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Abstract

The Alternating Direction Method of Multipliers (ADMM) is widely recognized for its efficiency in solving separable opti-
mization problems. However, its application to optimization on Riemannian manifolds remains a significant challenge. In this
paper, we propose a novel inertial Riemannian gradient ADMM (iRG-ADMM) to solve Riemannian optimization problems
with nonlinear constraints. Our key contributions are as follows: (i) we introduce an inertial strategy applied to the Rieman-
nian gradient, enabling faster convergence for smooth subproblems constrained on Riemannian manifolds; (ii) for nonsmooth
subproblems in Euclidean space, we incorporate existing well-established algorithms for efficient solution; and (iii) we estab-
lish the ǫ-stationarity of iRG-ADMM under mild conditions. Finally, we demonstrate the effectiveness of iRG-ADMM through
extensive numerical experiments, including applications to Sparse Principal Component Analysis (SPCA), highlighting its su-
perior performance compared to existing methods.

Key words: Riemannian manifold; Alternating direction multiplier method; Nonsmooth optimization; Inertial strategy;
ǫ-stationary solution.

1 Introduction

In recent years, optimization on the manifold has
been extensively studied and applied across various
fields, including but not limited to automatic control
[1], aerospace engineering [2], and machine learning
[3]. We begin by considering the following optimization
problem,

min A(x)

s.t. x ∈ M,
(1)

where A is possibly nonsmooth, and M is an embedded
compact Riemannian submanifold in Euclidean space.
This optimization problem (1) is motivated by a wide
range of applications across various scientific and tech-
nological domains as a result of natural geometry and
latent data simplicity, such as sparse principal compo-
nent analysis [4], low-rank matrix completion [3], parse
inverse covariance estimation [5], blind deconvolution
[6] and dictionary learning [7]. However, solving man-
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ifold optimization presents significant challenges com-
pared to classical optimization in the Euclidean space.
In particular, when the search space is a manifold, the
vectors within it do not exhibit properties such as lin-
ear combinations, which hinders the application of tra-
ditional algorithms that rely on linear structures. As a
result, there has been considerable attention on devel-
oping efficient algorithms tailored specifically to man-
ifold optimization problems. When the objective func-
tion f in (1) is smooth, a variety of algorithms based
on the Riemannian gradient has been proposed, such as
the Riemannian conjugate gradient method [8,9,10,11],
the Riemannian trust-region method [12,13], and the
Riemannian quasi-Newton method [14]. For non-smooth
optimization problems on Riemannian manifolds, how-
ever, algorithm design becomes more complex. Exist-
ing literature has explored the Riemannian subgradient
method [15,16], Riemannian proximal gradient method
[17,18,19], Riemannian proximal-linear algorithm [20],
Riemannian proximal point algorithm [21], etc.

In this paper, we focus on the following optimization
problem,

min A(x) + B(C(x))
s.t. x ∈ M,

(2)

where A is smooth could be nonconvex, B is nonsmooth
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and convex, M is an embedded compact submanifold in
Euclidean space, nnd C is a potentially nonlinear dif-
ferential mapping. The problem (2) is a generalization
of (1) and highly representative in Riemannian mani-
folds optimization problems. Notable examples include
the Rayleigh quotient problem [12,13], the Brockett cost
function problem [13,11], the sparse principal compo-
nent analysis (SPCA) problem [18] and the dual princi-
pal component pursuit [22], all of which can be viewed as
degenerate cases of this framework. In problem (2), the
nonsmooth function B acts on C(x), which introduces
various inconveniences in practical problem-solving. No-
tably, A and B exhibit favorable separability. Therefore,
a natural approach is to introduce an auxiliary variable
to reformulate the problem (2) into the following sepa-
rable optimization problem:

min A(x) + B(y)
s.t. C(x) + y = 0, x ∈ M.

(3)

For separable optimization problems (3), the Al-
ternating Direction Method of Multipliers (ADMM) is
a widely considered and effective approach. ADMM,
initially proposed by Glowinski and Marroco [23] and
Gabay and Mercier [24] in the 1970s, originates from
the Douglas-Rachford operator splitting method [25]. It
has since emerged as a powerful tool for solving linearly
constrained separable optimization problems. ADMM
is particularly well-suited for machine learning appli-
cations, where very high numerical precision is often
unnecessary, but low computational overhead per iter-
ation is crucial. ADMM leverages the separability of
the objective function, decomposing inherently difficult
problems into two relatively simpler subproblems. To
solve each subproblem, ADMM utilizes Lagrange multi-
pliers to temporarily transform the constrained problem
into an unconstrained one. This approach not only sim-
plifies handling constraints but also addresses certain
limitations inherent in penalty function methods and
gradient projection methods. Due to its versatility and
strong performance, ADMM and its numerous variants
have garnered significant attention. For a more detailed
discussion of ADMM and its applications, we refer read-
ers to [26,27,28,29,30,31] and the references therein.

The ADMM in Euclidean spaces has seen signif-
icant development, however, the research on ADMM
for Riemannian manifolds remains relatively limited.
Lai and Osher [32] focused on a special case of (3) and
proposed splitting orthogonality constraints (SOC) al-
gorithm for solving such problems. The SOC method
demonstrates strong performance when addressing sub-
problems within its framework. However, since SOC is
rooted in conventional optimization frameworks involv-
ing orthogonality constraints, extending it to arbitrary
Riemannian manifolds presents substantial challenges.
Kovnatsky et al. [33] introduced the Manifold ADMM
(MADMM) algorithm to tackle optimization problems
where the objective function consists of a smooth com-
ponent constrained on a Riemannian manifold and a

nonsmooth component constrained in Euclidean space.
In MADMM, Riemannian gradient-based methods can
be used to solve the subproblem associated with the
smooth component, while the nonsmooth subprob-
lem benefits from well-established algorithms in Eu-
clidean space, simplifying its resolution. Consequently,
MADMM exhibits both strong performance and com-
putational efficiency. Although SOC [32] and MADMM
[33] demonstrate promising numerical performance,
their convergence is not guaranteed. To address this lim-
itation, Li et al. [34] introduced intermediate variables
and developed a class of efficient Riemannian ADMM
algorithms under the assumption that C is a matrix
mapping. They further established the ǫ-stability of
these algorithms, marking a significant advancement in
this domain.

