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Abstract

We show that for separable convex optimization, random stepsizes fully accelerate Gradient
Descent. Specifically, using inverse stepsizes i.i.d. from the Arcsine distribution improves the
iteration complexity from O(κ) to O(κ1/2), where κ is the condition number. No momentum or
other algorithmic modifications are required. This result is incomparable to the (deterministic)
Silver Stepsize Schedule which does not require separability but only achieves partial acceleration
O(κlog1+√2 2) ≈ O(κ0.78). Our starting point is a conceptual connection to potential theory:
the variational characterization for the distribution of stepsizes with fastest convergence rate
mirrors the variational characterization for the distribution of charged particles with minimal
logarithmic potential energy. The Arcsine distribution solves both variational characterizations
due to a remarkable “equalization property” which in the physical context amounts to a constant
potential over space, and in the optimization context amounts to an identical convergence rate
over all quadratic functions. A key technical insight is that martingale arguments extend this
phenomenon to all separable convex functions. We interpret this equalization as an extreme
form of hedging: by using this random distribution over stepsizes, Gradient Descent converges
at exactly the same rate for all functions in the function class.

1 Introduction

It is classically known that by using certain deterministic stepsize schedules {αt}, the Gradient
Descent algorithm (GD)

xt+1 = xt − αt∇f(xt), t = 0,1,2, . . . (1.1)

solves convex optimization problems minx∈Rd f(x) to arbitrary precision from an arbitrary initial-
ization x0. This result can be found in any textbook on convex optimization, e.g., [6, 9, 10, 30, 35,
38, 40, 45]. The present paper investigates the following question:

Is it possible to accelerate the convergence of GD by using random stepsizes? (1.2)

In this paper, we show that for separable convex optimization, the answer is yes. Specifically, we
provide an i.i.d. stepsize schedule that makes GD converge at the optimal accelerated rate. See §1.1
for a precise statement; here we first contextualize with the relevant literature on random stepsizes.

This result first appeared in Chapter 6 of the 2018 MS Thesis [2] of the first author (advised by the second
author). This was the first convergence rate for any stepsize schedule (deterministic or randomized) that improved
asymptotically over the standard unaccelerated rate for constant-stepsize GD, in any setting beyond quadratics.
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Note that the use of randomness for GD stepsizes is conceptually different from the standard use
of randomness in Stochastic Gradient Descent (SGD). SGD has random, inexact gradient queries
and typically use deterministic stepsizes. GD has exact gradient queries, and random stepsizes
amounts to purposely injecting noise into the algorithm.

The special case of quadratics. This question is understood (only) for optimizing convex
quadratic functions. In particular, the line of work [32, 47, 63] shows that for quadratic functions f
that are m-strongly convex and M -smooth (i.e., mI ⪯ ∇2f ⪯ MI), there is a unique optimal
distribution for i.i.d. stepsizes that makes GD converge at a rate of

(∥xn − x
∗∥

∥x0 − x∗∥
)
1/n
Ð→

√
κ − 1√
κ + 1

, (1.3)

where x∗ denotes the minimizer of f , κ ∶= M
m denotes the condition number, and this convergence

is in an appropriate probabilistic sense (e.g., almost-sure or L1). This stepsize distribution is most
naturally stated in terms of the inverse stepsizes βt ∶= 1/αt having the Arcsine distribution on the
interval (m,M), i.e., density

dµ

dβ
=

1β∈(m,M)

π
√
(M − β)(β −m)

. (1.4)

Briefly, this Arcsine distribution arises naturally for the special case of quadratics because: (1)
the convergence rate is invariant w.r.t. the stepsize order and thus depends only on the empirical
measure of the stepsizes; and (2) the Arcsine distribution is the limit as n → ∞ of the empirical
measure of the optimal n (deterministic) stepsizes for GD [61]. See §2.1 for details.

The resulting convergence rate (1.3) requires roughly Θ(
√
κ log 1

ε) iterations to produce an ε-
accurate solution. Such a rate is called “accelerated” because its dependence on κ improves over the
standard Θ(κ log 1

ε) iteration complexity required by GD with constant stepsizes. Moreover, this
convergence rate Θ(

√
κ log 1

ε) is information-theoretically optimal for any first-order algorithm [39,
40], and matches the worst-case convergence rate of accelerated algorithms that change GD beyond
just its stepsizes, e.g., the Conjugate Gradient method [31], Polyak’s Heavy Ball method [44],
Nesterov-style momentum methods [41], and more [22]. See Table 1, left.

Beyond quadratics? For general convex optimization, momentum-based algorithms still achieve
these optimally accelerated rates Θ(

√
κ log 1

ε). However, existing acceleration results for random
stepsizes do not extend beyond the special case of quadratic functions f—otherwise ∇f is non-linear,
making GD a non-linear map, which completely breaks all previous analyses. This failure of the
analyses is due to fundamental differences between quadratic optimization and convex optimization:

• The optimal deterministic stepsizes for quadratic optimization [61] (which the random step-
sizes are built upon) are provably bad for convex optimization [2].

• The convergence rate is invariant w.r.t. the stepsize order for quadratic optimization (which
motivates the opportunity for random stepsizes), but this is false for convex optimization [2].

• Using time-varying stepsizes is equivalent to using momentum for quadratic optimization
(which enables GD to achieve accelerated rates), but this is false for convex optimization [22].

Due to these challenges, it remained unclear whether random stepsizes could lead to the accelerated
rate Θ(

√
κ log 1

ε) for convex optimization. In fact, it was unknown even if random stepsizes could
provide an arbitrary small improvement over the Θ(κ log 1

ε) rate of constant-stepsize GD in any
setting beyond quadratic optimization.
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Figure 1: The induced distribution of stepsizes α, for inverse stepsizes α−1 taken from the Arcsine distribution on
(m,M). The minimum stepsize is 1/M , the maximum is 1/m, and the median is 2/(M +m), which is the optimal
value for constant stepsize schedules. For constant stepsize schedules, the dashed red line ᾱ = 2/M is the threshold for
convergence; larger stepsizes α lead to divergence, and short stepsizes α lead to slow convergence. This distribution
optimally hedges between short and long steps. Note that the mean stepsize is 1/

√
Mm which is larger than the

divergence threshold for constant stepsize schedules, by a factor of Θ(√κ). This plot sets κ = 10, m = 1/κ, M = 1;
the discrepancy between this distribution and standard constant stepsizes is even more dramatic for larger κ.

1.1 Contribution and discussion

This paper shows that random stepsizes provably accelerate GD beyond the setting of quadratics.
Specifically, our main result (Theorem 1.2) shows that GD converges at the optimally acceler-
ated rate for separable convex functions. This separability property is defined below and, for C2

functions f , is equivalent to commutativity of the Hessians {∇2f(x)}x∈Rd , see Appendix B.1.

Definition 1.1 (Separable functions). A function f ∶ Rd → R is separable if it admits a decompo-
sition of the form

f(x) =
d

∑
i=1

fi([Ux]i) (1.5)

for some orthogonal matrix U ∈ Rd×d and some functions f1, . . . , fd ∶ R→ R.

Theorem 1.2 (Random stepsizes accelerate GD for separable convex optimization). Consider any
dimension d, any separable function f ∶ Rd → R that is m-strongly convex and M -smooth, and any
initialization point x0 that is not equal to the minimizer x∗ of f . By using i.i.d. inverse stepsizes
α−1t from the Arcsine distribution (1.4), GD converges at the rate

(∥xn − x
∗∥

∥x0 − x∗∥
)
1/n
Ð→

√
κ − 1√
κ + 1

, (1.6)

where this convergence in the almost sure and L1 sense. Moreover, this is the unique distribution
for which GD achieves this optimal rate.

We make several remarks about this result.

Optimality. The rate in Theorem 1.2 is optimal since there is an exactly matching lower bound:
there is an explicit κ-conditioned quadratic function for which any (Krylov) first-order algorithm

cannot contract to the optimum faster than this rate
√
κ−1√
κ+1 [41, Theorem 2.1.12].

3



Stepsizes \ Function class Quadratic Separable Convex

Constant Θ(κ) folklore Θ(κ) folklore Θ(κ) folklore
Deterministic (Chebyshev/Silver) Θ(κ1/2) [61] O(κlog

1+√2
2) [3] O(κlog

1+√2
2) [3]

Random (Arcsine) Θ(κ1/2) [32, 47, 63] Θ(κ1/2) Theorem 1.2 unknown if randomness helps

Table 1: Iteration complexities for minimizing κ-conditioned functions using GD with different stepsize choices.
The dependence on the accuracy is omitted as it is always log 1/ε. Information-theoretic lower bounds are Ω(κ1/2)
in all settings [39]. Constant stepsize schedules require Θ(κ) iterations; this is the textbook unaccelerated rate. For
quadratics (left), accelerated rates of Θ(κ1/2) can be equivalently achieved via deterministic stepsizes [61], random
stepsizes [32, 47, 63], or momentum-based methods such as Heavy Ball [44] and Conjugate Gradients [31], among
others [22]. Beyond quadratics (middle, right), momentum-based methods are not equivalent to varying stepsizes.
Acceleration was first achieved by Nesterov’s Fast Gradient Method [41] and it has long been believed that beyond
quadratics, any acceleration requires modifying GD by adding internal dynamics, e.g., momentum. [3] recently showed
(conjecturally optimal) partially accelerated rates O(κlog

1+√2
2) ≈ O(κ0.78) for convex optimization with deterministic

stepsizes. We prove that random stepsizes enable fully accelerated rates Θ(κ1/2) beyond quadratics. Conditional on
conjectures (see §7), this suggests potential gaps between deterministic and randomized stepsizes for GD, and gaps
between separable and general convex optimization for GD.

Comparison to GD with different stepsize schedules. Theorem 1.2 first appeared as The-
orem 6.1 of the 2018 MS thesis [2] of the first author (advised by the second author). This was the
first convergence rate for any stepsize schedule (deterministic or randomized) that improved over
the textbook rate for constant-stepsize GD, in any setting beyond quadratics. Indeed, even though
many stepsize schedules have been investigated in both theory and practice, none of these alterna-
tive schedules had led to an analysis that outperforms (even by an arbitrarily small amount) the

“unaccelerated” contraction factor ( ∥xn−x∗∥
∥x0−x∗∥ )

1/n ⩽ κ−1
κ+1 of constant stepsize GD, which corresponds

to an iteration complexity of Θ(κ log 1
ε). This comparison statement includes even adaptive step-

size schedules such as exact line search [9, 15, 42, 45], Armijo-Goldstein schedules [40], Polyak-type
schedules [45], and Barzilai-Borwein-type schedules [5]. Some of these schedules fail to accelerate
even on quadratics (and therefore also on separable convex problems), a classic example being exact
line search [33, §3.2.2].

In the years since [2], a line of work has shown partially accelerated convergence rates for general
convex optimization using deterministic stepsize schedules [2, 3, 4, 8, 12, 13, 23, 26, 27, 28, 29, 58,
62]. In particular, [3] showed the Silver Convergence Rate O(κlog1+√2

2 log 1
ε) ≈ O(κ0.78 log 1

ε) for
minimizing κ-conditioned functions by using a certain fractal-like deterministic stepsize schedule
called the Silver Stepsize Schedule. This rate is conjecturally optimal among all possible determinis-
tic stepsize schedules [3] and naturally extends to non-strongly convex optimization [4]. Theorem 1.2
is incomparable: it shows a fully accelerated rate O(κ1/2 log 1

ε), but under the additional assump-
tion of separability. This incomparability raises several interesting questions about the possible
benefit of randomization for GD. The future work section §7 collects several such conjectures.

