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Abstract

In this paper, we study the two-stage distributionally robust optimization (DRO) prob-

lem from the primal perspective. Unlike existing approaches, this perspective allows us to

build a deeper and more intuitive understanding on DRO, to leverage classical and well-

established solution methods and to develop a general and fast decomposition algorithm

(and its variants), and to address a couple of unsolved issues that are critical for modeling

and computation. Theoretical analyses regarding the strength, convergence, and iteration

complexity of the developed algorithm are also presented. A numerical study on different

types of instances of the distributionally robust facility location problem demonstrates that

the proposed solution algorithm (and its variants) significantly outperforms existing meth-

ods. It solves instances up to several orders of magnitude faster, and successfully addresses

new types of practical instances that previously could not be handled. We believe these

results will significantly enhance the accessibility of DRO, break down barriers, and unleash

its potential to solve real-world challenges.

1 Introduction

Distributionally robust optimization (DRO) has emerged as a powerful optimization paradigm

to address uncertainties in decision making. As a flexible unification of stochastic pro-

gramming (SP) and robust optimization (RO), it adopts an ambiguity set, which leverages

available distributional information while accounting for unforeseen perturbations on top

of that distributional information, to describe randomness. Hence, rather than assuming

a single fixed probability distribution, which is the central idea behind SP, DRO takes an

RO perspective to hedge against all (often infinitely many) possible distributions within that

ambiguity set to ensure robustness. Obviously, the derived solution is more robust than that

of SP. Also, by restricting the perturbations in parameters of the underlying distribution,

the solution is less conservative compared to that of RO, which just focuses on worst-case
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scenarios without considering any distributional information. Actually, if those parameters

are exact and complete that defines a single distribution, DRO reduces to SP. And if the

perturbations are allowed to be arbitrarily large, DRO reduces to RO.

Because of its flexibility in handling data and strength in taking advantage of the asso-

ciated information, DRO is believed to be an ideal data-driven decision making tool. On

one hand, it attracts a large amount of methodological studies in the literature, including

those on the design of ambiguity sets and their mathematical and statistical properties, new

variants and customizations for different modeling purposes, and strong solution methods

to handle complex data/structures, including exact and approximate mixed integer refor-

mulations and specific algorithms. On the other hand, it has found applications in various

fields, including finance, energy, supply chain management, and machine learning, where

some data on random parameters are available but the true distribution may not be known

precisely.

Regardless of the fact that the first recognized study on DRO [1] appeared in 1958, a long

time ago, DRO is notably less popular compared to SP or RO, particularly in the context of

two-stage decision making. We observe that a couple of issues contribute to this situation.

The first one is that present solution methods, which are reviewed in the next section,

are not sufficiently strong or lack scalability to handle practical-scale problems. Another

one is that some fundamental issues have not been sufficiently addressed, e.g., the feasibility

requirement of the recourse problem and the non-convex ambiguity sets, and hence restrictive

assumptions are often imposed to circumvent those situations. Actually, existing studies

tend to be theoretically sophisticated, providing less intuitive understanding to appreciate

DRO. This high theoretical threshold renders DRO less accessible to practitioners, further

hindering its applications in the real world.

In this paper, instead of following the mainstream that adopts the dual perspective to

study DRO and to develop solution methods, we take the primal perspective to analyze its

structure. This “new” angle offers prominent advantages that help us address aforemen-

tioned barriers. The remainder of this paper will demonstrate those advantages, with an

emphasis on intuitive understanding and developing general and fast algorithms that dras-

tically outperform the state-of-the-art. We first review the relevant literature in Section

2. Then, Section 3 analyzes and computes the worst-case expected value from the primal

perspective that is more accessible and general. In Section 4, we present the whole computa-

tional algorithm in its basic form for two-stage DRO, with a couple of variants described in

Section 5 to achieve a stronger solution capacity. Section 6 reports and analyzes the results

of numerical experiments, while Section 7 provides the conclusions of this paper.

Notation: We generally denote matrices in upper-case, vectors in bold lower-case and

scalars in lower-case, unless explicitly noted otherwise. Special notations include that: an

upper-case letter in calligraphic denotes a major set, ˆ generally denotes a subset and ̂
denotes a union of subsets, M represents a sufficiently large positive number, and [n] indicates
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the set of positive integers from 1 to n.

