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Abs-smooth functions are given by compositions of smooth functions and the
evaluation of the absolute value. The linear independence kink qualification
(LIKQ) is a fundamental assumption in optimization problems governed by
these abs-smooth functions, generalizing the well-known LICQ from smooth
optimization. In particular, provided that LIKQ holds it is possible to derive
optimality conditions for abs-smooth optimization problems that can be
checked in polynomial time. Utilizing tools from differential topology, namely
a version of the jet-transversality theorem, it is shown that assuming LIKQ
for all feasible points of an abs-smooth optimization problem is a generic
assumption.

Keywords: abs-normal form, genericity, jet-transversality, linear inde-
pendence kink qualification, nonsmooth optimization, piecewise-smooth con-
straints

1 Introduction

Many real-world applications lead to tasks with nonsmooth structures challenging signifi-
cantly the corresponding analysis. Up to now there are hardly any off-the-shelf solution
algorithms or software packages to solve such problems, which is mainly due to the lack
of computationally tractable optimality and stationarity conditions. For this reason,
researchers concentrate on certain classes of nonsmooth problems like, e.g., semismooth
functions to derive new analytical results or novel solution approaches.

One class of nonsmooth functions that gained some attention in the past years are
functions that are defined by a suitable composition of smooth functions and the evaluation
of the absolute value function, see, e.g., [GW16; HKS21; HS20; WG19]. The main

motivation to consider this set of functions was an extended version of algorithmic
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differentiation [Gril3] to provide generalized derivatives in a convenient way for nonsmooth
functions given as computer programs where the arguments of absolute value evaluations
are evaluated one after the other. Conceptually, a function ¢: R® — R is called abs-
smooth if for every input x € R™ there is a unique vector z € R® of s € N intermediate
values such that the function value ¢(z) can be expressed by means of two smooth
functions f: R” x R®* x R®* — R and c: R® x R®* x R® — R?® by

80(17) = f(ZL‘, |Z’,Z),

z = c(x,|z|, 2).

(1)

Here and throughout, the application of the absolute value function |-| to a vector z € R®
is to be understood component wise, i.e., |z| € R® and |z|; = |z, i € {1,...,s}. The
function ¢ will be referred to as switchting function of ¢ and the vector z corresponding to
the input x will be referred to as switchting vector for . Each component of ¢ captures a
step a program that implements ¢ takes to compute an intermediate value whose absolute
value is used in the overall computation. As example consider ¢(z) = ||x1| — |z2|| which
can be represented by c(x,y, z) = (z1,z2,21 — 22) and f(z,y, 2) == y3.

An abs-smooth function could serve as target function in a nonsmooth optimization
task as considered, e.g., in [GW16]. A collection of abs-smooth functions could represent
a system of nonsmooth equations considered, e.g., in [Gri+15], or may be used to describe
nonsmooth constraints as in [HS20]. In the literature, such functions are also called
abs-normal. However, since the representation in (1) is by no means unique and ¢ is a
composition of smooth functions and the absolute value, the term abs-smooth is used
throughout this paper. Furthermore, the list of arguments of an abs-smooth function
¢ varies in the various contributions. It was shown in [Shy+25] that these different
formulations are equivalent regarding the regularity condition introduced below.

As can be seen from the equations in (1), the nonsmoothness is located just in the
evaluation of the absolute value. This is an important property of abs-smooth functions
that can be exploited to derive and state theoretical properties of an abs-smooth function.
A nonsmoothness occurs only if there exists an index i, 1 < ¢ < s, with z; = 0, and
probably z; switches the sign in an appropriate neighborhood of this point. Motivated by
the graphical representation in low dimensions, therefore the sets of points x € R”, where
at least one component of the corresponding vector z is equal to zero, are called kinks.
In [GW16], the linear independence kink qualification (LIK(Q) that is detailed below was
introduced. Showing a close relation to the linear independence constraint qualification
(LICQ) in smooth optimization, LIKQ allows to formulate optimality conditions that
can be verified with polynomial complexity [GW16; HS20]. In [GW16; WG19], several
examples were presented to illustrate the prerequisites required such that LIKQ holds.
In [GW16, p. 8] the authors write: “In general, there is no reason why LIKQ should be
violated and locally it can always be achieved by an arbitrary small perturbation ...”,
however, the argument given there is rather informal.

To formalize the concept of a property that “usually” holds for a problem class, said
class is typically parametrized along the defining functions of a problem. A problem
instance is then a point in the vector space of possible problems and the property is said
to hold, if it holds at all feasible points.



For smooth optimization, the question whether LICQ is “usually” true was analyzed in
different contributions. In [SR79], the authors consider a condition like LICQ as generic,
if it holds for almost all problem instances. This concept has the drawback that the set,
where the condition holds, might be closed such that a small perturbation may lead to
a situation where the condition is no longer true. For this reason, and more or less in
parallel, in [JT79] the authors assumed high regularity of the involved functions and used
the Whitney topology to prove that the set of problems where LICQ holds everywhere is
dense and open. This is a very strong notion of genericity as it ensures that an arbitrarily
small perturbation to the defining functions of a problem instance leads to a situation in
which the LICQ holds at all feasible points, and that this situation in turn is stable with
respect to further perturbations.

