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Abstract

This paper studies the primal-dual convergence and iteration-complexity of prox-
imal bundle methods for solving nonsmooth problems with convex structures. More
specifically, we develop a family of primal-dual proximal bundle methods for solv-
ing convex nonsmooth composite optimization problems and establish the iteration-
complexity in terms of a primal-dual gap. We also propose a class of proximal bun-
dle methods for solving convex-concave nonsmooth composite saddle-point problems
and establish the iteration-complexity to find an approximate saddle-point. This pa-
per places special emphasis on the primal-dual perspective of the proximal bundle
method. In particular, we discover an interesting duality between the conditional gra-
dient method and the cutting-plane scheme used within the proximal bundle method.
Leveraging this duality, we further develop novel variants of both the conditional gra-
dient method and the cutting-plane scheme.

Key words. convex nonsmooth composite optimization, saddle-point problem,
proximal bundle method, conditional gradient method, iteration-complexity, primal-
dual convergence
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1 Introduction

This paper considers two nonsmooth problems with convex structures: 1) the convex non-
smooth composite optimization (CNCO) problem

ϕ∗ := min{ϕ(x) := f(x) + h(x) : x ∈ Rn}, (1)
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where f, h : Rn → R∪ {+∞} are proper lower semi-continuous convex functions such that
domh ⊂ dom f ; and 2) the convex-concave nonsmooth composite saddle-point problem
(SPP)

min
x∈Rn

max
y∈Rm

{ϕ(x, y) := f(x, y) + h1(x)− h2(y)} , (2)

where f(x, y) is convex in x and concave in y, and h1 : Rn → R ∪ {+∞} and h2 : Rm →
R∪{+∞} are proper lower semi-continuous convex functions such that domh1×domh2 ⊂
dom f . The main goal of this paper is to study the primal-dual convergence and iteration-
complexity of proximal bundle (PB) methods for solving CNCO and SPP.

Classical PB methods, first proposed in [13, 28] and further developed in [14, 20], are
known to be efficient algorithms for solving CNCO problems. At the core of classical PB
methods is the introduction of a proximal regularization term to the standard cutting-plane
method (or Kelly’s method) and a sufficient descent test. Those methods update the prox
center (i.e., perform a serious step) if there is a sufficient descent in the function value;
otherwise, they keep the prox center and refine the cutting-plane model (i.e., perform a null
step). Various bundle management policies (i.e., update schemes on cutting-plane models)
have been discussed in [7, 9, 12, 23, 24, 27]. The textbooks [24, 25] provide a comprehen-
sive discussion of the convergence analysis of classical PB methods for CNCO problems.
Iteration-complexity bounds have been established in [1, 6, 7, 12] for classical PB methods
for solving CNCO problems (1) with h ≡ 0 or being the indicator function of a nonempty
closed convex set. Notably, the first complexity of classical PB methods is given by [12] as
O(ε̄−3) to find a ε̄-solution of (1) (i.e., a point x̄ ∈ domh satisfying ϕ(x̄)− ϕ∗ ≤ ε̄).

Since the lower complexity bound of CNCO is Ω(ε̄−2) (see for example Subsection 7.1
of [16]), it is clear that the bound O(ε̄−3) given by [12] is not optimal. Recent papers [16,17]
establish the optimal complexity bound O(ε̄−2) for a large range of prox stepsizes by
developing modern PB methods, where the sufficient descent test in classical PB methods
is replaced by a different serious/null decision condition motivated by the proximal point
method (PPM) (see Subsection 3.1 of [16] and Subsection 3.2 of [17]). Moreover, [17] studies
the cutting-plane (i.e., multi-cuts) model, the cut-aggregation (i.e., two-cuts) model, and
a newly proposed one-cut model under a generic bundle update scheme, and provides a
unified analysis for all models encompassed within this general update scheme.

This paper investigates the modern PB methods for solving CNCO problems from
the primal-dual perspective. More specifically, it shows that a cycle (consecutive null steps
between two serious steps) of the methods indeed finds an approximate primal-dual solution
to a proximal subproblem, and further establishes the iteration-complexity of the modern
PB methods in terms of a primal-dual gap of (1), which is a stronger convergence guarantee
than the ε̄-solution considered in [16,17]. Furthermore, the paper reveals an interesting dual
relationship between the conditional gradient (CG) method and the cutting-plane scheme
for solving proximal subproblems within PB. Extending upon this duality, the paper also
develops novel variants of both CG and the cutting-plane scheme, drawing inspiration from
both perspectives of the dual relationship.
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An independent study conducted concurrently by [8] examines the same duality under
a more specialized assumption that f is piece-wise linear and h is smooth. Building upon
the duality and using the convergence analysis of CG, [8] is able to improve the general
complexity bound O(ε̄−2) to O(ε̄−4/5) in this context. The duality relationship between the
subgradient method/mirror descent and CG is first studied in [3]. Related works [2,5,19,30]
investigate the duality between Kelly’s method/simplicial method and CG across various
settings, and also examine the primal and dual simplicial methods.

The second half of the paper is devoted to developing modern PB methods for solving
convex-concave nonsmooth composite SPP. While subgradient-type methods have been
extensively studied for solving such SPP, for example, [10, 18, 21, 22, 26, 29], PB methods,
which generalize subgradient methods by better using the history of subgradients, have
received less attention in this context. Inspired by the PPM interpretation of modern PB
methods, this paper proposes a generic inexact proximal point framework (IPPF) to solve
SPP (2), comprising both a composite subgradient method and a PB method as special
instances. The paper finally establishes the iteration-complexity bounds for both methods
to find an approximate saddle-point of (2).

Organization of the paper. Subsection 1.1 presents basic definitions and notation
used throughout the paper. Section 2 describes the primal-dual proximal bundle (PDPB)
method and the assumptions on CNCO, and establishes the iteration-complexity of PDPB
in terms of a primal-dual gap. In addition, Subsection 2.1 presents the key subroutine,
namely a primal-dual cutting-plane (PDCP) scheme, used within PDPB for solving a
proximal subproblem and provides the primal-dual convergence analysis of PDCP. Sec-
tion 3 explores the duality between PDCP and CG by demonstrating that PDCP applied
to the proximal subproblem produces the same iterates as CG applied to the dual prob-
lem. Subsection 3.1 presents an alternative primal-dual convergence analysis of PDCP
using CG duality. Moreover, inspired by the duality, Subsections 3.2 and 3.3 develop
novel PDCP and CG variants, respectively. Section 4 extends PB to solving the convex-
concave nonsmooth composite SPP. More specifically, Subsection 4.1 introduces the IPPF
for SPP and Subsection 4.2 describes the PB method for SPP (PB-SPP) and establishes
its iteration-complexity to find an approximate saddle-point. Section 5 presents some
concluding remarks and possible extensions. Appendix A provides a few useful technical
results and deferred proofs. Appendices B and C are devoted to the complexity analyses
of subgradient methods for solving CNCO (1) and SPP (2), respectively.

1.1 Basic definitions and notation

Let R denote the set of real numbers. Let R++ denote the set of positive real numbers.
Let Rn denote the standard n-dimensional Euclidean space equipped with inner product
and norm denoted by ⟨·, ·⟩ and ∥ · ∥, respectively.

For given f : Rn → (−∞,+∞], let dom f := {x ∈ Rn : f(x) <∞} denote the effective
domain of f . We say f is proper if dom f ̸= ∅. A proper function f : Rn → (−∞,+∞] is
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µ-strongly convex for some µ > 0 if for every x, y ∈ dom f and t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− t(1− t)µ
2

∥x− y∥2.

Let Conv (Rn) denote the set of all proper lower-semicontinuous convex functions. For
ε ≥ 0, the ε-subdifferential of f at x ∈ dom f is denoted by

∂εf(x) := {s ∈ Rn : f(y) ≥ f(x) + ⟨s, y − x⟩ − ε, ∀y ∈ Rn} . (3)

We denote the subdifferential of f at x ∈ dom f by ∂f(x), which is the set ∂0f(x) by
definition. For a given subgradient f ′(x) ∈ ∂f(x), we denote the linearization of convex
function f at x by ℓf (·;x), which is defined as

ℓf (·;x) := f(x) + ⟨f ′(x), · − x⟩. (4)

2 Primal-dual proximal bundle method for CNCO

In this section, we consider the CNCO problem (1). More specifically, we assume the
following conditions hold:

(A1) a subgradient oracle, i.e., a function f ′ : domh → Rn satisfying f ′(x) ∈ ∂f(x) for
every x ∈ domh, is available;

(A2) ∥f ′(x)∥ ≤M for every x ∈ domh and some M > 0;

(A3) the set of optimal solutions X∗ of problem (1) is nonempty.

Define the linearization of f at x ∈ domh, ℓf : domh→ R as

ℓf (·;x) := f(x) + ⟨f ′(x), · − x⟩.

Clearly, it follows from (A2) that for every x, y ∈ domh,

f(x)− ℓf (x; y) ≤ 2M∥x− y∥. (5)

For a given initial point x0 ∈ domh, we denote its distance to X∗ as

d0 := ∥x∗0 − x0∥ , x∗0 := argmin
x∗∈X∗

{∥x∗ − x0∥}. (6)

The primal-dual subgradient method denoted by PDS(x0, λ), where x0 ∈ domh is the
initial point and λ > 0 is the prox stepsize, recursively computes

sk = f ′(xk−1) ∈ ∂f(xk−1), xk = argmin
u∈Rn

{
ℓf (u;xk−1) + h(u) +

1

2λ
∥u− xk−1∥2

}
. (7)

For given tolerance ε̄ > 0, letting λ = ε̄/(16M2), then the iteration-complexity for
PDS(x0, λ) to generate a primal-dual pair such that the primal-dual gap of a constrained
version of (1) is bounded by ε̄ is O(M2d20/ε̄

2) (see Theorem B.2).
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2.1 Primal-dual cutting-plane scheme

The PDPB method solves a sequence of proximal subproblems of the form

min
u∈Rn

{
ϕλ(u) := ϕ(u) +

1

2λ
∥u− xk−1∥2

}
, (8)

where λ is the prox stepsize and xk−1 is the prox center in the k-th proximal subproblem
(or cycle). We omit the index k in ϕλ when it is clear from the context. Each proximal
subproblem invokes the PDCP scheme to find an approximate solution. Hence, PDPB can
be viewed as a generalization of PDS, which only takes one proximal subgradient step (i.e.,
(7)) to solve every proximal subproblem (8). The goal of this subsection is to describe the
key subroutine PDCP for solving (8) and present its primal-dual convergence analysis.

At the j-th iteration (within a cycle of PDPB), given some prox stepsize λ > 0 and
prox center x0, PDCP computes a primal-dual pair (xj , sj) as follows

xj = argmin
u∈Rn

{
Γj(u) + h(u) +

1

2λ
∥u− x0∥2

}
, sj ∈ ∂Γj(xj), (9)

where Γj is a proper, closed and convex function satisfying Γj ≤ f for every j ≥ 1. Starting
from Γ1(·) = ℓf (·;x0), and for every j ≥ 1, Γj+1 is obtained from the following generic
bundle management (GBM), which is motivated by BU given in Subsection 3.1 of [17]. It is
easy to verify that one-cut, two-cuts, and multiple-cuts schemes (i.e., (E1)-(E3)) described
in Subsection 3.1 of [17] all satisfy GBM.

Algorithm 1 Generic Bundle Management, GBM(λ, τj , x0, xj ,Γj)

Initialize: (λ, τj) ∈ R++× [0, 1], (x0, xj) ∈ Rn×Rn, and Γj ∈ Conv (Rn) satisfying Γj ≤ f
• find a bundle model Γj+1 ∈ Conv (Rn) satisfying Γj ≤ f and

Γj+1(·) ≥ τjΓ̄j(·) + (1− τj)ℓf (·;xj), (10)

where Γ̄j ∈ Conv (Rn) satisfies Γ̄j ≤ f and

Γ̄j(xj) = Γj(xj), xj = argmin
u∈Rn

{
Γ̄j(u) + h(u) +

1

2λ
∥u− x0∥2

}
. (11)

Output: Γj+1.