Comparison to arbitrary first-order algorithms. Starting from the seminal work of Nesterov
in 1983 [41], the traditional approach for obtaining accelerated convergence rates is to modify the
GD algorithm beyond just changing stepsizes, for example by adding momentum, extra state, or
other internal dynamics. These results hold for arbitrary convex optimization and do not require
separability. See for example [11, 21, 52, 56] for some recent such algorithms, and see the recent
survey [22] for a comprehensive account of this extensive line of work. The purpose of this paper
is to investigate an alternative mechanism for acceleration: can GD be accelerated in its original
form, by just choosing random stepsizes?
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Generality. The assumptions in Theorem 1.2 can be relaxed. Separability can be generalized to
radial-separability, and strong convexity and smoothness can be relaxed to less stringent assump-
tions on the spectrum of the Hessian of f ; see §4 for details. Note also that since GD does not
depend on the choice of the basis U in the separable decomposition (1.5), Theorem 1.2 only requires
the existence of some such U (which is the definition of separability). In particular, the algorithm
does not need to know U . Also, Theorem 1.2 is stated for convergence in terms of distance to
optimality, but extends to all standard desiderata; see §4. Theorem 1.2 also extends to settings
where gradient descent is performed inexactly, e.g., due to using inexact gradients; see §6.1.

Opportunities for randomized stepsizes. Randomized algorithms have variability in their
trajectories. This provides potential opportunities for running multiple times in parallel and se-
lecting the best run, see §5.3. This best run can be significantly better than the typical run (whose
rate converges almost surely to the accelerated rate, see §5.2) and the worst run (whose rate can
diverge but only with exponentially small probability, see §5.1).

Game-theoretic connections and lower bounds. This paper considers random stepsizes in
order to accelerate GD. This randomized perspective is also helpful for the dual problem of con-
structing lower bounds, i.e., exhibiting functions for which gradient descent converges slowly. In
particular, lifting to distributions over functions leads to a game between an algorithm (who chooses
a distribution over stepsizes) and an adversary (who chooses a distribution over functions) which
is symmetric in that the Arcsine distribution is the optimal answer for both. This leads to new
perspectives on classical lower bounds for GD; details in §6.2.

Techniques and connections to logarithmic potential theory. A distinguishing feature of
our analysis is a connection to potential theory: the variational characterization for the optimal
stepsize distribution mirrors the variational characterization for a certain equilibrium distribution
which configures a unit of charged particles so as to minimize the logarithmic potential energy.
The optimal distribution satisfies a remarkable “equalization property” which in the physical con-
text amounts to a constant potential over space, and in the optimization context amounts to an
identical convergence rate over all quadratic functions. A key technical insight is that martin-
gale arguments extend this phenomenon to all separable convex functions. While links between
Krylov-subspace algorithms and potential theory are classical (see the excellent survey [19]), these
connections are restricted to the special case of quadratics and moreover, even for that setting,
these connections have not been exploited for the analysis of GD with random stepsizes. See §2 for
a conceptual overview of our analysis techniques and how we exploit this equalization property to
prove Theorem 1.2.

1.2 Organization

§2 provides a conceptual overview of our analysis approach. §3 proves our main result, Theo-
rem 1.2. §4 discusses generalizations beyond separability, strong convexity, and smoothness. §5
investigates the variability from using randomized stepsizes, in terms of notions of convergence,
high probability bounds, and opportunities for parallelized optimization. §6 provides auxiliary re-
sults about stability and game-theoretic interpretations. §7 describes several directions for future
work that are motivated by our results. For brevity, several proofs are deferred to the appendix.
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2 Conceptual overview: acceleration by random stepsizes

Here we provide informal derivations of our main result in order to overview the key conceptual
ideas. We begin by briefly recalling in §2.1 how random stepsizes can accelerate GD for the special
case of quadratic optimization. Then in §2.2, we describe the challenges for acceleration beyond
quadratics, and our new techniques for circumventing these challenges.

2.1 Quadratic optimization

Consider running GD on the class Q of quadratic functions f that are m-strongly convex and
M -smooth. What is the optimal distribution from which to draw i.i.d. stepsizes? In order to
understand this, we first recall the optimal deterministic stepsizes.

Optimal deterministic stepsizes. Without loss of generality after translating,

f(x) = 1

2
xTHx where mI ⪯H ⪯MI . (2.1)

Since the function is quadratic, its gradient is linear ∇f(x) =Hx, hence GD is a linear map

xt+1 = xt − αt∇f(xt) = (I − αtH)xt , (2.2)

and therefore the final iterate is

xn =
n−1
∏
t=0
(I − αtH)x0 . (2.3)

The convergence rate for a given stepsize schedule—in the worst case over objectives functions in
Q and initializations x0—is therefore

sup
f∈Q, x0≠x∗

(∥xn − x
∗∥

∥x0 − x∗∥
)
1/n
= sup

mI⪯H⪯MI,x0≠x∗
(∥∏

n−1
t=0 (I − αtH)x0∥
∥x0∥

)
1/n

= sup
mI⪯H⪯MI

∥
n−1
∏
t=0
(I − αtH)∥1/n (2.4)

= sup
λ∈[m,M]

n−1
∏
t=0
∣1 − αtλ∣1/n . (2.5)

Above, the penultimate step is by definition of the spectral norm, and the final step is by diag-
onalizing. It is a simple and celebrated fact, dating back to Young in 1953 [61], that minimizing
this convergence rate (2.5) over stepsizes is equivalent to a certain extremal polynomial problem,
and that as a consequence, the optimal stepsizes minimizing (2.5) are the inverses of the roots of a
(translated and scaled) Chebyshev polynomial, in any order. Said more precisely: for any horizon
length n, the optimal n stepsizes are any permutation of

{(M +m
2

+ M −m
2

cos(2t + 1
2n

π))
−1
}
n−1

t=0
(2.6)

and the corresponding n-step convergence rate in (2.5) is

sup
f∈Q, x0≠x∗

(∥xn − x
∗∥

∥x0 − x∗∥
)
1/n
=
⎡⎢⎢⎢⎢⎣
2
(
√
κ + 1)n(

√
κ − 1)n

(
√
κ + 1)2n + (

√
κ − 12n)

⎤⎥⎥⎥⎥⎦

1/n
n→∞Ð→

√
κ − 1√
κ + 1

. (2.7)
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Figure 2: As n → ∞, the empirical distribution (yellow) of the n-step inverse Chebyshev stepsize schedule (2.6)
converges to the Arcsine distribution (blue). The fit is increasingly accurate as n increases from 102 (left) to 104

(right). Demonstrated here for m = 1 and M = 10.

Optimal random stepsizes. Much less well-known is the fact that this accelerated rate can also
be asymptotically achieved by simply using i.i.d. stepsizes from an appropriate distribution [32, 47,
63]. The intuition is that the convergence rate (2.5) is invariant in the order of the stepsizes, instead
depending only on their empirical measure, and as n → ∞ one can achieve the same empirical
measure (and thus the same convergence rate) by replacing the carefully chosen deterministic
Chebyshev stepsize schedule (2.6) with i.i.d. stepsizes from their limiting empirical measure. See [2,
Chapter 3] for a discussion of this through the lens of exchangeability and De Finetti’s Theorem.

Concretely, if the inverse stepsizes βt ∶= 1/αt are i.i.d. from some distribution µ, then (forgoing
measure-theoretic technicalities) the Law of Large Numbers ensures that the n-step convergence
rate in (2.5) converges almost surely and in expectation to

sup
f∈Q, x0≠x∗

(∥xn − x
∗∥

∥x0 − x∗∥
)
1/n
= sup

λ∈[m,M]

n−1
∏
t=0
∣1 − αtλ∣1/n

= exp
⎛
⎝

sup
λ∈[m,M]

1

n

n−1
∑
t=0

log ∣1 − β−1t λ∣
⎞
⎠

n→∞Ð→ exp
⎛
⎝

sup
λ∈[m,M]

Eβ∼µ log ∣1 − β−1λ∣
⎞
⎠

(2.8)

This informal derivation suggests that the distribution µ minimizing the asymptotic convergence
rate (2.8) should be the appropriate limit as n → ∞ of the empirical measure for the inverse
Chebyshev stepsize schedule (this limit is the Arcsine(m,M) distribution, since a + b cos(Θ) has
the Arcsine distribution on [a − b, a + b] if Θ is uniformly distributed on [0, π], see Figure 2), and

moreover the optimal value should be the accelerated rate
√
κ−1√
κ+1 . This intuition is formalized by

the following lemma.

Lemma 2.1 (Extremal property of the Arcsine distribution). The extremal problem

inf
µ

sup
λ∈[m,M]

Eβ∼µ log ∣1 − β−1λ∣ (2.9)

has optimal value log
√
κ−1√
κ+1 , achieved by the unique optimal solution µ = Arcsine(m,M).

This lemma was proven in the optimization literature via a long, tour-de-force integral cal-
culation [32]. In Appendix A, we present an alternative, short proof from Altschuler’s thesis [2]
that argues by connecting this extremal problem for stepsize distributions to a classical extremal
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problem in potential theory about electrostatic capacitors. The key feature of this connection is
the following equalization property of the Arcsine distribution.

Lemma 2.2 (Equalization property of the Arcsine distribution). For all λ ∈ [m,M],

Eβ∼Arcsine(m,M) log ∣1 − β−1λ∣ = log
√
κ − 1√
κ + 1

. (2.10)

In particular, this value does not depend on λ.

This equalization property uniquely defines the Arcsine distribution in that there is no other
distribution satisfying (2.10); see Appendix A. In words, this property shows that the Arcsine
distribution “equalizes” the convergence rate over all quadratic functions (parameterized by their
curvatures λ). We emphasize that this is not just an algebraic identity: this equalization property
also has a natural interpretation in terms of a game between an optimization algorithm (who chooses
a stepsize to minimize the convergence rate) and an adversary (who chooses a quadratic function
to maximize the convergence rate), see §6.2. In Appendix A we elaborate on the connections to
potential theory, and leverage that connection to provide short proofs of these lemmas.

2.2 Beyond quadratic optimization

We now turn to accelerating GD beyond the special case of quadratic functions f . The central
challenge is that the curvature, as measured by the Hessian ∇2f , is no longer constant. This
breaks the above quadratic analysis in several ways since it is no longer possible to summarize or
re-parameterize the Hessians along the GD trajectory in terms of a single scalar λ ∈ [m,M]. To
explain these issues, let us attempt to adapt this analysis to the general convex setting, assuming for
simplicity here that f is twice differentiable (our actual analysis in §3 avoids any such assumption).

