). Let t ∈ T+ be such that x = tt∗.
Let t̃ ∈ T+ be the element that corresponds to the first r−1 columns of t. That is, t̃ij := tij , for

all i, j ∈ {1, . . . , r− 1} and t̃ir := 0 for i ∈ {1, . . . , r}. Then t̃ ∈ A{r}. By the induction hypothesis,

over the subalgebra A{r} (which has rank r − 1) there is a unique proper t̂ ∈ T+(A{r}) such that

t̃t̃∗ = t̂t̂∗ holds.
For the last column of x we have

xir =
r∑

k=1

tik(t
∗)kr = tirt

∗
rr = ρr(trr)tir, ∀i ∈ {1, . . . , r}. (3.1)

In particular, xrr = ρr(trr)trr = t2rr holds. We then consider two cases.
If ρr(xrr) = 0, i.e., 〈x, er〉 = 0, then the last row and the last column of x must vanish by

Proposition 3.1, so x belongs to the closure of the homogeneous cone associated to the principal
subalgebra A{r}, i.e., x ∈ cl (K(A{r})). Since t̂ is also proper with respect to A (after all, the last

column of t̂ vanishes), t̂ is the desired proper element satisfying x = t̂t̂∗. We note that t̂ is unique
over T+ because (3.1) implies that all proper t satisfying x = tt∗ must have trr = 0, which leads to
tir = 0 for all i.

Next, suppose that ρr(xrr) > 0. Then, (3.1) implies that the last column of any t ∈ T+ satisfying
x = tt∗ is unique and satisfies:

tir = xir/(
√
ρr(xrr)). (3.2)

Let t̄ ∈ T+ be such that the first r − 1 columns of t̄ correspond to the columns of t̂ and the
last column is given by (3.2). With that t̄ must be proper, since t̂ is proper and ρr(t̄rr) > 0. For
convenience, denote the last column of t̄ by u. We have

t̄t̄∗ = (t̂+ u)(t̂∗ + u∗) = t̂t̂∗ + uu∗ = t̃t̃∗ + uu∗ = tt∗ = x. (3.3)

We recall that t is an arbitrary element of T+ satisfying x = tt∗, so (3.3) and (3.2) imply that the
last column of t is uniquely determined and the remaining r−1 columns must be such that t̂t̂∗ = t̃t̃∗

holds. In particular, if t is proper, the uniqueness of t̂ over A{r} implies that t̃ (i.e., the first r − 1

columns of t) coincides with t̂. This concludes the proof.
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The proof of Proposition 3.2 shows that if x ∈ clK(A) and x = tt∗ holds for a proper t ∈ T+

then, the last column of t is either zero (if xrr = 0) or is uniquely determined by (3.2). Denoting
such a column by u and the remaining r − 1 columns of t by t̂, (3.3) implies that t̂ satisfies

t̂t̂∗ = x− uu∗.

Now, t̂ is an element of t ∈ T+(A{r}), so again, the last column of t̂ inA{r} (i.e., the (r−1)-th column

of t̂ seen as an element of A), is uniquely determined and is either zero (if (x − uu∗)r−1,r−1 = 0)
or is given by (3.2) with x − uu∗ in place of x. This leads to an algorithm for computing a
generalized Cholesky decomposition, see Algorithm 1. Note that Algorithm 1 can also be used to
test membership in K(A): given some x ∈ H(A), we invoke Algorithm 1 with x as input. Denoting
by t the output of Algorithm 1, we have x ∈ K(A) if and only if x = tt∗.

Algorithm 1 Generalized Cholesky decomposition in a homogeneous cone

Require: x ∈ clK(A)
1: u← 0, t← 0, y ← x
2: for i = r, . . . , 1 do
3: y ← y − uu∗
4: if ρi(yii) > 0 then
5: tji ← yji/(

√
ρi(yii)), ∀j ∈ {1, . . . , i}.

6: else
7: tji ← 0, ∀j ∈ {1, . . . , i}
8: end if
9: u← i-th column of t

10: end for
11: return t

3.2 Faces and their orbits under the action of triangular matrices

In this subsection, we present our main results on the facial structure of homogeneous cones. We
start by observing that the cones induced by principal subalgebras are faces that are orthogonally
projectionally exposed.

Lemma 3.3. Let A be a T-algebra of rank r and let I ⊆ {1, . . . , r} be nonempty. Then, cl (K(AI))
is an orthogonally projectionally exposed face of clK(A). In particular, QeI (clK(A)) = cl (K(AI))
holds, where eI :=

∑
i 6∈I ei.

Proof. From Proposition 3.1 we have that each clK(A{i}) for i ∈ {1, . . . , r} is a face and we have

cl (K(AI)) =
⋂
i∈I

cl (K(A{i})) =
⋂
i∈I

clK(A) ∩ {ei}⊥.

Since an intersection of faces is a face, this shows that cl (K(AI)) is a face of clK(A).
Now, let eI be the identity element of AI , i.e., eI =

∑
i 6∈I ei. We will consider the quadratic

map QeI and show that QeI is the desired projection.
First, we observe that QeI is idempotent, since QeIQeI = QeIeI = QeI holds, where the first

equality follows from (2.13) and the second from (2.3) and Axiom (a2). The map QeI is also
self-adjoint by (2.12) since e∗I = eI . This shows that QeI is an orthogonal projection.
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Next, let x ∈ K(A) and write x = tt∗ for some t ∈ T++, then, in view of (2.15) we have

QeI (x) = (eIt)(eIt)
∗.

Denoting the “rows” of t by ti, so that t = t1 + · · · + tr holds and letting tI :=
∑

i 6∈I t
i we have

eIt = tI and
QeI (x) = (tI)(tI)

∗.

Computing the diagonal elements of QeI (x) for i ∈ I we obtain

(QeI (x))ii =
r∑
j=i

(tI)ij((tI)ij)
∗ = 0,

since (tI)ij = 0 for i ∈ I. Then, Proposition 3.1 and QeI (x) ∈ clK(A) implies that QeI (x) ∈
cl (K(AI)). Therefore, the projection QeI maps elements of clK(A) to elements of cl (K(AI)).
Finally, since eI is the identity element in AI , we have QeI (x) = x for all x ∈ H(AI) by (2.11).

Motivated by Lemma 3.3, in what follows we will call a face of the format cl (K(AI)) a principal
face, since they are induced by principal subalgebras of A.

Our next task is showing that every element of clK(A) can be transformed to the identity
element of some principal subalgebra via a triangular automorphism.

Lemma 3.4. Let A be a T-algebra of rank r and x ∈ clK(A). Let x = tt∗ for a proper t ∈ T+ as
in Proposition 3.2. There exists a triangular automorphism Qu of K(A) such that

Qu(x) = eI ,

where I := {i | ρi(tii) = 0}, eI :=
∑

i 6∈I ei.