PDCP computes an auxiliary sequence {x̃j} to determine termination. It sets x̃1 = x1,
and for j ≥ 1, it chooses x̃j+1 such that

ϕλ(x̃j+1) ≤ τjϕλ(x̃j) + (1− τj)ϕλ(xj+1) (12)
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where ϕλ is as in (8). PDCP also computes

mj = min
u∈Rn

{
Γj(u) + h(u) +

1

2λ
∥u− x0∥2

}
, tj = ϕλ (x̃j)−mj . (13)

For given tolerance ε > 0, PDCP terminates the current cycle when tj ≤ ε.
PDCP is formally stated below.

Algorithm 2 Primal-Dual Cutting-Plane, PDCP(x0, λ, ε)

Initialize: given x0 ∈ domh, λ > 0, ε > 0, set t0 = 2ε, Γ1(·) = ℓf (·;x0), and j = 1;
while tj−1 > ε do

1. compute (xj , sj) by (9), choose x̃j as in (12), and set tj as in (13);
2. select τj ∈ [0, 1] and update Γj+1 by GBM(λ, τj , x0, xj ,Γj) and j ← j + 1;

end while
Output: (xj−1, x̃j−1, sj−1).

The auxiliary iterate x̃j vaguely given in (12) can be explicitly computed by either of
the following two formulas:

x̃j+1 = τj x̃j + (1− τj)xj+1, ∀j ≥ 1,

and
x̃j ∈ Argmin {ϕλ(u) : u ∈ {x1, . . . , xj}}, ∀j ≥ 1.

Clearly, {x̃j} obtained from the second formula above satisfies (12) with any τj ∈ [0, 1].
The following result proves that tj is an upper bound on the primal-dual gap for (8)

and hence shows that (x̃j , sj) an approximate primal-dual solution pair for (8).

Lemma 2.1. Define hλ(·) := h(·) + ∥ · −x0∥2/(2λ). Then, we have for every j ≥ 1,

ϕλ (x̃j) + f∗(sj) + (hλ)∗(−sj) ≤ tj . (14)

Proof: It follows from (9) that sj ∈ ∂Γj(xj) and −sj ∈ ∂hλ(xj). Using Theorem 4.20
of [4], we have

Γ∗
j (sj) = −Γj(xj) + ⟨sj , xj⟩, (hλ)∗(−sj) = −hλ(xj)− ⟨sj , xj⟩.

Combining the above identities and using the definition of mj in (13), we have

−mj = Γ∗
j (sj) + (hλ)∗(−sj).

It clearly from Γj ≤ f that Γ∗
j ≥ f∗. This observation and the above inequality imply that

ϕλ (x̃j) + f∗(sj) + (hλ)∗(−sj) ≤ ϕλ(x̃j)−mj .
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Hence, (14) immediately follows from the definition of tj in (13). Finally, we note that
−f∗(s)− (hλ)∗(−s) is the Lagrange dual function of ϕλ(x) in (8). Therefore, the left-hand
side of (14) is the primal-dual gap for (8).

With regard to Lemma 2.1, it suffices to show the convergence of tj to develop the
primal-dual convergence analysis of PDCP. We begin this analysis by providing some basic
properties of GBM. The following lemma is adapted from Lemma 4.4 of [17], and hence
we omit the proof.

Lemma 2.2. For every j ≥ 1, there exists Γ̄j ∈ Conv (Rn) such that for every u ∈ Rn,

Γ̄j(u) + hλ(u) ≥ mj +
1

2λ
∥u− xj∥2. (15)

Following Lemma 2.2, we are able to present the convergence rate of tj under the
assumption that τj = j/(j + 2) for every j ≥ 1. The following proposition resembles
Lemma 4.6 in [17].

Proposition 2.3. Considering Algorithm 2 with τj = j/(j + 2), then for every j ≥ 1, we
have

tj ≤
2t1

j(j + 1)
+

16λM2

j + 1
, (16)

where tj is as in (13). Moreover, the number of iterations for PDCP to obtain tj ≤ ε is at
most

O
(√

t1√
ε
+
λM2

ε
+ 1

)
.

Proof: We first note that for every j ≥ 1, τj = Aj/Aj+1 where Aj+1 = Aj + j + 1 and
A0 = 0, i.e., Aj = j(j+1)/2 for every j ≥ 0. It follows from this observation, the definition
of mj in (13), and relation (10) that

Aj+1mj+1
(13)
= Aj+1(Γj+1 + hλ)(xj+1)

(10)

≥ Aj

[
(Γ̄j + hλ)(xj+1)

]
+ (j + 1)

[
ℓf (xj+1;xj) + hλ(xj+1)

]
.

Using Lemma 2.2(a) and (5), we have

Aj+1mj+1

(15)

≥ Aj

[
mj +

1

2λ
∥xj+1 − xj∥2

]
+ (j + 1)

[
ℓf (xj+1;xj) + hλ(xj+1)

]
= Ajmj + (j + 1)

[
ℓf (xj+1;xj) + hλ(xj+1) +

Aj

2λ(j + 1)
∥xj+1 − xj∥2

]
(5)

≥ Ajmj + (j + 1)

[
ϕλ(xj+1)− 2M∥xj+1 − xj∥+

Aj

2λ(j + 1)
∥xj+1 − xj∥2

]
≥ Ajmj + (j + 1)ϕλ(xj+1)−

2λM2(j + 1)2

Aj
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where the last inequality is due to the Young’s inequality a2 + b2 ≥ 2ab. It follows from
the fact that Aj = j(j + 1)/2 that for every j ≥ 1,

Aj+1mj+1 ≥ Ajmj + (j + 1)ϕλ(xj+1)− 8λM2.

Summing the above inequality from j = 1 to j − 1, and using the definition of tj in (13)
and the fact that x̃1 = x1, we obtain

Ajmj ≥ A1m1 + 2ϕλ(x2) + · · ·+ jϕλ(xj)− 8λM2(j − 1)

(13)
= −A1t1 +A1ϕ

λ(x1) + 2ϕλ(x2) + · · ·+ jϕλ(xj)− 8λM2(j − 1)

(12)

≥ −A1t1 +Ajϕ
λ(x̃j)− 8λM2(j − 1),

where the last inequality follows from (12) and the fact that Aj = Aj−1 + j. Rearranging
the terms and using the definition of tj in (13) again, we have

Ajtj ≤ A1t1 + 8λM2(j − 1). (17)

Hence, (16) follows from the fact that Aj = j(j + 1)/2. Finally, the complexity bound
immediately follows from (16).

2.2 Primal-dual proximal bundle method

Recall the definitions of d0 and x∗0 in (6). Since x∗0 ∈ B(x0, 6d0), which is the ball centered
at x0 and with radius 4d0, it is easy to see that to solve (1), it suffices to solve

min
{
ϕ̂(x) := f(x) + ĥ(x) : x ∈ Rn

}
= min {ϕ(x) : x ∈ Q} , (18)

where ĥ = h+ IQ and IQ is the indicator function of Q = B(x0, 6d0).
In what follows, we present the PDPB and establish the complexity for obtaining a

primal-dual solution pair of (18). The PDPB is formally stated below.

Algorithm 3 Primal-Dual Proximal Bundle, PDPB(x0, λ, ε̄)

Initialize: given (x0, λ, ε̄) ∈ domh× R++ × R++

for k = 1, 2, · · · do
• call oracle (xk, x̃k, sk) = PDCP(xk−1, λ, ε̄) and compute

x̄k =
1

k

k∑
i=1

x̃i, s̄k =
1

k

k∑
i=1

si. (19)

end for
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In the k-th iteration of PDPB, we are approximately solving the proximal subproblem

min
u∈Rn

{
ϕλ(u) := ϕ(u) +

1

2λ
∥u− xk−1∥2

}
. (20)

Here we abuse the notation ϕλ (also see (8)), while it should be clear from the context. Re-
call from Subsection 2.1 that (20) is approximately solved by invoking PDCP. The (global)
iteration indices in PDCP are regarded as the k-th cycle, denoted by Ck = {ik, . . . , jk},
where jk is the last iteration index of the k-th call to PDCP, j0 = 0, and ik = jk−1 + 1.
Hence, for the jk-th iteration of PDCP, we have

xk = xjk , x̃k = x̃jk , sk = sjk , Γk = Γjk , mk = mjk , (21)

and (9) becomes

xk = argmin
u∈Rn

{
Γk(u) + h(u) +

1

2λ
∥u− xk−1∥2

}
, sk ∈ ∂Γk(xk). (22)

The following lemma provides basic properties of PDPB and is the starting point of
the the complexity analysis of PDPB.

Lemma 2.4. The following statements hold for every k ≥ 1:

(a) Γk ≤ f and f∗ ≤ Γ∗
k;

(b) sk ∈ ∂Γk(xk) and gk ∈ ∂h(xk) where gk = −sk + (xk−1 − xk)/λ;

(c) ϕλ(x̃k) ≤ ε̄+mk = ε̄+ (Γk + h)(xk) + ∥xk − xk−1∥2/(2λ).

Proof: (a) It follows from the facts that Γj ≤ f for every j ≥ 1 and Γk = Γjk that the first
inequality holds. The second one immediately follows from the first one and the definition
of the conjugate function.

(b) This statement follows from (22) and the definitions in (21).
(c) This statement follows from the termination criterion of the k-th cycle, that is,

tjk ≤ ε̄, and the definitions in (13) and (21).
The following proposition is a key component of our complexity analysis, as it estab-

lishes an important primal-dual gap for (1).

Proposition 2.5. For every k ≥ 1, we have

ϕ(x̄k) + f∗(s̄k) + ĥ∗(−s̄k) ≤ ε̄+
18d20
λk

. (23)

where x̄k and s̄k are as in (19).
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Proof: It follows from Lemma 2.4(b) and Theorem 4.20 of [4] that for every k ≥ 1,

Γk(xk) + Γ∗
k(sk) = ⟨xk, sk⟩, h(xk) + h∗(gk) = ⟨xk, gk⟩.

Summing the above two equations yields

(Γk + h)(xk) + Γ∗
k(sk) + h∗(gk) =

1

λ
⟨xk, xk−1 − xk⟩. (24)

Using the above identity and Lemma 2.4(a) and (c), we have for every k ≥ 1,

ϕ(x̃k) + f∗(sk) + h∗(gk) ≤ ϕ(x̃k) + Γ∗
k(sk) + h∗(gk)

≤ε̄+ (Γk + h)(xk) +
1

2λ
∥xk − xk−1∥2 + Γ∗

k(sk) + h∗(gk)

(24)
= ε̄+

1

2λ
(∥xk−1∥2 − ∥xk∥2).

Summing the above inequality from k = 1 to k, and using convexity and the definitions in
(19), we obtain

ϕ(x̄k) + f∗(s̄k) + h∗(ḡk) ≤ ε̄+
1

2λk

(
∥x0∥2 − ∥xk∥2

)
, (25)

where ḡk = (
∑k

i=1 gi)/k. Define

ηk(u) =
1

2λk
∥u− x0∥2, η̂k(u) = ηk(u)− IQ(u). (26)

Noting that ∇ηk(xk) = (xk−x0)/(λk) = −ḡk− s̄k, and hence it follows from Theorem 4.20
of [4] that

η∗k(−ḡk − s̄k) =
1

λk
⟨xk − x0, xk⟩ − ηk(xk) =

1

2λk

(
∥xk∥2 − ∥x0∥2

)
.

The above observation and (25) together imply that

ϕ(x̄k) + f∗(s̄k) + h∗(ḡk) + η∗k(−ḡk − s̄k) ≤ ε̄. (27)

It follows from Theorem 4.17 of [4] that

(h+ ηk)
∗(−s̄k) = (h∗□η∗k)(−s̄k) = min

u∈Rn
{h∗(u) + η∗k(−s̄k − u)} ≤ h∗(ḡk) + η∗k(−ḡk − s̄k).