2 Related Research in the Literature

In this section, we review the literature that is most relevant to the work presented in

this paper. Note that over the last 10 years, many studies on two-stage DRO (and those

with more stages) have been published, which involve making recourse decisions after the

randomness is cleared [2]. Consider the following tri-level two-stage DRO formulation

2 − Stg DRO : w∗ =min
x∈X

f1(x) + sup
P∈P

EP[Q(x, ξ)], (1)

where X denotes the feasible set of the first-stage (also known as “here-and-now”) decision

variables x, and ξ the random vector representing the uncertain parameter, and Q(x, ξ) the

value function capturing the optimal value of the second-stage recourse problem

Reco Prob : min
{

f2(x,ξ,y) : y ∈ Y(x, ξ)
}
. (2)

Variables y denote the recourse (also known as “wait-and-see”) decision variables, which

may contain discrete ones, and Y(x, ξ) is their feasible set. We highlight that Q(x, ξ) returns

the optimal value of the recourse problem for given x and ξ, not representing the whole

recourse problem. When the recourse problem is infeasible, i.e., Y(x, ξ) = ∅, Q(x, ξ) is

set to +∞ by convention. Random vector ξ is defined on a measurable space (Ξ,F ) with

Ξ ⊆ Rnξ being the support and F a σ-algebra that contains all singletons in Ξ. It follows

probability distribution P ∈ P where P ⊆ M(Ξ,F ) is a family of probability distributions

and M(Ξ,F ) is the collection of all probability distributions on (Ξ,F ). Note that P, assumed

to be non-empty in this paper, is commonly referred to as the ambiguity set in the DRO

literature.

It can be seen that the fundamental feature that distinguishes DRO from SP or RO is

its ambiguity set. Based on the current literature, ambiguity sets generally can be grouped

into two main categories: moment-based ones and statistical discrepancy-based ones. For

the moment-based ambiguity, the set is usually defined by the moments of ξ across the

entire support Ξ, e.g., [3, 4]. For discrepancy-based ambiguity sets, examples include the

ϕ-divergence ambiguity sets [5, 6] and Wasserstein ambiguity sets [7, 8, 9]. The latter ones

are becoming more popular as they are directly defined with respect to empirical data, a

natural demonstration of the data-driven concept. A few less-investigated ambiguity sets

also do exist in the literature ([2]). We note that, regardless of the structure of Ξ, P is always

represented as a convex set in the existing literature. For sophisticated P that requires a

mixed integer representation, we have not been aware of any study available yet.

Theoretically, two-stage DRO has been proven to be NP-hard in general [10, 11]. To

solve this challenging problem exactly, there exist two types of popular solution strategies.
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One is to reformulate it into single-level (nonlinear) mixed integer programs (MIPs) that

can be directly handled by existing solvers or computational algorithms, e.g.,[8, 9, 12, 13].

Nevertheless, those reformulations are generally with very large (often infinite) number of

variables and/or constraints. Directly computing them turns out to be practically infeasible.

Hence, another strategy is to develop decomposition algorithms so that variables and/or

constraints are introduced on the fly to reduce the computational burden, e.g., [14, 15,

16, 17, 18, 19]. It is worth highlighting that the fundamental idea underlying those two

strategies is to leverage the duality results of the integration-based convex problems (i.e.,

the sup part in (1)) to reduce it to a monolithic formulation [7, 8, 9, 20, 21].

Regarding decomposition algorithms, they are generally designed with a master-subproblem

framework that runs iteratively before convergence. Similar to the case of RO [22], those

algorithms can be classified into two groups based on the representation of information feed-

back from the subproblem to cut the current solution of the master problem. One group is

Benders-dual (BD) type of algorithms [15, 17, 18, 19, 23], which use the dual information

of the recourse problem and define cutting planes in the form of Benders (optimality) cut.

Another group uses the column-and-constraint (C&CG) method to generate cut represented

by a new replicate of the whole recourse problem [14, 16, 17, 24]. Common to those decom-

position algorithms is that their master problems are augmented over iterations to derive

stronger relaxations and therefore tighter lower bounds for (1). On the other hand, the best

feasible solution found so far provides an upper bound. Once those two bounds meet or are

with a sufficiently small difference, the optimal value and an optimal first stage solution to

2 − Stg DRO in (1) are obtained.