Since the concept of abs-smooth functions was motivated originally by algorithmic
differentiation where the smooth components are usually C*° functions, this paper follows
the lines of Jongen and co-workers to prove that LIKQ is generic in the sense that the
set of problem formulations where this property holds is dense and open under the
assumption that the involved functions are very regular. Given a “random” abs-smooth
problem, it is then not a strong restriction to assume that LIKQ holds in particular at a
local minimizer. For mathematical programs with complementarity constraints (MPCCs),
it was shown in [SSO01] that MPCC-LICQ is generic in the sense of Jongen, i.e., the proof
is based on Sard’s theorem. In [HKS21], the authors prove that abs-smooth nonlinear
optimizations problems are equivalent to a certain class of MPCCs. However, this class is
just a subset of the MPCCs considered in [SS01], and hence, one can not apply the general
perturbations that are needed in the proofs used in [SS01] to show that MPCC-LICQ is
generic for the class of MPCCs that are equivalent to abs-smooth nonlinear optimizations
problems. Therefore, these two results can not be easily combined to show the genericity
of LIKQ for the abs-smooth problem class.

Genericity of suitable constraint qualifications for other nonsmooth optimization
problem classes have been shown and applied in the critical point theory in [JRS09;
DSS12; DJS13; LS22]. Specifically, [DJS13] invokes the structured jet-transversality
theorem of [Giin08] for Nash games; a tool that will be crucial for the arguments presented
below.

The rest of the paper is structured as follows. Section 2 introduces the basic concepts
and notations for abs-smooth optimization problems while Section 3 presents some
definitions and results from differential topology that are required for the application of
the structured jet-transversality theorem of [Glin08] in the context of abs-smooth problems.
The established formalism is used in Section 4 to encode LIKQ as a transversality condition.
Finally, in Section 5, the genericity of LIKQ is shown. Section 6 gives an outlook to
further research questions.

To derive the theoretical results of this paper, the following notation is used. For a
finite set M the cardinality of M is denoted by |M|. The set of positive integers up to
n € N is denoted by [n] := {1,...,n}. In particular [0] = 0. For a point = on a manifold
A the tangent space of A at x is denoted by T, A.

Let i,n € N, i <nandlet Xy,...,X,,Y be finite dimensional, real vector spaces, then
the i-th partial derivative of a differentiable function f: X7 x -+ x X,, = Y is denoted



by 0; f, the corresponding Jacobian with respect to the canonical basis by D; f, and the
full Jacobian by Df. Is f is smooth enough, £ € N and a € [n]’ a multi-index, then

Oaf =04, - 0u, f-
For n € N the identity matrix in R™*" is denoted by I,,.

2 Prerequisites from abs-smooth optimization

The properties of an abs-smooth function ¢ to a large extent depend on the function c.
The rather involved definition of ¢ presented below already prepares the ground for the
main result of this paper and takes the fact into account that the intermediate value z;
can only be influenced by the intermediate value z; if j < ¢ which reflects the nature of a
computer program.

Let from here on onward £ € NU {oc} and n,s € N be given and let d :=n + s+ s
and d; =n+2(i—1) for i € [s].

Definition 1 (Switching functions). Given an s-tuple of functions (c1, ¢, ..., cs) with
c; € CF(R®%) for i € [s], the function c: RY =2 R™ x R® x R® — R*® defined by

c(x,y,z) = (c1(x),ca(x,y1,21), - s es(@y Y1y vy Ys—1), (215 -+ Z5—-1)))- (2)

is called a switching function of class C*. The set of all switching functions is denoted by
Ch(RER®) © CF(RYRY).

It is important to note that, for a given ¢ € wa(Rd; R®) and = € R™, by construction
there is a unique solution z € R?® to the so-called switching equation

z = c(x,|z|, 2) (3)
by simply consecutively evaluating
zi = ci(w, (|21], - - [2ima])s (215005 2im1)s

for all ¢ € [s], where for ¢ = 1 this is to be understood as z; = ¢;(x). In particular, the
Jacobians Daoc(z, |2], 2) € R¥* and Dsc(x, ||, 2) € R%*® are lower triangular matrices.

Let ¢,p € N. For a given switching function ¢ € CF (R?;R?) and functions g €
C*(R% RP) and h € C*(R%;RY) let F(c, g, h) be defined by

Fle,g,h) = A{(z,2) e R" x R*: 2 = c(x, 2], 2), 9(x, 2], 2) = 0,h(z, 2], 2) = 0} (4)
Together with f € C*(R?) an abs-smooth optimization problem reads
minimize f(z,|2],2) s.t. (z,2) € F(e g,h). (5)

The pair of functions (f,c) € C*(R?) x Ck (R? R*) can be used to represent a function
mapping R” to R. Given z € R” the value (f,c)[z] € R is obtained by first computing
the unique z € R* according to the switching equation (3) and then evaluating

(f,0)lx] = f(=,]z], 2).