Noting from (26) that ĥ = h+ ηk − η̂k and applying Theorem 4.17 of [4] again, we obtain

ĥ∗(−s̄k) = [(h+ ηk)
∗□(−η̂k)∗](−s̄k) = min

u∈Rn
{(h+ ηk)

∗(u) + (−η̂k)∗(−s̄k − u)}

≤ (h+ ηk)
∗(−s̄k) + (−η̂k)∗(0).
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Summing the above two inequalities, we have

ĥ∗(−s̄k) ≤ h∗(ḡk) + η∗k(−ḡk − s̄k) + (−η̂k)∗(0),

which together with (27) implies that

ϕ(x̄k) + f∗(s̄k) + ĥ∗(−s̄k) ≤ ε̄+ (−η̂k)∗(0).

It follows from (26) that

(−η̂k)∗(0) = max
u∈Rn

{
⟨0, u⟩ −

(
−∥u− x0∥

2

2λk
+ IQ(u)

)}
=

maxu∈Q ∥u− x0∥2

2λk
=

18d20
λk

,

where the last identity follows from the fact that Q = B(x0, 6d0). Therefore, (23) holds in
view of the above two relations.

The next lemma is a technical result showing that xk ∈ Q and x̃k ∈ Q under mild
conditions, where Q = B(x0, 6d0).

Lemma 2.6. Given (x0, ε̄) ∈ Rn×R++, if λ ≤ 2d20/ε̄ and k ≤ 2d20/(λε̄), then the sequences
{xk} and {x̃k} generated by PDPB(x0, λ, ε̄) satisfy

xk ∈ Q, x̃k ∈ Q. (28)

Proof: Noticing that the objective function in (22) is λ−1-strongly convex, it thus follows
from Theorem 5.25(b) of [4] that for every u ∈ domh,

mk +
1

2λ
∥u− xk∥2 ≤ Γk(u) + h(u) +

1

2λ
∥u− xk−1∥2 ≤ ϕ(u) +

1

2λ
∥u− xk−1∥2, (29)

where the second inequality follows from the first one in Lemma 2.4(a). Taking u = x∗0 in
(29), we have

mk +
1

2λ
∥xk − x∗0∥2 ≤ ϕ∗ +

1

2λ
∥xk−1 − x∗0∥2.

This inequality and Lemma 2.4(c) then imply that

1

2λ
∥xk − x∗0∥2 ≤ ϕ(x̃k)− ϕ∗ +

1

2λ
∥xk − x∗0∥2

≤ ϕ(x̃k)−mk +
1

2λ
∥xk−1 − x∗0∥2 ≤ ε̄+

1

2λ
∥xk−1 − x∗0∥2.

Summing the above inequality from k = 1 to k, we have

∥xk − x∗0∥2 ≤ ∥x0 − x∗0∥2 + 2kλε̄.

Using the fact that
√
a+ b ≤

√
a+
√
b for a, b ≥ 0 and the assumption that k ≤ 2d20/(λε̄),

we further obtain
∥xk − x∗0∥ ≤ d0 +

√
2kλε̄ ≤ 3d0. (30)
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Taking u = x̃k in (29) and using Lemma 2.4(c), we have

1

2λ
∥x̃k − xk∥2 ≤ ϕ(x̃k) +

1

2λ
∥x̃k − xk−1∥2 −mk ≤ ε̄.

Under the assumption that λ ≤ 2d20/ε̄, using (30), the above inequality, and the triangle
inequality, we have

∥xk − x0∥ ≤ ∥xk − x∗0∥+ ∥x∗0 − x0∥
(30)

≤ 4d0,

∥x̃k − x0∥ ≤ ∥xk − x0∥+ ∥x̃k − xk∥ ≤ 4d0 +
√
2λε̄ ≤ 6d0.

Hence, (28) follows immediately.
Now we are ready to present the number of oracle calls to PDCP in PDPB (i.e., Algo-

rithm 3).

Proposition 2.7. Given (x0, ε̄) ∈ Rn × R++, if λ ≤ 2d20/ε̄, then the number of iterations
for PDPB(x0, λ, ε̄) to generate (x̄k, s̄k) satisfying

ϕ̂(x̄k) + f∗(s̄k) + ĥ∗(−s̄k) ≤ 10ε̄ (31)

is at most 2d20/(λε̄).

Proof: Since Q is a convex set, it follows from the definition of x̄k in (19) and Lemma 2.6
that x̄k ∈ Q for every k ≤ 2d20/(λε̄). This observation and the fact that ĥ = h+ IQ imply

that ĥ(x̄k) = h(x̄k). Hence, using Proposition 2.5, we have for every k ≤ 2d20/(λε̄),

ϕ̂(x̄k) + f∗(s̄k) + ĥ∗(−s̄k) ≤ ε̄+
18d20
λk

.

Therefore, the conclusion of the proposition follows immediately.
The following lemma is a technical result providing a universal bound on the first gap

tik for each cycle Ck.

Lemma 2.8. For k ≤ 2d20/(λε̄), we have

tik ≤ t̄ := 4M(3d0 + λM), (32)

where ik is the first iteration index in the cycle Ck.

Proof: Using (5), definitions of mj and tj in (13), and the facts that x̃ik = xik and
Γik = ℓf (·;xk−1), we have

tik
(13)
= ϕλ (x̃ik)−mik = ϕλ(xik)−mik

(13)
= f(xik)− ℓf (xik ;xk−1)

(5)

≤ 2M ∥xik − xk−1∥ . (33)
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In view of (9) and the fact that Γik = ℓf (·;xk−1), we know the first iteration of PDCP
is the same as PDS(x0, λ) (see (7)). Hence, following an argument similar to the proof of
Lemma B.1, we can prove for every u ∈ domh,

ϕ(xik)− ℓf (u;xk−1)− h(u)
(101)

≤ 2λM2 +
1

2λ
∥u− xk−1∥2 −

1

2λ
∥u− xik∥

2 .

It follows from the above inequality with u = x∗0 and the convexity of f that

0 ≤ ϕ(xik)− ϕ∗ ≤ ϕ(xik)− ℓf (x
∗
0;xk−1)− h(x∗0)

≤ 2λM2 +
1

2λ
∥x∗0 − xk−1∥2 −

1

2λ
∥x∗0 − xik∥

2 .

Rearranging the terms and using the inequality
√
a+ b ≤

√
a +
√
b for any a, b ≥ 0, we

have
∥x∗0 − xik∥ ≤ ∥x

∗
0 − xk−1∥+ 2λM.

This inequality and the triangle inequality then imply that

∥xik − xk−1∥ ≤ ∥xik − x
∗
0∥+ ∥x∗0 − xk−1∥ ≤ 2∥xk−1 − x∗0∥+ 2λM.

Recall from the proof of Lemma 2.6 that (30) gives ∥xk − x∗0∥ ≤ 3d0 for k ≤ 2d20/(λε̄).
Hence, we have

∥xik − xk−1∥ ≤ 2(3d0 + λM).

Therefore, (32) follows from (33) and the above inequality.
Finally, we are ready to establish the total iteration-complexity of PDPB.

Theorem 2.1. Given (x0, ε̄) ∈ Rn × R++, assuming that λ satisfies
√
ε̄d0

M3/2
≤ λ ≤ 2d20

ε̄
, (34)

then the total iteration-complexity of PDPB(x0, λ, ε̄) to find (x̄k, s̄k) satisfying (31) is

O
(
M2d20
ε̄

+ 1

)
. (35)

Proof: In view of Proposition 2.7, PDPB takes

O
(
d20
λε̄

+ 1

)
(36)

cycles to find (x̄k, s̄k) satisfying (31). It follows from Proposition 2.3 and Lemma 2.8 that
for every cycle in PDPB before termination, the number of iterations in the cycle is

O
(√

Md0 + λM2

√
ε̄

+
λM2

ε̄
+ 1

)
= O

(√
Md0√
ε̄

+
λM2

ε̄
+ 1

)
,
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which together with the assumption that
√
ε̄d0/M

3/2 ≤ λ becomes

O
(
λM2

ε̄
+ 1

)
. (37)

Combining (36) and (37), and using (34), we conclude that (35) holds.

3 Duality between PDCP and CG

The dual problem of the proximal subproblem (8) can be written as

min
z∈Rn

{
ψ(z) := (hλ)∗(−z) + f∗(z)

}
, (38)

where −ψ is the dual function of ϕλ and hλ is as in Lemma 2.1. Since hλ is λ−1-strongly
convex, (hλ)∗ is λ-smooth and one possible algorithm to solve (38) is the CG method.

We describe CG for solving (38) below.

Algorithm 4 Conditional Gradient for (38), CG(z1)

Initialize: given z1 ∈ dom f∗

for j = 1, 2, · · · do
z̄j = argmin

z∈Rn

{
⟨−∇(hλ)∗(−zj), z⟩+ f∗(z)

}
, (39)

zj+1 = τjzj + (1− τj)z̄j . (40)

end for

Motivated by the duality between the mirror descent/subgradient method and CG
studied in [3], we prove the nice connection between CG (i.e., Algorithm 4) and PDCP
(i.e., Algorithm 2) via duality. More specifically, we consider a specific implementation of
GBM within PDCP, that is Γj is updated as

Γj+1(·) = τjΓj(·) + (1− τj)ℓf (·;xj). (41)

Since Γ1(·) = ℓf (·;x0), Γj is always affine and sj = ∇Γj in view of (9).
The following result reveals the duality between PDCP with update scheme (41) and

CG. Since the tolerance ε̄ is not important in the discussion below, we will ignore it as
input to PDCP. Assuming λ in both PDCP and CG are the same, we only focus on the
initial points of the two methods. Hence, we denote them by PDCP(x0) and CG(z1).

Theorem 3.1. Given x0 ∈ Rn, z1 = f ′(x0), and the sequence {τj}, then PDCP(x0)
with update scheme (41) for solving (8) and CG(z1) for solving (38) have the following
correspondence for every j ≥ 1,

sj = zj , xj = ∇(hλ)∗(−zj), f ′(xj) = z̄j . (42)
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Proof: We first show that the first relation in (42) implies the other two in (42). Using
the definition of xj in (9), the fact that sj = ∇Γj , and the first relation in (42), we have
xj from PDCP is equivalent to

xj
(9)
= argmin

x∈Rn
{⟨sj , x⟩+ hλ(x)} (42)

= argmax
x∈Rn

{⟨−zj , x⟩ − hλ(x)},

which implies that the second relation in (42) holds. The last one in (42) similarly follows
from the second relation and (39).

We next prove the first relation in (42) by induction. For the case j = 1, it is easy to
see from Γ1(·) = ℓf (·;x0) that

s1 = ∇Γ1 = f ′(x0) = z1.

Assume that the first relation in (42) holds for some j ≥ 1. By the argument above,
we know that the second and third relations in (42) also hold for j. Using the fact that
sj = ∇Γj , the definition of Γj+1 in (41), and the last two relations in (42), we obtain

sj+1 = ∇Γj+1
(41)
= τj∇Γj + (1− τj)f ′(xj)

(42)
= τjsj + (1− τj)z̄j

(42)
= τjzj + (1− τj)z̄j

(40)
= zj+1,

where the last identity is due to (40). Hence, the first relation in (42) also holds for the
case j + 1. We thus complete the proof.

3.1 Alternative primal-dual convergence analysis of PDCP

Theorem 3.1 demonstrates that PDCP and CG represent primal and dual perspectives
for solving the equivalent problems (8) and (38), respectively. Recall that Proposition 2.3
establishes the primal-dual convergence rate of PDCP for solving (8), and hence it is worth
studying the primal-dual convergence of CG for solving (38) as well. Thanks to the duality
connection illustrated by Theorem 3.1, the convergence analysis of CG also serves as an
alternative approach to study PDCP from the dual perspective.

Recall from (13.4) of [4] that the Wolfe gap S : Rn → R for problem (38) is defined by

S(w) = max
z∈Rn

{
−⟨∇(hλ)∗(−w), w − z⟩+ f∗(w)− f∗(z)

}
. (43)

In the following lemma, we show that S(zj) is a primal-dual gap for (38). This result is an
analog of Lemma 2.1, which also shows that tj is a primal-dual gap for (8).