Time-varying curvature. Clearly, if f is not quadratic, then the gradient ∇f is not linear,
and as a consequence the GD map is not linear. Assuming as before that x∗ = 0 without loss of
generality, one can generalize the linear GD map (2.3) to the non-quadratic setting as

xn =
n−1
∏
t=0
(I − αtHt)x0 where Ht ∶= ∫

1

0
∇2f(uxt)du , (2.11)

since by the Fundamental Theorem of Calculus, ∇f(xt) = Htxt and thus xt+1 = xt − αt∇f(xt) =
(I − αtHt)xt. The interpretation of Ht is that it is the average Hessian between x∗ = 0 and xt,
i.e., it measures the relevant local curvature in the t-th iteration of GD. In the quadratic setting,
Ht =H for all t since the Hessian ∇2f ≡H is constant, which recovers (2.3) from (2.11). However,
for the general non-quadratic setting, the curvature Ht varies in t. This is the overarching challenge
mentioned above. For the purpose of accelerating GD, this challenge manifests in two interrelated
ways: the lack of commutativity and predictability of the curvature Ht along the trajectory of GD.
Below we describe both challenges and how we circumvent them.

2.2.1 Issue 1: commutativity (deriving the extremal problem)

The first issue is that for convex functions, the Hessians at different points do not necessarily com-
mute. Thus, in general, {Ht} do not commute and therefore are not simultaneously diagonalizable.
This precludes the key step (2.5) in the quadratic analysis above, which decomposes the convergence
rate across eigendirections, thereby reducing the (multivariate) problem of convergence analysis to
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an analytically tractable (univariate) extremal problem. This is the only reason we assume separa-
bility: it is equivalent to commuting Hessians (Lemma B.1). Concretely, separability allows us to
show an analog of (2.5) in which the convergence rate of a stepsize schedule {αt} is bounded by

n−1
∏
t=0
∣1 − αtλt∣1/n , (2.12)

the difference to the quadratic case being that there all λt ∈ [m,M] are the same, whereas now
λt ∈ [m,M] can be time-varying and can depend on all previous stepsizes {αs}s<t.

By taking an appropriate1 limit of the n-step convergence rate (2.12), it can be shown that
the (logarithm of the) asymptotic rate for i.i.d. inverse stepsizes βt ∶= α−1t from a distribution µ is
governed by the extremal problem:

inf
µ

sup
{At}−adapted process {λt∈[m,M]}

lim sup
n→∞

1

n

n−1
∑
t=0

Eβt∼µ log ∣1 − β
−1
t λt∣ (2.13)

where {At} denotes the natural filtration corresponding to the inverse stepsizes {βt}. Observe
that (2.13) recovers the extremal problem (2.8) for the quadratic case if λt are constant, but in
general is different because λt can be time-varying. This brings us to the second issue.

2.2.2 Issue 2: unpredictability (solving the extremal problem)

The second issue is that the curvature is time-varying (as measured by λt), thus less predictable,
which makes it difficult to choose stepsizes that lead to fast convergence (as measured by the
extremal problem (2.13)). The key upshot of our random stepsizes is that the randomness of βt
prevents an adversarial choice of λt ∈ [m,M] since λt must be “chosen” before βt is drawn. More
precisely, we exploit the equalization property of the Arcsine distribution (Lemma 2.2) to argue
that for any choice of λt, the distribution of βt ensures that

Eβt∼µ log ∣1 − β
−1
t λt∣ = log

√
κ − 1√
κ + 1

. (2.14)

Intuitively, this can be interpreted as using random stepsizes to hedge between the possible cur-
vatures λt: the expected “progress” from an iteration is the same regardless of the curvature.
Quantitatively, this equalization property (2.14) lets us argue an accelerated convergence rate us-
ing a martingale version of the Law of Large Numbers. In particular, this implies that the Arcsine
distribution—which was optimal for the extremal problem (2.9) in the quadratic setting—achieves
the same value for the extremal problem (2.13) in the convex setting, and therefore is also optimal
for this setting (as it is more general).

Remark 2.3 (Overcoming unpredictability via random hedging). Observe that in the extremal
problem (2.13), we allow {λt} to vary arbitrarily in t, and in particular we do not enforce these
curvatures to be consistent with a single convex function. This consistency is the defining feature

1A subtle but important technical issue is that one cannot simply use the Law of Large Numbers to derive the
asymptotic convergence rate from the n-step rate (c.f., (2.8) for how that worked in the quadratic case). Indeed, in the
convex case here, the relevant empirical sum 1

n ∑
n−1
t=0 log ∣1−β−1t λt∣ has non-i.i.d. summands: they are neither identically

distributed (since λt is time-varying) nor independent (since λt can depend on previous stepsizes). Briefly, we
overcome the identically distributed issue by using the equalization property of the Arcsine distribution (Lemma 2.2)
to show that these summands still have the desired expectation, and we overcome the independence issue by using a
martingale-based argument to show that the fresh randomness in αt makes these summands “independent enough”
to prove a specially tailored version of Kolmogorov’s Strong Law of Large Numbers for this setting. Details in §3.1.
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of Performance Estimation Problems [20, 53] and is essential to the line of work on accelerating
gradient descent using deterministic stepsize schedules [2, 3, 4, 8, 12, 13, 23, 26, 27, 28, 29, 58,
62]. Remarkably, random stepsizes obtain the fully accelerated rate without needing to enforce any
consistency conditions. This can be interpreted through the lens of “hedging” between worst-case
functions, as described in [2]. On one hand, the opportunity for faster convergence via deterministic
time-varying stepsizes arises due to the rigidity of convex functions: a function being worst-case for
the stepsize in one iteration may constrain its curvature from being worst-case in the next iteration.
On the other hand, the opportunity for faster convergence via random stepsizes arises because the
worst-case function does not “know” the realization of the random stepsizes. It is an interesting
question if these two opportunities can be combined, e.g., can randomized analyses also exploit
consistency conditions on {λt} in order to generalize beyond separability? See §7.

3 Proof of main result

Here we prove Theorem 1.2. We build up to the full result by first proving it for univariate ob-
jectives, and then extending to the general (separable) multivariate setting. See §2 for a high-level
overview of the analysis techniques and the two key conceptual challenges regarding unpredictability
of the Hessian (dealt with in the univariate proof via the equalization property of the Arcsine dis-
tribution) and commutativity of the Hessian (dealt with in the multivariate proof via separability).
For shorthand, we denote the accelerated rate by

Racc ∶=
√
κ − 1√
κ + 1

. (3.1)

3.1 Univariate setting

We begin by remarking that unforeseen complications can occur even in the univariate setting. For
example, Polyak’s Heavy Ball method fails to converge for such functions [37, §4.6].

We first state a simple helper lemma that lets us avoid assumptions of twice-differentiability
when expanding the convergence rate of GD in the form (2.12) described in the overview §2.2.

Lemma 3.1. Suppose that f ∶ R → R is m-strongly convex and M -smooth, and let x∗ denote its
minimizer. Then for any x ≠ x∗, it holds that

m ⩽ f ′(x)
x − x∗

⩽M .

For intuition, if f is twice-differentiable, then this lemma follows immediately from the Inter-
mediate Value Theorem since f ′(x) = f ′′(z)(x−x∗) for some z between x and x∗, and the Hessian
f ′′(z) ∈ [m,M] by m-strong convexity and M -smoothness. The proof is not much more difficult
without the assumption of twice-differentiability.

Proof. For the upper bound, M -smoothness of f implies ∣f ′(x)∣ = ∣f ′(x)−f ′(x∗)∣ ⩽M ∣x−x∗∣. Note
that sign(f ′(x) − f ′(x∗)) = sign(x− x∗) since f is univariate. Thus, by re-arranging, we obtain the
desired inequality f ′(x)/(x−x∗) ⩽M . The lower bound follows from an analogous argument, since
m-strong convexity of f implies ∣f ′(x) − f ′(x∗)∣ ⩾m∣x − x∗∣.

Proof of Theorem 1.2 for univariate f . Let βt denote the inverse stepsizes; these are i.i.d. Arcsine(m,M).
Defining λt ∶= f ′(xt)

xt−x∗ , we have by definition of GD that

xt+1 − x∗ = xt − x∗ − β−1t f ′(xt) = (1 − β−1t λt)(xt − x∗).

10



Therefore for any n ∈ N, the average rate after n steps is

Rn ∶=
RRRRRRRRRRR

xn − x∗

x0 − x∗
RRRRRRRRRRR

1/n

=
RRRRRRRRRRR

n−1
∏
t=0
(1 − β−1t λt)

RRRRRRRRRRR

1/n

. (3.2)

Note that this sequence of random variables is uniformly integrable. Indeed for each n ∈ N, a
crude bound gives ∣∏n−1

t=0 (1 − β−1t λt)∣1/n ⩽ maxβ,λ∈[m,M] ∣1 − β−1λ∣ = κ − 1 < ∞. Therefore, by the
Dominated Convergence Theorem, L1 convergence of Rn to Racc will follow immediately from
almost-sure convergence. To show the latter, note that since almost-sure convergence is preserved
under continuous mappings (in particular the exp(⋅) function), it suffices to show that

1

n

n−1
∑
t=0

Zt
a.s.Ð→ logRacc,

where we define
Zt ∶= log ∣1 − β−1t λt∣ .

As mentioned in the overview section 2.2, the issue with applying the Law of Large Numbers is
that {Zt} are not i.i.d. (For example, even though we show below that these random variables have
the desired first moments—which allows us to adapt the Law of Large Numbers—one can check
that {Zt} are neither independent nor identically distributed.)

Now observe that λt depends on the realizations of only the previous β0, . . . , βt−1. Moreover,
λt lies inside [m,M] by Lemma 3.1. Thus by the equalization property of the Arcsine distribution
(Lemma 2.2), E[Zt] = logRacc for all t, even if λt is chosen adversarially as a function of the previous
β0, . . . , βt−1. Indeed, by the independence of {βt} and the Law of Iterated Expectations:

E[Zt] = Eβ0,...,βt[ log ∣1 − β
−1
t λt∣ ]

= Eβ0,...,βt−1[Eβt[ log ∣1 − β
−1
t λt∣ ∣ β0, . . . , βt−1]]

= Eβ1,...,βt−1[ logRacc ]

= logRacc . (3.3)

Therefore it suffices to show

1

n

n−1
∑
t=0
(Zt −E[Zt])

a.s.Ð→0. (3.4)

We show this by adapting the standard proof of Kolmogorov’s Strong Law of Large Numbers, see
e.g. [59] for the classical proof. We first argue that

Mn ∶=
n−1
∑
t=0

Zt −E[Zt]
t + 1

forms a martingale w.r.t. its own filtration {Fn}, as stated in the following lemma. Intuitively this
follows from the calculation (3.3); a formal proof is deferred to Appendix B.2.

Lemma 3.2 (Martingale helper lemma). {Mn} is an L1-bounded martingale w.r.t. {Fn}.

Thus we may apply the Martingale Convergence Theorem (see e.g., [59, §11.5]) to establish that
M∞ ∶= limn→∞Mn exists and is finite almost surely. Therefore by Kronecker’s Lemma (recalled

below), we conclude that 1
n ∑

n−1
t=0 (Zt −E[Zt])

a.s.Ð→0, proving (3.4) as desired.
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Lemma 3.3 (Kronecker’s Lemma). Let {zn} and {bn} be two real-valued sequences such that each
bn is strictly positive, the bn are strictly increasing to ∞, and ∑∞t=0 zt

bt
converges to a finite limit.