The above notation should indicate the difference to the usual component wise way of
interpreting the evaluation for a tuple of functions, i.e, (f,c)(w) = (f(w), c(w)) € R**!
for w € R9. If for a given function p: R® — R it holds that ¢(x) = (f,c)[z] for all
x € R", then ¢ is called abs-smooth and (f,c) is called an evaluation procedure of .
The set of abs-smooth functions, i.e., the set of functions ¢: R™ — R for which there
is an evaluation procedure (f,c) € C*(R?) x C (R%R?), is denoted by C:B‘Z(R”). By
extending the switching function c, it is possible to also represent functions ¢, : R™ — RP
and ¢p: R” — RY whose evaluation involves the absolute value function such that
pg(x) = (g,¢)[z] and ¢p(x) = (h,c)[z]. For all possible evaluation procedures that
represent ¢, ¢4 and ¢y, the optimization problem in (5) is equivalent to the problem

minimize @(x) st. ze{TeR": p4(z)>0,p,(T) =0}. (6)

The LIKQ condition is useful to characterize local optima to (5) or (6) in terms of certain
KKT type conditions. In order to define LIKQ it is useful to introduce further notation for
the Jacobian matrices of the switching equation in (3), the inequality constraints g and the
equality constraints h with respect to the independent variable xz. To that end, let for a
given z € R® the matrix of signs of z be denoted by X(z) := diag(sign(z)) € {—1,0,1}**¢
and, given x € R™, define

J.(x,2) = (I, — Dac(x, |2, 2)2(2) — Dse(x, ||, 2)) ' Dic(x, |2, 2),
Jg(xvz) = Dlg(xv ‘Z‘7 Z) + (Dgg(:x, ’2‘7 Z)E(Z) + D3g(x7 ’2‘7 2))JZ(‘T7 Z)? (7)
Jn(x, z) = Dih(z, |z|, z) + (D2h(z,|z|, 2)2(z) + Dsh(z,|z|, 2))J.(x, 2).

The set of indices corresponding to active switches and the set of indices corresponding
to active inequality constraints are denoted by

a(z) ={i € [s]: z =0} and B(x,z) ={i € pl: g(z,|z|,2), = 0}.
The projection onto the active switching indices is defined by P, = (e?)iea(z) € Rl=)Ixs
where e; € R? is the ¢-th unit vector while the complementary projection to the inactive
indices is denoted by Q, = (e?)ie[s]\a(z) e RG-1a(=))xs By a slight abuse of notation,
the projection onto the active/inactive inequality constraints will similarly be denoted by

P,B = (eT)iGﬁ(:E,Z) = R\,B(:v,z)\Xp and Q,B = (eT)iG[p]\ﬁ(CL’,Z) = R(p—|,8(:l?,z)‘)><p.

K3 K3

Definition 2 (LIKQ). Given ¢, g and h as before, a point (z,z2) € F(c,g,h) is said to
satisfy the linear independence kink qualification (LIKQ) at (z, z), if

Py J:(z, 2)
rank | Py, ) Jg(@, 2) | = |a(2)] + [B(z, 2)] + q.
Jh(I,Z)

The examples below consider the simple case with just one switch and without equality
and inequality constraints.



Example 3 (LIKQ everywhere). Consider the switching function ¢(z,y, z) := — sin(x)
which has an active switch at z € {¢r : ¢ € Z}. Since Dac(z,0,0) = D3c(z,0,0) =0
and Dic(w,0,0) = —cos(z) € {—1,1} for all those points, the matrix P, .)J.(z,y, 2) is
either empty or £1, and hence, has full rank everywhere.

Example 4 (no LIKQ at 0). For the second example consider ¢(x,y, z) = sin(z) —x. At
x = 0 the switching equation yields z = |z| = 0 and the stratum containing j°(0,0,0) is
Ay LIKQ does not hold at (0, 0), since again Dac(0,0,0) = D3c(0,0,0) = 0, and hence,
J.(x,z) = D1¢(0,0,0) = cos(0) — 1 = 0.

3 Prerequisites from differential topology

The arguments in the later sections are based on an extension of the jet-transversality
theorem, see [JJT00, Thm. 7.4.5], for structured jets in a paper by H. Giinzel [Giin08]. For
the sake of a complete and mostly self-consistent presentation the important definitions
of Glunzels paper are restated here.

To not overload the notation that was established in the first part the notation here
deviates in some points from the one that is used for example in [JJT00] or [Giin08|.
This of course also prepares the application of the results in this section to the abs-
smooth problem class. In the following the reader may think of w € R? as a tuple
(z,y,2), ¢ as the combined function (c,g,h): R? — R™ ie., ¢(w) = ¢(z,y,2) =
(c(z,y,2),9(x,y,2),h(z,y,2)). In contrast, ® can be thought of as the (s + 2)-tuple
of functions defining the abs-smooth problem in (6), i.e, ® = (¢1,...,¢s,9,h) and for
i € [s+2] the vector w; € R% as a possible input to the i-th component of ®. The vector
W represents a vector of independent inputs to the function ®, i.e, W = (wy, ..., wst2).
Moreover, bold font is used to indicate variables that should be thought of as values of
the corresponding function, e.g., ¢ = ¢(w).

Definition 5 (stratifications, jet-transversality [JJT00, Def. 7.3.33, Thm. 7.3.4]). Let
d,m € Nand A C R"™ then a locally finite partition A of A into pairwise disjoint C*
manifolds is called a stratification of A of class C*. The elements of A are referred to as
strata and are indexed with some index set J. The dimension of A is defined by

dim(A) = I]r'leaf dim(A4;).

For a given (w, @) € A the stratum containing (w, ¢) is denoted by A, 4) and the
tangent space at (w, @) on Ay gy SImply by Ty ¢)A = T(w,¢) Aw,a)-

The stratification of A is called weakly Whitney regular if for any (w, ¢) € A and
any sequence ((w, @)¢)een that converges to (w, ¢) and consists of elements of the same
stratum A; € A, for some j € J, the inclusion

Tiw,g)A S im Tiw,g),4;

holds, whenever the last limit exists in the Grassmann manifold, cf. [Leel2, Example 1.36].