Lemma 3.1. Suppose that the assumptions in Theorem 3.1 hold, then for every j ≥ 1, we
have

S(zj) = ϕλ(xj) + ψ(zj). (44)
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Proof: Since the assumptions in Theorem 3.1 hold, it follows from Theorem 3.1 that (42)
holds for every j ≥ 1. Using the second relation in (42) and the definition of S(w) in (43),
we have

S(zj)
(43)
= max

z∈Rn

{
−⟨∇(hλ)∗(−zj), zj − z⟩+ f∗(zj)− f∗(z)

}
(42)
= f∗(zj)− ⟨xj , zj⟩+ max

z∈Rn
{⟨xj , z⟩ − f∗(z)}

= f∗(zj) + ⟨xj ,−zj⟩+ f(xj)

(42)
= f∗(zj) + (hλ)∗(−zj) + hλ(xj) + f(xj),

where we use the second relation in (42) again in the last identity. Finally, (44) immediately
follows from the definitions of ϕλ and ψ in (8) and (38), respectively.

Recalling from Lemma 2.1 and using the first relation in (42) and the definition of ψ
in (38), we know

tj ≥ ϕλ (x̃j) + ψ(zj), (45)

i.e., tj an upper bound on a primal-dual gap for (38). On the other hand, Lemma 3.1
shows that S(zj) is a primal-dual gap for (38). We also note that the primal iterate used
in S(zj) is xj , while the one used in tj is x̃j .

The following lemma gives a basic inequality used in the analysis of CG, which is
adapted from Lemma 13.7 of [4]. For completeness, we present Lemma 13.7 of [4] as
Lemma A.1 in Appendix A.

Lemma 3.2. For every j ≥ 1 and τj ∈ [0, 1], the iterates zj and z̄j generated by Algorithm 4
satisfy

ψ(zj+1) ≤ ψ(zj)− (1− τj)S(zj) +
(1− τj)2λ

2
∥z̄j − zj∥2. (46)

Proof: It is easy to see that (38) as an instance of (95) with

F = ψ, f = (hλ)∗, g = f∗, Lf = λ.

Therefore, (46) immediately follows from (96) with

x = zj , t = 1− τj , p(x) = z̄j , x+ t(p(x)− x) = zj+1.

Define

uj =

{
x1, if j = 1;

τj−1uj−1 + (1− τj−1)xj−1, otherwise.
(47)

We are now ready to prove the primal-dual convergence of CG in terms of gap ϕλ(uj) +
ψ(zj) in the following theorem, which resembles Proposition 2.3 for PDCP. An implicit
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assumption is that we are solving (38) as the dual to the proximal subproblem (8) within
PDPB. Consequently, the iteration count k in PDPB satisfies k ≤ 2d20/(λε̄), in accordance
with the assumption in Lemma 2.8.

Theorem 3.2. Suppose that the assumptions in Theorem 3.1 hold, and τj = j/(j + 2),
then for every j ≥ 1,

ϕλ(uj) + ψ(zj) ≤
8M(3d0 + λM)

j(j + 1)
+

8λM2

j + 1
. (48)

Proof: Using Lemma 3.1, the convexity of ϕλ, and definition of uj in (47), we have for
every j ≥ 1,

−(1− τj)S(zj)
(44)
= −(1− τj)ϕλ(xj)− (1− τj)ψ(zj)
(47)

≤ −ϕλ(uj+1) + τjϕ
λ(uj)− (1− τj)ψ(zj).

This inequality and Lemma 3.2 imply that

ϕλ(uj+1) + ψ(zj+1)
(46)

≤ τj [ϕ
λ(uj) + ψ(zj)] + 2(1− τj)2λM2,

where we also use the facts that ∥z̄j∥ ≤M and ∥zj∥ ≤M due to (A2) and z̄j , zj ∈ dom f∗.
Note that for every j ≥ 1, τj = Aj/Aj+1 where Aj+1 = Aj + j + 1 and A0 = 0, i.e.,
Aj = j(j + 1)/2 for every j ≥ 0. It thus follows from the above inequality that

Aj+1[ϕ
λ(uj+1) + ψ(zj+1)] ≤ Aj [ϕ

λ(uj) + ψ(zj)] + 4λM2

Summing the above inequality from j = 1 to j and using the fact that A1 = 1, we have

Aj [ϕ
λ(uj) + ψ(zj)] ≤ ϕλ(u1) + ψ(z1) + 4λM2j.

In view of (47), it is easy to see that u1 = x1 = x̃1, which together with Lemma 2.8 and
(45) yields that

ϕλ(u1) + ψ(z1) = ϕλ(x̃1) + ψ(z1)
(45)

≤ t1
(32)

≤ 4M(3d0 + λM).

Therefore, (48) immediately follows from the above two inequalities and the fact that
Aj = j(j + 1)/2.

The results in this subsection justify the implementation of proximal subproblem (8)
using CG from the dual point of view. In other words, PDPB can be also understood as
the inexact PPM with CG as a subroutine.
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3.2 GBM implementations inspired by CG

The discussion in this section so far is based on a particular implementation of GBM
within PDCP, i.e., the one-cut scheme (41) with τj = j/(j + 2) for every j ≥ 1. Note
that τj = j/(j + 2) is also a standard choice in CG but not the only option. Inspired by
alternative choices of τj used in CG (e.g., Section 13.2.3 of [4]), we also consider

αj = max

{
0, 1− S(zj)

λ∥zj − z̄j∥2

}
(49)

and
βj ∈ Argmin {ψ(βzj + (1− β)z̄j) : β ∈ [0, 1]} (50)

in this subsection and establish convergence rates of CG as in Theorem 3.2 but with αj

and βj . As a consequence of the duality result (i.e., Theorem 3.1), this means that the
one-cut scheme (41) can use also τj different from j/(j + 2). It is worth noting that these
new choices of τj and their corresponding convergence proofs are only made possible by
the duality connection discovered in this section.

The following theorem is a counterpart of Theorem 3.2 in the case of choosing τj of
CG as in (49) or (50). An implicit assumption is that we are solving (38) as the dual to
the proximal subproblem (8) within PDPB. Consequently, the iteration count k in PDPB
satisfies k ≤ 2d20/(λε̄), in accordance with the assumption in Lemma 2.8.

Theorem 3.3. Consider Algorithm 4 with τj as in (49) or (50), then for every j ≥ 1,
(48) holds where uj is as in (47) with τj = j/(j+2) and zj is as in (40) with τj as in (49)
or (50) correspondingly.

Proof: First, it follows from Lemma 3.2 and the definition of zj+1 in (40) that for any
τj ∈ [0, 1],

ψ(τjzj + (1− τj)z̄j)
(46)

≤ ψ(zj)− (1− τj)S(zj) +
(1− τj)2λ

2
∥z̄j − zj∥2. (51)

Claim: In either case of Algorithm 4 with τj as in (49) or (50), we have for any τj ∈ [0, 1],

ψ(zj+1) ≤ ψ(zj)− (1− τj)S(zj) +
(1− τj)2λ

2
∥z̄j − zj∥2. (52)

In the case of αj in (49), it is easy to see from (40) that zj+1 = αjzj + (1 − αj)z̄j , which
together with (51) with τj = αj implies that

ψ(zj+1) ≤ ψ(zj)− (1− αj)S(zj) +
(1− αj)

2λ

2
∥z̄j − zj∥2. (53)

Noting from (49) that

1− αj = min

{
1,

S(zj)

λ∥zj − z̄j∥2

}
,
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which minimizes the right-hand side of (52) as a quadratic function of 1 − τj over the
interval [0,1]. Hence, (53) immediately implies that (52) holds for any τj ∈ [0, 1]. In the
case of βj in (50), it is clear that for any τj ∈ [0, 1],

ψ(zj+1)
(40)
= ψ(βjzj + (1− βj)z̄j)

(50)

≤ ψ(τjzj + (1− τj)z̄j).

Hence, (52) immediately follows from this observation and (51). We have thus proved the
claim. Except for zj+1 in (52) is computed as in (40) with τj replaced by αj or βj , the claim
is the same as Lemma 3.2. Finally, the conclusion of the theorem holds as a consequence
of Theorem 3.2.

3.3 New variants of CG inspired by GBM implementations

Motivated by possible τj ’s used in CG, we develop in Subsection 3.2 new implementations
of GBM, i.e., the one-cut scheme (41) with αj and βj in (49) and (50), respectively. In this
subsection, we further exploit the duality between PDCP and CG from the other direction
by developing novel CG variants with inspiration from other GBM implementations used
in PDCP.

Apart from the one-cut scheme (41), Subsection 3.1 of [17] also provides two other
candidates for GBM, i.e., two-cuts and multiple-cuts schemes, which are standard cut-
aggregation and cutting-plane models, respectively.

To begin with, we first briefly review the two-cuts scheme. It starts from Γ1(·) =
Γ̄0(·) = ℓf (·;x0). For j ≥ 1, given

Γj(·) = max{Γ̄j−1(·), ℓf (·;xj−1)} (54)

where Γ̄j−1 is an affine function, the two-cuts scheme recursively updates Γj+1 as in (54),
i.e., Γj+1(·) = max

{
Γ̄j(·), ℓf (·;xj)

}
, which always maintains two cuts. The auxiliary bun-

dle model Γ̄j is updated as

Γ̄j(·) = θj−1Γ̄j−1(·) + (1− θj−1)ℓf (·;xj−1), (55)

where θj−1 is the Lagrange multiplier associated with the first constraint in the problem
below

min
(u,r)∈Rn×R

{
r + hλ(u) : Γ̄j−1(u) ≤ r, ℓf (u, xj−1) ≤ r

}
. (56)

Proposition D.1 in [17] shows that the above two-cuts scheme satisfies GBM.
Recall the previous options of τj in CG (see (40)), i.e., j/(j+2), (49), and (50), are all

determined once we know zj and z̄j . One natural way to generalize CG is to leave τj and,
consequently, zj+1 undetermined, deferring their computation to the subsequent iteration.
Therefore, (39) and (40) are insufficient to determine τj and zj+1, and more conditions are
needed. For instance, motivated by the two-cuts scheme above, we additionally require

xj = ∇(hλ)∗(−zj), θj−1Γ̄j−1(xj) + (1− θj−1)ℓf (xj ;xj−1) = Γj(xj), (57)
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where zj = θj−1zj−1+(1−θj−1)z̄j−1 following from (40). Note that (56) is equivalent to (9)
with Γj as in (54), and hence the optimal solution to (56) is (xj ,Γj(xj)). As a result, with
the understanding that zj = ∇Γ̄j and z̄j = f ′(xj), the first identity in (57) corresponds
to the optimality of (56), and the second one in (57) corresponds to the complementary
slackness of (56). Moreover, it follows from (58) that ∂Γj is the convex hull of ∇Γ̄j−1 and
f ′(xj−1), and hence that

zj = ∇Γ̄j = θj−1∇Γ̄j−1 + (1− θj−1)f
′(xj−1) ∈ ∂Γj(xj).

The discussion above verifies that Theorem 3.1 also holds in the context of the two-cuts
scheme. In other words, in the spirit of Theorem 3.1, this new CG variant is the dual
method of PDCP with the two-cuts implementation of GBM.

We now turn to review the multi-cuts scheme and discuss its implication in generalizing
CG. For j ≥ 1, given an index set Ij ⊆ {0, · · · , j − 1}, the multi-cuts scheme sets

Γj(·) = max {ℓf (·;xi) : i ∈ Ij} . (58)

The index set Ij starts from I1 = {0} and recursively updates as

Ij+1 = Īj+1 ∪ {j}, Īj+1 = {i ∈ Ij : θij > 0},

where θij is the Lagrange multiplier associated with the constraint ℓf (u;xi) ≤ r in the
problem below

min
(u,r)∈Rn×R

{
r + hλ(u) : ℓf (u;xi) ≤ r, ∀i ∈ Ij

}
. (59)

Here, Γ̄j(·) = max
{
ℓf (·;xi) : i ∈ Īj

}
. Proposition D.2 in [17] shows that the above multi-

cuts scheme satisfies GBM.
The recursion (40) indicates that zj in CG is a convex combination of {z1, z̄1, . . . , z̄j−1}.