While those decomposition algorithms are iterative, they, by making use of professional

MIP solvers to compute master and subproblems, often demonstrate significantly better com-

putational performance than directly computing DRO’s monolithic reformulations. Also, the

emerging features of those solvers, such as lazy constraints and the ability to handle bilinear

constraints, can be leveraged to increase our solution capacity to address more complex

practical problems. In addition to those general and exact methods, several algorithms that

handle special structures (e.g., [25]) or compute approximate solutions (e.g., [26, 27, 28]) have

also been investigated in the literature, which are beyond the scope of this paper. Regardless

of the aforementioned many efforts on developing algorithms for general 2 − Stg DRO, we

note that the following fundamental issues remain unsolved or seriously underinvestigated.

(i) No existing algorithm has addressed the feasibility (equivalently the infeasibility) issue

of the recourse problem yet, noting that in general some x may render (2) infeasible under

some scenario ξ ∈ Ξ. This challenge has always been circumvented by assuming that Q(x, ξ)
is finite for any x ∈ X and ξ ∈ Ξ combination. Nevertheless, such a strategy is not realistic or

practically acceptable for many real-world systems (e.g., critical infrastructure systems), as

decision makers might be required to identify an x that guarantees the feasibility of (2) with

respect to P. Moreover, we note from our numerical studies that addressing the feasibility
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issue in the context of DRO could be computationally much more demanding.

(ii) No study has been performed on complex ambiguity sets that are non-convex. Such type

of ambiguity sets may happen if data come from different sources and they are rather not

consistent, which nevertheless can be represented by employing mixed integer sets. Actually,

due to their non-convexity, we believe that simply taking the dual perspective, which is

behind current reformulations or solution algorithms, to handle this type of ambiguity sets

is not a valid or viable direction. Hence, it would be necessary to extend our solution

capacity to solve 2 − Stg DRO with mixed integer ambiguity sets.

Also, as noted, existing studies on DRO heavily rely on sophisticated mathematical

concepts and derivations with different assumptions or conditions. It is desired to develop

simpler, more intuitive, and general reasoning and analyses, which will undoubtedly inspire

more scholars and practitioners to study and apply DRO. Indeed, a recent study [29] has

made an effort to simplify complex mathematical derivations in the context of Wasserstein

ambiguity set based DRO, aiming to provide a better accessibility and applicability. The

last and probably the most important issue is our rather limited computational capacity to

handle general, large-scale and practical DRO instances, which is significantly inferior to

what we currently have for instances of SP and RO.

In this paper, we make an effort to address those critical challenges from the primal per-

spective. Rather than relying on the duality of convex programs constructed on P to develop

analytical insights and computational methods, we adopt a rather simple approach to di-

rectly compute the worst-case expected value (WCEV) and leverage it to solve 2 − Stg DRO.

It is worth noting that this strategy offers us three key advantages. First, it helps us estab-

lish a clear and intuitive understanding of DRO that facilitates its applications in practice.

Second, it allows us to directly investigate and attack more challenging structures that might

not be approachable by existing methods. Third, it provides new opportunities to develop

stronger and more general solution algorithms. The remainder of this paper will showcase

those advantages in our analyses and algorithm development.

3 Computing the WCEV from the Primal Perspective

In this section, we consider a core structure and challenge embedded in solving 2 − Stg DRO,

i.e., how to compute the worst-case expected value with respect to P. Since we do not assume

any particular value of x, we ignore x in all derivations and analyses of this section to simplify

our exposition.

The basic intuitions behind our study and algorithm design are: (i) Generally any prob-

ability distribution can be represented or approximated with an arbitrary accuracy by a

discrete probability distribution; (ii) The WCEV over an ambiguity set can be obtained by

solving a typical finite mathematical program or by customizing and implementing some

well-known optimization algorithms.
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3.1 Expected Value and Worst-Case Expected Value

In this subsection, we present some results regarding the computations of the expected value

for any distribution and the WCEV over a set of probability distributions. Different from

the current mainstream understandings obtained from a dual perspective, those results are

derived by directly taking the primal perspective to appreciate those two expected values.

They also provide theoretical support for us to develop corresponding algorithms. Recall

that M(Ξ,F ) denotes the collection of probability distributions on (Ξ,F ), and consider a

real-valued function Q(ξ) defined on Ξ. For the remainder of this paper, we make a couple

of very mild assumptions.

Assumption 1. (i) Support Ξ is a closed and bounded set; (ii) Q(ξ) > −∞ for ξ ∈ Ξ.