Besides, for a class of structured multi-block Rie-
mannian manifold optimization problems, Zhang et
al. [35] proposed a series of effective proximal ADMM
frameworks, incorporating stochastic and gradient-
based algorithms and establishing their ǫ-stability. How-
ever, the algorithms in [35] require the final subproblem
to be smooth subproblem in Euclidean space, which
limits their applicability to problems such as SPCA [4].

This paper introduces a novel optimization frame-
work, inertial Riemannian gradient ADMM (iRG-
ADMM), designed to solve the optimization problem
(3) more efficiently and practically. By addressing key
limitations of existing methods and providing strong
theoretical guarantees, iRG-ADMM opens new avenues
for solving manifold optimization problems with non-
linear constraints and convex, potentially nonsmooth,
objective functions. The major contributions of the
paper are summarized as follows,
• We propose an inertial strategy that is integrated into
the ADMM framework for solving manifold optimiza-
tion problems. This strategy introduces a new update
direction for the primal variable x, significantly im-
proving the convergence rate and computational effi-
ciency. This is particularly advantageous for problems
where the solution to the first subproblem strongly
influences the overall algorithm performance, as in
ADMM-type methods.

• iRG-ADMM is designed to be generalizable and scal-
able, as it does not rely on a specific manifold. Un-
like existing methods such as SOC [32] (which is tai-
lored to the Stiefel manifold) and [36] (designed for
the oblique manifold), iRG-ADMM can be applied to
various types of manifolds without requiringmanifold-
specific adjustments. This scalability enhances its ap-
plicability to a broad range of optimization problems.

• One key advantage of iRG-ADMM is that it only re-
quires the objective function of the final subproblem to
be convex, rather than smooth. This relaxed assump-
tion opens the door to solving a wider class of real-
world problems, many of which involve nonsmooth
objective functions but are still convex. This enhance-
ment significantly broadens the algorithm’s practical
applicability, while retaining strong theoretical guar-
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antees. iRG-ADMM is capable of solving manifold op-
timization problems with nonlinear constraints. To
the best of our knowledge, this aspect of manifold
optimization has received limited attention, and our
work presents a foundational approach for tackling
such problems. This positions iRG-ADMM as an im-
portant starting point for future research in the do-
main of constrained manifold optimization.

• We establish the ǫ-stability of iRG-ADMMunder com-
mon assumptions and provide a detailed analysis of
its convergence properties. Using the Moreau enve-
lope, we derive stability guarantees that ensure the
algorithm’s robustness. Furthermore, we identify the
permissible parameter ranges for iRG-ADMM, which
will assist practitioners in applying the method effec-
tively in different settings.

• Through extensive experiments, we compare iRG-
ADMM with existing manifold optimization algo-
rithms. The results demonstrate that iRG-ADMM
not only outperforms current methods in terms of
computational efficiency but also maintains robust-
ness across a variety of benchmark problems. These
findings validate the practical advantages of the pro-
posed algorithm.

The rest of this paper is organized as follows: we
give mathematical notations and recall some known re-
sults for further analysis in Section 2; we introduce the
iRG-ADMM and establish their ǫ-stability for problem
(3) under suitable assumptions in Section 3; we present
results of numerical experiments with SPCA to demon-
strate the effectiveness of the propose iRG-ADMM in
Section 4; and summarize the study with future direc-
tions in Section 5.

2 Notations and Preliminaries

2.1 Notations

In this subsection, we introduce some standard no-
tations that will be used throughout this paper. First,
we consider the Euclidean space, which can be inter-
preted as a space of vectors, matrices, or tensors. For any
vectors u, v ∈ R

n, we denote the Euclidean inner prod-
uct by 〈u, v〉 = u⊤v, and the Euclidean norm is defined

as ‖u‖ =
√

〈u, u〉, where the superscript “⊤” denotes
the transpose of a vector or matrix. This definition cor-
responds to the l2-norm of a vector. For any matrices
U, V ∈ R

m×n, the Euclidean inner product is defined as
〈U, V 〉 = Tr(U⊤V ), and the Frobenius norm of U is de-

noted as ‖U‖F =
√

〈U,U〉. Additionally, we define the
l2-norm of a matrix U as ‖U‖ =

√
µU⊤U , where µU⊤U

represents the largest eigenvalue of the matrix U⊤U .
Naturally, for vectors or matrices x and y in Euclidean
space, we define their distance as dist(x, y) = ‖x − y‖.
Finally, for the problem (3), we introduce the associated
augmented Lagrangian function (ALF) as follows:

Lρ(x, y, λ) = A(x)+B(y)+〈λ, C(x)+y〉+ ρ

2
‖C(x)+y‖2,

(4)

where λ is the Lagrangian multiplier and ρ > 0 is a
penalty parameter.

2.2 Moreau envelope

Considering a function B : Rp → R, we can define
its Moreau envelope [39], [40], [41] as follows:

MB(z) = min
y

{B(y) + γ

2
‖y − z‖2},

where γ > 0 is a parameter. Then, its corresponding
proximity operator could be defined:

Proxγ,B(z) = argmin
y

{B(y) + γ

2
‖y − z‖2},

If B is convex and γ > 0, then Proxγ,B(·) is mono-
tone, single-valued and Lipschitz, and MB(z) satisfies
[41,42,43]:

∇MB(z) = γ(z − Proxγ,B(z)) ∈ ∂B(Proxγ,B(z)).