Hence, a more general candidate of zj is any point in the convex hull of {z1, z̄1, . . . , z̄j−1}.
Similar to the discussion of the new CG motivated by the two-cuts scheme, we also need to
introduce conditions to determine zj in this generalization. For instance, inspired by the
multi-cuts scheme above, we specifically compute

zj =
∑
i∈Ij

θij z̄i

with the convention that z̄0 = z1, where θ
i
j is the corresponding Lagrange multiplier for (59).

Now, the positive multiplier θij (primal perspective) also serves as the convex combination
parameter (dual perspective). Note that (59) is equivalent to (9) with Γj as in (58), and
hence the optimal solution to (59) is (xj ,Γj(xj)). Again, it is easy to verify that

zj ∈ ∂Γj(xj), xj = ∇(hλ)∗(−zj), f ′(xj) = z̄j ,
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and hence Theorem 3.1 holds in the context of the multi-cuts scheme. In other words,
following the spirit of Theorem 3.1, this generalization of CG serves as the dual method of
PDCP, implemented with the multi-cuts scheme.

Since the number of nonzero θij could be small (compared to j), zj has a sparse rep-
resentation in terms of {z̄0, z̄1, . . . , z̄j−1}. Assuming {z̄j} is a sequence of sparse vectors,
then zj is sparse, and indeed sparser than those generated by CG using (40) with τj being
j/(j + 2), αj , βj , and θj .

Leveraging the primal-dual connections between PDCP with two-cuts and multi-cuts
schemes and the novel CG variants, we present the following convergence result for the
latter. The proof is omitted, as it directly follows from Proposition 2.3 and Lemma 2.8,
which establish the convergence of PDCP under the two-cuts and multi-cuts schemes. An
implicit assumption is that we are solving (38) as the dual to the proximal subproblem
(8) within PDPB. Consequently, the iteration count k in PDPB satisfies k ≤ 2d20/(λε̄), in
accordance with the assumption in Lemma 2.8.

Theorem 3.4. Consider the two CG variants described in this subsection, then zj gener-
ated in each variant satisfies

ϕλ(x̃j) + ψ(zj) ≤
8M(3d0 + λM)

j(j + 1)
+

16λM2

j + 1
,

where x̃j is as in (12) with τj = j/(j + 2).

4 Proximal bundle method for SPP

In this section, we consider the convex-concave nonsmooth composite SPP (2). More
specifically, we assume the following conditions hold:

(B1) a subgradient oracle f ′x : domh1 × domh2 → Rn and and a supergradient oracle
f ′y : domh1 × domh2 → Rm are available, that is, we have f ′x(u, v) ∈ ∂xf(u, v) and
f ′y(u, v) ∈ ∂yf(u, v) for every (u, v) ∈ domh1 × domh2;

(B2) both f ′x and f ′y are uniformly bounded by some positive scalar M over domh1 and
domh2, i.e., for every pair (u, v) ∈ domh1 × domh2,

∥f ′x(u, v)∥ ≤M, ∥f ′y(u, v)∥ ≤M ; (60)

(B3) domh1 × domh2 is bounded with finite diameter D > 0;

(B4) the proximal mappings of h1 and h2 are easy to compute;

(B5) the set of saddle points of problem (2) is nonempty.
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Given a pair (x, y) ∈ domh1 × domh2, for every (u, v) ∈ domh1 × domh2, define

ℓf(·,y)(u;x) = f(x, y) + ⟨f ′x(x, y), u− x⟩, ℓf(x,·)(v; y) = f(x, y) + ⟨f ′y(x, y), v − y⟩.

It is easy to see from (B3) that for fixed (x, y) and every (u, v) ∈ domh1 × domh2,

f(u, y)− ℓf(·,y)(u;x) ≤ 2M∥u− x∥, ℓf(x,·)(v; y)− f(x, v) ≤ 2M∥v − y∥. (61)

We say a pair (x∗, y∗) ∈ domh1 × domh2 is a saddle-point of (2) if for every (u, v) ∈
domh1 × domh2,

ϕ(x∗, v) ≤ ϕ(x∗, y∗) ≤ ϕ(u, y∗). (62)

We say a pair (x, y) ∈ domh1 × domh2 is an ε-saddle-point of (2) if

0 ∈ ∂ε[ϕ(·, y)− ϕ(x, ·)](x, y). (63)

It is well-known that SPP (2) is equivalent to

min
x∈Rn,y∈Rm

{Φ(x, y) := φ(x)− ψ(y)}, (64)

where
φ(x) = max

y∈Rm
ϕ(x, y), ψ(y) = min

x∈Rn
ϕ(x, y). (65)

As a consequence, an equivalent definition of ε-saddle-point is as follows: a pair (x, y) ∈
domh1 × domh2 satisfying

Φ(x, y) = φ(x)− ψ(y) ≤ ε. (66)

The equivalence between (63) and (66) is given in Lemma A.2. Another related but weaker
notion is a pair (x, y) ∈ domh1 × domh2 satisfying

−ε ≤ ϕ(x, y)− ϕ(x∗, y∗) ≤ ε. (67)

The implication from (63) to (67) is given in Lemma A.3.
The composite subgradient method for SPP (2) denoted by CS-SPP(x0, y0, λ), where

(x0, y0) ∈ domh1 × domh2 is the initial pair and λ > 0 is the prox stepsize, recursively
computes

xk = argmin
u∈Rn

{
ℓf(·,yk−1)(u;xk−1) + h1(u) +

1

2λ
∥u− xk−1∥2

}
, (68)

yk = argmin
v∈Rm

{
−ℓf(xk−1,·)(v; yk−1) + h2(v) +

1

2λ
∥v − yk−1∥2

}
. (69)

For given tolerance ε̄ > 0, letting λ = ε̄/(32M2), then the iteration-complexity for
CS-SPP(x0, y0, λ) to generate a ε̄-saddle point of (2) is bounded by O(M2D2/ε̄2) (see
Theorem C.1).
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4.1 Inexact proximal point framework for SPP

The generic PPM for solving (64) iteratively solves the proximal subproblem

(xk, yk) = argmin
x∈Rn,y∈Rm

{
Φ(x, y) +

1

2λk
∥x− xk−1∥2 +

1

2λk
∥y − yk−1∥2

}
, (70)

which motivates the following proximal point formulation for solving (2)

(xk, yk) = argmin
x∈Rn

argmax
y∈Rm

{
ϕ(x, y) +

1

2λk
∥x− xk−1∥2 −

1

2λk
∥y − yk−1∥2

}
. (71)

However, both (70) and (71) are only conceptual PPMs for SPP. In this subsection, we
introduce the generic IPPF for solving SPP (2) and show that CS-SPP described previously
is a concrete example of IPPF.

Algorithm 5 Inexact Proximal Point Framework for SPP (2)

Initialize: given initial pair (x0, y0) ∈ domh1 × domh2 and scalar σ ∈ [0, 1]
for k = 1, 2, · · · do
• choose λk > 0, εk > 0, and δk > 0 and find (xk, yk) ∈ domh1 × domh2 and
(x̃k, ỹk) ∈ domh1 × domh2 such that(

xk−1 − xk
λk

,
yk−1 − yk

λk

)
∈ ∂εk [ϕ(·, yk−1)− ϕ(xk−1, ·)](x̃k, ỹk) (72)

and

∥xk − x̃k∥2 + ∥yk − ỹk∥2 + 2λkεk ≤ δk + σ
(
∥x̃k − xk−1∥2 + ∥ỹk − yk−1∥2

)
. (73)

end for

Lemma 4.1. For every k ≥ 1, define pk : Rn → R and dk : Rm → R as follows

pk(·) := f(·, yk−1) + h1(·), dk(·) := −f(xk−1, ·) + h2(·). (74)

Then, the inclusion (72) is equivalent to for every (u, v) ∈ domh1 × domh2,

pk(u) + dk(v)− pk(x̃k)− dk(ỹk)

≥ 1

λk
⟨xk−1 − xk, u− x̃k⟩+

1

λk
⟨yk−1 − yk, v − ỹk⟩ − εk. (75)

Proof: It follows from (72) and the definition of ε-subdifferential (3) that for every pair
(u, v) ∈ domh1 × domh2,

ϕ(u, yk−1)− ϕ(xk−1, v)− [ϕ(x̃k, yk−1)− ϕ(xk−1, ỹk)]

≥ 1

λk
⟨xk−1 − xk, u− x̃k⟩+

1

λk
⟨yk−1 − yk, v − ỹk⟩ − εk.
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Observing from the definitions of pk and dk in (74) that

pk(u) + dk(v)− pk(x̃k)− dk(ỹk) = ϕ(u, yk−1)− ϕ(xk−1, v)− [ϕ(x̃k, yk−1)− ϕ(xk−1, ỹk)],

which together with the above inequality implies that (75) holds.
We are now ready to present the result showing that CS-SPP is an instance of IPPF

with certain parameterizations. The proof is postponed to Subsection A.2.

Proposition 4.2. Given (x0, y0) ∈ domh1 × domh2, δ > 0, and λ =
√
δ/8M2, then

CS-SPP(x0, y0, λ) is an instance of IPPF with σ = 1, (λk, δk) = (λ, δ) for every k ≥ 1,
(x̃k, ỹk) = (xk, yk) where xk and yk are as in (68) and (69), respectively, and εk = εxk + εyk
where

εxk = f(xk, yk−1)− ℓf(·,yk−1)(xk;xk−1), (76)

εyk = −f(xk−1, yk) + ℓf(xk−1,·)(yk; yk−1). (77)

4.2 Proximal bundle method for SPP

In this subsection, we describe another instance of IPPF, namely PB-SPP, for solving SPP
(2). The inclusion of PB-SPP as an instance of IPPF is presented in Proposition 4.2 below.

We start by stating PB-SPP.

Algorithm 6 Proximal Bundle for SPP (2), PB-SPP(x0, y0, ε̄)

Initialize: given (x0, y0) ∈ domh1 × domh2 and ε̄ > 0
for k = 1, 2, · · · do
• call oracles (xk, x̃k) = PDCP(xk−1, λk, ε̄/4) and (yk, ỹk) = PDCP(yk−1, λk, ε̄/4) and
compute

x̄k =
1

k

k∑
i=1

x̃i, ȳk =
1

k

k∑
i=1

ỹi. (78)

end for

Inspired by PPM (71) for solving SPP (2), the k-th iteration of PB-SPP aims at ap-
proximately solving the decoupled proximal subproblems, i.e.,

min
x∈Rn

{
f(x, yk−1) + h1(x) +

1

2λk
∥u− xk−1∥2

}
, (79)

min
y∈Rm

{
−f(xk−1, y) + h2(y) +

1

2λk
∥v − yk−1∥2

}
. (80)

Hence, the underlying f in the call to PDCP(xk−1, λk, ε̄) is f(·, yk−1) and the underlying f
in the call to PDCP(yk−1, λk, ε̄) is −f(xk−1, ·). Correspondingly, similar to (22), by calling
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the subroutine PDCP, PB-SPP exactly solves

xk = argmin
u∈Rn

{
Γx
k(u) + h1(u) +

1

2λk
∥u− xk−1∥2

}
, (81)

yk = argmin
v∈Rm

{
−Γy

k(v) + h2(v) +
1

2λk
∥v − yk−1∥2

}
, (82)

where Γx
k(·) and−Γ

y
k(·) are the cutting-plane models constructed for f(·, yk−1) and−f(xk−1, ·),

respectively, by GBM (see step 2 of Algorithm 2). Hence, by the construction in GBM
(i.e., Algorithm 1) and the convexity of f(·, yk−1) and −f(xk−1, ·), we have

Γx
k(·) ≤ f(·, yk−1), −Γy

k(·) ≤ −f(xk−1, ·). (83)

Since GBM is a generic scheme, the models Γx
k(·) and −Γy

k(·) can be any one satisfying
GBM, e.g., one-cut, two-cuts, and multiple-cuts schemes (i.e., (E1)-(E3)) described in
Subsection 3.1 of [17]. As a result, PB-SPP is a template for many possible methods using
GBM as their bundle management.