Proof. Let t1, . . . , tr denote the “columns” of t, so that

t =
r∑
i=1

ti =
∑
i 6∈I

ti,

where the second equality holds because t is assumed to be proper.
For i, j ∈ {1, . . . , r} we have

tiej =
∑

1≤k≤i≤r
tkiej

By the multiplication rules in (2.4) and Axiom (a2), we have

tiej =

{
ti if i = j

0 otherwise.

With this in mind, we define ũ ∈ T++ as follows: for i ∈ I, we set the i-th column of ũ to be equal
to ei and for i 6∈ I, we set the i-th column of ũ to be ti. We have

ũeI =

∑
j∈I

ej +
∑
i 6∈I

ti

∑
k 6∈I

ek

 =
∑
i 6∈I

ti = t.

With that, Qũ maps eI = eIe
∗
I to (ũeI)(ũeI)

∗ = tt∗ = x, see (2.15). By (2.14), letting u := ũ−1,
Qu = Q−1

ũ is a triangular automorphism mapping x to eI .
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Gathering all the pieces collected so far, we have the following result, which contains, in partic-
ular, an analogue of (1.1) and the subsequent discussion.

Theorem 3.5. Let F be a proper face of a homogeneous cone clK(A) of rank r. The following
items hold.

(i) F is projectionally exposed.

(ii) F is a homogeneous cone of rank s < r and there is a triangular automorphism Qu of K(A)
such that Qu(F) = clK(AI) holds for some I ( {1, . . . , r}. Furthermore, letting x ∈ riF and
writing x = tt∗ for a proper t ∈ T+(A), we have I = {i | ρi(tii) = 0} and s = r − |I|.

(iii) There is a subgroup G of automorphisms of F acting simply transitively on the relative interior
of F such that each g ∈ G is obtained through the restriction of a triangular automorphism
of K(A) to F .

Proof. Let x ∈ riF be arbitrary and consider a decomposition of x = tt∗ with a proper t as in
Proposition 3.2. By Lemma 3.4, there exists a triangular automorphism Qu that maps x to eI ,
where I = {i | ρi(tii) = 0}. We have

Qu(F) = Qu(Face(x, clK(A))) = Face(Qu(x), clK(A)) = Face(eI , clK(A)) = clK(AI), (3.4)

where the first equality follows from (2.1). The second equality holds because Qu is an automor-
phism, so it maps a face to another face and is also a bijection between the relative interiors. Finally,
the last equality holds because eI ∈ ri (clK(AI)) = K(AI). We note that if |I| = 0 we have eI = e
and K(AI) = K(A), which would contradict the fact that F is proper. We have thus obtained item
(ii) since homogeneity is preserved by linear isomorphisms and K(AI) is a homogeneous cone of
rank r − |I| < r.

Next, let QeI be the orthogonal projection mapping clK(A) to clK(AI) as in Lemma 3.3. Then,
(3.4) implies that Qu−1QeIQu is a projection mapping clK(A) to F , which proves item (i).

Let G be the group of triangular automorphisms of K(AI) and we recall that G acts simply
transitively onK(AI). In view of (3.4), Q−1

u GQu acts simply transitively on F . Also, Proposition 2.4
tells us that for every Q ∈ G, there exists some triangular automorphism Qv that coincides with Q
overH(AI) which implies that Q−1

u QQu coincides with Qu−1QvQu over F . We note that Qu−1QvQu
is a triangular automorphism of K(A) since Qu−1QvQu = Qu−1vu holds by (2.13) and there is no
ambiguity regarding u−1vu ∈ T++ since (u−1v)u = u−1(vu) which is implied by Axiom (a6).
Overall, we conclude that, indeed, there exists a subgroup acting simply transitively over F such
that each element arises as a restriction of a triangular automorphism of K(A). This, together with
(3.4), proves items (ii) and (iii).

Theorem 3.5 provides a relatively complete picture of the facial structure of a homogeneous cone.
It tells us that not only the faces are projectionally exposed and homogeneous cones themselves,
but their homogeneous structure can be obtained from the original cone.

Furthermore, each face is linearly isomorphic to a principal face through an automorphism of
the cone. Finding the automorphism is an entirely algorithmic process. Given some x ∈ riF ,
we first decompose x as tt∗ for t a proper matrix as in Algorithm 1, then we compute the index
set I = {i | ρi(tii) = 0}, which reveals the principal face that is isomorphic to F . The actual
isomorphism can then be computed by finding u ∈ T++ such that

ut = eI (3.5)

13



holds and u always exists by Lemma 3.4. Solving this system does not pose difficulties given the
upper triangular structure of u and t ∈ T+. Then, Qu is an automorphism of clK(A) mapping F
to a principal face. Letting ē := e− eI and noticing that Proposition 3.1 implies that ē exposes the
principal face induced by I, this discussion also leads to the following expression for F

F = {x ∈ clK(A) | 〈Qu(x), ē〉 = 0} = {x ∈ clK(A) | 〈x,Qu∗(ē)〉 = 0}, (3.6)

which also reveals that Qu∗(ē) is an exposing vector for F . Following the proof of Theorem 3.5, a
projection mapping clK(A) to F is Qv, for v := u−1eIu. We will see a complete example of this
process in Section 4.

Recalling the discussion of the faces of PSD matrices in (1.1), we can see several similarities but
two important difference are that, in general, Qv may not be self-adjoint and Qu is not necessarily
a linear isometry.

Some consequences and discussion The results so far together with Algorithm 1 provide an
algorithmic way of identifying elements of clK(A) that generate extreme rays.

Corollary 3.6 (Identifying extreme rays). Let x ∈ clK(A) and write x = tt∗ for some proper
t ∈ T+. Then x generates an extreme ray if and only if ρi(tii) > 0 for one and exactly one
i ∈ {1, . . . , r}.

Proof. Let F = Face(x, clK(A)). We observe that x generates an extreme ray if and only if the
dimension of F is one. By Theorem 3.5, F is linearly isomorphic to clK(AI), where I = {i |
ρi(tii) = 0}. Since ei ∈ clK(AI) for i 6∈ I, the dimension of clK(AI) is at least r− |I|. So the only
way that F can be an extreme ray is if r− |I| = 1, which happens if and only if ρi(tii) > 0 for one
and exactly one i ∈ {1, . . . , r}.

Given a closed convex cone K, a chain of faces of length ` is a sequence of faces of K such
that F1 ( · · · ( F`. The length of a longest chain of faces of K, denoted by `K, is an important
quantity in the study of the regularization technique facial reduction [BW81, WM13, Pat13b].
In particular, it can be used to upper bound the number of steps required by facial reduction
algorithms. Through this connection, `K appears in different contexts, e.g., as a way to upper
bound the length of infeasibility certificates [LP18, Theorem 4]. The quantity `K also appears in
the study of the expressive power of cones [Sau20]. Next, we compute `K for a homogeneous cone.

Corollary 3.7. Let clK(A) be a homogeneous cone of rank r, then `K = r + 1.