For a function ¢ € C*(R% R™) the 0-jet-extension j°(¢): RY — R4*T™ is given by
7%(¢)(w) = (w,¢(w)). The “0” in the term O-jet-extension refers to the fact that no
derivative information of ¢ is used in the jet-extension; a setting that suffices for the
arguments in this paper.

The 0-jet-extension j%(¢) is said to meet A transversally, denoted j°(¢) h A, if for all
w € ()" (A)

img(D5%(¢)(w)) + Tjo(g)wyA = RI*™.

Roughly speaking, the classical jet-transversality theorem states that for an open and
dense set of functions ¢ € C*(R%; R™) the 0-jet-extension of ¢ meets any weakly Whitney
regular stratified set transversally. Transversality theorems can be leveraged by encoding
certain properties of the inputs w, e.g., feasibility with respect to ¢, into a stratified set
A and then reformulating the transversality condition into an algebraic condition, e.g., a
constraint qualification. The transversality theorem then states on the one hand that
the acquired condition will hold true for all inputs w, possibly after an arbitrarily small
perturbation of ¢ (density), and that it is stable (openness).

The more flexible version for structured jets deals with a finite collection of functions
and allows for the description of A to depend differently on different variables. For
the remainder of this section let § € N be the number of involved functions and let
di,...,d; € Nand mq,...,mz € N denote the dimensions of their respective domain and
image spaces. Furthermore, let D € N be the total amount of independent inputs to the
§ functions and m € N the total number of their values, i.e,

D=di+...+d; and m:=mq+...+m;.

Definition 6 (structured O-jet-extensions [Giin08, Definition 2.4]). For ¢ € [3] let
¢; € CF(R%;R™) and ® = (¢1,...,ps), then the function

@) RE x .. x RE 5 RU x . xRS x R™ x ... x R™$
given by
3@ (wr, .. ws) = (wi, . ws, dr(wi), -, Ps(ws))

is called structured 0-jet-extension of ®.

The tuple of functions @ in the above definition can be understood as an overall function
in C*(RP”;R™) by defining its value for W := (wy,...,wz) € R4 x ... x R% =2 RP as

(W) = (¢1(w1), .. ., ¢s(ws)). (8)

Note that this evaluation of ® allows to view the space C*(R%; R™) x ... x CF(R%;R™s)
as a subspace of CF(RP; R™). In fact, the values of the structured jet jO(®) are identical
to the values of the classical jet W — (W, ®(W)) when using this structured way of
evaluating ®. This justifies using the same notation for structured jets as for classical
jets. Moreover, the notation of jet-transversality from Definition 5 extends naturally to
structured jets. However, since the input w; does not affect the output of ¢; whenever



j # 1, the previously described subspace relation is strict. Specifically, the possible
perturbations of ® viewed as an element in C*(R%; R™) x ... x C*(R%; R™) are different
from the possible perturbations of ® as an element of C¥(R”;R™). The topology in
which the perturbations have to be understood is clarified by the following definition.

Definition 7 ((strong) Whitney topology). Let ¢ € {0,...,k}, i € [5]. The sets Uy, ¢,
which are indexed by continuous functions e: R% — (0, 00) and points ¢; € C*(R%; R™:),
and which are defined by

Up,e = {w € Ok by 1009(w1) = Ot (wi)l] < s(wﬂ},

for all w; € RY|a| < ¢

form a basis of neighborhoods of the (strong) Whitney C*-topology of C*(R%;R™).

If in the definition one uses only positive constants € instead of positive functions one
obtains a basis of the coarser weak Whitney topology. However, since R% is not compact,
the convergence with respect to this simpler topology does not capture the behavior “at
infinity” very well. In contrast, the strong topology is an extremely fine topology and
in fact is not metrizable [Kri69]. Nevertheless, it forms a Baire space, which allows to
meaningfully define generic subsets as sets which contain the intersection of a countable
number of open and dense subsets. In particular, open and dense sets themselves are
generic. For details see, e.g., [Hir76, p. 34-36, Theorem 4.4.] and [JJT00, p. 306].

For ¢ < k the product topology on CF(R¥;R™) x ... x C*(R%;R™3) induced by
the Whitney C’-topologies on the respective spaces will be referred to as the Whitney
C*-topology of C*(R¥;R™) x ... x C*¥(R%;R™s). This completes the prerequisites
required to state the structured jet-transversality theorem.

Theorem 8 (structured jet-transversality [Giin08, Theorem 2.5]). Let A be a weakly
Whitney regular stratification of A C R% x R™ x ... x R% x R™swith dim(A) < k + m.
Then,

G :={® € CFR™;R™) x ... x CHR™S;R™) : j°(®) th A}

is a dense subset of CE(RI;R™) x ... x C*(R%;R™3) with respect to the Whitney
CFk-topology. If A is closed, then G is additionally open with respect to the Whitney
C'-topology, and hence, certainly open with respect to the Whitney C*-topology.