We mention that after x is introduced in Section 4, the second part of this assumption

is revised to Q(x, ξ) > −∞ for x ∈ X and ξ ∈ Ξ. Next, we consider the general integration

based expected value for an arbitrary continuous distribution.

Theorem 1. Assume that Q(Ξ) is Lebesgue integrable over Ξ ≡ {ξ ∈ Ξ : Q(ξ) < +∞}.

Let
(
ξ(n),P(ξ(n))

)
denote a discrete probability distribution over ξ(n) ≡

(
ξ1(n), . . . , ξn(n)

)
with P(ξ(n)) ≡

(
p(ξ1(n)), . . . , p(ξn(n))

)
being the associated probability. For any probability

distribution P ∈ M(Ξ,F ), there exists a sequence of discrete probability distributions in the

form of
{(

ξ(n),P(ξ(n))
)}+∞

n=1

such that

EP[Q(ξ)] =
∫
ξ ∈Ξ

Q(ξ)P(dξ) = lim
n→+∞

n∑
j=1

Q
(
ξj(n)

)
p(ξj(n)). □

We note that Theorem 1 is rather mathematically intuitive. It indicates that we may

be able to replace the integration operation with a weighted sum over a set of discrete

scenarios, which should be computationally much more friendly. Actually, if we aim to

compute the WCEV over a family of distributions, i.e., the ambiguity set underlying DRO,

it has been reported that the worst-case one may reduce to a discrete probability distribution.

Next, we consider the following ambiguity set that generalizes all known moment-based and

Wasserstein ambiguity sets adopted in the DRO literature.

P =
{
P ∈ M(Ξ,F ) :

∫
Ξ

P(dξ) = 1,
∫
Ξ

ψi(ξ)P(dξ) ≤ γi ∀i ∈ [m]
}
. (3)

Function ψi(·) is real valued and bounded on Ξ for i = 1, . . . ,m. With this ambiguity set, we

define the following optimization problem to compute the WCEV.

WCEV : sup
P∈P

EP[Q(ξ)]≡sup
{ ∫
Ξ

Q(ξ)P(dξ) : P ∈ P
}
. (4)

When Ξ is a finite discrete set, we have P ≡ (p1, . . . , pn) with n = |Ξ|. And the integration in
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(3) and (4) reduces to summation. As the analysis for this case is simpler, we, unless noted

otherwise, mainly present our derivations and analyses for the case where |Ξ| is not finite.

We mention that those results, with little or minor changes, are naturally applicable when

|Ξ| is finite.

Remark 1. It is clear that an ambiguity set defined by moment inequalities is a special

case of (3). Also, an ambiguity set defined by Wasserstein metric, as explained in Section

5.1, belongs to (3). Regarding a ϕ-divergence-based ambiguity set, we can approximate ϕ,

a non-negative and convex function, by a piece-wise linear one with an arbitrary accuracy.

As a result, its mathematical representation is also in the form of (3). □

Consider an arbitrary P ∈ P and let ε be a sufficiently small positive constant. Follow-

ing the proof of Theorem 1 in Appendix A.1, it is easy to see that we can always identify a

partition of Ξ for ψi and derive a discrete distribution that approximates P with a violation

of γi up to ε. By taking the intersection of those partitions for Q and ψi for i ∈ [m], a

finer partition yielding a stronger approximation to P with less violation of all γi’s will be

obtained. Such a construction procedure leads to the next result readily that allows us to

leverage a sequence of discrete distributions to compute WCEV formulation with an arbi-

trary accuracy. Before that, we define that a discrete probability distribution
(
ξ(n),P(ξ(n))

)
is ε-feasible to P if

n∑
j=1

p(ξj(n))ψi(ξj(n)) ≤ γi+ε for i ∈ [m]. Moreover, it is an ε-approximation

to P ∈ P if
�� ∫
Ξ

Q(ξ)P(dξ) −
n∑
j=1

p(ξj(n))Q(ξj(n))
�� ≤ ε.

Corollary 2. Suppose that sup
P∈P

EP[Q(ξ)] is finite. (i) For every P ∈ P, there exists an

ε-feasible discrete distribution, denoted by
(
ξ(n),P(ξ(n))

)
, that is an ε-approximation to

P. (ii) There exists an ε-feasible discrete distribution, denoted by
(
ξ′(n),P′(ξ′(n))

)
, that is

ε-optimal to the WCEV formulation, i.e.,

�� sup
P∈P

EP[Q(ξ)] −
n∑
j=1

p′(ξ ′j(n))Q(ξ ′j(n))
�� ≤ ε. □

Note that the result in Corollary 2 holds in general as it does not require any restrictive

condition. Yet, if an actual solution to the WCEV problem is desired, Corollary 2 does

not help to ensure the existence of an optimal P or to obtain a discrete distribution that

is feasible and (ε-)optimal. Next, we present some sufficient conditions that substantially

support us on those issues.