Proof. Take any chain of faces clK(A) = F0 ) · · · ) F` of length `+1. By item (ii) of Theorem 3.5,
each Fi is a homogeneous cone of rank smaller than that of Fi−1. As K has rank r, the length `+ 1
is at most r+ 1. Using Proposition 3.1 inductively, we can construct a chain of faces of length r+ 1
as follows.

{0} = clK(A{1,2,...,r}) ( clK(A{1,2,...,r−1}) ( · · · ( clK(A{1}) ( clK(A).

The automorphism group of clK(A) acts on the set of (non-empty) faces in a natural way. It
turns out that this action has finitely many orbits and each orbit contains a unique principal face.

Corollary 3.8 (Orbits of faces). Let F(clK(A)) denote the set of faces of a rank r homogeneous
cone clK(A). The action of the triangular automorphisms on F(clK(A)) has 2r orbits and each
orbit has a unique representative among principal faces.
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Proof. By Theorem 3.5 each F E clK(A) is isomorphic to some principal face under a triangular
automorphism. Since there are at most 2r principal faces, this is also an upper bound on the
number of orbits. It only remains to show that there are indeed 2r orbits which can be done by
arguing that each orbit contains at most one principal face.

Suppose that Qt is a triangular automorphism and Qt(clK(AI)) = clK(AJ) holds. Then,
|I| = |J | must also hold since rank is preserved by automorphisms. Let eI and eJ be the identity
elements of AI and AJ respectively. We have eI ∈ ri clK(AI) = K(AI), so QteI is an element of
K(AJ) since linear transformations map relative interiors into relative interiors, e.g., see [Roc97,
Theorem 6.6].

As K(AJ) is a homogeneous cone, there exists a triangular automorphism Qt̃ of K(AJ) that
maps QteI to eJ . Then, Proposition 2.4 implies that there exists a triangular automorphism Qt̄ of
K(A) that maps QteI to eJ . Therefore, u := t̄t is such that Qu is a triangular automorphism of
K(A) satisfying Qu(eI) = eJ , by (2.13). Which in view of (2.15) implies that

Qu(eI) = (ueI)(ueI)
∗ = eJ = eJe

∗
J .

Following similar computations as in the proof of Lemma 3.4, we see that ueI is a proper matrix.
Since the decomposition in proper matrices is unique (Proposition 3.2), we conclude that ueI = eJ
must hold. Next, we verify that this implies I = J .

Recalling that eI =
∑

i 6∈I ei, we have that (ueI)ij =
∑r

i=1 uik(eI)kj is 0 if j ∈ I and uij if j 6∈ I.
Since ueI = eJ must hold, we have uij = 0 for i 6= j, i.e., u only has nonzero components on its
“diagonal”. Finally, since u ∈ T++, ueI = eJ forces that I = J .

Corollary 3.8 is about the orbits under triangular automorphisms. If we consider the orbits
under the full automorphism group, the number of orbits never increases, which implies that, in
particular, it is still finite and principal faces can still be taken to be representatives of orbits.
However, it may happen that each orbit may contain several principal faces1.

A finite number of orbits of faces is an interesting property that is not shared by all finite
dimensional convex cones. For example, that is not the case for the p-cones for p ∈ (1,∞), p 6= 2
in dimension at least 3, as is implied by [IL19, Corollary 12]2.

Next, we take a look at projectional exposedness. It was shown in [Lou21, Proposition 33] that
all symmetric cones are orthogonally projectionally exposed. In view of Theorem 3.5, the class
of cones known to be projectionally exposed includes the homogeneous cones but it seems that
the price to pay for losing self-duality is that we can no longer ensure that the projections are
orthogonal (i.e., self-adjoint) under the inner product that comes from the T-algebra structure. We
will revisit this issue in Proposition 4.5.

More generally, one may wonder how large the class of projectionally exposed cones is. Notably,
for hyperbolicity cones and spectrahedral cones, two classes of cones larger than homogeneous cones,
it is not currently known whether they are projectionally exposed in general. The strongest result
so far is that they are amenable, see [LRS22, Corollary 3.5] and [LRS23].

Connections to Ishi’s results Here we will describe the connections of our discussion so far
with a general result by Ishi [Ish00]. Let K be an open homogeneous cone and H a group that acts
linearly and simply transitively on K, see [Ish00] for more details on the assumptions. Then, Ishi
shows that there are 2r distinct orbits of the action of H onto clK, see [Ish00, Theorems A and

1For example, in the case of the positive semidefinite matrices Sn
+, all the extreme rays (which correspond to the

faces generated by rank-1 PSD matrices) are in the same orbit under the action of the full automorphism group.
2In more details, Corollary 12 therein implies that the each orbit of the action of the automorphism group on the

set of faces is finite. As there infinitely many faces, there must be an infinite number of orbits.
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3.5]. This is done by invoking the theory of normal j-algebras, some Lie algebra theory and showing
that the action of H onto clK can be expressed via generalized triangular matrices. Although the
algebraic framework is different, the development in [Ish00] is somewhat close in spirit to what we
have done here. In particular, translating to our language, Ishi proved that

clK(A) =
⋃

I⊆{1,...,r}

OI ,

where OI is the orbit of eI =
∑

i 6∈I ei under the action of the triangular automorphisms and the
union is disjoint. This is essentially equivalent to Corollary 3.8. Although there is no discussion of
facial structure in [Ish00], using Ishi’s result as a starting point, it seems feasible to give another
proof of Theorem 3.5. But in this case, some arguments regarding projectional exposedness and the
realization of faces as homogeneous cones would still be necessary. While the discussion here has
some overlap with [Ish00], our point of view is different and we emphasize certain concrete aspects
such as Algorithm 1, how to explicitly identify faces, exposing vectors and the automorphisms
needed to reveal them as in (3.5) and (3.6). Our development is also entirely done in the T-
algebraic language, which is important from an algorithmic point of view, as it gives easy access to
a self-concordant barrier of optimal parameter, e.g., see [Chu09, Section 3.1], [GT98, Theorem 4.1].

3.3 The dual cone

A T-Algebra for the dual cone K(A)∗ can be obtained as in (2.7). Under the bigradation induced by
B, upper triangular elements in B correspond to lower triangular elements inA. All the development
done so far can thus be translated to the dual side by appealing to (2.7). Still, we believe it is
useful to explicitly state certain dual results and translate the terminology, since there are certain
subtleties.

For convenience, let L++(A) := T++(A)∗, L+(A) := T+(A)∗ and L(A) := T (G)∗. A triangular
automorphism of K(A)∗ is a linear map of the form Ql for l ∈ L++(A). Analogous properties to
(2.13), (2.14), (2.15) hold for l, t ∈ L+. For example, Ql(tt

∗) = (lt)(lt)∗ holds for l, t ∈ L+(A), see
also [Chu09, Proposition 7].