Then limn→∞
1
bn
∑n−1

t=0 zt = 0.

3.2 Multivariate setting

Here we prove Theorem 1.2 in the general multivariate setting. The proof follows quickly from the
univariate setting proved above and the definition of separability.

Proof of Theorem 1.2. First, note that it suffices to prove the theorem for functions which are
separable in the standard basis, i.e., functions f of the form

f(x) =
d

∑
i=1

fi([x]i) . (3.5)

Indeed, consider a general separable function f(x) = ∑d
i=1 fi([Ux]i) where U ∈ Rd×d is orthogonal.

Then by the Chain Rule, ∇f = UT∇h where h(y) ∶= ∑d
i=1 fi([y]i). Hence running GD xt+1 =

xt−αt∇f(xt) on f is equivalent to running GD yt+1 = yt−αt∇h(yt) on h, in the sense that yt = Uxt
for all t. Thus, modulo an isometric change of coordinates which does not affect the convergence
rate, we may assume henceforth that the objective function is separable of the form (3.5).

Since f(x) = ∑d
i=1 f([x]i), the i-th coordinate of ∇f(x) is f ′i([x]i). Thus the GD update

xt+1 = xt − β−1t ∇f(xt) can be re-written coordinate-wise as

[xt+1]i = [xt]i − β−1t f ′i([xt]i), ∀i ∈ [d] . (3.6)

Now we make two observations. First, (3.6) is the update that GD would perform to minimize
fi from initialization [x0]i. Second, each fi is m-strongly convex and M -smooth (because strong
convexity and smoothness are preserved under restrictions). Thus we may apply the univariate
setting of Theorem 1.2 (proved above) to argue that the asymptotic convergence rate is

lim
n→∞
(∣[xn]i − [x

∗]i∣
∣[x0]i − [x∗]i∣

)
1/n

a.s.= Racc

for every coordinate i ∈ S ∶= {i ∈ [d] ∶ [x0]i ≠ [x∗]i} for which the initialization is not already
optimal. Note that x0 ≠ x∗ ensures S is non-empty. Since [x∗]i is the unique minimizer of fi, and
since also the number of coordinates i ∈ S is finite, it follows that

lim
n→∞
(∥xn − x

∗∥
∥x0 − x∗∥

)
1/n

a.s.= lim
n→∞

max
i∈S
(∣[xn]i − [x

∗]i∣
∣[x0]i − [x∗]i∣

)
1/n

a.s.= Racc .

This establishes the desired almost-sure convergence. L1 convergence then follows from the Dom-
inated Convergence Theorem, since we have uniform integrability by a similar argument as in the
univariate setting above.

4 Generalizations

The purpose of this paper is to show that random stepsizes can accelerate GD on classes of strongly
convex and smooth functions that are more general than quadratics. For concreteness, Theorem 1.2
focuses on functions that are separable, strongly convex, and smooth. But this result extends to
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other classes of functions. We describe two extensions below, thematically splitting relaxations of
the separability assumption (§4.1) from the strong convexity and smoothness assumptions (§4.2).
These two types of relaxations are complementary in the sense that they individually deal with the
two key issues discussed in §2.2: commutativity and unpredictability of the Hessian, respectively.

Remark 4.1 (Performance metrics). We also mention that throughout, we measure convergence

via the contraction factor ( ∥xn−x∗∥
∥x0−x∗∥ )

1/n. The results are unchanged if the progress measure is changed
from distance to function suboptimality or gradient norm, at either the initialization x0, termination
xn, or both. This is because for κ-conditioned functions, all these progress measures ∥x − x∗∥2,
f(x)−f(x∗), and ∥∇f(x)∥2 are equivalent up to a multiplicative factor c that is independent of n (it
depends only on the strong convexity and smoothness parameters), and therefore in the limit n→∞,
the convergence rate is unaffected by changing these performance metrics since limn→∞ c1/n = 1.

4.1 Beyond separability

Recall from Definition 1.1 that separability amounts to decomposability into univariate functions.
Theorem 1.2 holds more generally for functions which are “radially-separable” in that they decom-
pose into radial functions. This is formally defined as follows.

Definition 4.2 (Radial functions). A function r ∶ Rd → R is radial if it admits a decomposition of
the form

r(x) = h(∥x − x∗∥) (4.1)

for some function h ∶ R→ R and point x∗ ∈ Rd.

Definition 4.3 (Radially-separable functions). A function f ∶ Rd → R is radially-separable if it
admits a decomposition of the form

f(x) =
b

∑
i=1

ri([Ux]Si) , (4.2)

for some orthogonal matrix U ∈ Rd×d, partition S1, . . . , Sb of [d], and radial functions r1, . . . , rb.
(Above, [Ux]Si is shorthand for the subset of coordinates of Ux in set Si.)

Clearly, radial-separability generalizes both separability (consider the partition Si = {i}) and
radiality (consider the trivial partition S1 = [d]).

Theorem 4.4 (Random stepsizes accelerate GD on radially-separable functions). Theorem 1.2 is
unchanged if the assumption of separability is replaced with radial-separability.

Proof. The proof is mostly similar to the proof of Theorem 1.2. By the same argument (see §3.2), it
suffices to prove the accelerated convergence rate for a block of the decomposition. So, without loss
of generality we may assume that f is radial. In words, the key idea behind the rest of the proof is
that although radial functions do not have commutative Hessians—which we exploited in our main
result to reduce the (multivariate) problem of convergence analysis to an analytically tractable
(univariate) extremal problem, see the overview §2.2—radial functions are univariate in nature (in
particular all gradients in a GD trajectory are colinear), and this enables a similar reduction.

Formally, note that the center x∗ of a convex radial function is a minimizer. (Indeed, for any
x ∈ Rd, we have by radiality and then Jensen’s inequality that f(x) = Ezf(z) ⩾ f(x∗), where the
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expectation is over z drawn uniformly at random from the sphere of radius ∥x − x∗∥ around x∗.)
Thus after a possible translation, we may assume without loss of generality that x∗ = 0, so that

f(x) = h(∥x∥2)

for some univariate function h ∶ R → R. The chain rule implies ∇f(x) = 2h′(∥x∥2)x, hence the GD
update xt+1 = xt − αt∇f(xt) expands to

xn =
n−1
∏
t=0
(1 − αtλt)x0 where λt ∶= 2h′(∥xt∥2) . (4.3)

It is straightforward to show that λt ∈ [m,M], e.g., this follows from Lemma 3.1 after restricting f to
the line between x∗ and xt. Thus this gives an alternative approach for reducing the (multivariate)
convergence rate to the same (univariate) product form (2.12), at which point the rest of our
analysis goes through unchanged.

4.2 Beyond strong convexity and smoothness

Recall that for twice-differentiable functions f , the assumptions of m-strong convexity and M -
smoothness are equivalent to the assumption that the spectrum of ∇2f(x) lies in the interval
[m,M] for all points x. The algorithmic techniques developed in this paper extend to functions f
whose Hessians have more structured spectra, lying within some set E ⊂ R⩾0 that is not necessarily
an interval. Note that (strong2) convexity of f ensures a (strictly) positive real spectrum. Such ex-
tensions to more structured Hessians have led to improved results for other algorithms in quadratic
settings and beyond, see e.g., [24, 34, 43].

This extension is rooted in connections to logarithmic potential theory, and proceeds as follows.
Recall from the overview §2 that the asymptotic convergence rate of GD with inverse stepsizes i.i.d.
from a distribution µ, is dictated by the maximum logarithmic potential of µ over [m,M], i.e.,

sup
λ∈[m,M]

Eβ∼µ log ∣1 − β−1λ∣ , (4.4)

and that the unique distribution minimizing this quantity is the Arcsine distribution (Lemma 2.1).
This extends to spectral sets E ⊂ R⩾0 beyond intervals with little change. Indeed, by an identical
derivation, the convergence rate is dictated by the analogous extremal problem

sup
λ∈E

Eβ∼µ log ∣1 − β−1λ∣ , (4.5)

and the unique distribution minimizing this quantity is the unique optimal stepsize distribution.
What is this optimal distribution? This is a classical topic in potential theory and there is a
well-developed machinery (typically based on computing conformal mappings, Green’s functions,
or Fekete sets) for determining this distribution explicitly in closed-form when possible (typically
this only occurs for very simple sets) or otherwise approximating it; we refer the interested reader
to the surveys and textbooks [19, 48, 49, 50].

2In the case of (non-strongly) convex, smooth optimization, we have m = 0 and E = [0,M]. For that case, much
of the ideas in this paper still apply at a high level, but the singularity at λ = 0 makes the problem degenerate in
ways that must be addressed with refined versions of these techniques. This will be discussed in a later paper.
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Figure 3: The randomness of the proposed stepsizes leads to variability between runs. Illustrated here with a boxplot
for 500 runs (7 full trajectories shown) from the same initialization on a univariate quadratic function, with κ = 200;
similar phenomena occur for other problem instances. The horizontal axis is the number of iterations n; the vertical

axis is log10
∥xn−x

∗
∥

∥x0−x∗∥ . The worst run can diverge exponentially, but this occurs with exponentially low probability

(details in §5.1). The median run converges exponentially at the optimal accelerated rate Racc (Theorem 1.2). The
fit is extremely precise, as shown by the bolded blue line. The best run can be substantially better than the median
run, leading to the possibility of faster parallel optimization (details in §5.3).

5 Opportunities and perils of random stepsizes

Here we investigate the implications of the variability arising from random stepsizes, see Figure 3.
In §5.1, we show that trajectories can diverge but only with exponentially low probability. In §5.2,
we investigate typical trajectories, showing that with overwhelming probability, their rate converges
to the accelerated rate. In §5.3, we discuss running multiple trajectories in parallel and selecting
the best.

5.1 Divergent runs and notion of convergence

When considering randomized optimization algorithms, there are several notions for measuring the
convergence rate. Two natural ones are:

E
⎡⎢⎢⎢⎢⎣

⎛
⎝
∥xn − x∗∥
∥x0 − x∗∥

⎞
⎠

1/n⎤⎥⎥⎥⎥⎦
vs E

⎡⎢⎢⎢⎢⎣

∥xn − x∗∥
∥x0 − x∗∥

⎤⎥⎥⎥⎥⎦

1/n

. (5.1)

These are different. Indeed, our main result shows that by running GD with random stepsizes, the

former quantity is asymptotically equal to the accelerated rate Racc =
√
κ−1√
κ+1 < 1. Whereas the latter

quantity can be larger than 1 (details in Appendix B.3). Why the discrepancy between these two
notions of convergence rate? Which is relevant for optimization?

The discrepancy arises because the error ∥xn − x∗∥ is exponentially small with overwhelming
probability (leading to our convergence result for the first notion), but can be exponentially large
with exponentially small probability (leading to the instability for the second notion). The key point
is that for optimization algorithms, it is very desirable to succeed with overwhelming probability,
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even if performance is poor in the unlikely complement event. Simply re-run the algorithm if that
happens. This why we study the quantity on the left hand side of (5.1). For intuition, we conclude
this section with an illustrative toy example that explains this discrepancy in its simplest form.