Definition 1 [41] Let B be a proper, lower semicontin-
uous and convex function. We call B satisfies the im-
plicit Lipschitz subgradient property if for any γ > 0,
there exists LB > 0 (depending on γ) such that for any
u, v ∈ ran(Proxγ,B),

‖∇MB(z1)−∇MB(z2)‖ 6 LB‖u− v‖,
∀z1 ∈ Prox−1

γ,B(u), z2 ∈ Prox−1
γ,B(v).

2.3 Preliminaries on Riemannian submanifolds in Eu-
clidean spaces

Definition 2 Consider a Riemannian manifold M em-
bedded in a Euclidean space. For any x ∈ M, the tan-
gent space TxM at x is a linear subspace consisting of the
derivatives of all smooth curves on M passing x, that is

TxM = {τ(0) : τ(0) = x, τ([−δ, δ]) ∈ M, for some δ > 0,

τ is smooth}.

The Riemannian metric, i.e., the inner product between
u, v ∈ TxM, is defined to be 〈u, v〉x := 〈u, v〉 , where the
〈·, ·〉 is the Euclidean inner product.
Definition 3 [3] For smoothing funcion f on the
the Riemannian manilfold M, the Riemannian gradi-
ent gradf(x) is a tangent vector in TxM satisfying
v[f ] = 〈v, gradf(x)〉x for any v ∈ TxM. If M is an
embedded submanifold of a Euclidean space, we have

gradf(x) = Projx(∇f(x)),

where Projx(·) is a orthogonal projection operator onto
the subspace TxM, which is a nonexpansive linear trans-
formation.
Definition 4 [3] A retraction onM is a smoothmapRe:
T M → M satisfying: (i) Rex(0x) = x, where 0x denotes
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the zero element of TxM; (ii) with thecanonical iden-
tification T0xTxM ≃ TxM, Rex satisfies DRex(0x) =
idTxM

, where Rex: TxM → M is the restriction of Re at
x, DRex is the differential of DRex, and idTxM

denotes
the identity map on TxM.
Definition 5 [3] The function f : M → R is LM-
smooth. There exists a constant LM > 0, for all x ∈ M,
z = Rex(u) with u ∈ TxM such that

f(z) 6 f(x) + 〈gradf(x), u〉x +
LM

2
‖u‖2.

Lemma 1 [45] Suppose M is a compact and complete
Riemannian manifold embedded in Euclidean space R

n

and f is Lf -Lipschitz smooth in R
n, then f is also LM-

geodesic smooth on M , where LM is determined by the
manifold M and f .
Definition 6 [3] A vector transport on M is a
smooth mapping T : T M ⊕ T M → TxM : (η, ξ) →
Tη(ξ) that satisfies the following conditions for any
x ∈ M : (i) there exists a retraction Re such that
Tη(ξ) ∈ TRex(η)M, ∀η, ξ ∈ TxM; (ii) (consis-
tency) T0x(ξ) = ξ for all ξ ∈ TxM; (iii) (linearity)
Tη(aξ + bγ) = aTη(ξ) + bTη(γ) for all a, b ∈ R and
η, ξ, γ ∈ TxM. Here, ⊕ denotes the Whitney sum.
The vector transport Ty

x(v) or equivalently Tu(v) with
y = Rex(u) transports v ∈ TxM along the retraction
curve definded by direction u to the TyM.
Definition 7 [46] For (x∗, y∗, λ∗) where x∗ ∈ M, if
there exits R∗ such that

R∗ ∈









Projx∗

{

∇A(x∗) + C(x∗)⊤λ∗
}

∂B(y∗) + λ∗

C(x∗) + y∗









,

then (x∗, y∗, λ∗) is called ǫ stationary solution if
‖R∗‖ 6 ǫ.

3 The inertial Riemannian gradient ADMM

In this section, we presented iRG-ADMM in Algo-
rithm 1, which incorporates an inertial Riemannian gra-
dient technique with variable step sizes to ensure fast
convergence of the problem (3).

First, we present some fundamental assumptions re-
garding Problem (3).
Assumption 1 (i) The function B : Rm → R is proper
and lower-semicontinuous with an effective domain de-
noted by domB := {x ∈ R

m | B(x) < +∞} and satisfies
the implicit Lipschitz subgradient property . Moreover,
the proximal oracle of B is available, i.e., given p ∈ R

m

and a constant γ > 0, we can solve the following prob-
lem:

min{B(y) + γ

2
‖y − z‖2}, y ∈ domB.

(ii) A(x) + B(y) is bounded below, i.e.,

F := inf
x∈M, y∈domB

{A(x) + B(y)} > −∞.

(iii) The mapping C : M ⊂ R
n → R

q is gradient
bounded with BC , i.e.,

‖∇C(x)‖ 6 BC , ∀x ∈ M.

(iv) Fixed (ȳ, λ̄), the function Lρ(x, ȳ, λ̄) is LM-
smooth.
Now we can propose the iRG-ADMM.

3.1 Descript of iRG-ADMM

Algorithm 1 iRG-ADMM

1: Given initial vector (x0, y0, ŷ0, λ0) and postive con-
stant ψ ∈ (0.5, 2) and α 6 min{1, 1

2LM

}. Let d−1 =

ĝ0x.
2: for k = 0, . . . do

% x-subproblem:
3: [Step 1] Compute Riemannian gradient at xk

with as follows,

ĝkx = Projxk

{

∇C(xk)⊤(λk+ρ(C(xk)+yk))+∇A(xk)
}

.