A potential pitfall is the definition of proper (lower) triangular matrices. Applying the definition
of proper (upper) triangular matrices to B and translating the indices back to A, we see the “correct
way” of defining properness. Indeed, t ∈ L+(A) is said to be proper if ρi(tii) = 0 implies that the
i-th “column” (not the row!) of t vanishes3. Analogous to Algorithm 1, we also have a Cholesky
factorization in proper lower triangular matrices. Essentially, we apply Algorithm 1 to B and
translate back the indices to A in two steps. First, the indices in tij and yij are replaced with
r + 1 − i and r + 1 − j, respectively and, then we simplify the resulting for loop. The result is
Algorithm 2.

The only remaining technical detail is that principal faces need to be replaced with their duals
taken inside the corresponding subalgebra. More precisely, for a principal face clK(AI), let

KD(AI) := {tt∗ | t ∈ L++(AI)},

so that
cl (KD(AI)) = {tt∗ | t ∈ L+(AI)} (3.7)

3This is somewhat confusing, so here is a quick example. For r = 3, let t be an upper triangular element in B
and let us look at the third column, which corresponds to t13, t23, t33. In view of (2.7), if we decompose t in the
bigradation of A (i.e., express t as sum of elements in the Aij ’s), t corresponds to a lower triangular t̂ ∈ L(A) and
the third column of t gets mapped to the first column of t̂, so that t33 = t̂11, t23 = t̂21 and t13 = t̂31.

16



Algorithm 2 Dual Generalized Cholesky decomposition in a homogeneous cone

Require: x ∈ K(A)∗

1: l← 0, t← 0, y ← x
2: for i = 1, . . . , r do
3: y ← y − ll∗
4: if ρi(yii) > 0 then
5: tji ← yji/(

√
ρi(yii)), ∀j ∈ {i, . . . , r}.

6: else
7: tji ← 0, ∀j ∈ {i, . . . , r}.
8: end if
9: l← i-th column of t

10: end for
11: return t

holds. A face of K(A)∗ as in (3.7) is said to be a principal dual face. We note that cl (KD(AI)) is
the dual of clK(AI) inside H(AI), i.e., we have cl (KD(AI)) = clK(AI)∗ ∩H(AI).

Theorem 3.9. Let K(A) be a homogeneous cone of rank r and F be a proper face of K(A)∗.

(i) F is projectionally exposed.

(ii) F is a homogeneous cone of rank s < r and there is a triangular automorphism Ql of K(A)∗

such that Ql(F) = cl (KD(AI)) holds for some I ( {1, . . . , r}. Furthermore, letting x ∈ riF
and writing x = tt∗ for a proper t ∈ L+(A), we have I = {i | ρi(tii) = 0} and s = r − |I|.

(iii) There is a subgroup G of automorphisms of F acting simply transitively on the relative interior
of F such that each g ∈ G is obtained through the restriction of a triangular automorphism
of K(A)∗ to F .

Proof. Following the discussion so far, we apply Theorem 3.5 to B as in (2.7) and translate the
indices back to the bigradation of A.

Analogous to (3.5), the automorphism that maps F to a principal dual face can be obtained by
finding l ∈ L++(A) satisfying lt = eI .

We conclude this subsection by observing that conjugate faces in a homogeneous cone have
complementary ranks.

Proposition 3.10. Let K(A) be a homogeneous cone of rank r and let F E clK(A) be a face of
rank s. Then, F∆ = K(A)∗ ∩ F⊥ has rank r − s.

Proof. Let x ∈ riF . By Theorem 3.5, there exists a triangular automorphism Qû of K(A) that
maps F into a principal face clK(AI). We may assume that Qû maps x to eI , see the discussion
around (3.5). Letting u := û−1, Qu = Q−1

û does the opposite: it maps eI to x. Recalling that
K(A)∗ ∩ F⊥ = K(A)∗ ∩ {x}⊥, we have by (2.12)

K(A)∗ ∩ {x}⊥ = {y ∈ K(A)∗ | 〈Qu(eI), y〉 = 0} = {y ∈ K(A)∗ | 〈eI , Qu∗(y)〉 = 0}.

We have that eI =
∑

i 6∈I ei and |I| = r − s. Qu∗ is a triangular automorphism of K(A)∗, so
Qu∗(y) ∈ K(A)∗ if and only if y ∈ K(A)∗. In addition, as the ei’s are in clK(A), for y ∈ K(A)∗ we
have

〈eI , Qu∗(y)〉 = 0⇔ 〈ei, Qu∗(y)〉 = 0, ∀i 6∈ I.
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Therefore, from Proposition 3.1, for y ∈ K(A)∗, we have 〈eI , Qu∗(y)〉 = 0 if and only if every
row and column of Qu∗(y) that is indexed by i not in I vanishes. This happens if and only if Qu∗(y)
is in the principal dual face cl (KD(AJ)), where J := {1, . . . , r} \ I. In particular,

K(A)∗ ∩ {x}⊥ = Q−1
u∗ (cl (KD(AJ))).

That is, K(A)∗∩{x}⊥ is linearly isomorphic to a principal dual face of rank r−|J | = |I| = r−s,
which concludes the proof.

We note that the proof of Proposition 3.10 gives a recipe for determining the conjugate face
F∆. If x ∈ riF and x = tt∗ for a proper t, we let u ∈ T++ be such that ueI = t, where
I := {i | ρi(tii) = 0}. With that, Qu∗ is an automorphism of K(A)∗ that maps F to cl (KD(AJ)),
where J := {i, . . . , r} \ I.

4 Applications to homogeneous chordality

For this section, in contrast to Remark 2.2 and the previous sections, given a real matrix a ∈Mn×n,
we return to the usual matrix convention where aij indicates the (i, j)-entry of a. Then, given a
graph G with vertices V = {1, ..., n} and edges E, we associate to it a convex cone S+(G) ⊆ Sn+
given by

S+(G) := {x ∈ Sn+ |xij = 0 for all i 6= j such that {i, j} 6∈ E}

and we denote by S(G) the space spanned by S+(G). If G is chordal, the cone S+(G) is generated
by its rank one matrices, e.g., [AHMR88, Theorem 2.3]. When G not only is chordal but also does
not contain induced subgraphs isomorphic to a path on 4 vertices, by [Ish13, Theorem A] they are
also homogeneous and we will refer to such a graph G as being a homogeneous chordal graph. This
class of cones was also extensively studied in [TV23].

The T-algebra underlying S+(G) is relatively simple, but the ordering of the vertices matter.
Chordal homogeneous graphs have a very interesting ordering, called a trivially perfect elimination
ordering. This means that the following two properties are satisfied.

(o1) If {i, j}, {i, k} ∈ E and i < j < k hold, then {j, k} ∈ E.

(o2) If {i, j}, {j, k} ∈ E and i < j < k hold, then {i, k} ∈ E.