As already stated, the concept of a structured jet and the structured jet-transversality
theorem are useful to restrict the perturbations considered in the desired space of
functions. However, from a technical point of view that comes with the downside of
having independent variables for every function that is part of the tuple ¢. Mathematically
this is not a problem as relations between these variables can also be expressed in the
stratified set A, see, e.g., [Giin08, Example 3.2]. The following lemma represents a tool to
alleviate this problem by means of a left-invertible linear operator II that relates between
a few actual variables and the many formally required variables of the structured jet.
The proof is rather elementary and similar, although not equivalent statements can be
found as exercises in the book [JJT00]. Nevertheless, the proof is presented here also
with the intent to provide a reference to this tool for future works.



Lemma 9. Let IT € RP*4 be g left-invertible matriz and J an index set for a stratification
= {A;}jes of A CRU™ of class C*. Additionally, for i € [3] let ¢; € CF(R%; R™)
and ® = (¢1,...,05). Then,

a) A= {Aj}je] is a stratification of A C RP+™ into C* manifolds, where

flj = [1(_)1 I?n] A; and A= F(_)[ I?n:| A.

b) if A is weakly Whitney regular, so is A.
¢) j2(®) A if and only if j°(¢) M A, where ¢ == ® o II using (8).
Proof. a) Clearly, A is a partition of A. For any j € J the mapping

RI™ 5 A; — RPT™, (w,¢) — (W, ®) = [1(_)[ I(:n:| (w, @)

is an injective smooth immersion. Thus, [Leel2, Proposition 5.18] ensures that jlj is a
C* manifold. To show that A is locally finite, let some (W, ®) € RP+™ be given. If
W ¢ imgIl, then there is a whole neighborhood Uy C RP of W with Uy NimgIl = ()
due to imgII being a closed subspace of RP. Then, for any neighborhood Ug C R™ of
@, clearly (Uw x Ug) N A; =) for any j € J, since A; C img Il x R™,

If otherwise W € imgII, then there is w € R? with Ilw = W. Since A is locally finite
there is a neighborhood Uy, ¢) C R4™ of (w, ®) such that {j € J: Uw,a) N Aj # 0} is

finite. Set
I o
Uw.e) = [0 Im:| Uw,®);

then, for any j € J with Uy, ey N Aj = 0, it holds

- oo m o m o
WW@“%:% %PWQH% %L%:L %NWmW“ﬁ:@

where the penultirpate equality holds due to Il being injective. Therefore, the set
{j e J: U(W7q>) N Aj 7’5 [Z)} is finite.

b) Let (w, ¢) € A, then

~ I o

Tiiw, ¢)A [0 I ]T(w,tﬁ)A' (9)
Let (Wy, ®)sen C A for some j € J with (Wy, ®;) — (W, ®) as £ — oo and let T
be the limit of T{yw, ¢, 4; in the corresponding Grassmannian. Since, for every ¢ € N,
(Wi, ®y) € flj, in particular W, € imgIl, there is wy € R¢ with W, = Hw, and
(wg, ®¢) € Aj. It holds (wy, By) — (II'W, ®) as £ — oo and

ot o]~ [t o : i
T:[OIJT [Of}hmﬂmmﬁzﬁﬁﬂwmﬁ‘



Since A is weakly Whitney regular, it follows T(rriw )4 € 1. Thereby,
- IIr o I o ~

Tiw,a)A= [O Im:| Timiw #)A © {0 Im:| T=T.

c) A vector W is an element of jo(q))_l(fl) if and only if (W, ®(W)) € A. The latter is
the case if and only if W € imgII and (II'W, ®(W)) € A. Since for any W € imgTI, it
holds that

("W, ®(W)) = (II'W, @I ITTW)) = j%(@ o I)ITTW) = j°(¢)(ITTW),

the former conditions are all equivalent to W € imgII and j°(¢)(II'W) € A. Finally,
this is equivalent to W € Hjo(gb)_l(A), which shows that

. T . -1
7°(®@)(A) =T15°(4) (). (10)
Now fix w € j%(¢) ' (A) and let ¢ := dim(Tjo(y)()A) and By € R¥* and B,, € R™**

be such that the columns of

By (dm)xt
5] ex
form a basis of Tjo(4)u)A and the condition R™™ = img(Dj%(¢)(w)) + Tjo(g)w)A is
equivalent to

14 By 14 By

rank [Ddﬁ(w) B,J vk [D<I><Hw>n By,

} =d+m. (11)
Let further A € RP*(P=4) be left-invertible such that the columns of A span the (D — d)-
dimensional orthogonal complement of imgII, i.e., img A = (img H)L. Then, II"A =0
and [A TI] € RP*P has full rank. Using this split, (11) is equivalent to

Ip_gq4 0 0
rank 0 Iy Bi| =(D—-d)+d+m=D+m.
D&(Ilw)A DI(w)I By,

Moreover, since

.|>
Ip—a 0 0 AT 0 I B,;1[A I 0
0 La Ba| =" 0 D®(lw) B,||0 0 I
D®(Iw)A DO(IIw)II By, 0 In m m

and the transformation matrices have full rank D + m the above is equivalent to

I B,

rank [D@(Hw) B,

]:D—l—m
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which is equivalent to

m . I o
RD+m _ 1mg(D]0(<I))(Hw)) + |:0 Im:| TjO(@OH)(w)A.