Example 5.1 (Measuring convergence when exponentially rare trajectories can be exponentially
large). Consider i.i.d. random variables Zt which are each equally likely to be 1/9 or 3. Then

(∏n
t=1Zt)1/n = 3

1
n ∑

n
t=1 log3 Zt → 3E[log3 Zt] = 3−1/2 < 1 by the Law of Large Numbers, hence

lim
n→∞

E[(
n

∏
t=1

Zt)
1/n
] = 1√

3
< 1 . (5.2)

Whereas

lim
n→∞

E[
n

∏
t=1

Zt]
1/n
= E[Z1] =

14

9
> 1 . (5.3)

In words, this discrepancy arises because ∏n
t=1Zt can be exponentially large in n, but the probability

of this is exponentially small. For example, Z1 = ⋅ ⋅ ⋅ = Zn = 3 occurs with probability 2−n and thus by
itself, this event contributes limn→∞(3n2−n)1/n = 3/2 > 1 to the expectation in (5.3). Whereas the
1/n normalization inside the expectation in (5.2) dampens the effect of exponentially rare blow-ups,
and thus agrees with the exponentially fast convergence that occurs with overwhelming probability.

5.2 Typical runs and high probability bounds

Theorem 1.2 establishes that random stepsizes lead to an accelerated rate in the limit as the number
of iterations n → ∞. The same analysis arguments can also establish non-asymptotic convergence
rates that apply for any finite n and hold with high probability. Indeed, recall from (3.2) that our
argument in §3 relates the convergence rate (for any finite n) to an empirical sum, namely

RRRRRRRRRRR

xn − x∗

x0 − x∗
RRRRRRRRRRR

1/n

= exp( 1
n

n−1
∑
t=0

log ∣1 − β−1t λt∣) . (5.4)

Now, instead of using the Law of Large Numbers to argue that this empirical sum converges to its
expectation (giving the accelerated rate), one can use concentration-of-measure to argue about the
deviations from its expectation.

Below we state such a result. This is established by bounding the variance of the aforementioned
empirical sum via a martingale-type argument and applying Chebyshev’s inequality; and then
extending this convergence rate to general multivariate objectives f by a union bound. Full proof
details are deferred to Appendix B.4. We note that one can show more refined bounds by bounding
higher-order moments or the moment generating function (see, e.g., the textbooks [17, 55, 57]), but
that requires computing involved logarithmic integrals and thus for simplicity of exposition, here
we state only this simple illustrative result.

Theorem 5.2 (Non-asymptotic version of Theorem 1.2). Consider the setup of Theorem 1.2. For
any deviation ε > 0 and error probability δ > 0,

P
⎛
⎝
(∥xn − x

∗∥
∥x0 − x∗∥

)
1/n
⩾ eεRacc

⎞
⎠
⩽ δ (5.5)

if n ⩾ (π2 + oκ(1)) d
δε2

.

This implies that for a typical run, the convergence rate is close to the accelerated rate; see
Figure 3 for an illustration.
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5.3 Best runs and parallelization

The randomness in the Arcsine Stepsize Schedule leads to a spread of convergence rates. Often
the best run is substantially better than the median, which in turn is substantially better than
the worst run; see Figure 3. This suggests a natural approach for parallelized optimization: run
this randomized algorithm on p different processors with i.i.d. stepsizes, and take the best final
iterate. One can also perform a more refined parallelized scheme: synchronize every k iterations
by restarting all p processors from the best current iterate.

How much of a speedup does this parallelization give? There are two sources of tension. First,
the convergence rate Racc achieved by Theorem 1.2 for p = 1 processor is already minimax-optimal,
but parallelization helps with instance-optimality which is important in practical settings, i.e.,
beyond worst-case settings. The second source of tension is that the results in §5.2 show that each
of the p i.i.d. runs has convergence rate Rn ∶= (∥xn − x∗∥/∥x0 − x∗∥)1/n concentrating around Racc

for n large, which means that Rn will be asymptotically unaffected by parallelization in the regime
of fixed p and n → ∞. However, for regimes where p and n scale together, there are deviations
from this concentration, and the maximal such deviation in the p runs is precisely the speedup
of this parallelization. See below for a calculation that illustrates this tension in a simple setting.
Characterizing the tradeoff between the number of processors p, the synchronization rate k, the
number of iterations n, the condition number κ, and the precision ε is an interesting direction for
future work but a full understanding is out of the scope of this paper.3

Simple illustrative calculation. Here, we provide a short back-of-the-envelope calculation in
order to demonstrate these tensions and the benefit of parallelization in the simple setting of
univariate quadratic functions. For simplicity consider a single synchronization (i.e., k = n); the
general case of multiple synchronizations (k < n) follows by replacing n by k in this calculation,

and then repeating this convergence rate n/k times. For shorthand, let x
(j)
t denote the t-th iterate

on the j-th machine, let α
(j)
t denote the corresponding stepsize, and let f(x) = λ

2 (x − x
∗)2 for

λ ∈ [m,M] (all univariate κ-conditioned quadratics are of this form).
Step 1: single machine. By the same analysis as in our main results (see §2.1 or §3.1) and

then a Central Limit Theorem approximation, the convergence rate on the j-th machine is

⎛
⎜
⎝

∣x(j)n − x∗∣

∣x(j)0 − x∗∣

⎞
⎟
⎠

1/n

= exp( 1
n

n−1
∑
t=0

log ∣1 − α(j)t λ∣) ≈ exp(logRacc +
σ√
n
ξj) = Racc ⋅ exp(

σ√
n
ξj) ,

where ξj ∼ N(0,1) and σ = Varα(log ∣1 − αλ∣). Note that the error of this approximation can be
tightly controlled using standard techniques such as the Berry-Esseen CLT [57, Theorem 2.1.13].

Step 2: best machine. Taking the minimum over all p processors gives the convergence rate
of the parallelized scheme which takes the best final iterate:

min
j∈[p]

⎛
⎜
⎝

∣x(j)n − x∗∣

∣x(j)0 − x∗∣

⎞
⎟
⎠

1/n

≈ Racc ⋅ exp(
σ√
n
min
j∈[p]

ξj) ≈ Racc ⋅ exp
⎛
⎝
−σ
√

2 log p

n

⎞
⎠
.

3Interesting phenomena arise when jointly optimizing k and p. For example, if k = 1, then moderate parallelism
(p > 1) improves the rate in both practice (see Figure 3) and theory (see below), but p→∞ recovers exact line search
which provably does not accelerate, see e.g., [9, §9.3]. This tradeoff warns of a potential drawback of over-parallelizing.
On the other hand, when k > 1, the p → ∞ parallelization is a familiarly good algorithm: it produces the optimal
point in the k-dimensional Krylov subspace, which yields minimax-optimal worst-case convergence rates and is also
instance-adaptive; in fact it is equivalent to Conjugate Gradients in exact arithmetic for quadratics.
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Above, the final step is due to the well-known fact that the minimum of p i.i.d. standard Gaussians
concentrates tightly around −

√
2 log p, see, e.g., [57, Chapter 2.5]. This factor exp(−σ

√
(2 log p)/n)

quantifies the speedup of parallelization since it is the size of the variation in Figure 3. By a Taylor
approximation of logRacc, this parallelization provides asymptotic speedups when σ

√
(2 log p)/n ≳

∣ logRacc ∣ = ∣ log
√
κ−1√
κ+1 ∣ ≈

1√
κ
, or equivalently when the number of processors p ≳ exp( n

2κσ2 ).

6 Discussion and related results

6.1 Stability

Throughout, we have assumed for simplicity that all calculations are performed with exact gradi-
ents and in exact arithmetic. It is of practical importance to understand how inexactness affects
convergence, and there is a long line of work on such questions for first-order algorithms, see,
e.g., [1, 14, 16, 18, 36, 46, 51] and the references within. There are many models of inexact com-
putation. Here, as an illustrative example, we study one common model: the multiplicative error
model for gradients [16, 46]. Specifically, suppose that all calculations are still performed in exact
arithmetic, but GD performs updates using an estimate g̃t of the true gradient ∇f(xt), where

∥g̃t −∇f(xt)∥ ⩽ ε∥∇f(xt)∥ . (6.1)

Theorem 6.1 (Inexact-gradient version of Theorem 1.2). Consider the setup of Theorem 1.2.
Suppose that GD updates in each iteration using g̃t rather than ∇f(xt), i.e.,

xt+1 = xt − αtg̃t , (6.2)

where g̃t are inexact gradients satisfying the multiplicative-error assumption (6.1). Then the con-
vergence rate of GD with i.i.d. Arcsine stepsizes is almost surely bounded by

lim
n→∞
(∥xn − x

∗∥
∥x0 − x∗∥

)
1/n
⩽ 1

1 + ε̃ −
√
(1 + ε̃)2 − 1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
slowdown from inexact gradients

⋅
√
κ − 1√
κ + 1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

accelerated rate Racc

where ε̃ ∶= 2M

M −m
ε . (6.3)

Moreover this bound is tight, in that it holds with equality for some choice of f and inexact gradients.

The proof is deferred to Appendix B.5, since it is similar to that of Theorem 1.2. Conceptually,
the only difference is that the average Hessians λt ∈ [m,M] are now perturbed, and thus the
convergence rate is governed by exp(Eβ∼Arcsine(m,M) log ∣1 − β−1λ̃∣) where λ̃ can now be slightly
outside the interval [m,M].

We remark that for small error ε, the slowdown factor in Theorem 6.1 is of the order

1

1 + ε̃ −
√
(1 + ε̃)2 − 1

= 1 +
√
2ε̃ +Θ(ε̃) = 1 +

√
4Mε

M −m
+Θ(ε) .

In other words, for large condition number κ≫ 1, the number of iterations required by GD increases
by a multiplicative factor of roughly 1+2

√
ε when using inexact gradients. Note that this slowdown

is more than the (1 +Θ(ε)) slowdown for constant-stepsize schedules [16, Theorem 5.3]. This is a
manifestation of the general phenomenon that accelerated algorithms are often less stable to model
mis-specification, see e.g., [18].

We also remark that by a nearly identical argument, Theorem 6.1 can be extended to a stochastic
error models, i.e., where g̃t − ∇f(xt) are random. The slowdown factor then becomes an averaged
version of the quantity in Theorem 6.1. However, this is more complicated to state, hence for
simplicity the above discussion focuses just on the deterministic error model.
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6.2 Game-theoretic connections and lower bounds

This paper considers random stepsizes for the algorithmic purpose of accelerating GD. It turns out
that this randomized perspective is also helpful for the dual problem of constructing algorithmic
lower bounds. We describe this duality here.

Recall from §2 that the optimal distribution µ over i.i.d. inverse stepsizes β = α−1 has the
following extremal characterization:

inf
µ∈M(E)

sup
λ∈E

Eβ∼µ log ∣1 − β−1λ∣ . (6.4)

Above, µ is constrained to E ∶= [m,M] without loss of generality (since this holds at optimality),
λ ∈ E should be interpreted as the curvature of a “worst-case” univariate quadratic function f(x) =
λ
2x

2, and Eβ∼ν log ∣1 − β−1λ∣ is the logarithm of the asymptotic convergence rate.
To bridge this problem of accelerating GD with the problem of constructing lower bounds, we

consider a standard two-player zero-sum game where players choose their actions simultaneously and
independently. In our case, one player chooses inverse stepsizes β−1 and the other player chooses
a quadratic function (parameterized by its curvature λ). By lifting to mixed (i.e., randomized)
strategies, one player chooses a distribution µ over stepsizes, the other chooses a distribution ν over
quadratic functions, with payoff given by R(µ, ν) ∶= Eβ∼µ,λ∼ν log ∣1 − β−1λ∣.