See more details in [TV23, Section 2.3]. An ordering that only satisfies (o1) is called a perfect
elimination ordering and all chordal graphs possess one. An ordering satisfying both (o1) and (o2)
is a privilege of homogeneous chordality. In what follows, we will assume that the vertices are
ordered following a trivially perfect elimination ordering.

Let A(G) := {a ∈ Mn×n | aij = aij = 0 for all i 6= j such that {i, j} 6∈ E}. We take the
straightforward decomposition A(G) =

⊕r
i,j=1Aij where for {i, j} ∈ E or i = j, Aij ∼= R is the

subspace of Mn×n of matrices that are zero outside the (i, j)-entry, i.e., a ∈ Aij if and only if
akl = 0 for (k, l) 6= (i, j). Otherwise, we set Aij to the zero subspace {0}. Overall, A(G) is the
set of n × n matrices with the sparsity pattern prescribed by G. The involution is defined as the
usual matrix transposition and the multiplication is defined as matrix multiplication, followed by
the projection onto the sparsity pattern defined by G. We denote such a projection by πG so that
πG(a) is the result of “zeroing out” the entries of aij for which {i, j} 6∈ E and i 6= j. With that,
denoting the multiplication in A(G) by ?, we have for a, b ∈ A(G)

a ? b = πG(ab)
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and the Aij satisfy (2.3) so it is indeed a bigradation of A(G).
To see that this is indeed a T-algebra we have to check the seven axioms. For the sake of clarity

and preciseness, we recall once more that for a ∈ A(G), aij denotes the (i, j)-entry of a rather than
the element of Aij corresponding to a. This is a subtle, but luckily, unimportant distinction4.

Axioms (a1), (a2), (a3) and (a5) follow directly from the basic definitions and properties of the
usual matrix multiplication, since the projection onto the sparsity pattern plays no role in them.

Axiom (a4) needs a little more thought. We have to check that for matrices a, b, c with the right
sparsity pattern tr((a ? b) ? c) = tr(a ? (b ? c)) holds. As πG never zeroes diagonal entries, this is
equivalent to checking that tr(πG(ab)c) = tr(aπG(bc)) holds. First we prove tr(πG(ab)c) = tr(abc)
by showing that πG(ab)c and abc have the same diagonal entries. Note that if [πG(ab)]ij is different
from [ab]ij , this means {i, j} is not in E, so cji = 0. Therefore

[πG(ab)c]ii =
n∑
j=1

[πG(ab)]ijcji =
n∑
j=1

[ab]ijcji = [abc]ii.

The same works for aπG(bc) so we have axiom (a4).
For axioms (a6) and (a7) the ordering of the vertices is quite essential. Let us check that (o2)

leads to (a6). Translating to the usual linear algebra language, (a6) amounts to requiring that for
a ∈ Aij , b ∈ Ajk, c ∈ Akl such that 1 ≤ i ≤ j ≤ k ≤ l ≤ r we have

a ? (b ? c) = (a ? b) ? c. (4.1)

We start by observing that if, say, i = j, since b ? c ∈ Ajl and b ∈ Ajk, we would have a ? (b ? c) =
aii(b ? c) = (aiib) ? c = (a ? b) ? c, by (a2). By similar arguments, (4.1) is true if j = k or k = l.
Therefore, in order to check (a6), we may then assume that i < j < k < l. In this case, if
{i, j}, {j, k} or {k, l} is not in E, then a, b or c would be zero, so both sides of (4.1) would be
zero. But if they are all in E then by (o2) all the possible edges between {i, j, k, l} are in E, so the
projection πG will not have any effect and we simply have the associativity of matrix multiplication.

For axiom (a7) we proceed similarly. Let a ∈ Aij , b ∈ Ajk, c ∈ Alk such that 1 ≤ i ≤ j ≤ k ≤ r,
1 ≤ l ≤ k ≤ r and we will check that

a ? (b ? c∗) = (a ? b) ? c∗, (4.2)

which implies (a7). We start by noting that, analogously, if i = j, j = k or l = k holds, then
the validity of (4.2) follows from (a2). So we consider the case where i < j < k and l < k. If
{i, j}, {j, k}, {l, k} or {i, l} is not in E then both sides of (4.2) are zero, so we may assume that
these edges are all in E. Then, (o2) implies that {i, k} ∈ E. We have three possibilities. If j = l,
we already have all edges between {i, l, k} = {i, j, k} in E, so (4.2) is true because πG does not
zero any entries. The other two possibilities are i < j < l < k or i < l < j < k. In either case,
since {i, j}, {i, l} ∈ E, we have {j, l} by (o1). and we conclude that all possible six edges between
{i, j, k, l} are in E. Therefore, the projection πG does not zero any elements in all the products
appearing in (4.2) and we have the usual associativity of matrix multiplication, which implies (4.2).

We also observe that the inner product that comes with this T-algebra structure (see (2.6))
coincides with the usual matrix trace inner product since tr(a ? b∗) = tr(πG(ab∗)) = tr(ab∗).

Next we will verify that S+(G) coincides with the dual cone K(A(G))∗. For simplicity we write
T++(G) := T++(A(G)), T+(G) := T+(A(G)), T (G) := T (A(G)), L++(G) := T++(G)∗, L+(G) :=

4After all, the (i, j)-entry of a ? b corresponds exactly to the Aij component of a ? b in the bigradation of A(G).
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T+(G)∗ and L(G) := T (G)∗. In particular, L+(G) and T+(G) are, respectively, lower and upper
triangular matrices with nonnegative diagonal and sparsity pattern determined by G.

The dual cone K(A(G))∗ corresponds to elements of the form l?l∗ for l ∈ L+(G). An interesting
consequence of the ordering of the graph is that the projection is not needed. This is a known fact,
but for the sake of completeness, we verify this. Let l ∈ L(G) and i > j, then

(ll∗)ij =
∑

i≥k and j≥k
likljk =

∑
j≥k

likljk = lijljj +

j−1∑
k=1

likljk. (4.3)

If {i, j} ∈ E, then (πG(ll∗))ij = (ll∗)ij , so suppose that {i, j} 6∈ E. If there exists k such that
k < j < i and lik and ljk are both nonzero, then {k, j}, {k, i} ∈ E, which implies that {i, j} ∈ E
by (o1), a contradiction. Therefore, for every k such that k < j < i, the term likljk is zero. This
implies that (ll∗)ij = lijljj = 0 = (πG(ll∗))ij by (4.3) and the assumption that {i, j} 6∈ E. We
conclude that, in fact, l ? l∗ = ll∗ holds for l ∈ L+(G).

This tells us that K(A(G))∗ = {ll∗ | l ∈ L+(G)} ⊆ S+(G). The converse and a summary of the
discussion so far are given in the next theorem.

Theorem 4.1 (T-algebra structure of homogeneous chordal cones). Let G = (V,E) be a homoge-
neous chordal cone where the vertices are ordered following a trivially perfect elimination ordering.
Then A(G) is a T-algebra satisfying

K(A(G))∗ = {ll∗ | l ∈ L+(G)} = S+(G)

and the following properties

(i) l ? l∗ = ll∗, for all l ∈ L(G).