The equivalence of the transversality conditions then follows by

i°(®) A

EL v e 115%(g) 7 (4): RPT™ = img(Dj(®) (W) + Tjo(ay ) A

I

. o . 0
(4): RP™ = img(Dj°(®)(Tw)) + [o Im} Ty oo 4

& VY € j%>¢)
= Vwe %) (A): R*™ = img(D%(6) (w)) + Tjo(g)m) A

&L 30(e) th A O

4 LIKQ as a transversality condition

For given functions ¢ € CE (R4 R?®), g € CK(R%RP) and h € C*(R?%RY), this section
establishes a transversality condition for the remarkable property that all feasible points
(z,2) € F(c,g,h) satisfy the LIKQ condition. To simplify notation set m := s+ p+ ¢ and
let j°(c, g, h) be the standard O-jet for the combined function (c, g, h): R® — R™ i.e.,

3(e, g, h) (2, y, 2) = (z,y, 2, c(2,y, 2), g(x, 9, 2), bz, y, 2)). (12)
The definition of the set A C Rt™ ag
A={(z,y,2,¢,9,h): y=|z2|,z=¢,9g > 0,h =0} (13)

then ensures that (z,2) € F(c,g,h) is equivalent to (=, |2|,2) € %(c, g, h)_l(A); which is
a fundamental prerequisite to the subsequent analysis. A stratification of A is given by
A={As,:0€{-1,0,1}°,w € {0,1}7}, ie.,

A= | Asw  with  As, =R"x A, x A, x {0}
oce{-1,0,1}*
we{0,1}P
and
A, ={(y,z,c) e R* xR* xR*: y = |z|,z = ¢,sign(z) = o},

A, = {g € R?: sign(g) = w}. (14)

To analyze the transversality condition j%(c,g,h) h A it is useful to characterize the
tangent spaces of the strata as images. This is achieved by the following lemma.

11



Lemma 10 (Tangent spaces and Whitney regularity). Define for fized o € {—1,0,1}*
and w € {0,1}P the matrices ¥ = diag(c) and Q) = diag(w). Then, for (y,z,c) € Ay,
and g € A, the tangent spaces are given by
2|
Tiy,zc)As = img | ¥ (15)
Dy
and TgA,, = img Q. Moreover, the stratification A is weakly Whitney regular.

Proof. Let v € T(y » )As, then there is € > 0 and a differentiable curve v: (—¢,¢) — A,
with v(0) = (y, z,¢) and 7/(0) = v. The definition of A, implies

Vy(t) [72(2)] I 3]
V(t) = |=(t)| = | 7=(t) | = |diag(o) | [v=()] = | ¥ | E:(1),
Yelt) V2 (t) diag(o) b
and hence, i
2| 2]
v=+(0)=| X | Xv.(0) €img |
2] by
For v in the right-hand side of (15) there is n € R® such that
Yy (t) Y] 2| 2|
vt) = |7@)| = |zl +tv=|z|+t]| 2 |n
Ye(t) c z by

The definition of v ensures v(0) = (y, 2, ¢) and +/(0) = v. Therefore, it remains to show
that in the vicinity of the origin v is a curve on A,. One has 7, = .. Since for i € [s]
the term (¢t3n); vanishes whenever o; = 0, there is a radius € > 0 such that for ¢t < ¢

sign(,(t)) = sign(z + t¥n) = sign(z) = o.

In particular, |y.(t)| = X7.(t) = Sz + t¥%n = |z| + t|X|n = 7, (¢), whence, v(t) € 4,.
The assertion for the tangent space of A, follows analogously.

To show that A is weakly Whitney regular, let £ € N and w; = (¢, ys, 2¢), ¢¢ =
(ce,ge, hy) such that (wy, ¢¢) is a sequence in A, , that converges to some limit point
(w,¢) = (&,9,%,¢§,h) € A Let & = sign(2), ¥ = diag(§), & = sign(g) and
Q = diag(w). Since (9, 2,¢é) € As and § € Ag, it suffices to relate o to &, and w to .
Now assume there is i € [s] with 0; = —d; # 0, then there is a neighborhood of z in
which the same relation holds true, which contradicts z; — 2z, as o = sign(zy) for all
¢ € N. Therefore, 6; = 0; or ¢; =0 for all 7 € [s]. The same argument shows w; = w; or
w; = 0. The previously established characterizations of the tangent spaces then yield

(1, 0 0 0] 7, 0 0 0
0 X 00 0 |3 00
. O X 0 O . 0O X 0 0 .
T(w’(ﬁ)A:lmg 00 0 0 C img 0T 0 0 _gligloT(wa)AU"‘”
0o 0 Q 0 0 0 Q0
0 0 0 0 0 0 0 0]
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(b) Example without LIKQ at 0.

(a) Example with LIKQ at all feasible points.

Figure 1: Two examples that show different situations with respect to the LIK(Q) condition.
The pink area (* ) indicates the stratified set A and the teal area (’)
indicates the image of the jet j°(c). The intersection of the former two, the
feasible set F(c), is depicted as the blue line (—). Finally, the red line
indicates (——) the stratum Ag).

where the last limit is taken over a sequence of constant tangent spaces. O

Theorem 11 (LIKQ as a tranversality condition). For any tuple of functions (c,g,h) €
Ck (R4 R®) x CF(RERP) x CF(R%RY) one has

V(z,2) € F(c,g,h): LIKQ holds at (x, 2) — 3%, g,h) h A.