4: [Step 2] Compute the inertial tangent vector in

the TxkM as dk = ĝkx + ϕk(ĝ
k
x − T

xk

xk−1(dk−1)) with

ϕk = min{ ‖αĝk
x‖

‖ĝk
x−T

xk

xk−1
(dk−1)‖

, 1}, then we set xk+1 =

Rxk(−αdk).
% y-subproblem:

5: [Step 3] Update the auxilary variable ŷk = (1 −
ψ)ŷk−1 + ψyk,

6: [Step 4] Solve yk+1 = argmin
y∈Rm

{

B̂k(y)
}

, where

B̂k(y) := B(y)+〈λk, y〉+ρ
2
‖C(xk+1)+y‖2+γ

2
‖y−ŷk‖2.

% λ-subproblem:
7: [Step 5] λk+1 = λk + ρ(C(xk+1) + yk+1).
8:
9: end for

10: xk+1, yk+1, λk+1, ŷk+1.

Remark 2 (i) The parameters ρ in Algorithm1 could be
selected as follows,

ρ > max
{4(Lg + γ)2

γ
,

4ψ2

4ψ2 − 1

}

.

The aforementioned selection of ρ is crucial for our subse-
quent convergence analysis. Moreover, when implement-
ing iRG-ADMM in practice, the values of ψ and γ are
predetermined. Thus, in accordance with the above condi-
tions, it becomes relatively easy to choose an appropriate
value for ρ.

(ii) In general, the efficiency of solving the first sub-
problem plays a crucial role in determining the overall
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performance of ADMM-based algorithms. However, di-
rectly solving subproblems on manifolds often introduces
certain challenges. In this paper, we leverage the smooth-
ness properties of the x-subproblem to compute its Rie-
mannian gradient and incorporate ideas from the iner-
tial strategy [37,38] to construct a new update direction
dk for solving the x-subproblem. First, we compute the
Riemannian gradient ĝkx and then, using an appropriate
vector transport, combine the ”inertia” from the previ-
ous update direction dk−1 with the current Riemannian
gradient ĝkx. This inertial strategy helps mitigate oscil-
lations, enhances the stability of the solution to the x-
subproblem, and, in turn, improves the overall efficiency
of the algorithm.

(iii) To solve the y-subproblem, we introduce an aux-
iliary variable ŷ along with a proximal term to ensure con-
vergence. Since y is constrained within Euclidean space,
we can apply a variety of well-established algorithms de-
signed for Euclidean optimization to efficiently solve this
subproblem.

3.2 Convergence analysis

In this section, we establish the ǫ-stationary solu-
tion of iRG-ADMM. First, we present a lemma concern-
ing the sequence of Lagrange multipliers {λk}.
Lemma 3 Suppose that the sequence {yk, ŷk, λk} is gen-
erated by Algorithm 1. Then, for k > 1, we have

‖λk+1 − λk‖2 62(LB + γ)2‖yk+1 − yk‖2

+ 2γ2‖ŷk − ŷk−1‖2.
(5)

PROOF. From optimality condition of y-subproblem
in Algorithm 1, we have

0 ∈ ∂B(yk+1) + λk + β(C(xk) + yk) + γ(yk+1 − ŷk)

= ∂B(yk+1) + λk+1 + γ(yk+1 − ŷk)

= ∂

(

B +
γ

2
‖ · −(ŷk +

λk+1

γ
)‖2

)

(yk+1),

then we have

yk+1 = Proxγ,B(ŷ
k +

λk+1

γ
),

thus

∇MB(ŷ
k +

λk+1

γ
) = λk+1 + γ(ŷk − yk+1),

it holds that

‖λk+1 − λk‖ = ‖∇MB(ŷ
k +

λk+1

γ
)−∇MB(ŷ

k−1 +
λk

γ
))‖

+ γ‖ŷk − ŷk−1‖+ γ‖yk+1 − yk‖
6 (LB + γ)‖yk+1 − yk‖+ γ‖ŷk − ŷk−1‖.

Finally, we have

‖λk+1 − λk‖2 6 2(LB + γ)2‖yk+1 − yk‖2 + 2γ2‖ŷk − ŷk−1‖2.

�

To proceed, we denote sequence {ωk} = {xk, yk, ŷk, λk}
and function L̂ρ(ω

k) := Lρ(x
k, yk, λk) + γ

2 ‖yk − ŷk‖,
which plays key role in the convergence analysis. Then,
we provide a lemma to characterize the progress achieved
by a single iterate of the proposed algorithm.
Lemma 4 Suppose that the sequence {ωk} is generated
by Algorithm 1. Then, for k > 1, it holds that

L̃ρ(ω
k+1)− L̃ρ(ω

k)

=− (
γ

2
− 2(LB + γ)2

ρ
)‖yk+1 − yk‖2 + 2γ2

ρ
‖ŷk − ŷk−1‖2

− γ(2− ψ)

2ψ
‖ŷk+1 − ŷk‖2 − α− α3

2
‖ĝkx‖2.

(6)

PROOF. We begin the proof from the x-subproblem.
If (iv) in Assumption 1 holds, then it is easy to obtain

L̃ρ(x
k+1, yk, ŷk, λk)− L̃ρ(x

k, yk, ŷk, λk)

6〈ĝkx,−αdk〉+
LM

2
‖αdk‖2,

then we have

L̃ρ(x
k+1, yk, ŷk, λk)− L̃ρ(x

k, yk, ŷk, λk)

6
α

2
‖ĝkx − dk‖2 −

α

2
‖ĝkx‖2 −

α

2
‖dk‖2 +

LM

2
‖αdk‖2

6
αψ2

k

2
‖ĝkx − T

xk

xk+1(dk−1)‖2 −
α

2
‖ĝkx‖2 −

α

4
‖dk‖2

6
α3 − α

2
‖ĝkx‖2 −

α

4
‖dk‖2

6− α− α3

2
‖ĝkx‖2.