(ii) u ? t = ut, for all u, t ∈ T (G).

(iii) l ? t = lt, for all l, t ∈ L(G).

Proof. It remains to verify the inclusion S+(G) ⊆ {ll∗ | l ∈ L+(G)} and items (ii) and (iii). We
start with the former. It is well-known that the extreme rays of S+(G) are generated by rank one
matrices, e.g., [AHMR88, Theorem 2.3]. So, let v ∈Mn×1 (i.e., a column vector) be such that vv∗

generates an extreme ray of S+(G). Letting J := {i | vi 6= 0}, we observe that for every pair i 6= j,
{i, j} ⊆ J , we must have {i, j} ∈ E, since (vv∗)ij 6= 0. Let i be the smallest element of J . Replacing
v with −v if necessary, we may assume that vi is positive. Then, if we let l be the lower triangular
matrix that has v as it is i-column and is zero elsewhere, we have l ∈ L+(G), since lji = vj and
{j, i} ∈ E whenever vj 6= 0 and i 6= j. We also have ll∗ = vv∗ which shows that {ll∗ | l ∈ L+(G)}
contains all the extreme rays of S+(G) and leads to the required inclusion.

For item (ii), let u, t ∈ T (G). We have that ut is also upper triangular, so (ut)ij = 0 if i > j.
For i < j with {i, j} 6∈ E, we have

(ut)ij = uiitij + uijtjj +

j−1∑
k=i+1

uiktkj =

j−1∑
k=i+1

uiktkj ,

since tij = uij = 0. The indices of terms in the summation are such that i < k < j holds, so if uik
or tkj is nonzero we would have {i, j} ∈ E by (o2), a contradiction. Therefore, (ut)ij = 0 for i 6= j,
{i, j} 6∈ E, i.e., u ? t = πG(ut) = ut. This proves item (ii). Item (iii) then follows from item (ii) by
taking adjoints.
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We note that we can also realize S+(G) as a “primal” homogeneous cone by constructing the
T-Algebra B(G) that is dual to A(G) as in (2.7). From the ordering induced by B(G), matrices in
S+(G) have upper triangular Cholesky decompositions.

Principal subalgebras of A(G) are obtained by zeroing out some rows and columns of A(G).
This corresponds to removing vertices of the underlying homogeneous chordal graph, an operation
that in fact preserves homogeneous chordality. For H = (V̂ , Ê) an induced subgraph of G, we
define

F(H) := {x ∈ S+(G) | xii = 0, i 6∈ V̂ }

and, recalling Section 3.3, we observe that this coincides with the principal dual face cl (KD(A(G)I))
induced by I = {i | i 6∈ V̂ }. Also, F(H) (which is a cone of n×n matrices) is linearly isomorphic to
S+(H) (which is a cone of |V̂ | × |V̂ | matrices). Theorems 3.5 and 3.9 then imply that every face of
an homogeneous chordal cone S+(G) is isomorphic to a homogeneous chordal cone S+(H), where
H is an induced subgraph of G. In more details, we have the following theorem.

Theorem 4.2. Let G = (V,E) be a homogeneous chordal graph and let F E S+(G). Then, F
is projectionally exposed and there exists an automorphism Q of S+(G) that maps F to F(H),
where H is an induced subgraph of G. Additionally, if the vertices of G are in a trivially perfect
elimination ordering the following items hold.

(i) Q can be assumed to be of the form Q = Ql for some l ∈ L++(G). In particular Ql(y) = lyl∗

holds for y ∈ S+(G).

(ii) Suppose that x ∈ riF and x = tt∗ holds for a proper matrix t ∈ L+(G). Then, letting I = {i |
tii = 0}, H is the subgraph obtained by removing the vertices belonging to I. Furthermore,
l in the previous item can be taken to be any l ∈ T++(G) satisfying lt = eI , where eI is the
diagonal matrix that has 1 in its (i, i) component if i 6∈ I and zero elsewhere.

Proof. Suppose that G follows a trivially perfect elimination ordering. By Theorem 4.1, A(G) is
a T-algebra and Theorem 3.9 tells us that F is projectionally exposed and there is a triangular
automorphism Ql of K(A(G))∗ that maps F to a principal dual face of S+(G) = K(A(G))∗.
Principal dual faces are obtaining by zeroing out certain rows and columns, so each principal dual
face corresponds to an induced subgraph H of G. Finally, Theorem 4.1 together with the dual
version of (2.15) imply that for y = tt∗ ∈ S+(G), where t ∈ L+(G), we have Ql(t ? t

∗) = Ql(tt
∗) =

(lt)(lt)∗ = ltt∗l∗ = lyl∗, which proves item (i).
Item (ii) follows from Theorem 3.9 and the observation that, as discussed previously, F(H)

coincides with the principal dual face obtained by removing the vertices in I. The fact that l can
be taken to be as in the statement follows from the discussion around (3.5) applied to the dual
algebra and the existence of l follows from Lemma 3.4.

Finally, if G is in any other ordering, then S+(G) is linearly isomorphic to some S+(G′) where G′

is just a relabelling of G and is in a trivially perfect elimination ordering. Such a linear isomorphism
is obtained by permuting rows and columns, so S+(G) still has the intended properties described
in the statement.

An example Let G be the following graph.

3

1 2
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We note that the vertices follow a trivially perfect elimination ordering and that would not be the
case if, say, the labels of 3 and 2 were exchanged. With that, we have

S+(G) =


x11 0 x13

0 x22 x23

x13 x23 x33

 ∈ S(G) |

x11 0 x13

0 x22 x23

x13 x23 x33

 � 0

 .

The nonzero proper principal faces S+(G) are the ones obtained from the following 6 induced
subgraphs.

1 2 3
1 2

3

1

3

2

However, since S+(G) is not polyhedral, it has infinitely many faces that are not subfaces of the
cones obtained by those induced subgraphs. For example, let x ∈ S+(G) be such that

x =

1 0 1
0 1 1
1 1 2


and let us consider the problem of determining F = Face(x,S+(G)), i.e., the minimal face of S+(G)
containing x. Following Algorithm 2 we let

t :=

1 0 0
0 1 0
1 1 0


and we may verify that, indeed, x = tt∗ holds. We also have I = {i | tii = 0} = {3}, so according
to Theorem 4.2, F is isomorphic to F(H), where H is the induced subgraph obtained by removing
the vertex with label 3. This automorphism can be obtained by finding l ∈ L++(G) such that

lt = eI , where eI =

1 0 0
0 1 0
0 0 0


One possible solution is

l =

 1 0 0
0 1 0
−1 −1 1

 .

Then, Ql is an automorphism of S+(G) mapping x to (lt)(lt)∗ = eIe
∗
I = eI . Therefore, Ql(F) =

Ql(Face(x,S+(G))) = Face(eI ,S+(G)) = F(H) is the principal dual face obtaining by considering
the subgraph induced by {1, 2}, i.e., zeroing out the third row and column of elements of S+(G).