Before the proof of Theorem 11 is presented here, the two examples of Section 2 are
revisited to provide an intuition of the relation between transversality j°(c, g, h) h A and
the LIKQ condition of Definition 2.

Example 12 (LIKQ everywhere). Figure 1 (a) shows the jet-space of Example 3 without
the z-dimension. The feasible points can be recognized in the jet-space as the intersection
of the stratified set A with the image of the jet j°(c). At all points, in particular the
feasible ones, the y-axis is part of the linearization of the image of the jet j°(c). Moreover,
the x-axis is part of the tangent space at any (feasible) point in a stratum of A. Finally,
for all feasible points (x,y,c) with ¢ # 0 the tangent spaces contain a third linear
independent direction (0, 1,41) which completes the combined dimensions to 3. If on the
other hand ¢ = 0 for a feasible point then it is a point on the stratum Ag) and the tangent
space is only one-dimensional. However, then the c-axis is part of the linearization of the
jet which again ensures transversality.

Example 13 (no LIKQ at 0). Figure 1 (b) depicts the situation of Example 4. As in
Example 12, the tangent space of A g is just the x-axis. However, here the linearization of
j%(z,y, 2) at 0 spans the z-y-plane leaving the c-axis as a linear independent dimension.

13



Proof. By definition the transversality j°(c, g, k) th A, holds if and only if for all (z,y, z) €
. —1
7%(c.9,h) " (4)

lmg(DJO (Ca g9, h) (.CU, Y, Z)) + CZjjo(c,g,h)(:c,y,z)‘407w = Rd+m7 (16)
where A, is the stratum containing (z,y,z,¢,g,h) = j%c,g,h)(z,y,2). By the
definitions of the sets A, and A, in Equation (14), one obtains ¢ = sign(z) = sign(z),

w = sign(g) and y = |z|. Define ¥ = diag(o) and 2 := diag(w), then by Lemma 10 the
condition (16) is equivalent to

L, 0 0 I, 0 0
0 I, 0 0 [Z 0
o o0 I 0 T 0|
k. Dee Dyge 0 % o] 4F™ (17)
Dig Dsg D3sg 0 0 €
Dih Doh Dsh 0 0 0

where the trivial last column in the characterization of the tangent spaces is left out, since
it does not add to the overall rank, and the dependencies on the evaluation point (x, |z|, 2)
is omitted in the partial derivatives of ¢, g and h for notational ease. Multiplication from
the left of the above matrix with the full rank matrix

(1, 0 0 0 00
0 I 0 0 00
0 0 I 0 00
0 —SDQC —SDgc S 0 0}/
0 —(DggZ—f—Dgg)SDQC—Dgg —(DggZ—l—Dgg)SDgC—Dgg (ngZ-l—Dgg)S Ip 0
L 0 —(Dghz + Dgh)SDQC — Dgh —(Dth + Dgh)SDgc — D3h (DQhZ + Dgh)s 0 Iq_

where S = (I — DacY — D3c) ™! € R¥*# yields

[ I, 0 0 I, 0 0]
0 I, 0 0 [¥ 0
| 00 Loz o0f
J(x,z) 0 0 0 X 0
Jg(x,z) 0 0 0 0 Q
| Jp(x,2) 0O 0 0O 0 O]

as an equivalent characterization of transversality. Clearly, the first d = n 4+ s + s rows
of this matrix are independent, and thus, the final reformulation of the transversality
condition in (16) reads

J(x,z) X 0
rank | Jy(z,2) 0 Q| =m.
Jp(xz,z) 0 0

This is exactly the LIKQ condition in Definition 2 if the rows that are trivially linear
independent from the rest, due to nonzero entries in X or 2, are removed from the
matrix. O

14



Remark 14 (No addtional constraints). An analogous statement to Theorem 11 can be
derived, when considering the problem class without additional inequality and equality
constraints. In that case the LIKQ condition of Definition 2 reduces to a full rank
condition of P,ya(z)J,(x,z). Changing of the definition of the feasible and stratified set
accordingly, i.e., to F(c) = {(z,2) : z=c(z,]|z],2)} and

A= U {($>yvz>c)) CER=G6Y = |Z|,SigH(Z):U}
oe{-1,0,1}

one can use virtually the same arguments as in the proof of Theorem 11. The only
difference being that the last two rows and the last column of the matrix in (17) are not
present.

Remark 15 (No free switching variable). Earlier papers on abs-smooth optimization,
in particular [Gril3; GW16; WG19], used a different formalization to represent an abs-
smooth function. Therein, the functions in the evaluation procedure do not depend
explicitly on the switching variable z but only on its absolute value. That is, the
representation of ¢ € C%*(R") reads

abs

f(z, [2)),
(@, |2]).