The key observation is that due to the specific payoff function, the game is essentially symmetric
between the two players (modulo inversion), and as a consequence, so are the optimal mixed
strategies for both players. Below, let FlippedArcsine(m,M) denote the law of λ when λ−1 ∼
Arcsine(M−1,m−1).

Lemma 6.2 (Optimal distribution for worst-case functions). The (minimax) value of this game is
logRacc, i.e., we have the saddle point condition

sup
ν
R(µ∗, ν) = R(µ∗, ν∗) = inf

µ
R(µ, ν∗)

with
R(µ∗, ν∗) = Eβ∼µ∗, λ∼ν∗ log ∣1 − β−1λ∣ = logRacc,

and the unique optimal mixed strategies are µ∗ = Arcsine(m,M) and ν∗ = FlippedArcsine(m,M).

Remark 6.3 (Game-theoretic interpretation of equalization). Notice that both optimal distributions
have full support. As a consequence, at equilibrium a player is indifferent among all of their pure
actions, i.e., the equalization property (Lemma 2.2) must hold.

Proof sketch for Lemma 6.2. Lemma 2.1 implies that µ∗ = Arcsine(m,M) is the unique optimal
solution for the stepsize player, and that the value of the game is logRacc. See [2, Chapter 3.3.3] for
a rigorous proof that the unique optimal solution for the other player is ν∗ = FlippedArcsine(m,M);
here we just provide intuition in terms of symmetry of the game. The underlying idea is to consider
a “flipped game” in which strategies correspond to the inverses of strategies in the original game,
i.e., one player chooses stepsizes β̃ = β−1 ∈ Ẽ, and the other player chooses a quadratic function
parameterized by its inverse curvature λ̃ = λ−1 ∈ Ẽ. Here Ẽ ∶= [m̃, M̃] where m̃ ∶= M−1 and
M̃ ∶=m−1. By lifting to mixed strategies, one player chooses a distribution µ̃ over stepsizes β̃ ∈ Ẽ,
and the other player chooses a distribution ν̃ over quadratic functions λ̃ ∈ Ẽ, with payoff given by

R̃(µ̃, ν̃) ∶= Eβ̃∼µ̃,λ̃∼ν̃ log ∣1 − λ̃
−1β̃∣ .
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This flipped game is equivalent to the original game due the invariance of both the payoff function

R̃(µ̃, ν̃) = R(µ, ν) and the condition number M̃
m̃ =

M
m with respect to this inversion of the strategies.

Because Arcsine(m,M) is the unique optimal solution µ∗ in the original game, FlippedArcsine(m̃, M̃)
is the unique optimal solution µ̃∗ in the flipped game; in order to show that FlippedArcsine(m,M)
is the unique optimal solution ν∗ in the original game, it suffices to show that Arcsine(m̃, M̃) is the
unique optimal solution ν̃∗ in the flipped game. To this end, it suffices to show that an optimal
solution ν̃∗ must satisfy the equalization property in the flipped game, i.e.,

R(δβ̃, ν̃
∗) = Eλ̃∼ν̃∗ log ∣1 − λ̃

−1β̃∣

is independent of β̃ ∈ Ẽ. This suffices since the equalization property uniquely defines the Arcsine
distribution by classical results from logarithmic potential theory, see Appendix A.

Why must an optimal solution ν̃∗ for the flipped game satisfy this equalization property? An
informal argument is as follows. By definition of R̃, the symmetry between R̃ and R, and then the
equalization property of the Arcsine distribution (Lemma 2.2) applied to µ∗,

Eβ̃∼µ̃R(δβ̃, ν̃
∗) = R̃(µ̃∗, ν̃∗) = R(µ∗, ν∗) = logRacc .

Thus, forgoing measure-theoretic technicalities, if ν̃∗ did not satisfy the equalization property, then
by the probabilistic method, there would exist some β̃ for which β̃ ↦R(δβ̃, ν̃

∗) is strictly less than
its average Eβ̃∼µ̃R(δβ̃, ν̃

∗) = logRacc. But this means that the value of the flipped game is less than
logRacc, hence also for the original game (since their values are identical), contradiction.

As a corollary, Lemma 6.2 gives a new proof that
√
κ−1√
κ+1 is the fastest possible convergence rate

for GD. This result is classically due to [39], who proved this by constructing a single, infinite-
dimensional “worst-case function” for which any Krylov-subspace algorithm converges slowly. Here
we construct a “worst-case distribution” over univariate functions for which any GD stepsize sched-
ule converges slowly in expectation. By the probabilistic method, for any specific GD stepsize
schedule, we can then conclude the existence of a single univariate function for which convergence
is slow. For simplicity, we state this lower bound here for i.i.d. stepsizes; this can be extended to
arbitrary GD stepsize schedules and also to non-asymptotic lower bounds, see [2, Chapter 5].

Corollary 6.4. For any distribution of i.i.d. GD stepsizes, there exists a univariate quadratic
function that is m-strongly convex and M -smooth such that the asymptotic convergence rate

lim
n→∞

E
⎡⎢⎢⎢⎢⎣
(∥xn − x

∗∥
∥x0 − x∗∥

)
1/n⎤⎥⎥⎥⎥⎦
⩾
√
κ − 1√
κ + 1

.

Proof. Lemma 6.2 shows that in expectation over λ ∼ FlippedArcsine(m,M), the asymptotic con-
vergence rate is Racc when run on the quadratic function fλ(x) = λ

2x
2 from initialization x0 = 1. By

the probabilistic method, there exists a λ∗ for which the asymptotic convergence rate on fλ∗(x) is
at least this average value Racc.

Remark 6.5. The lower bounds in this section can be interpreted as an instantiation of Yao’s
minimax principle [60]: in order to lower bound the performance of a randomized algorithm (e.g.,
GD with the Arcsine Stepsize Schedule), we exhibit a distribution over difficult inputs (namely
quadratics with curvature λ according to the FlippedArcsine distribution) for which any deterministic
algorithm cannot perform well. This is implicit along the way in this section’s development.
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7 Conclusion and future work

This paper shows that randomizing stepsizes provides an alternative mechanism for accelerated
convex optimization beyond the special case of quadratics. This raises several natural questions
about the possible benefit of randomness for GD—or said equivalently, whether the Arcsine Stepsize
Schedule can be derandomized. The current results differ on two fronts: Theorem 1.2 shows that
random stepsizes achieve the fully accelerated rate O(κ1/2 log 1

ε) on separable functions, whereas [3]

shows that deterministic stepsize achieves the partially accelerated “Silver” rate O(κlog1+√2
2 log 1

ε) ≈
O(κ0.78 log 1

ε) on general convex functions. These two sources of differences motivate the questions:

• Is it possible to de-randomize Theorem 1.2, i.e., construct a deterministic stepsize schedule
which achieves the fully accelerated rate for separable functions? If so, a natural conjecture
would be some ordering of the Chebyshev stepsize schedule.

• Does the Arcsine Stepsize Schedule fully accelerate on general (non-separable) convex func-
tions? If not, can any randomized stepsize schedule improve over the Silver Convergence Rate
for general convex functions?

There are also many questions about extensions to other optimization settings of interest. For
other settings, what is the optimal stepsize distribution if not Arcsine? In any setting, is there a
provable benefit of using non-i.i.d. stepsizes? Can random stepsizes be alternatively understood
through discretization analyses of continuous-time gradient flows? While other mechanisms for
acceleration (e.g., momentum) are now well understood [22], little is known about acceleration via
randomness.

21



A Connections to logarithmic potential theory

Recall from the overview section §2 that the optimal distribution µ for inverse stepsizes β is given
by the extremal problem

inf
µ∈M(E)

sup
λ∈E

Eβ∼µ log ∣1 − β−1λ∣ , (A.1)

where E ∶= [m,M] andM(E) denotes the probability distributions supported on E.4 Indeed, for
quadratic optimization, this extremal problem exactly characterizes the asymptotic convergence
rate (see §2.1); and for the more general setting of separable convex optimization, even though the
relevant extremal problem is somewhat different, the solution is identical (see §2.2).

In this appendix section, we connect this extremal problem over stepsize distributions with
the extremal problem for electrostatic capacitors that is classically studied in potential theory. As
we explain below, although these two problems seek probability distributions minimizing different
objectives, the two problems are intimately linked because they have the same optimality condition:
the optimal distribution µmust satisfy the equalization property from Lemma 2.2 (i.e., the objective
Eβ∼µ log ∣1 − β−1λ∣ has equal value for all λ ∈ [m,M]). Because this equalization property uniquely
characterizes the distribution (a classical fact from potential theory, see Lemma A.9), this means
that the two problems have the same unique optimal solution. In this way, the equalization property
plays the central role connecting these two problems.

This appendix section is organized as follows. In §A.1 we recall the electrostatics problem and
highlight the syntactic similarities and differences to the stepsize problem. In §A.2 we explain the
equalization property in the context of both problems and how it arises as the optimality condition.
This is the key link between the two problems. In §A.3 we exploit this connection concretely by
using the machinery of potential theory to solve the stepsize problem. This provides alternative
proofs of Lemmas 2.1 and 2.2 that are significantly shorter than the integral calculations of [32, 47].

A.1 Extremal problem for electrostatic capacitors

The extremal problem central to logarithmic potential theory is

inf
µ∈M(E)∬

log
1

∣λ − ω∣
dµ(ω)dµ(λ) , (A.2)

given a set E ⊂ C. This problem is sometimes called the electrostatics problem for a capacitor due
to its physical interpretation: how should you place a distribution of repelling particles on E so as
to minimize the total repulsive energy? Here the repulsive energy is measured via

I(µ) ∶= ∬ log
1

∣λ − ω∣
dµ(ω)dµ(λ) = Eλ∼µϕµ(λ) ,

which is the µ-average of the logarithmic potential energy at λ, denoted

ϕµ(λ) ∶= Eω∼µ log
1

∣λ − ω∣
.

Standard arguments based on lower semi-continuity and strict convexity of the objective ensure
that an optimal distribution exists and is unique. For certain sets E, this optimal distribution can
be computed in closed form. For example it is well-known that for the interval E = [m,M], the
unique optimal distribution is the Arcsine(m,M) distribution, see e.g., [49, Example 1.11].

4Although the stepsize problem was not originally written with this constraint in §2, it is easily seen that this
constraint is satisfied at optimality and therefore does not change the extremal problem. See Observation A.4.
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Syntactic similarities and differences. Let E = [m,M]. Then the stepsize extremal prob-
lem (A.1) clearly bears similarities to the electrostatics extremal problem (A.2), namely

inf
µ∈M(E)

sup
λ∈E

ϕµ(0) − ϕµ(λ) versus inf
µ∈M(E)

Eλ∼µϕµ(λ) . (A.3)

Yet there are two differences. First, the stepsize problem evaluates the logarithmic potential ϕµ(λ)
at a specific point λ ∈ [m,M], whereas the electrostatics problem averages this potential over λ ∼ µ.
Second, the stepsize problem has an additional term of ϕµ(0).