This leads to the following explicit description of F .

F = {x ∈ S+(G) | (Ql(x))33 = 0} = {x ∈ S+(G) | (lxl∗)33 = 0}
= {x ∈ S+(G) | x11 − 2x31 + x22 − 2x32 + x33 = 0}.

(4.4)

The face F is also projectionally exposed and following the proof of item (i) of Theorem 3.5,
l̂ = l−1eI l is a lower triangular matrix such that Ql̂ maps S+(G) onto F and fixes F . We also note
that Ql̂ is not self-adjoint.
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4.1 The PSD completion side

Let G = (V,E) be a homogeneous chordal graph. The dual cone of S+(G) is the cone of positive
semidefinite (PSD) completable matrices that follow the sparsity pattern defined by G. That is,
x ∈ S+(G)∗ if and only if x ∈ πG(Sn+). A PSD completion of x is any w ∈ Sn+ satisfying x = πG(w).
While there is an extensive literature on completion problems, there seems to be few works that
address the actual facial structure of πG(Sn+).

Now, suppose that the vertices are ordered according to a trivially perfect elimination ordering.
Since S+(G) is K(A(G))∗, the cone πG(Sn+) = S+(G)∗ coincides with clK(A(G)). Overall, we have

πG(Sn+) = {u ? u∗ | u ∈ T+(G)} = {πG(uu∗) | u ∈ T+(G)}.

An element may have multiple PSD completions and it is of interest to obtain completions that
have certain desired properties. For example, if there exists a positive definite completion to some
x ∈ πG(Sn+), we may want to obtain one that maximizes the determinant.

In the next theorem, we gather several facts about the facial structure of πG(Sn+) together with

a proof that Algorithm 1 leads to a maximum rank decomposition. As before, if H = (V̂ , Ê) is
an induced subgraph of G, then it also corresponds to a face of πG(Sn+) in a natural way. By an

abuse of notation, we define πH(Sn+) := {x ∈ πG(Sn+) | xij = xji = 0, ∀i, j 6∈ V̂ }. Put otherwise,

x ∈ πH(Sn+) if it has a PSD completion w satisfying wii = 0 for i 6∈ V̂ .

Theorem 4.3 (Faces of homogeneous PSD completable cones). Let G = (V,E) be a homogeneous
chordal cone and let F E πG(Sn+). Then, F is projectionally exposed and there exists an automor-
phism Q of πG(Sn+) that maps F to πH(Sn+), where H is an induced subgraph of G. Additionally,
if the vertices of G are in a trivially perfect elimination ordering the following items hold.

(i) Q can be assumed to be of the form Q = Qu for some u ∈ T++(G). In particular Qu(y) =
πG(uyu∗) holds for y ∈ πG(Sn+).

(ii) Suppose that x ∈ riF . Then, x = πG(tt∗) holds for an unique proper matrix t ∈ T+(G). Then,
letting I = {i | tii = 0}, H is the subgraph obtained by removing the vertices belonging to I.
Furthermore, u in the previous item can be taken to be any u ∈ T++(G) satisfying ut = eI ,
where eI is the diagonal matrix that has 1 in its (i, i) component if i 6∈ I and zero elsewhere.

In what follows, let x, t be as in item (ii) and let r := |{i | ti 6= 0}|.

(iii) The maximum possible rank of a PSD completion of x is r and tt∗ is a maximum rank
completion.

(iv) If r = n, then tt∗ is the maximum determinant completion.

Proof. As in the proof of Theorem 4.2, changing the ordering of the vertices of G amounts to
permuting rows and columns, thus leading to linearly isomorphic cones. So we might as well
assume that G follows a trivially perfect elimination ordering.

Both the fact that F is projectionally exposed and that there exists an automorphism mapping
Q to some principal faces follow from Theorem 3.5. Under a trivially perfect elimination ordering,
Q = Qu for some u ∈ T++(G). Then, if y ∈ πG(Sn+) and y = t ? t∗ = πG(tt∗) for some t ∈ T++(G),
we have Qu(y) = (ut) ? (ut)∗ = πG(utt∗u∗) = πG(uyu∗), which proves item (i).

Item (ii) is a direct consequence of the uniqueness of the generalized Cholesky factorization in
Proposition 3.2 and item (ii) of Theorem 3.5.
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For item (iii), we start by observing that F is a homogeneous cone of rank r, also by item (ii)
of Theorem 3.5. Then, F∆ is a homogeneous cone of rank n−r, by Proposition 3.10. Let y ∈ riF∆

and write y = ll∗, where l is a proper lower triangular matrix in L+(G). By Theorem 3.9, since
F∆ has rank n− r, the diagonal of l has exactly n− r positive elements, so y has rank n− r. Let
w be a PSD completion of x, then

0 = 〈y, x〉 = 〈y, πG(w)〉 = 〈πG(y), w〉 = 〈y, w〉,

where the last equality follows from y ∈ S+(G). This immediately implies that the rank of w is at
most r. Analogously, the diagonal of t has exactly r positive elements, so tt∗ has rank r and it is a
maximum rank completion of x.

For item (iv), since r = n, letting l := t∗, we note that l ∈ L++(G). Let ȳ := l−1(l−1)∗

and w̄ := tt∗. In our T-algebra context, l−1 is the element in L++(G) satisfying l−1 ? l = e,
where e is the identity matrix, see Section 2.1 and the discussion after (2.12). However, in view
of item (iii) of Theorem 4.1, l−1 ? l = l−1l = e holds, so l−1 is, in fact, the usual matrix inverse.
Overall, we have (tt∗)−1 = l−1(l−1)∗, i.e., w̄−1 = y holds in the usual linear algebraic sense. Also,
y ∈ riK(A(G))∗ = riS+(G) holds, since the diagonal of l−1 is positive.

We consider the following primal dual pair of problems.

min
w∈Sn+,πG(w)=x

− log det(w) max
y∈S+(G)

〈x, y〉+ log det(y) + r

The optimality conditions are πG(w) = x, w ∈ riSn+, w−1 = y, y ∈ riS+(G). Therefore, ȳ and w̄
are optimal solutions and w̄ is the maximum determinant completion.

We remark that an analogous result to item (iv) was proved before in [TV23, Appendix B.4].
Also, Theorem 4.3 implies that x generates an extreme ray of πG(Sn+) if and only if the maximum
possible rank of PSD completions of x is one. As it may be of independent interest, we will check
that this property also holds when G is only chordal.

Proposition 4.4. Let G = (V,E) be a chordal graph, x ∈ πG(Sn+) be nonzero and denote by r the
maximum possible rank of a PSD completion of x. Then, x generates an extreme ray if and only if
r = 1.