Theorem 3. Suppose Q(·) is an upper semicontinuous function, and ψi(·) are lower semi-

continuous functions over Ξ for i ∈ [m]. The optimal value of WCEV can be attained, i.e.,

sup
P∈P

EP[Q(ξ)] = max
P∈P

EP[Q(ξ)]. Moreover, if P has an interior point P0 and function g(t),

7



defined as:

g(t) = sup
P∈M(Ξ,F)

{ ∫
Ξ

Q(ξ)P(dξ) :
∫
Ξ

P(dξ) = 1,
∫
Ξ

ψi(ξ)P(dξ) ≤ γi − t ∀i ∈ [m]
}
,

is continuous at t = 0, there exists a sequence of discrete probability distributions such that

their associated expected values of Q(·)’s converge to max
P∈P

EP[Q(ξ)]. □

Proof. We start with the proof for the first statement. Since Ξ is a compact metric space

and Q(·) is upper semicontinuous, Q(·) is bounded and the set of all probability measures

P(Ξ) on (Ξ,F ) is weakly compact. Let {Pk}k ⊆ P(Ξ) be a sequence converging weakly to

P∞ ∈ P(Ξ). According to Portmanteau Theorem, given that ψi(·) are lower semicontinuous

and bounded from below on Ξ for i ∈ [m], we have

lim inf
k→∞

∫
Ξ

ψi(ξ)Pk(dξ) ≥
∫
Ξ

ψi(ξ)P∞(dξ),

indicating that P 7→
∫
Ξ
ψi(ξ)P(dξ) is weakly lower semicontinuous on P(Ξ). Given that the

pre-image of (−∞, γi] under a lower semicontinuous mapping are closed for i ∈ [m], Pγi ={
P ∈ P(Ξ) :

∫
Ξ
ψi(ξ)P(dξ) ≤ γi

}
are weakly closed for i ∈ [m]. As P =

⋂
i∈[m]

Pγi ⊆ P(Ξ), P is

weakly closed and tight, i.e., P is weakly compact. Applying Portmanteau Theorem again,

we can conclude that P 7→
∫
Ξ

Q(ξ)P(dξ) is weakly upper semicontinuous on P. Therefore,

by Weierstrass’ Theorem, the optimal value of WCEV problem can be attained.

We next prove the second statement. Our proof depends on the construction of an

auxiliary sequence of measures {Pk}k :

Pk = argmax
P∈M(Ξ,F)

{ ∫
Ξ

Q(ξ)P(dξ) :
∫
Ξ

P(dξ) = 1,
∫
Ξ

ψi(ξ)P(dξ) ≤ γi −
∆

k
∀i ∈ [m]

}
(5)

where ∆ is a fixed value that ensures the feasible set of (5) is consistent for all k, i.e., (5)

is feasible, and thus Pk ’s are attained for any k. Note that ∆ can always be found given

the existence of interior point P0. Clearly, the sequence,
{ ∫
Ξ

Q(ξ)Pk(dξ)
}
k
, is monotonically

increasing and bounded above by the optimal value of WCEV problem. Because of the

continuity of g(t) at t = 0 and the monotone convergence theorem, we have

lim
k→∞

∫
Ξ

Q(ξ)Pk(dξ) = max
P∈P

EP[Q(ξ)].

Using the argument presented before Corollary 2, for Pk , we can obtain a discrete dis-

tribution based on a partition {Ξj(nk)}j of Ξ that satisfies

both lim
nk→+∞

nk∑
j=1

Q
(
ξj(nk)

)
p
(
ξj(nk)

)
=

∫
Ξ

Q(ξ)Pk(dξ)
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and lim
nk→+∞

nk∑
j=1

ψi
(
ξj(nk)

)
p
(
ξj(nk)

)
=

∫
Ξ

ψi(ξ)Pk(dξ).