(7)
Consider the y-subproblem with the strong convexity of
B̂k(y), we obtain

B(yk+1) + 〈λk, yk+1〉+ ρ

2
‖C(xk+1) + yk+1‖2

+
γ

2
‖yk+1 − ŷk‖2

6 B(yk) + 〈λk, yk〉+ ρ

2
‖C(xk+1) + yk‖2 + γ

2
‖yk − ŷk‖2

− γ

2
‖yk+1 − yk‖2,

which can be equivalently expressed as

L̃ρ(x
k+1, yk+1, ŷk, λk)− L̃ρ(x

k+1, yk, ŷk, λk)

6− γ

2
‖yk+1 − yk‖2. (8)
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To proceed, considering the updating of ŷk, it holds that

L̃ρ(x
k+1, yk+1, ŷk+1, λk)− L̃ρ(x

k+1, yk+1, ŷk, λk)

=
γ

2
‖yk+1 − ŷk+1‖2 − γ

2
‖yk+1 − ŷk‖2

=
γ

2
(‖yk+1 − ŷk‖2 − 2〈ŷk+1 − ŷk, yk+1 − ŷk〉

+ ‖ŷk+1 − ŷk‖2)− γ

2
‖yk+1 − ŷk‖2

=
γ

2
‖ŷk+1 − ŷk‖2 − γ〈ŷk+1 − ŷk, yk+1 − ŷk〉.

From updating of ŷk in Algorithm 1, we have

L̃ρ(x
k+1, yk+1, ŷk+1, λk)− L̃ρ(x

k+1, yk+1, ŷk, λk)

=
γ

2
‖ŷk+1 − ŷk‖2 − γ

ψ
‖ŷk+1 − ŷk‖2.

(9)
By the λ-subproblem , it holds that

L̃ρ(x
k+1, yk+1, ŷk+1, λk+1)− L̃ρ(x

k+1, yk+1, ŷk+1, λk)

=
1

ρ
‖λk+1 − λk‖2.

(10)
Recall (5) and (10), such that

L̃ρ(x
k+1, yk+1, ŷk+1, λk+1)− L̃ρ(x

k+1, yk+1, ŷk+1, λk)

6
2(Lg + γ)2

ρ
‖yk+1 − yk‖2 + 2γ2

ρ
‖ŷk − ŷk−1‖2.

(11)
Combining (7), (8), (9) and (11), we have

L̃ρ(x
k+1, yk+1, ŷk+1, λk+1)− L̃ρ(x

k, yk, ŷk, λk)

=− (
γ

2
− 2(LB + γ)2

ρ
)‖yk+1 − yk‖2 + 2γ2

ρ
‖ŷk − ŷk−1‖2

− γ(2− ψ)

2ψ
‖ŷk+1 − ŷk‖2 − α− α3

2
‖ĝkx‖2.

�

Remark 5 (i) For most commonly used machine learn-
ing models, the constraint C(x) + y = 0 in Problem (3)

simplifies to the form Ĉx+ y − b = 0, where Ĉ is a ma-
trix. Additionally, in these models, the smooth function
A is often gradient Lipschitz continuous (with Lipschit
constant LA). These conditions, tailored to practical ap-
plications, render Lemma 4 independent of (iv) in As-
sumption 1. In fact,

∇L̃ρ(x, y
k, ŷk, λk) = ∇A(x)+C⊤

(

λk+β(Cx+yk−b)
)

,

for any x1, x2 ∈ M, we can deduce that

‖∇L̃ρ(x1, y
k, ŷk, λk)−∇L̃ρ(x2, y

k, ŷk, λk)‖
6‖∇A(x1)−∇A(x2)‖+ βC⊤C‖x1 − x2‖
6(LA + βC⊤C)‖x1 − x2‖.

Recall Lemma 1, we can conclude that L̃ρ(x, y
k, ŷk, λk) is

geodesically smooth. The above discussion demonstrates
that, for a large class of practical problems, the geodesic
smoothness of L̃ρ(x, y

k, ŷk, λk) naturally holds.
(ii) For k ≥ 0, we define a Lyapunov function as

follows,

Fρ(ω̃
k) := L̃ρ(ω

k) +
2γ2

ρ
‖ŷk − ŷk−1‖2,

where ω̃k := (ωk, ŷk−1). Recall (6), it is noticed that
Fρ(ω̃

k) is non-increasing monotonely and there exists a
constant ζ∗ > 0, holds that

Fρ(ω̃
k)−Fρ(ω̃

k+1)

>ζ∗(‖yk+1 − yk‖2 − ‖ŷk+1 − ŷk‖2 − ‖ĝkx‖2).
(12)

Next, we present a lemma to demonstrate that Fρ is
bounded below.
Lemma 6 If the parameters conditions are satisfied and
Assumptions 1 holds, then the Lyapunov functions Fρ

are lower bounded F.