For ease of the convergence analysis of PB-SPP, we define

pλk(·) := pk(·) +
1

2λk
∥ · −xk−1∥2, dλk(·) := dk(·) +

1

2λk
∥ · −yk−1∥2, (84)

where pk and dk are as in (74), mx
k and my

k as the optimal values of (81) and (82), respec-
tively, and

txk = pλk(x̃k)−mx
k, tyk = dλk(ỹk)−mx

k. (85)

Following from Proposition 2.3 and a simplification of Lemma 2.8 using (B3), we obtain
the convergence rates of txk and tyk. We omit the proof since it is almost identical to that
of Proposition 2.3.

Proposition 4.3. Considering Algorithm 2 with τj = j/(j +2), then for every jk ≥ 1, we
have

txk ≤
4MD

lk(lk + 1)
+

16λkM
2

lk + 1
, tyk ≤

4MD

lk(lk + 1)
+

16λkM
2

lk + 1
,

where lk denotes the length of the k-th cycle Ck (i.e., lk = |Ck| = jk − ik + 1).

Given Proposition 4.3, PDCP is able to solve (79) and (80) to any desired accuracy.
For given tolerance ε̄ > 0, the calls to PDCP in Algorithm 6 guarantees

txk ≤
ε̄

4
, tyk ≤

ε̄

4
. (86)

Starting from (86), we establish the iteration-complexity for PB-SPP to find a ε̄-saddle-
point of SPP (2).
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Lemma 4.4. For every k ≥ 1 and (u, v) ∈ domh1 × domh2, we have

pk(x̃k)− pk(u) ≤
ε̄

4
+

1

2λk
∥u− xk−1∥2 −

1

2λk
∥u− xk∥2 −

1

2λk
∥x̃k − xk−1∥2, (87)

dk(ỹk)− dk(v) ≤
ε̄

4
+

1

2λk
∥v − yk−1∥2 −

1

2λk
∥v − yk∥2 −

1

2λk
∥ỹk − yk−1∥2. (88)

Proof: We only prove (87) to avoid duplication. Inequality (88) follows similarly. Noting
that the objective in (81) is λ−1

k -strongly convex and using the definition of mx
k, we have

for every u ∈ Rn,

Γx
k(u) + h1(u) +

1

2λk
∥u− xk−1∥2 ≥ mx

k +
1

2λk
∥u− xk∥2.

It follows from the definition of pk in (74) and the first inequality in (83) that pk(·) ≥
(Γx

k + h1)(·). Hence, we have for every u ∈ Rn,

pλk(x̃k)− pk(u) ≤ pλk(x̃k)−mx
k +

1

2λk
∥u− xk−1∥2 −

1

2λk
∥u− xk∥2.

Therefore, inequality (87) immediately follows from the first inequality in (86).

Lemma 4.5. For every k ≥ 1 and (u, v) ∈ domh1 × domh2, we have

ϕ(x̃k, v)− ϕ(u, ỹk) ≤
ε̄

2
+

1

2λk
∥zk−1 − w∥2 −

1

2λk
∥zk − w∥2 + 4λkM

2, (89)

where w = (u, v) and zk = (xk, yk).

Proof: It follows from (B2) that for every u ∈ domh1,

f(u, yk−1)− f(u, ỹk)
(60)

≤ M∥ỹk − yk−1∥, f(x̃k, ỹk)− f(x̃k, yk−1)
(60)

≤ M∥ỹk − yk−1∥.

Noting from (74) that pk(x̃k) − pk(u) = f(x̃k, yk−1) + h1(x̃k) − f(u, yk−1) − h1(u), using
this relation and the above inequality in (87), we have for every u ∈ domh1,

f(x̃k, ỹk) + h1(x̃k)− f(u, ỹk)− h1(u)
(87)

≤ ε̄

4
+

1

2λk
∥xk−1 − u∥2 −

1

2λk
∥xk − u∥2 + 2M∥ỹk − yk−1∥ −

1

2λk
∥x̃k − xk−1∥2.

Similarly, using (88), we can prove for every v ∈ domh2,

− f(x̃k, ỹk) + h2(ỹk) + f(x̃k, v)− h2(v)
(88)

≤ ε̄

4
+

1

2λk
∥yk−1 − v∥2 −

1

2λk
∥yk − v∥2 + 2M∥x̃k − xk−1∥ −

1

2λk
∥ỹk − yk−1∥2.
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Noting that 2Ma− a2/(2λk) ≤ 2λkM
2 for a ∈ R and summing the above two inequalities,

we obtain

ϕ(x̃k, v)− ϕ(u, ỹk)
(2)
=f(x̃k, v) + h1(x̃k)− h2(v)− f(u, ỹk)− h1(u) + h2(ỹk)

≤ ε̄
2
+

1

2λk
∥zk−1 − w∥2 −

1

2λk
∥zk − w∥2 + 4λkM

2,

where the identity is due to the definition of ϕ(·, ·) in (2).

Proposition 4.6. For every k ≥ 1, setting λk = λ1/
√
k for some λ1 > 0, then for every

(u, v) ∈ domh1 × domh2, we have

φ(x̄k)− ψ(ȳk) ≤
ε̄

2
+

8λ1M
2

√
k

+
D2

2λ1
√
k
, (90)

where x̄k and ȳk are as in (78).

Proof: Summing (89) from k = 1 to k and using (78) and the convexity of ϕ(·, y) and
−ϕ(x, ·), we have for every (u, v) ∈ domh1 × domh2,

ϕ(x̄k, v)− ϕ(u, ȳk) ≤
ε̄

2
+

1

k

k∑
i=1

[
1

2λi
(∥zi−1 − w∥2 − ∥zi − w∥2) + 4λiM

2

]
. (91)

It follows from the fact that λk = λ/
√
k and assumption (B3) that

1

k

k∑
i=1

[
1

2λi
(∥zi−1 − w∥2 − ∥zi − w∥2)

]
≤ 1

2k

[
∥z0 − w∥2

λ1
+

k−1∑
i=1

∥zi − w∥2
(

1

λi+1
− 1

λi

)]

≤ D2

2kλk
=

D2

2λ1
√
k
. (92)

Observing that
∑k

i=1(1/
√
i) ≤

∫ k
0 (1/

√
x)dx = 2

√
k, and hence

1

k

k∑
i=1

4λiM
2 =

1

k

k∑
i=1

4λ1M
2

√
i
≤ 8λ1M

2

√
k

.

This observation, (91), and (92) imply that

ϕ(x̄k, v)− ϕ(u, ȳk) ≤
ε̄

2
+

8λ1M
2

√
k

+
D2

2λ1
√
k
.

Maximizing the left-hand side over (u, v) ∈ Rn × Rm and using (65) yield (90).
We are now ready to establish the iteration-complexity for PB-SPP to find a ε̄-saddle-

point.
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Theorem 4.1. Given (x0, y0, ε̄) ∈ domh1 × domh2 × R++, letting λ1 = D/(4M), then
the iteration-complexity for PB-SPP(x0, y0) to find a ε̄-saddle-point (x̄k, ȳk) of (2) is
O((MD/ε̄)2.5).

Proof: It follows from Proposition 4.6 with λ1 = D/(4M) that

φ(x̄k)− ψ(ȳk) ≤
ε̄

2
+

4MD√
k
.

Hence, PB-SPP takes k = 64M2D2/ε̄2 iterations to find the ε̄-saddle-point (x̄k, ȳk). Using
Proposition 4.3, we know to have (86) holds for every cycle Ci, it is sufficient to have

li =

√
32MD√
ε̄

+
128λiM

2

ε̄
=

√
32MD√
ε̄

+
32MD

ε̄
√
i
.

As a consequence, the total number of iterations (of proximal mappings of h1 and h2, and
of calls to subgradient oracles f ′x and f ′y) is

k∑
i=1

li =

√
32MD√
ε̄

k +

k∑
i=1

32MD

ε̄
√
i
≤ 256

√
2M2.5D2.5

ε̄2.5
+

512M2D2

ε̄2
,

where we use the facts that
∑k

i=1(1/
√
i) ≤

∫ k
0 (1/

√
x)dx = 2

√
k and k = 64M2D2/ε̄2.

Note that the complexity in Theorem 4.1 holds for any model Γx
k and −Γy

k generated
by GBM, such as one-cut, two-cuts, and multiple-cuts schemes described in Subsection 3.1
of [17]. However, there is a possiblity that the complexity for PB-SPP using two-cuts and
multiple-cuts schemes becomes better as O(M2D2/ε̄2). For simplicity, we only present the
analysis for the current bound O((MD/ε̄)2.5) and leave the finer bound O(M2D2/ε̄2) for
future investigation.

Finally, we conclude this subsection by presenting that PB-SPP is an instance of IPPF.
The proof is postponed to Subsection A.3.

Proposition 4.7. Given (x0, y0) ∈ domh1 × domh2, ε̄ > 0, then PB-SPP(x0, y0, ε̄) is an
instance of IPPF with σ = 0, δk = λkε̄/2, and εk = εxk + εyk where

εxk = pk(x̃k)− (Γx
k + h1)(xk) +

1

λk
⟨xk−1 − xk, xk − x̃k⟩, (93)

εyk = dk(ỹk)− (−Γy
k + h2)(yk) +

1

λk
⟨yk−1 − yk, yk − ỹk⟩. (94)

5 Concluding remarks

This paper studies the iteration-complexity of modern PB methods for solving CNCO (1)
and SPP (2). It proposes PDPB for solving (1) and provides the iteration-complexity
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of PDPB in terms of a primal-dual gap. The paper also introduces PB-SPP for solving
(2) and establishes the iteration-complexity to find a ε̄-saddle-point. Another interesting
feature of the paper is that it investigates the duality between CG and PDCP for solving
the proximal subproblem (8). The paper further develops novel variants of both CG and
PDCP leveraging the duality.

We finally discuss some possible extensions of our methods and analyses. First, we have
studied modern PB methods for solving CNCO and SPP in this paper, and we could extend
the methods to solving more general nonsmooth problems with convex structures such
constrained optimization, equilibrium problems, and variational inequalities. Second, as
already noted in the paragraph below Theorem 4.1, it is possible to improve the complexity
bound O((MD/ε̄)2.5) of PB-SPP to O(M2D2/ε̄2), if we employ only two-cuts and multiple-
cuts schemes rather than the GBM. Third, it is interesting to study the duality between
PDCP and CG in the context of SPP, which is equivalent to developing a CG method to
implement (72) and (73) within IPPF. Fourth, similar to the universal methods proposed
in [11], we are also interested in developing universal variants of PB-SPP for SPP (2) under
strong convexity assumptions without knowing the problem-dependent parameters a priori.
Finally, following the stochastic PB method developed for stochastic CNCO in [15], it is
worthwhile to explore stochastic versions of PB-SPP for solving stochastic SPP, particularly
those involving decision-dependent distributions.
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A Technical results and deferred proofs

This section collects technical results used throughout the paper and deferred proofs from
Section 4.

A.1 Technical results

We present Lemma 13.7 of [4] with slight modification, which is used in the proof of
Lemma 3.2.

Lemma A.1. Consider
min
x∈Rn
{F (x) = f(x) + g(x)}, (95)

31



where f ∈ Conv (Rn), g ∈ Conv (Rn), and dom g ⊂ dom f . Moreover, f is Lf -smooth over
dom f . Define

S(x) = max
p∈Rn
{⟨∇f(x), x− p⟩+ g(x)− g(p)}, p(x) = argmin

p∈Rn
{⟨p,∇f(x)⟩+ g(p)}.

Then, for every x ∈ dom g and t ∈ [0, 1], if p(x) exists, we have

F (x+ t(p(x)− x)) ≤ F (x)− tS(x) +
t2Lf

2
∥p(x)− x∥2. (96)

Lemma A.2. Given ε > 0, a pair (x, y) is an ε-saddle-point of (2) (i.e., satisfying (63))
if and only if the pair satisfies (66).