For the discrete distribution associated with Pk , we let

Nk = min
{

nk :
��� nk∑
j=1

Q
(
ξj(nk)

)
p
(
ξj(nk)

)
−
∫
Ξ

Q(ξ)Pk(dξ)
��� ≤ ∆

k
,

��� nk∑
j=1

ψi
(
ξj(nk)

)
p
(
ξj(nk)

)
−
∫
Ξ

ψi(ξ)Pk(dξ)
��� ≤ ∆

k
∀i ∈ [m]

}
.

Claim: All discrete distributions in
{(

ξ(Nk),P(ξ(Nk))
)}+∞

k=1

are feasible and

lim
k→∞

Nk∑
j=1

Q
(
ξj(Nk)

)
p
(
ξj(Nk)

)
= max

P∈P
EP[Q(ξ)].

Proof of Claim: Obviously, any discrete distribution in
{(

ξ(Nk),P(ξ(Nk))
)}+∞

k=1

is feasible as

it satisfies all constraints in P. For every ε > 0, there is k(ε) such that for all k ≥ k(ε), we

have

���max
P∈P

EP[Q(ξ)] −
Nk∑
j=1

Q
(
ξj(Nk)

)
p
(
ξj(Nk)

) ��� ≤
���max
P∈P

EP[Q(ξ)] −
∫
Ξ

Q(ξ)Pk(dξ)
���

+

��� ∫
Ξ

Q(ξ)Pk(dξ) −
Nk∑
j=1

Q
(
ξj(Nk)

)
p
(
ξj(Nk)

) ��� ≤ ε.

The first inequality follows from the triangle inequality. As for the second inequality, the

convergence of
{ ∫
Ξ

Q(ξ)Pk(dξ)
}
k

guarantees the difference between two integrals is not more

than ε
2 . Furthermore, by the definition of Nk and

{(
ξ(Nk),P(ξ(Nk))

)}+∞
k=1

, the difference

between the sum and the integral can be made no more than ε
2 when k(ε) ≥ 2∆

ε , which

results in the second inequality. Hence, the claim holds when k → +∞.

With this claim proved, the second statement of this theorem follows directly. □

By simply making use of Theorems 1 and 3, we have the next result.

Corollary 4. Assuming that all the sufficient conditions in Theorem 3 hold, the next

formulation is equivalent to WCEV problem in (4).

max
P∈P

EP[Q(ξ)] = lim
n→∞

max(
ξ(n),P(ξ(n))

) { n∑
j=1

Q
(
ξj(n)

)
p(ξj(n)) : P ∈ P, ξj(n) ∈ Ξ ∀ j ∈ [n]

}
(6)
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Proof. By the definition of WCEV problem, it is clear that

max
P∈P

EP[Q(ξ)] ≥ lim
n→∞

max
{(ξj (n),p(ξj (n)))}nj=1

{ n∑
j=1

Q(ξj(n))p(ξj(n)) : P ∈ P, ξj(n) ∈ Ξ ∀ j ∈ [n]
}
.

According to Theorem 3, there exists a sequence of discrete distributions in P such that

max
P∈P

EP[Q(ξ)] = lim
n→∞

n∑
j=1

Q(ξ̃j(n))p̃(ξ̃j(n)). Given that

n∑
j=1

Q(ξ̃j(n))p̃(ξ̃j(n)) ≤ max
{(ξj (n),p(ξj (n)))}nj=1

n∑
j=1

Q(ξj(n))p(ξj(n)),

we have

max
P∈P

EP[Q(ξ)] ≤ lim
n→∞

max
{(ξj (n),p(ξj (n)))}nj=1

{ n∑
j=1

Q(ξj(n))p(ξj(n)) : P ∈ P, ξj(n) ∈ Ξ ∀ j ∈ [n]
}
.

Hence, the desired result simply follows. □

Actually, it is worth highlighting that WCEV problem in (4) can be seen as an infinite-

column linear program. Under some little bit stronger conditions, a more insightful result

has been derived [20]: WCEV problem, if subject to equality constraints in (3) and with a

finite optimal value, has an optimal solution that has at most (m+1) scenarios with non-zero

probabilities. This insight actually is verified in our numerical result presented in Section 6.

Extending and making use of this result, we can build a finite mathematical program (FMP)

that is concise and helps to solve WCEV problem exactly.