PROOF. It is obvious that Fρ(ω̃
k) > L̃ρ(ω

k) +
2γ2

ρ
‖ŷk− ŷk−1‖2. Besides, recall that∇MB(ŷ

k+ λk+1

γ
) =

λk+1 + γ(ŷk − yk+1), we have

L̃ρ(ω
k) +

2γ2

ρ
‖ŷk − ŷk−1‖2

= A(xk) + B(yk) + ρ

2
‖C(xk) + yk‖2 + γ

2
‖yk − ŷk‖2

+ 〈∇MB(ŷ
k−1 +

λk

γ
)− γ(ŷk − yk), C(xk) + yk〉

+
2γ2

ρ
‖ŷk − ŷk−1‖2

= A(xk) + B(yk) + ρ

2
‖C(xk) + yk‖2 + γ

2
‖yk − ŷk‖2

+ 〈∇MB(ŷ
k−1 +

λk

γ
)− γ(ŷk − yk), C(xk) + yk〉

− γ〈ŷk−1 − yk, C(xk) + yk〉+ 2γ2

ρ
‖ŷk − ŷk−1‖2

> A(xk) + B(yk)− 1

2
‖∇MB(ŷ

k−1 +
λk

γ
)‖2

+
γ

ψ
〈ŷk − ŷk−1, C(xk) + yk〉+ γ

2
‖yk − ŷk‖2

+
ρ− 1

2
‖C(xk) + yk‖2 + 2γ2

ρ
‖ŷk − ŷk−1‖2.
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Rearrange the right side of inequality, we have

L̃ρ(ω
k) +

2γ2

ρ
‖ŷk − ŷk−1‖2

> A(xk) + B(yk) + γ

2
‖yk − ŷk‖2

+
ρ− 1

2
‖C(xk) + yk +

γ

ψ(ρ− 1)
(ŷk − ŷk−1)‖2

+ (
2γ2

ρ
− γ2

2ψ2(ρ− 1)
)‖yk − ŷk‖2

> A(xk) + B(yk).

Then, it is obviuos that

Fρ(ω̃
k) > F,

this finishes the proof. �

Now, denote Fρ(ω̃
k) 6 Fρ(ω̃

0) := F, and we pro-
ceed to analyze the ǫ-stationary solution of iRG-ADMM.
Theorem 7 Assume that the sequence {xk, yk, ŷk, λk}
is generated by Algorithm 1, the assumption 1 and pa-
rameters conditions hold. Then Algorithm 1 finds an ǫ-
stationary solution of (3) in at most T iterations, where

T :=
8L(ρ)2(F− F)

ζ∗ǫ2
,

and

L(ρ) :=
(BC + 1)(LB + 2γ)

ρ
+
γ

ψ
+ 1.

PROOF. Let us begin with the following relation,

‖C(xk+1) + yk+1‖ =
1

ρ
‖λk+1 − λk‖,

then we have

‖C(xk+1)+yk+1‖ 6
(LB + γ)

ρ
‖yk+1−yk‖+γ

ρ
‖ŷk−ŷk−1‖.

Considering the Riemannian gradient updating in the
Step 1 in Algorithm 1, it holds that

Projxk+1

{

∇C(xk+1)⊤(λk+1 + ρ(C(xk+1) + yk+1))

+∇A(xk+1)
}

=ĝk+1
x .

Consequently, we obtain

dist
(

Projxk

{

∇C(xk+1)⊤λk+1 +∇A(xk+1)
}

, 0
)

=dist
(

ĝk+1
x −∇C(xk+1)⊤(C(xk+1) + yk+1), 0

)

6‖ĝk+1
x ‖+ BC

ρ
‖λk+1 − λk‖.

6‖ĝk+1
x ‖+ BC(LB + γ)

ρ
‖yk+1 − yk‖+ BCγ

ρ
‖ŷk − ŷk−1‖.

Considering the y-subproblem. such that

λk + β(C(xk+1) + yk+1) + γ(yk+1 − ŷk) + B̃k+1

=λk+1 + γ(yk+1 − ŷk) + B̃k+1 = 0,

where B̃k+1 ∈ ∂B(yk+1). To proceed, we have

dist
(

B̃k+1 + λk+1, 0
)

6 γ‖yk+1 − ŷk‖ =
γ

ψ
‖ŷk+1 − ŷk‖

(13)
We take

Rk+1 ∈









Projxk+1

{

∇A(xk+1) + C(xk+1)⊤λk+1
}

∂B(yk+1) + λk+1

C(xk+1) + yk+1









,

which implies

‖Rk+1‖
6dist

(

Projxk+1

{

∇C(xk+1)⊤λk+1 +∇A(xk+1)
}

, 0
)

+ dist
(

B̃k+1 + λk+1, 0
)

+ ‖C(xk+1) + yk+1‖,

then we have

‖Rk+1‖ 6 ‖ĝk+1
x ‖+ (BC + 1)(LB + γ)

ρ
‖yk+1 − yk‖

+
(BC + 1)γ

ρ
‖ŷk − ŷk−1‖+ γ

ψ
‖ŷk+1 − ŷk‖

6 L(ρ)(‖ĝk+1
x ‖+ ‖yk+1 − yk‖+ ‖ŷk − ŷk−1‖

+ ‖ŷk+1 − ŷk‖).

On the other hand, we consider (12) such that

ζ∗
T
∑

k=1

(‖ĝk+1
x ‖2 + ‖yk+1 − yk‖2 + ‖ŷk+1 − ŷk‖2

+ ‖ŷk − ŷk−1‖2)
62F− 2F.

As a result, there exists an index 1 6 k∗ < T , using the
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fact
∑p

i=1 ‖ai‖ 6
√

p
∑p

i=1 a
2
i , such that

‖ĝk∗+1
x ‖+ ‖yk∗+1 − yk

∗‖+ ‖ŷk∗+1 − ŷk
∗‖+ ‖ŷk∗ − ŷk

∗−1‖

6

√

8(F− F)

ζ∗T
.

Then it holds that

‖Rk∗+1‖ 6 L(ρ)

√

8(F− F)

ζ∗T
6 ǫ.

We can finish this proof by the above discussion. �

4 Numerical experiments

In this section, we examine the numerical perfor-
mance of the proposed iRG-ADMM algorithm and re-
port comparison results with the existing methods on
Sparse Principal Component Analysis (SPCA).