Proof: It follows from (63) that for every (u, v) ∈ domh1 × domh2,

ϕ(u, y)− ϕ(x, v) ≥ ϕ(x, y)− ϕ(x, y)− ε = −ε. (97)

Hence, (97) holds with (u, v) = (x(y), y(x)) where

x(y) = argmin
x∈Rn

ϕ(x, y), y(x) = argmax
y∈Rm

ϕ(x, y),

that is

min
x∈Rn

ϕ(x, y)− max
y∈Rm

ϕ(x, y) = ϕ(x(y), y)− ϕ(x, y(x))
(97)

≥ −ε.

This result, together with (64) and (65), implies that (66) holds. On the other hand,
assuming that (66) holds, then for every (u, v) ∈ domh1 × domh2, it obviously follows
from (65) that

ϕ(x, v)− ϕ(u, y)
(65)

≤ φ(x)− ψ(y) ≤ ε,
which is (63) in view of (97).

Lemma A.3. Given ε > 0, a pair (x, y) is an ε-saddle-point of (2) (i.e., satisfying (63))
implies (67).

Proof: Assuming that (x, y) is an ε-saddle-point, it follows from Lemma A.2 that (66)
holds, and hence that for every (u, v) ∈ domh1 × domh2,

ϕ(x, v)− ϕ(u, y)
(65)

≤ φ(x)− ψ(y) ≤ ε, (98)

where the first inequality is due to (65). Taking (u, v) = (x∗, y) in (98) and using the first
inequality in (62), we have

ϕ(x, y)− ϕ(x∗, y∗)
(62)

≤ ϕ(x, y)− ϕ(x∗, y)
(98)

≤ ε.

Taking (u, v) = (x, y∗) in (98) and using the second inequality in (62), we have

ϕ(x∗, y∗)− ϕ(x, y)
(62)

≤ ϕ(x, y∗)− ϕ(x, y)
(98)

≤ ε.

Therefore, (67) immediately follows from the above two inequalities.
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A.2 Proof of Proposition 4.2

Proof: We first show that CS-SPP satisfies (72). It follows from the CS-SPP iterate (68)
that

xk−1 − xk
λ

∈ ∂[ℓf(·,yk−1)(·;xk−1) + h1](xk).

Using the inclusion above, we have for every u ∈ domh1,

[ℓf(·,yk−1)(·;xk−1) + h1](u) ≥ [ℓf(·,yk−1)(·;xk−1) + h1](xk) +
1

λ
⟨xk−1 − xk, u− xk⟩.

Using the definition of pk in (74) and the fact that f(·, yk−1) is convex, we further obtain

pk(u) ≥ pk(xk) +
1

λ
⟨xk−1 − xk, u− xk⟩ − εxk,

where εxk is as in (76). Similarly, we have for every v ∈ domh2,

dk(v) ≥ dk(yk) +
1

λ
⟨yk−1 − yk, v − yk⟩ − εyk,

where εyk is as in (77). Summing the above two inequalities gives (75) with λk = λ,
εk = εxk + εyk and (x̃k, ỹk) = (xk, yk), and hence (72) holds in view of Lemma 4.1.

We next show that CS-SPP satisfies (73). Indeed, it follows from the definition of εxk
in (76) and the first inequality in (61) that

2λεxk − ∥xk − xk−1∥2
(76)
= 2λ[f(xk, yk−1)− ℓf(·,yk−1)(xk;xk−1)]− ∥xk − xk−1∥2

(61)

≤ 4λM∥xk − xk−1∥ − ∥xk − xk−1∥2 ≤ 4λ2M2.

Similarly, we have 2λεyk −∥yk − yk−1∥2 ≤ 4λ2M2. Summing the two inequalities and using

the facts that λ =
√
δ/8M2 and εk = εxk + εyk, we have

2λεk − ∥xk − xk−1∥2 − ∥yk − yk−1∥2 ≤ 8λ2M2 = δ,

which is (73) with σ = 1, (λk, δk) = (λ, δ), and (x̃k, ỹk) = (xk, yk).

A.3 Proof of Proposition 4.7

Proof: We first show that PB-SPP satisfies (72). It follows from (81) that

xk−1 − xk
λk

∈ ∂(Γx
k + h1)(xk),

which implies that for every u ∈ domh1,

(Γx
k + h1)(u) ≥ (Γx

k + h1)(xk) +
1

λk
⟨xk−1 − xk, u− xk⟩.
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Using the first inequality in (83) and the definition of pk in (74), we have

pk(u) ≥ (Γx
k + h1)(u) ≥ pk(x̃k) +

1

λk
⟨xk−1 − xk, u− x̃k⟩ − εxk, ∀u,

where εxk is as in (93). Similarly, we have for every v ∈ domh2,

dk(v) ≥ dk(ỹk) +
1

λk
⟨yk−1 − yk, v − ỹk⟩ − εyk, ∀v,

where εyk is as in (94). Summing the above two inequalities gives (75) with εk = εxk + εyk,
and hence (72) holds in view of Lemma 4.1.

We next show that PB-SPP satisfies (73). Indeed, it follows from the definitions of εxk
and εyk in (93) and (94), respectively, that

∥xk − x̃k∥2 + ∥yk − ỹk∥2 + 2λkεk = λk

(
pλk(x̃k)−mx

k + dλk(ỹk)−m
y
k

)
,

where pλk and dλk are as in (84) and mx
k and my

k as the optimal values of (81) and (82),
respectively. In view of (85) and (86), the above relation further implies that

∥xk − x̃k∥2 + ∥yk − ỹk∥2 + 2λkεk ≤
λkε̄

2
,

which is (73) with σ = 0 and δk = λkε̄/2.

B Primal-dual subgradient method for CNCO

This section is devoted to the complexity analysis of PDS. The main result is Theorem B.2
below.

Recall the definitions of d0 and x∗0 in (6). Since x∗0 ∈ B(x0, 4d0), which is the ball
centered at x0 and with radius 4d0, it is easy to see that to solve (1), it suffices to solve

min
{
ϕ̂(x) := f(x) + ĥ(x) : x ∈ Rn

}
= min {ϕ(x) : x ∈ Q} , (99)

where ĥ = h+IQ and IQ is the indicator function of Q = B(x0, 4d0). Hence, it is convenient

to consider a slightly modified version of PDS(x0, λ) with h replaced by ĥ in (7), denoted
by MPDS(x0, λ), i.e.,

sk = f ′(xk−1), xk = argmin
u∈Rn

{
ℓf (u;xk−1) + ĥ(u) +

1

2λ
∥u− xk−1∥2

}
. (100)

It is worth noting that MPDS(x0, λ) is a conceptual method since we do not know d0
and hence ĥ. We show equivalence between PDS(x0, λ) and MPDS(x0, λ), and only use
MPDS(x0, λ) for analyzing the convegence.
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We first establish the complexity of the primal-dual convergence of MPDS(x0, λ) for
solving (99), and then we argue that MPDS(x0, λ) and PDS(x0, λ) generate the same
primal and dual sequences {xk} and {sk} before convergence (see Lemma B.3). Therefore,
we also give the complexity of PDS(x0, λ) for solving (99).

The following lemma is the starting point of the primal-dual convergence analysis.

Lemma B.1. Given x0 ∈ Rn, for every k ≥ 1 and u ∈ dom ĥ, the sequence {xk} generated
by MPDS(x0, λ) satisfies

ϕ̂(xk)− ℓf (u;xk−1)− ĥ(u) ≤ 2λM2 +
1

2λ
∥u− xk−1∥2 −

1

2λ
∥u− xk∥2. (101)

Proof: Noticing that the objective function in (100) is λ−1-strongly convex, it then follows
from Theorem 5.25(b) of [4] that for every u ∈ dom ĥ,

ℓf (u;xk−1) + ĥ(u) +
1

2λ
∥u− xk−1∥2 ≥ mk +

1

2λ
∥u− xk∥2, (102)

where mk = ℓf (xk;xk−1) + ĥ(xk) + ∥xk − xk−1∥2/(2λ). Using (5) with (x, y) = (xk, xk−1),
we have

ϕ̂(xk)−mk = f(xk)− ℓf (xk;xk−1)
(5)

≤ 2M∥xk − xk−1∥ −
1

2λ
∥xk − xk−1∥2 ≤ 2λM2,

where the last inequality is due to Young’s inequality a2 + b2 ≥ 2ab. Hence, (101) follows
from combining the above inequality and (102).

The next result presents the primal-dual convergence rate of MPDS(x0, λ).

Lemma B.2. For every k ≥ 1, define

x̄k =
1

k

k∑
i=1

xi, s̄k =
1

k

k∑
i=1

si. (103)

Then, we have for every k ≥ 1, the primal-dual gap of (99) is bounded as follows,

ϕ̂(x̄k) + f∗(s̄k) + ĥ∗(−s̄k) ≤ 2λM2 +
8d20
λk

. (104)

Proof: We first note that ℓf (·;xk−1) ≤ f and hence (ℓf (·;xk−1))
∗ ≥ f∗. Using this

inequality and the fact that ∇ℓf (u;xk−1) = sk for every u ∈ Rn, we have

ℓf (u;xk−1) = −[ℓf (·;xk−1)]
∗(sk) + ⟨sk, u⟩ ≤ −f∗(sk) + ⟨sk, u⟩.

It thus follows from Lemma B.1 that for every u ∈ dom ĥ,

ϕ̂(xk) + f∗(sk)− ⟨sk, u⟩ − ĥ(u)
(101)

≤ 2λM2 +
1

2λ
∥u− xk−1∥2 −

1

2λ
∥u− xk∥2.
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Summing the above inequality from k = 1 to k and using convexity of ϕ̂ and f∗, we obtain
for every u ∈ dom ĥ,

ϕ̂(x̄k) + f∗(s̄k) + ⟨−s̄k, u⟩ − ĥ(u) ≤ 2λM2 +
1

2λk
∥u− x0∥2,

where x̄k and s̄k are as in (103). Maximizing over u ∈ dom ĥ on both sides of the above
inequality, we have

ϕ̂(x̄k) + f∗(s̄k) + ĥ∗(−s̄k) ≤ 2λM2 +
max{∥u− x0∥2 : u ∈ dom ĥ}

2λk
.

Therefore, (104) follows by using the fact that dom ĥ ⊂ Q = B(x0, 4d0).
The following theorem provides the complexity of MPDS(x0, λ) for solving (99).

Theorem B.1. Given (x0, ε̄) ∈ Rn × R++, letting λ = ε̄/(16M2), then the number of
iterations for MPDS(x0, λ) to generate a primal-dual pair (x̄k, s̄k) as in (103) such that
ϕ̂(x̄k) + f∗(s̄k) + ĥ∗(−s̄k) ≤ ε̄ is at most 256M2d20/ε̄

2.

Proof: It follows from Lemma B.2 with λ = ε̄/(16M2) and k = 16d20/(λε̄) that

ϕ̂(x̄k) + f∗(s̄k) + ĥ∗(−s̄k) ≤
ε̄

8
+
ε̄

2
< ε̄.

Therefore, the conclusion of the theorem immediately follows from plugging the choice of
λ into k.

The next lemma gives the boundedness of {xk} generated by PDS(x0, λ) and shows
that {xk} ⊂ Q = B(x0, 4d0). This result is important since it reveals the equivalence
between PDS and MPDS, which is useful in Theorem B.2 below.

Lemma B.3. For every k ≤ 256M2d20/ε̄
2, the sequence {xk} generated by PDS(x0, λ) with

λ = ε̄/(16M2) satisfies xk ∈ Q.

Proof: Following an argument similar to the proof of Lemma B.1, we can prove for every
u ∈ domh,

ϕ(xk)− ℓf (u;xk−1)− h(u) ≤ 2λM2 − 1

2λ
∥u− xk∥2 +

1

2λ
∥u− xk−1∥2,

which together with the fact that ℓf (·;xk) ≤ f implies that

ϕ(xk)− ϕ(u) ≤ 2λM2 − 1

2λ
∥u− xk∥2 +

1

2λ
∥u− xk−1∥2.