In general, changing the objective or constraints in an extremal problem can significantly alter
the optimal solution. Yet, remarkably, the optimal solution µ is identical for both problems. This
is because both problems have the same optimality condition, described next.

A.2 Equalization property

Here we describe how the equalization property arises as the optimality condition in both problems.

A.2.1 Equalized potential for the electrostatics problem

A celebrated fact—sometimes called the Fundamental Theorem of Potential Theory [48, Chapter
3.3]—is that the optimal distribution µ to the electrostatics problem (A.2) satisfies an equalization
property : the potential λ↦ ϕµ(λ) is constant on E. (Note that this is equivalent to the constancy
on E of the objective for the stepsize problem, namely λ↦ Eβ log ∣1 − β−1λ∣ = ϕµ(0) − ϕµ(λ).)

This equalization property has an intuitive physical interpretation: if the potential is not con-
stant on E, then particles will flow to points of E with lower potential, so the current state is not
at equilibrium and therefore cannot be optimal. This is why the optimal solution µ is often called
the equilibrium distribution. This result is attributed to Frostman; here we state a simple version
of it that suffices for our setting (namely a compact interval E = [m,M]).

Theorem A.1 (Frostman’s Theorem). Let E ⊂ C be compact and simply connected, and suppose
that the optimal value of (A.2) is not −∞. Then there is a unique optimal distribution µ∗ for (A.2).
Moreover it satisfies

• ϕµ∗(λ) = I(µ∗) for all λ ∈ E.

• ϕµ∗(λ) ⩽ I(µ∗) for all λ ∈ C.

A proof can be found in any textbook on logarithmic potential theory, e.g., [48, 50, 54]. Below
we use calculus of variations to give an informal back-of-the-envelope calculation that provides
intuition for how this equalization property arises as the optimality condition. Let

F (µ) ∶= ∬ log
1

∣x − y∣
dµ(x)dµ(y) + γ (∫ dµ(x) − 1)

denote the original objective plus a Lagrangian term for the normalization constraint on µ. Then
a quick calculation shows that the first variation is

δF (µ,h) = d

dε
F (µ + εh)∣

ε=0 = ∫ [γ + ∫ log
1

∣x − y∣
dµ(x)]dh(y) .

In order for this first variation to vanish along any direction h, it must hold that

γ + ∫ log
1

∣x − y∣
dµ(x) = 0, ∀y ∈ E .

This is the equalization property.
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A.2.2 Equalized convergence rate for the stepsize problem

As discussed in §2.1 and formally stated in Lemma 2.1, the stepsize problem has the same equal-
ization property at optimality. This is rigorously proven in §A.3.2 using the machinery of potential
theory; to provide intuition for how this arises as the optimality condition, here we give an informal
back-of-the-envelope argument based on the game-theoretic perspective developed in §6.2.

Suppose that µ is an solution to the stepsize problem (A.1). By the calculation in §6.2, there
is a distribution ν (the Flipped Arcsine distribution) for which

Eβ∼µ,λ∼ν log ∣1 − β−1λ∣ = logRacc . (A.4)

Observe that this is the ν-average of Pµ(λ) ∶= Eβ∼µ log ∣1 − β−1λ∣ = ϕµ(0) − ϕµ(λ). Thus, if µ does
not equalize, then (forgoing measure-theoretic technicalities) there exists λ ∈ supp(ν) = [m,M] for
which Pµ(λ) is strictly larger than the ν-average. That is, maxλ∈[m,M] Pµ(λ) > logRacc. But this
contradicts the optimality of µ since the value of the stepsize problem (A.1) is logRacc. Therefore
the equalization property must be satisfied by the optimal distribution µ.

A.3 Solution to the extremal problem over stepsizes

So far we have focused on developing conceptual connections between the stepsize problem and
electrostatistics problem. We now exploit these connections concretely by using the machinery of
potential theory to solve the stepsize problem. This provides short proofs of Lemmas 2.1 and 2.2.

A.3.1 Proof of Lemma 2.2

Here we prove the equalization property. In the optimization literature, this was proven by com-
puting the integral directly using trigonometric identities [47], or by decomposing the logarithmic
integrand into the Chebyshev polynomial basis [32]. Here we mention an alternative approach by
appealing to the following well-known identity from potential theory, which gives the potential for
the equilibrium distribution on [−1,1] at any point z; see e.g., [50, Example 1.11].

Fact A.2. Let γ denote the Arcsine distribution on [−1,1]. Then for any z ∈ C,

Et∼γ log
1

∣z − t∣
= log 2 − log ∣z −

√
z2 − 1∣ ⋅ 1z∉[−1,1] .

Proof of Lemma 2.2. Let µ denote the Arcsine distribution on [m,M]. Note that µ is the push-
forward of γ under the linear map L(z) ∶= M+m

2 + M−m
2 z that sends [−1,1] to [m,M]. Thus by a

change-of-measure, the µ-potential at any ω ∈ C is

ϕµ(ω) = Eβ∼µ log
1

∣β − ω∣
= Et∼γ log

1

∣L(t) −L(z)∣
= ϕγ(z) + log

2

M −m
,

where z ∶= L−1(ω). This gives the desired identity:

Eβ∼µ log ∣1 − β−1λ∣ = Eβ∼µ log
1

∣β∣
−Eβ∼µ log

1

∣λ − β∣
= ϕµ(0) − ϕµ(λ) = − log ∣z −

√
z2 − 1∣ = log

√
κ − 1√
κ + 1

.

Above the first step is by expanding the logarithm, the second step is by definition of the logarithmic
potential ϕµ, the third step is by Fact A.2 and the above formula for ϕµ in terms of ϕγ , and the
last step is by plugging in the value of z = L−1(0) = −κ+1

κ−1 and simplifying.
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Remark A.3 (Connection to Green’s function). This expression log
√
κ−1√
κ+1 = logRacc is the evalu-

ation at 0 of Green’s function for the interval [m,M]. This connection essentially arises because:
1) for quadratic optimization, polynomial approximation dictates the convergence rate of GD (see
§2.1), and 2) the Bernstein-Walsh Theorem characterizes the optimal rate of convergence of poly-
nomial approximations in terms of Green’s function (see e.g., [19, Theorem 1]).

A.3.2 Proof of Lemma 2.1

Here we prove that the Arcsine distribution is the unique optimal solution for the stepsize prob-
lem (A.1) by mirroring the standard argument from potential theory that the Arcsine distribution
is the unique optimal solution to the electrostatic problem (A.2), see e.g., [49, Example 2.9]. Specif-
ically, our approach is to show that any optimal distribution µ satisfies the equalization property
(see §A.2.2 for a heuristic argument of this). Indeed, it then follows that the optimal distribution
µ is unique and is the Arcsine distribution by the converse of Frostman’s Theorem (stated below),
which ensures that the Arcsine distribution is the unique distribution satisfying equalization.

We begin with a simple observation.

Observation A.4 (Support of the optimal stepsize distribution). The constraint µ ∈ M(E) does
not change the value of the stepsize problem (A.1).

Proof. It suffices to argue that for any distribution µ (with arbitrary support), there exists some
distribution µ̃ ∈ M(E) whose objective value is at least as good, i.e., maxλ∈[m,M]Eβ̃∼µ̃ log ∣1−β̃

−1λ∣ ⩽
maxλ∈[m,M]Eβ∼µ log ∣1 − β−1λ∣. To this end, it suffices to observe the elementary inequality

∣1 − λα̃∣ ⩽ ∣1 − λα∣ , ∀λ ∈ [m,M] ,

where α ∶= β−1 = a + bi ∈ C is arbitrary and α̃ ∶= max(min(a,M−1),m−1) is the projection of α
onto the interval [M−1,m−1]. Indeed, this pointwise inequality implies that we can project µ onto
M(E) in this way without worsening the objective value of µ.

We now show that any optimal distribution, constrained to this interval, must satisfy the
equalization property. For this it is helpful to recall several classical facts from potential theory.
These can be found, e.g., in page 171 and Theorems 3.2, 2.8, 2.2, and 3.1, respectively, of [49].

Lemma A.5 (Basic properties of logarithmic potentials). If µ ∈ M(C), then ϕµ is lower semicon-
tinuous on C and harmonic outside the support of µ.

Lemma A.6 (Continuity of the equilibrium potential). Consider the setting of Theorem A.1. Then
the potential ϕµ∗ is continuous on C.

Lemma A.7 (Principle of domination). Suppose µ, ν ∈ M(C) are compactly supported and that
I(µ) < ∞. If for some constant c, ϕµ(z) − ϕν(z) ⩽ c holds µ-a.e., then it holds for all z ∈ C.

Lemma A.8 (Maximum principle). Suppose h is a harmonic function on a domain Ω ⊂ C. If h
attains a local maximum in Ω, then h is constant on Ω.

Lemma A.9 (Converse to Frostman’s Theorem). Suppose µ ∈ M(E) satisfies I(µ) < ∞. If
ϕµ(z) = c on E for some constant c, then µ is the equilibrium distribution for E.
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Proof of Lemma 2.1. For shorthand, let µ denote the Arcsine(m,M) distribution and note that
I(µ) < ∞ by Lemma 2.2. Suppose ν ∈ M([m,M]) has objective value for the stepsize problem (2.9)
that is at least as good as µ. Then by the equalization property for µ (Lemma 2.2),

ϕν(0) − ϕν(λ) = Eβ∼ν log ∣1 − β−1λ∣ ⩽ Eβ∼µ log ∣1 − β−1λ∣ = ϕµ(0) − ϕµ(λ) , ∀λ ∈ [m,M] .

Re-arranging gives

f(λ) ⩽ c , ∀λ ∈ [m,M], (A.5)

where f ∶= ϕµ−ϕν and c ∶= f(0). By the principle of domination (Lemma A.7), this inequality (A.5)
holds for all λ ∈ C. Since 0 ∈ Ω ∶= C ∖ [m,M], we conclude that f achieves its maximum on Ω at 0.
But because f is harmonic on Ω (Lemma A.5), the Maximum Principle (Lemma A.8) implies that
f is constant on Ω, i.e.,

f(λ) = c, ∀λ ∈ C ∖ [m,M] . (A.6)

Fix any λ ∈ [m,M] and let {zn}n∈N be any sequence in C ∖ [m,M] converging to λ. Note that
ϕν(λ) ⩽ lim infn→∞ ϕν(zn) by lower semicontinuity (Lemma A.5), and ϕµ(λ) = limn→∞ ϕµ(zn) by
continuity of the equilibrium potential (Lemma A.6). Thus by (A.6),

f(λ) ⩾ lim sup
n→∞

f(zn) = c , ∀λ ∈ [m,M].

Combining this with (A.5) shows that

f(λ) = c , ∀λ ∈ [m,M].

Thus ν has constant logarithmic potential ϕν(λ) = ϕµ(λ) + c on [m,M], and therefore by the
converse to Frostman’s Theorem (Lemma A.9), it must be the equilibrium distribution, a.k.a.,
ν = Arcsine(m,M). We conclude that the Arcsine distribution is the unique optimal solution for
the stepsize problem (A.1). The optimal value then follows from Lemma 2.1.