Principal Component Analysis (PCA) is widely
used in data processing and dimensionality reduction.
However, a notable limitation of PCA is that each
principal component is a linear combination of all the
original variables, which can make the interpretation
of the results challenging. To address this issue, incor-
porating sparse structures into PCA and balancing the
sparsity of the solution with the quality of the prin-
cipal component analysis becomes highly significant.
We consider the following Sparse Principal Component
Analysis (SPCA) model:

min − 1

2
Tr(X⊤H⊤HX) + µ‖X‖1

s.t. X ∈ St(n, p),
(14)

which can be formulated as following seperable stucture,

min −1

2
Tr(X⊤H⊤HX) + µ‖Y ‖1

s.t. X = Y, X ∈ St(n, p),
(15)

where Tr(·) denotes the trace of matrix , the l1-norm is
defined as ‖X‖1 =

∑

ij | Xij |. H ∈ R
m×n is a data

matrix, µ > 0 is a regularization parameter and St(n, p)
is a Stiefel manifold.

In this experiment, we introduce a series of popular
algorithms to solve SPCA (14), Which are ManPG-Ada
[18], SOC [32] and MADMM [33], to compare with Al-
gorithm 1. First, we propose the iteration frameworks of
these algorithms.

The ManPG-Ada in [18] for solving (14) has a basic
iterates as follows:



















V k+1 = argmin
V ∈St(n,p)

{〈−H⊤HXk, V 〉+ 1

2t
‖V ‖2

+ µ‖D(Xk + V )‖1},
Xk+1 = Rexk(θV k),

(16)

where θ and t are stepsizes. The authors of [18] suggest to
solve the V -subproblem by using a semi-smooth Newton
method. For SOC [32], we adjust the (14) and makes
the auxiliary variable Y constraints on the St(n, p), the
modified SPCA model is as follows.

min −1

2
Tr(X⊤H⊤HX) + µ‖Y ‖1

s.t. X = Y, Y ∈ St(n, p),
(17)

then the iteration framework of SOC [32] solves the (17)
is given by







































Xk+1 = argmin
X

{−1

2
Tr(X⊤H⊤HX) + µ‖X‖1

+ 〈λk, X − Y k〉+ ρ

2
‖X − Y k‖2F }

Y k+1 = argmin
Y ∈St(n,p)

{〈λk, Xk+1 − Y 〉+ ρ

2
‖Xk+1 − Y ‖2F },

λk+1 = λk + β(Xk+1 − Y k+1).

(18)

To apply Algorithm 1 and MADMM [33], we introduce
the ALF for (15) as follows,

Lρ(X,Y, λ) =− 1

2
Tr(X⊤H⊤HX) + µ‖Y ‖1 − 〈λ,X − Y 〉

+
ρ

2
‖X − Y ‖2F ,

then MADMM [33] for solving the problem (15) has fol-
lowing iteration framework.



















Xk+1 = argmin
X∈St(n,p)

{Lρ(X,Y
k, λk), }

Y k+1 = argmin
Y

{Lρ(X
k+1, Y, λk)},

λk+1 = λk + ρ(Xk+1 − Y k+1).

(19)

Based on the gradient of Lρ(X,Y, λ) with respect to X,
we can present iteration framework of Algorithm 1 as
follows,



















































ĝkx = ProjXk(−H⊤HXk + λk + ρ(Xk − Y k)),

dk = ĝkx + ϕk · (ĝkx − T
xk

xk−1(dk−1)),

Xk+1 = Rexk(−αdk),

Ŷ k = (1− ψ)Ŷ k−1 + ψY k,

Y k+1 = Prox µ
γ+β

,‖‖1
(
−λk + γŶ k

γ + ρ
),

λk+1 = λk + ρ(Xk+1 − Y k+1).

(20)

We now give the setups of this numerical ex-
periment. The data matrix H ∈ R

m×n is generated
randomly whose entries follow the standard Gaus-
sian distribution N (0, 1). We choose µ = 1, n from
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{300, 500, 700, 900}, and p from {50, 100}. In this ex-
periment, We terminate all the algorithms as following
criterion with respect fo value of objective function F
in (14), which means

‖F (Xk+1)− F (Xk)‖
‖F (Xk+1)‖ < 10−10.

Additionally, we use objective values and CPU time
to illustrate the behavior of the algorithms.

For the algorithms used in the experiments, we set
the parameters as follows: In (16), the parameters are set
to their default values, as specified in the corresponding
paper [18]; in (18), we solve the Y -subproblem using the
proximal gradient method with ρ = 50 and step size
η = 0.01; in (19), the X-subproblem is solved using the
Riemannian gradient method with ρ = 100 and step size
η = 0.01; in (20), we set γ = 1, ρ = 20, α = 0.015, and
ψ = 0.618 based on empirical experience.

Now we can conduct the experiments to test the
performance of the algorithms.
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Fig. 1. Comparison of the ManPG-Ada, SOC, MADMM and
iRG-ADMM algorithms.
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Fig. 3. Trends of CPU time under different p with n = 300.

Figure 1 shows that iRG-ADMM achieves smaller
objective function values and significantly shorter
CPU times compared to ManPG-Ada, SOC, and
MADMM. As shown in Figure 2, the computa-
tional time for ManPG-Ada, SOC, and MADMM
increases substantially when p is changed from 50
to 100. To further investigate this phenomenon,
we conduct experiments with n = 300 by varying
p ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. As illustrated
in Figure 3, the computational efficiency of ManPG-
Ada, SOC, and MADMM is highly sensitive to the value
of p under a fixed termination criterion. In contrast,
the CPU time of iRG-ADMM shows minimal variation
with respect to p. This indicates that the computa-
tional efficiency of iRG-ADMM is relatively insensitive
to the value of p, highlighting its potential for scaling
to larger problems. These results suggest that the ex-
tension of classical ADMM to Riemannian manifolds,
as realized in iRG-ADMM, has practical significance,
despite requiring more complex parameter settings.