Taking u = x∗0 and using the fact that ϕ(xk) ≥ ϕ∗ = ϕ(x∗0), we obtain

∥xk − x∗0∥2 ≤ 4λ2M2 + ∥xk−1 − x∗0∥2.
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Summing the above inequality, we show that for every k ≥ 1, {xk} generated by PDS(x0, λ)
satisfies

∥xk − x∗0∥2 ≤ d20 + 4λ2M2k. (105)

Using the triangle inequality and the fact that
√
a+ b ≤

√
a+
√
b for a, b ≥ 0, we have

∥xk − x0∥ ≤ ∥xk − x∗0∥+ ∥x0 − x∗0∥
(105)

≤ 2d0 + 2λM
√
k.

It thus follows from the assumptions on k and λ that

∥xk − x0∥ ≤ 2d0 +
ε̄

8M

16Md0
ε̄

= 4d0,

and hence that xk ∈ Q = B(x0, 4d0).
Finally, using the complexity of MPDS(x0, λ) for solving (99) (i.e., Theorem B.1), we

are ready to establish that of PDS(x0, λ).

Theorem B.2. Given (x0, ε̄) ∈ Rn × R++, letting λ = ε̄/(16M2), then the number of
iterations for PDS(x0, λ) to generate (x̄k, s̄k) such that ϕ̂(x̄k) + f∗(s̄k) + ĥ∗(−s̄k) ≤ ε̄ is at
most 256M2d20/ε̄

2.

Proof: In view of Lemma B.3, for λ = ε̄/(16M2) and k ≤ 256M2d20/ε̄
2, the sequence

{xk} generated by PDS(x0, λ) is the same as the one generated by MPDS(x0, λ). Hence,
sequences {sk} generated by the two methods are also the same, that is, (100) is identical
to (7). Therefore, we conclude that the same primal-dual convergence guarantee holds for
PDS(x0, λ) as the one for MPDS(x0, λ) in Theorem B.1.

C Composite subgradient method for SPP

This section is devoted to the complexity analysis of CS-SPP. The main result is Theo-
rem C.1 below.

Lemma C.1. For every k ≥ 1 and (u, v) ∈ Rn × Rm, we have

pk(xk)− ℓf(·,yk−1)(u;xk−1)− h1(u) ≤ δxk +
1

2λ
∥xk−1 − u∥2 −

1

2λ
∥xk − u∥2, (106)

dk(yk) + ℓf(xk−1,·)(v; yk−1)− h2(v) ≤ δyk +
1

2λ
∥yk−1 − v∥2 −

1

2λ
∥yk − v∥2, (107)

where

δxk = 2M∥xk − xk−1∥ −
1

2λ
∥xk − xk−1∥2, δyk = 2M∥yk − yk−1∥ −

1

2λ
∥yk − yk−1∥2. (108)
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Proof: We only prove (106) to avoid duplication. Inequality (107) follows similarly. Since
the objective in (68) is λ−1-strongly convex, we have for every u ∈ Rn,

ℓf(·,yk−1)(u;xk−1) + h1(u) +
1

2λ
∥u− xk−1∥2 ≥ mx

k +
1

2λ
∥u− xk∥2, (109)

where mx
k denotes the optimal value of (68). Using the definition of pk in (74), we have

pk(xk)−mx
k = f(xk, yk−1)− ℓf(·,yk−1)(xk;xk−1)−

1

2λ
∥xk − xk−1∥2.

It thus follows from the first inequality in (61) with (u, x, y) = (xk, xk−1, yk−1) the definition
of δxk in (108) that

pk(xk)−mx
k ≤ δxk ,

which together with (109) implies that (106).
For k ≥ 1, denote

sk = (sxk, s
y
k), sxk = f ′x(xk−1, yk−1), syk = −f ′y(xk−1, yk−1). (110)

We also denote w = (u, v) and zk = (xk, yk) for all k ≥ 0.

Lemma C.2. For every (u, v) ∈ Rn × Rm and k ≥ 1, we have

pk(xk) + f(·, yk−1)
∗(sxk)− h1(u) + dk(yk) + [−f(xk−1, ·)]∗(syk)− h2(v)− ⟨sk, w⟩

≤δxk + δyk +
1

2λ
∥zk−1 − w∥2 −

1

2λ
∥zk − w∥2. (111)

Proof: It follows from the second identity in (110) that for every u ∈ Rn,

∇ℓf(·,yk−1)(u;xk−1) = sxk,

which together with Theorem 4.20 of [4] implies that

ℓf(·,yk−1)(u;xk−1) + [ℓf(·,yk−1)(·;xk−1)]
∗(sxk) = ⟨u, sxk⟩.

Clearly, ℓf(·,yk−1)(·;xk−1) ≤ f(·, yk−1) and hence [ℓf(·,yk−1)(·;xk−1)]
∗ ≥ f(·, yk−1)

∗. This
inequality and the above identity imply that

ℓf(·,yk−1)(u;xk−1) ≤ −f(·, yk−1)
∗(sxk) + ⟨sxk, u⟩.

It thus follows from (106) that

pk(xk) + f(·, yk−1)
∗(sxk)− ⟨sxk, u⟩ − h1(u) ≤ δxk +

1

2λ
∥xk−1 − u∥2 −

1

2λ
∥xk − u∥2.

Similarly, we have for every v ∈ Rm,

dk(yk) + [−f(xk−1, ·)]∗(syk)− ⟨s
y
k, v⟩ − h2(v) ≤ δ

y
k +

1

2λ
∥yk−1 − v∥2 −

1

2λ
∥yk − v∥2.

Finally, summing the above two inequalities and using (110) and the facts that w = (u, v)
and zk = (xk, yk), we conclude that (111) holds.
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Lemma C.3. For every (u, v) ∈ Rn × Rm and k ≥ 1, we have

h1(xk) + f(·, yk)∗(sxk)− h1(u) + h2(yk) + [−f(xk−1, ·)]∗(syk)− h2(v)− ⟨sk, w⟩

≤16λM2 +
1

2λ
∥zk−1 − w∥2 −

1

2λ
∥zk − w∥2. (112)

Proof: Using (74) and (111), we have for every (u, v) ∈ Rn × Rm,

h1(xk) + f(·, yk−1)
∗(sxk)− h1(u) + h2(yk) + [−f(xk−1, ·)]∗(syk)− h2(v)− ⟨gk, w⟩

≤δxk + δyk +
1

2λ
∥zk−1 − w∥2 −

1

2λ
∥zk − w∥2 + f(xk−1, yk)− f(xk, yk−1). (113)

It immediately follows from (60) that

f(xk−1, yk)− f(xk, yk−1) = f(xk−1, yk)− f(xk, yk) + f(xk, yk)− f(xk, yk−1)

≤M∥xk − xk−1∥+M∥yk − yk−1∥.

Following from the definition of conjugate functions and (60) again, we have

f(·, yk−1)
∗(sxk) = max

x
{⟨x, sxk⟩ − f(x, yk) + f(x, yk)− f(x, yk−1)}

≥ max
x
{⟨x, sxk⟩ − f(x, yk)} −M∥yk − yk−1∥

= f(·, yk)∗(sxk)−M∥yk − yk−1∥.

Similarly, we also have

f(xk−1, ·)∗(−syk) ≤ f(xk, ·)
∗(−syk) +M∥xk − xk−1∥.

Plugging the above three inequalities into (113), we obtain for every (u, v) ∈ Rn × Rm,

h1(xk) + f(·, yk)∗(sxk)− h1(u) + h2(yk) + [−f(xk−1, ·)]∗(syk)− h2(v)− ⟨sk, w⟩

≤δxk + δyk +
1

2λ
∥zk−1 − w∥2 −

1

2λ
∥zk − w∥2 + 2M∥xk − xk−1∥+ 2M∥yk − yk−1∥.

Noting from the definitions in (108) that

δxk + δyk + 2M∥xk − xk−1∥+ 2M∥yk − yk−1∥
(108)
= 4M∥xk − xk−1∥ −

1

2λ
∥xk − xk−1∥2 + 4M∥yk − yk−1∥ −

1

2λ
∥yk − yk−1∥2

≤ 16λM2,

we finally conclude that (112) holds.
The following lemma collects technical results revealing relationships about the averages

defined in (114) below.
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Lemma C.4. Define

x̄k =
1

k

k∑
i=1

xi, ȳk =
1

k

k∑
i=1

yi, s̄xk =
1

k

k∑
i=1

sxi , s̄yk =
1

k

k∑
i=1

syi . (114)

Then, the following statements hold for every k ≥ 1:

(a)

1

k

k∑
i=1

f(·, yi)∗(sxi ) ≥ f(·, ȳk)∗(s̄xk),
1

k

k∑
i=1

[−f(xi, ·)]∗(syi ) ≥ [−f(x̄k, ·)]∗(s̄yk);

(b)

φ(x̄k) ≤ h1(x̄k) + [−f(x̄k, ·)]∗(s̄yk) + h∗2(−s̄
y
k),

−ψ(ȳk) ≤ h2(ȳk) + f(·, ȳk)∗(s̄xk) + h∗1(−s̄xk).

Proof: a) We only prove the first inequality to avoid duplication. The second one follows
similarly. It follows from the definition of conjugate functions, (114), concavity of f(x, ·),
and basic inequalities that

1

k

k∑
i=1

f(·, yi)∗(sxi ) =
1

k

k∑
i=1

max
x∈Rn
{⟨x, sxi ⟩ − f(x, yi)}

≥ max
x∈Rn

{
1

k

k∑
i=1

⟨x, sxi ⟩ −
1

k

k∑
i=1

f(x, yi)

}
(114)

≥ max
x∈Rn

{⟨x, s̄xk⟩ − f(x, ȳk)} = f(·, ȳk)∗(s̄xk).

b) For simplicity, we only prove the first inequality. The second one follows similarly.
It follows from the definition of φ in (65), basic inequalities, and the definition of conjugate
functions that

φ(x̄k)
(65)
= max

y∈Rm
ϕ(x̄k, y) = h1(x̄k) + max

y∈Rm
{f(x̄k, y)− h2(y)}

≤ h1(x̄k) + max
y∈Rm

{⟨y, s̄yk⟩ − (−f(x̄k, y))}+ max
y∈Rm

{⟨y,−s̄yk⟩ − h2(y)}

= h1(x̄k) + [−f(x̄k, ·)]∗(s̄yk) + h∗2(−s̄
y
k).
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Proposition C.5. For every k ≥ 1, we have

Φ(x̄k, ȳk) = φ(x̄k)− ψ(ȳk) ≤ 16λM2 +
D2

2λk
(115)

where Φ(·, ·) in as in (64).

Proof: Summing (112) from k = 1 to k, and using Lemma C.4(a), convexity, and (114),
we have for every (u, v) ∈ Rn × Rm,

h1(x̄k) + f(·, ȳk)∗(s̄xk)− ⟨s̄xk, u⟩ − h1(u) + h2(ȳk) + [−f(x̄k, ·)]∗(s̄yk)− ⟨s̄
y
k, v⟩ − h2(v)

≤16λM2 +
1

2λk
∥z0 − w∥2.

Maximizing both sides of the above inequality over (u, v) ∈ domh1 × domh2 yields

h1(x̄k) + f(·, ȳk)∗(s̄xk) + h∗1(−s̄xk) + h2(ȳk) + [−f(x̄k, ·)]∗(s̄yk) + h∗2(−s̄
y
k)

≤16λM2 +
1

2λk
max{∥z0 − w∥2 : w ∈ domh1 × domh2}.

Finally, (115) follows from Lemma C.4(b), (B3), and the definition of Φ(·, ·) in (64).

Theorem C.1. Given (x0, y0, ε̄) ∈ domh1 × domh2 ×R++, letting λ = ε̄/32M2, then the
number of iterations of CS-SPP(x0, y0, λ) to find a ε̄-saddle-point (x̄k, ȳk) of (2) is at most
128M2D2/ε̄2.

Proof: It follows from Proposition C.5 and the choice of λ that

Φ(x̄k, ȳk) ≤
ε̄

2
+

64D2

ε̄k
.

Hence, the conclusion of the theorem follows immediately.
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