The same can be done for abs-smooth inequality constraints and abs-smooth equality
constraints prescribed by functions ¢, and ¢j, respectively. Consequently, in such a
formulation the matrices in (7) would not involve the corresponding partial derivatives
with respect to a third argument. However, the definition of the feasible set, the jet and
the strata in (4), (12) and (14) would need to remain unchanged to properly encode
feasibility. The then seemingly unjustified input variable z of the jet can be explained by
introducing artificial function ¥ (x,y, z) and considering the reduced structured jet that
drops the actual value of ¥, c.f. [Gin08]. In the later context on genericity this additional
freedom in the possible pertubations to the problem description needs to be justified,
which will be done in Remark 17. In a proof of a theorem analogous to Theorem 11
basically nothing would change, except that all partial derivatives with respect to z are
replaced by O-matrices of the corresponding dimension.

p(z)

Il
o

5 Genericity of LIKQ

As already discussed after Definition 6 the perturbations that the standard jet-transver-
sality theorem [JJT00, Theorem 7.4.5] for j%(c,g,h) and A as defined in (12) and (13)
considers are too general. In particular, when perturbing ¢ in C*(R%; R™) even slightly
with respect to the strong Whitney topology, the result may not be a valid switching
function anymore. In contrast, perturbing the functions c, ..., cs that define ¢ via (2)
individually will always result in a valid switching function. However, since the signatures
of the ¢;, i € [s] differ, this requires the use of the structured jet-transversality Theorem 8.
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Theorem 16 (LIKQ is a generic assumption). Assume k > n — q. Then, the set
G C CHFRM) x ... x CF(R%) x CHRY;RP) x CF(RE;RY) defined by

G ={(c1,...,¢s,9,h) : Y(x,2) € F(e,g,h) LIKQ holds at (z,z)}

is an open and dense subset of C¥(R%) x ... x C*(R%) x C*(R%; RP) x CF(R?; R?) with
respect to the strong C*-Whitney topology.

Proof. Let § :== s+ 2. For i € [s] let d; .= n+ 2(i — 1) and dgy1 = dsy2 = d. The
matrices R%*4 with

T T .
Hi[:z: y z] ::[:c Y1 eee Yiil 21 ... zi,l] , 1€ ]s]
generate the required inputs for i-th line of the switching function ¢;. By setting
g1y =1lsq40 :=I;and D :=dy + ...+ ds the combined matrix

IT;
M= | : | e RP*d
115

when applied to (z,y,z) € R? provides valid inputs for the structured evaluation of
® = (cq,...,¢s,9,h) in the sense that

O(Il(z,y,2)) = (c1(x), ...y es(@y Y1y e ooy Ys—1, 215 - -+ 25—1), 9(T, Y, 2), h(z, Yy, 2)).

Moreover, II is left-invertible, as the last submatrix II;;9 is an identity on the input,
and it holds ® o IT = (¢, g, h) € C*(R% R™). Since the stratification A of the A defined
in (13) is weakly Whitney regular, the Assertion a) and b) of Lemma 9 show that A is a
Whitney regular stratification of A, where

~._ H 0 . _ S P "’._ H 0
A._{{O Im]AJ’w'UG{ 1,0,1},w€{0,1}} and A := [0 Im]A.

Since the transformation that is applied to each stratum is left-invertible by construction,
it is bijective onto its image, and hence, dim(A) = dim(A) < n + s + p. Now Theorem 8
shows that the set {(c1,...,cs,9,h) : j%eci,...,cs,g,h) M A} is an open and dense
subset of C¥(R™) x ... x C¥(R%) x C*(RY; RP) x C¥(R?;RY) with respect to the strong

Whitney topology. Further, Lemma 9 c¢) ensures that

{(c1,...,¢s,9,h) : jo(cl,...,cs,g,h) mA} ={(c1,...,¢s,9,h) : jo((c,g,h)) M A},

while Theorem 11 provides the required connection to the LIK(Q condition. ]

Remark 17 (genericity in other settings). In view of Remark 14 and Remark 15 one
might wonder if the result of Theorem 16 still holds if the problems are formulated
without additional inequality and equality constraints, or when the functions ¢, g and h
are formulated without an explicit dependence on the switching variable z.
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In the first case of problem formulations without additional constraints g, h, the
injectivity of the operator II can not be concluded as in the previous proof. Similar to
the argument in Remark 15, this can be fixed by adding an artificial function 1 that
takes all inputs z, ¥y and z and whose value is reduced in a structured jet that together
with A encodes feasibility. The inputs to ¥ are then again taken care of by an identity
block in the last d rows of II which ensures the injectivity just as before.

Thus, in both cases the final application of the structured-jet-transversality theorem
in the proof of Theorem 16 ensures that the functions that have LIKQ at every feasible
points form an open and dense set. Removing the artificial function ¢ to obtain a clear
result can simply be done by projecting onto the other components. This projection
preserves the openness and the density.

6 Conclusion and Qutlook

For abs-smooth optimization problems, the property LIKQ serves as a qualification of
the nonsmoothness that allows to verify the optimality of a given point in polynomial
time. The main result of the paper at hand states that requiring LIKQ at all feasible
points of an abs-smooth problem is a generic assumption in that the set of problems for
which this is true is dense and open in the strong Whitney topology.

Optimality conditions for large classes of nonsmooth optimization problems were
derived in [GW16] and [HS20]. As a next step, future research could aim at developing a
topologically meaningful stationarity definition, i.e., one that corresponds to a topological
change of the sub-level sets, and prove that generically all stationary points in this sense
satisfy an associated non-degenericity condition. Most likely this can be achieved using
similar arguments as the once used in this paper. In particular one requires the 1-jet,
i.e., a jet the incorporates the first derivatives of the involved functions and a stratified
set that encodes the topological stationarity condition on images of that jet. Using again
Lemma 9 this jet should be relatable to a structured jet and the application of Theorem 8
then should provide the genericity result. Similar results for other classes of nonsmooth
optimization problems have been published in [JRS09; DSS12; DJS13; LS22].
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