5 Conclusion

In this paper, we propose an innovative approach
for solving a class of Riemannian manifold optimiza-
tion problems, where the objective functions are com-
posed of both smooth and nonsmooth components. By
exploiting the separable structure of these problems, we
developed an ADMM-based algorithm that integrates
an inertial strategy to improve the convergence of the
smooth subproblems on Riemannian manifolds. For the
nonsmooth components, we employed well-established
algorithms in Euclidean space, ensuring that the over-
all method is both efficient and scalable. We provide a
comprehensive theoretical analysis of the proposed al-
gorithm, proving its ǫ-stationary solution under broad
conditions, which guarantees its effectiveness in a wide
range of optimization scenarios. The theoretical results
validate the robustness of the algorithm, demonstrat-
ing that it can achieve convergence even in challenging
optimization settings with nonsmooth objective compo-
nents. Furthermore, we apply the proposed algorithm to
Sparse Principal Component Analysis (SPCA), a widely
used problem in data processing and dimensionality re-
duction. The numerical results confirmed the superior
performance of our method, showing that it not only
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outperforms existing algorithms in terms of objective
function values but also demonstrates improved compu-
tational efficiency, particularly in large-scale problems.
Our extension of classical ADMM to Riemannian man-
ifolds provides a powerful tool for solving complex opti-
mization problems that involve both smooth and nons-
mooth components. The proposed method is practical,
efficient, and theoretically sound, offering significant po-
tential for applications in a variety of fields, including
machine learning, signal processing, and computational
biology. Future research could focus on several key areas
to enhance the iRG-ADMM algorithm. First, developing
adaptive parameter tuning methods or automatic hyper-
parameter optimization could improve practical deploy-
ment across different problem settings. Extending the al-
gorithm to handle non-convex problems, which are com-
mon in machine learning, would be a valuable next step.
Additionally, parallelizing the algorithm for distributed
optimization could improve its efficiency for large-scale
applications. Exploring its applicability to other types
of manifolds, such as the Stiefel manifold or Grassman-
nian, would broaden its scope.
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[5] Bollhöfer, M., Eftekhari, A.,Scheidegger, S., Schenk,
O.(2019). Large-scale sparse inversecovariance matrix
estimation, SIAM Journal on Scientific Computing , 41,
A380–A401,

[6] Huang, W. and Hand, P. (2017). Blind deconvolution by a
steepest descent algorithm on a Quotient Manifold. SIAM
Journal on Imaging Sciences, 11(4), 2757–2785.

[7] Cherian., A. Sra., S. (2016). Riemannian dictionary learning
and sparse coding for positive definite matrices. IEEE
Transactions on Neural Networks and Learning Systems,
28(12), 2859–2871.

[8] Smith, S.T. (1994). Optimization techniques on Riemannian
manifolds. Fields Institute Communications 3(3), 113–135 .

[9] Ring, W., Wirth, B. (2012). Optimization methods on
Riemannian manifolds and their application to shape space.
SIAM Journal on Optimization, 22(2), 596–627

[10] Tang, C., Tan, W., Xing, S. et al. (2023). A class of spectral
conjugate gradient methods for Riemannian optimization.
Numerical Algorithms, 94, 131–147.

[11] Zhu, X.J., Sato, H. (2020). Riemannian conjugate
gradient methods with inverse retraction. Computational
Optimization and Applications, 77, 779–810.

[12] Absil, P.A., Mahony, R., Sepulchre, R. (2008). Optimization
Algorithms on Matrix Manifolds. Princeton University Press,
Princeton .

[13] Zhao, S., Yan, T., Wang, K. et al. (2023). Adaptive
Trust-Region Method on Riemannian Manifold. Journal of
Scientific Computing, 96, 67.

[14] Huang, W., Gallivan, K., Absil, P. (2015). A Broyden Class of
Quasi-Newton Methods for Riemannian Optimization. SIAM
Journal on Optimization, 25(3),1660–1685.

[15] Ferreira, O., Oliveira, P. (1998). Subgradient algorithm on
Riemannian manifolds. Journal Of Optimization Theory And
Applications, 97(1), 93–104.

[16] Li, X., Chen, S., Deng, Z., Qu, Q., So, A.M.-C. (2021). Weakly
convex optimization over Stiefel manifold using Riemannian
subgradient-type methods. SIAM Journal on Optimization,
31(3), 1605–1634.

[17] Huang, W., Wei, K. (2022). Riemannian proximal gradient
methods. Mathematical Programming, 194, 371–413.

[18] Chen, S., Ma, S., So, A.M.-C., Zhang, T. (2020). Proximal
gradient method for nonsmooth optimization over the Stiefel
manifold. SIAM Journal on Optimization, 30(1), 210–239.

[19] Huang, W., Wei, K. (2023). An inexact Riemannian
proximal gradient method. Computational Optimization and
Applications 85, 1–32.

[20] Wang, Z., Liu, B., Chen, S., Ma, S., Xue, L., Zhao,
H. (2022).A Manifold Proximal Linear Method for
Sparse Spectral Clustering with Application to Single-Cell
RNA Sequencing Data Analysis. INFORMS Journal on
Optimization, 4(2), 200-214.

[21] Chen, S., Deng, Z., Ma, S., So, A.M.-C. (2021).
Manifold proximal point algorithms for dual principal
component pursuit and orthogonal dictionary learning. IEEE
transactions on signal processing, 69, 4759–4773.

[22] Tsakiris, M., Vidal, R. (2018). Dual Principal Component
Pursuit. Journal of Machine Learning Research, 19, 1-49,

[23] Glowinski, R., Marrocco, A. (1975). Sur l’approximation par
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