Proof. First, suppose that x generates an extreme ray. Let F := Face(x, πG(Sn+)), i.e., the minimal
face of πG(Sn+) containing x. Let F∆ = S+(G) ∩ {x}⊥ be the conjugate face and y ∈ riF∆. Then,
if w is a PSD completion of x we have

0 = 〈x, y〉 = 〈πG(w), y〉 = 〈w, πG(y)〉 = 〈w, y〉 = 0.

Because w and y are PSD matrices, we have wy = yw = 0 and, in particular, kerw ⊇ im y. Also
w 6= 0, since x 6= 0.

Since x generates an extreme ray, F∆ is a maximum proper face of S+(G) by Lemma 2.1. Let
y′ ∈ S+(G) be such that it generates an extreme ray that is not in F∆. Since F∆ is maximal, we
have Face(y + y′,S+(G)) = S+(G), which implies that y + y′ is positive definite and, in particular,
has rank n. Because G is chordal, extreme rays correspond to rank one matrices ([AHMR88,
Theorem 2.3]), so y′ has rank one, which implies that y has rank n− 1.

Finally, since kerw ⊇ im y holds, we have rankw ≤ 1, which in view of w 6= 0, leads to
rankw = 1. This tells us that r = 1

For the converse, suppose that r = 1 holds and x1 + x2 = x, for x1, x2 ∈ πG(Sn+). Let wi be a
PSD completion of xi. Then w1 + w2 is a PSD completion of x, so w1 + w2 has rank one. This
can only happen if w1 = αw2 for some α ≥ 0, which implies that x1 = αx2 and x1, x2 are in the
half-line generated by x, so x is an extreme ray.
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Beyond Proposition 4.4, we do not know if items (i) and (ii) of Theorem 4.3 have analogues for
the case where G is only chordal.

Moving on, as discussed previously, faces of homogeneous cones are projectionally exposed but
it may happen that the projection cannot be taken to be self-adjoint. We will observe here that if
G is chordal, then πG(Sn+) is orthogonally projectionally exposed under the trace inner product if
and only if G is a disjoint union of cliques.

Proposition 4.5. Let G = (V,E) be a chordal graph, then the following are equivalent.

(i) πG(Sn+) is orthogonally projectionally exposed under the trace inner product.

(ii) πG(Sn+) = S+(G) (i.e., S+(G) is self-dual)

(iii) G is a disjoint union of cliques.

Proof. We start by observing that a pointed cone that is orthogonally projectionally exposed must
be contained in its dual, e.g., [BLP87, Proposition 2.2]. Therefore, if πG(Sn+) is orthogonally
projectionally exposed, then πG(Sn+) ⊆ πG(Sn+)∗ = S+(G). However, S+(G) ⊆ πG(Sn+) always
holds, so we have πG(Sn+) = S+(G). This shows (i)⇒ (ii).

If πG(Sn+) = S+(G), then, since G is chordal, πG(Sn+) is generated by PSD rank one matrices
and G must be a disjoint union of cliques by [GIL24, Theorem 4.2]. This shows (ii)⇒ (iii).

Finally, if G is a disjoint union of cliques then, up to permutations of rows and columns, πG(Sn+)
is a direct product of positive semidefinite cones, so it is orthogonally projectionally exposed under
the trace inner product, which shows the implication (iii)⇒ (i).

Proposition 4.5 does not exclude the possibility that some homogeneous chordal G that is not
a disjoint union of cliques be such that πG(Sn+) is orthogonally projectionally exposed under a
different inner product. Also, we mention in passing that the implication (ii)⇒ (i) is a special case
of a more general phenomenon, see [GL23, Proposition 4.18].

5 Conclusion and open questions

In this paper our main goal was to elucidate the facial structure of homogeneous cones under the
T-algebra framework and discuss applications to homogeneous chordality.

Here we briefly describe a potential practical application. When solving a semidefinite program
that fails Slater’s condition, one of the default ways of restoring constraint qualifications and re-
ducing the size of the problem is through facial reduction [BW81, Pat13b, WM13]. This is done
by reformulating the problem over a smaller face of the cone, which leads to a smaller SDP. The
reformulation typically use the projectional exposedness of Sn+ and expressions such as (1.1). Un-
fortunately, this often destroys sparsity if q is as in (1.1), since qxq∗ does not necessarily satisfy
any sparsity pattern present in x. Therefore, one must face the inevitable choice of either keeping
sparsity or regularizing the problem. From a theoretical point of view, the issue is that the map
x 7→ qxq∗ is an automorphism of Sn+ but not necessarily an automorphism of the PSD cone that
corresponds to the sparsity pattern of the problem.

However, if the sparsity pattern is homogeneous chordal, we have the tantalizing option of both
regularizing the problem and preserving sparsity. If the feasible region of some SDP is contained in
a proper face of a S+(G) as in Theorem 4.2, we can use an automorphism of S+(G) to reformulate
the problem over a principal face, which is an operation that indeed preserves sparsity. Further-
more, since principal faces correspond to zeroing rows and columns, we can further reformulate
the problem as a smaller dimensional SDP. For example, if the feasible region is contained in the
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face F as in (4.4), we can reformulate the problem as a 2 × 2 SDP that still respect the same
sparsity pattern by making use of the map Ql that takes F to the corresponding rank 2 principal
face. Similar considerations apply to problems over πG(Sn+), in view of Theorem 4.3. It would be
interesting to explore these possibilities in future works.

We conclude with some open questions.

(a) Suppose that G = (V,E) is chordal but not necessarily homogeneous. Are S+(G) and πG(Sn+)
projectionally exposed? Do analogues of Theorem 4.2 and Theorem 4.3 hold? For example,
it would be interesting to check whether, assuming only chordality, the faces of S+(G) are
linearly isomorphic to the finitely many faces that arise by considering induced subgraphs
of G and if such an isomorphism can be realized through an automorphism of S+(G). The
smallest example for which we do not know the answer to these questions is when G is a
path on four vertices. Analogously to the previous discussion, a positive answer would have
interesting implications for facial reduction approaches.

(b) We proved homogeneous cones are projectionally exposed but they may fail to be orthogo-
nally projectionally exposed under the inner product that comes from the T-algebra structure,
see Proposition 4.5. We do not know whether an arbitrary homogeneous cone can become
orthogonally projectionally exposed by changing the inner product appropriately. Currently,
the only homogeneous cones known to be orthogonally projectionally exposed are symmetric
cones [Lou21, Proposition 33], are those the only ones?

(c) Homogeneous cones are spectrahedral and, therefore, are hyperbolicity cones as well. These
are two classes of cones that strictly contain homogeneous cones. Are they projectionally
exposed?

Regarding (b), this problem is related to finding nontrivial conditions that ensure that a homoge-
neous cone is actually symmetric, e.g., [YN16]. Related to that, motivated by certain considerations
in quantum physics that are out-of-scope here, it was recently shown that if the automorphism group
of a homogeneous cone acts transitively on the set of extreme rays, then it must be a symmetric
cone [BUvdW23, Theorem 2].
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