B Deferred proofs

B.1 Equivalence of separability and commutative Hessians

Here we prove an alternative characterization of separability. We remark that this provides a simple
way to certify that a function is not separable: it suffices to exhibit points x and y for which the
Hessians ∇2f(x) and ∇2f(y) do not commute.

Lemma B.1 (Equivalence of separability and commutative Hessians). Let f ∈ C2(Rd). Then the
following are equivalent:

(i) f(x) = ∑d
i=1 fi([y]i) where y = Ux for some orthogonal U and functions fi ∶ R→ R.

(ii) {∇2f(x)}x∈Rd commute.

Proof of (i) Ô⇒ (ii). The function h(y) ∶= f(UT y) = ∑d
i=1 fi([y]i) is separable, hence its Hessian

∇2h is diagonal. The chain rule implies ∇2f = UT∇2hU , thus the Hessians of f are simultaneously
diagonalizable in the basis U , hence they commute.

Proof of (ii) Ô⇒ (i). Since the Hessians commute, they are simultaneously diagonalizable, i.e.,
there exists an orthogonal matrix U such that ∇2f(x) = UTD(x)U for all x, where D(x) is diago-
nal. Defining h(y) ∶= f(UT y), it follows by the chain rule that ∇2h(y) =D(UT y) is diagonal. Thus
all mixed partial derivatives vanish, hence ∂

∂[y]ih(y) is a function only of [y]i. Integrating implies

h(y) = ∑d
i=1 fi([y]i) for some functions fi. Thus f(x) = h(Ux) = ∑d

i=1 fi([Ux]i) as desired.
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B.2 Proof of Lemma 3.2

We first isolate a useful identity: the random variables Zt = log ∣1 − β−1t λt∣ defined in §3.1 are
uncorrelated—despite not being independent. Intuitively, this is due to the equalization property
of the Arcsine distribution (from which β−1t are independently drawn) since it ensures that each
Zt has the same (conditional) expectation regardless of the dependencies injected through the
non-stationary process λt.

Lemma B.2. Cov(Zs, Zt) = 0 for all s ≠ t.

Proof. Suppose s < t without loss of generality. Then Cov(Zs, Zt) = Eβ0,...,βt[(Zs − logRacc)(Zt −
logRacc)] = Eβ0,...,βt−1[Eβt[(Zs − logRacc)(Zt − logRacc) ∣β0, . . . , βt−1]] = 0, where the first step is by
the definition of covariance and (3.3), the second step is by the Law of Iterated Expectations, and
the third step is because Eβt[Zt ∣ β0, . . . , βt−1] = logRacc by the equalization property of the Arcsine
distribution (Lemma 2.2).

Proof of Lemma 3.2. First we check that {Mn}n∈N is indeed a martingale:

E[Mn ∣ Fn−1] =Mn−1 +
E [Zn −E[Zn] ∣ Fn−1]

n + 1
=Mn−1.

The final step uses E[Zn∣Fn−1] = E[Zn], which follows by an identical argument as in (3.3) above.
Next, we show {Mn}n∈N is L1-bounded. By the Cauchy-Schwarz inequality,

E∣Mn∣ ⩽
√
E[M2

n] =
√
Var(Mn)

Thus it suffices to show that Var(Mn) is uniformly bounded away from ∞. To this end, since
Cov(Zs, Zt) = 0 for any s ≠ t by Lemma B.2, it follows that

Var(Mn) = Var(
n−1
∑
t=0

Zt

t + 1
) =

n−1
∑
t=0

Var( Zt

t + 1
) ⩽ V

n

∑
t=1

1

t2
⩽ V

∞
∑
t=1

1

t2
= V π2

6

where V ∶= supλ∈[m,M]Varβ∼Arcsine(m,M)(log ∣1 − β−1λ∣) is a uniform upper bound on the variance
of Zt. Note that V < ∞ because the logarithmic potential is an integrable singularity (see also
Appendix 5 of [32] for quantitative bounds on V ). Thus Mn has finite variance, as desired.

B.3 Details for §5.1

Here we observe that random stepsizes can make GD unstable in alternative notions of convergence.
Instability in the following lemma occurs for κ > 4 since then

√
κ − 1 > 1. See §5.1 for a discussion

of this phenomena and why the notion of convergence studied in the rest of this paper is more
relevant to optimization practice.

Lemma B.3 (Instability in alternative notions of convergence). Consider GD with i.i.d. inverse
stepsizes from Arcsine(m,M). There is an m-strongly convex, M -smooth, quadratic function f
such that for any initialization x0 ≠ x∗ and any number of iterations n,

E
⎡⎢⎢⎢⎢⎣

∥xn − x∗∥
∥x0 − x∗∥

⎤⎥⎥⎥⎥⎦

1/n

⩾
√
κ − 1 . (B.1)
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To prove this, we make use of the following integral representation of the geometric mean of
two positive scalars a, b > 0 in terms of the weighted harmonic mean Ht(a, b) ∶= (ta−1+(1− t)b−1)−1.
This identity is well-known (e.g., it follows from [7, Exercise V.4.20], or directly from [25, §3.121-2]
by taking q = 1/b and p = 1/b − 1/a).

Lemma B.4 (Arcsine integral representation of the geometric mean). For any a, b > 0,

Et∼Arcsine(0,1)[Ht(a, b)] =
√
ab .

This lets us compute the expectation of the proposed random stepsizes.

Lemma B.5 (Expectation of proposed random stepsizes). For any 0 <m <M < ∞,

Eβ∼Arcsine(m,M) [β−1] =
1√
Mm

.

Proof. Re-parameterize β = tM + (1 − t)m so that β−1 = Ht(M−1,m−1). Since β ∼ Arcsine(m,M)
implies t ∼ Arcsine(0,1), applying Lemma B.4 provides the desired identity

Eβ∼Arcsine(m,M)[β−1] = Et∼Arcsine(0,1)[Ht(M−1,m−1)] = 1√
Mm

.

We are now ready to prove Lemma B.3.

Proof of Lemma B.3. Let βt denote the inverse stepsizes; recall that these are i.i.d. Arcsine(m,M).
By expanding the definition of GD for the function f(x) = M

2 x
2,

xn =
n−1
∏
t=0
(1 − β−1t M)x0 .

By taking expectations, using independence of the stepsizes, and applying Lemma B.5,

E[xn] = (1 −
√
κ)nx0 .

Thus by Jensen’s inequality and then the fact that κ > 1, we conclude the desired inequality

E
⎡⎢⎢⎢⎢⎣

∥xn − x∗∥
∥x0 − x∗∥

⎤⎥⎥⎥⎥⎦

1/n

⩾
⎛
⎝
∥Exn − x∗∥
∥x0 − x∗∥

⎞
⎠

1/n

=
√
κ − 1.

B.4 Proof of Theorem 5.2

For shorthand, let V ∶= supλ∈[m,M]Varβ∼Arcsine(m,M) (log ∣1 − β−1λ∣) denote a uniform upper bound
on the variance of any Zt. By the integral calculations in [32, Appendix 5],

V ⩽ π2 + oκ(1) .

Thus because Cov(Zs, Zt) = 0 for s ≠ t by Lemma B.2,

Var( 1
n

n−1
∑
t=0

Zt) =
1

n2

n−1
∑
t=0

Var (Zt) ⩽
V

n
⩽ π2 + oκ(1)

n
.
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Thus by Chebyshev’s inequality and the equalization property of the Arcsine distribution (Lemma 2.2),

P( 1
n

n−1
∑
t=0

log ∣1 − β−1t λt∣ ⩾ logRacc +ε) ⩽
π2 + oκ(1)

nε2
, (B.2)

where βt are i.i.d. Arcsine(m,M) and λt ∈ [m,M] is any process adapted to the filtration σ({βs}s<t).
Thus by (3.2), the average convergence rate Rn,i ∶= ( ∣[xn]i−[x∗]i∣

∣[x0]i−[x∗]i∣ )
1/n for the function fi satisfies

P (Rn,i ⩾ eε Racc) ⩽
π2 + oκ(1)

nε2
(B.3)

for any coordinate i ∈ S ∶= {i ∈ [d] ∶ [x0]i ≠ [x∗]i}, i.e., for any i for which the initialization is not

already optimal. Thus the overall convergence rate Rn ∶= ( ∥xn−x∗∥
∥x0−x∗∥ )

1/n for f satisfies

P (Rn ⩾ eε Racc) ⩽ P(max
i∈S

Rn,i ⩾ eε Racc) ⩽
d(π2 + oκ(1))

nε2
. (B.4)

Above the first step is because Rn ⩽maxi∈S Rn,i (since R2
n =

∑i∈S ∣[xn]i−[x∗]i∣2
∑i∈S ∣[x0]i−[x∗]i∣2 ⩽maxi∈S

∣[xn]i−[x∗]i∣2
∣[x0]i−[x∗]i∣2 =

maxi∈S R
2
n,i). The second step is by a union bound and the previous display. The proof is then

complete by setting δ equal to the right hand side of the above display.

B.5 Details for §6.1

Proof of Theorem 6.1. The proof is similar to that of Theorem 1.2, so we just highlight the dif-
ferences. By the same argument as in §3.2, it suffices to show the result for univariate objectives
f , so we henceforth restrict to this case. For shorthand, denote Et ∶= (g̃t − f ′(xt))/(xt − x∗) and
note that the multiplicative error assumption (6.1) implies ∣Et∣ ⩽ ε′ ∶= Mε by smoothness. By an
identical calculation as in §3.1,

xt+1 − x∗ = xt − αtg̃t − x∗ = (1 − αt(λt +Et))(xt − x∗) ,

and thus

xn − x∗ =
n−1
∏
t=0
(1 − αt(λt +Et))(x0 − x∗) ,

and so in particular

log(∣xn − x
∗∣

∣x0 − x∗∣
)
1/n
= 1

n

n−1
∑
t=0

log ∣1 − αt(λt +Et)∣ .

By a similar martingale-based Law of Large Numbers argument as in §3.1, it suffices to compute

max
λ̃∈[m−ε′,M+ε′]

Eβ∼Arcsine(m,M) log ∣1 − β−1λ̃∣ (B.5)

and in particular to show that this equal to the logarithm of the upper bound in (6.3). Above,
λ̃ plays the role of λ + E where λ ∈ [m,M] and E ∈ [−ε′, ε′]. By the same calculation as in
Appendix A.3.1, this expectation simplifies to

Eβ∼Arcsine(m,M) log ∣1 − β−1λ̃∣ = logRacc − log(∣z∣ −
√
z2 − 1) ⋅ 1z∉[−1,1] , (B.6)

where z ∶= 2
M−m(λ̃ −

M+m
2 ). This quantity is increasing in ∣z∣, thus (B.5) is maximized at both

extremes λ̃ ∈ {m − ε′,M + ε′} which lead to the same maximal value of ∣z∣ = 1 + 2ε′

M−m = 1 + ε̃.
Plugging this into (B.5) yields the desired bound.
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Finally, for tightness, note that the analysis is tight at the aforementioned extremes λ =m,E =
−ε′ and λ = M,E = ε′. These two extremes respectively correspond to functions f(x) = mx2

2 and

f(x) = Mx2

2 , with estimates g̃t that maximally underestimate or overestimate the true gradient.
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