Proposition 5. Suppose Q(·) is upper semicontinuous and ψi(·) are continuous over Ξ for

i ∈ [m]. The WCEV, i.e., the optimal value of WCEV problem, is attainable and can be

obtained by solving the following FMP

WCEV − FMP : max
{ m+1∑

j=1
Q(ξj)pj :

m+1∑
j=1

pj = 1,
m+1∑
j=1

ψi(ξj)pj ≤ γi ∀i ∈ [m],

ξj ∈ Ξ ∀ j ∈ [m + 1], pj ≥ 0 ∀ j ∈ [m + 1]
}
.

(7)

Its optimal solution, denoted by (P∗, ξ∗) with P∗ ≡ (p∗1, . . . , p∗m+1) and ξ∗ ≡ (ξ∗1, . . . , ξ∗m+1), is

then feasible and optimal to WCEV problem. □

Proof. Given that ψi(·) for i ∈ [m] are continuous, according to Theorem 3, the optimal

value of the original WCEV in (4) can be attained. Let P′(Ξ) be an optimal solution and

compute γ′i =
∫
Ξ
ψi(ξ)P′(dξ) for i ∈ [m]. Then, the original WCEV problem is equivalent to

the following one with (m + 1) equality constraints.

max
P∈M(Ξ,F)

{ ∫
Ξ

Q(ξ)P(dξ) :
∫
Ξ

P(dξ) = 1,
∫
Ξ

ψi(ξ)P(dξ) = γ′i ∀i ∈ [m]
}
. (8)
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According to Richter-Rogosinski Theorem [20], (8) has an optimal distribution with a sup-

port of at most (m + 1) scenarios. Clearly, it is also feasible and optimal to the original

WCEV problem. Consequently, WCEV reduces to WCEV − FMP, and an optimal solution

to WCEV − FMP solves WCEV. □

Remark 2. (i) We mention that, compared to the integration-based WCEV formulation,

both (6) and (7) are more accessible. The finite nonlinear program WCEV − FMP certainly

allows us to take advantage of many existing mathematical programming tools or results. For

example, a strong nonlinear programming solver or algorithm can be readily used as an oracle

to compute WCEV − OPT if the incorporation of Q(x) and ψi is computationally friendly.

Indeed, even if the oracle is a fast approximation or heuristic one, i.e., the exactness of the

derived (P∗, ξ∗) cannot be guaranteed, it provides a basis for applying more sophisticated

procedures for refinements. On the other hand, (6) indicates that in general we can gradually

augment ξ(n) and associated P(ξ(n)) to approach WCEV arbitrarily.

(ii) We would like to highlight the critical advantage of the primal representation demon-

strated by (6) and (7) in handling much more complex and general ambiguity sets. Note

that Corollary 4 does not require P to be convex in P. It is very different from the existing

duality-based methodologies to compute WCEV problem. Indeed, if P is a linear mixed

integer set and an upper bound on the number of its constraints is known, it is viable to

construct the corresponding WCEV − FMP to compute WCEV. Certainly, solution proce-

dures for mixed integer nonlinear programs are needed. Such a general situation is addressed

in Section 5.2. □

Nevertheless, we mention that WCEV − FMP is a challenging non-convex program,

given the bilinear terms between P and Q(ξ) or ψi(ξ) in (7). Actually, in the context of

2 − Stg DRO, value function Q(ξ) represents the recourse cost, which is a complex function

of ξ and renders WCEV − FMP computationally very intractable. Even just with first mo-

ment constraints, we observe that it could take an extremely long time for a state-of-the-art

professional solver to solve small-scale instances. Hence, regardless of its simplicity and

compactness, WCEV − FMP is still difficult. On the other hand, (6) inspires us to develop

computationally effective procedures to compute WCEV problem (including its variants).

3.2 A Decomposition Algorithm for WCEV Problem

In the remainder of this paper, we assume, unless noted otherwise, the sufficient conditions

presented in Proposition 5 to ensure the attainability of the WCEV. Rather than treating

ambiguity set P as a whole set, we consider its sample space and the probability distribution

in a separate fashion. Recall that ξn ≡ (ξ1, . . . , ξn) represents a pool of discrete scenarios,

and P(ξn) ≡
(
p(ξ1), . . . , p(ξn)

)
∈ P(ξn) ⊆ P is a discrete probability distribution and the

subset of P defined on ξn. Also, the optimal value of an infeasible maximization problem
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is conventionally set to −∞. The next result directly follows from the σ-algebra of Ξ and

Corollary 4.

Corollary 6. For WCEV problem, i.e., max
P∈P

EP[Q(ξ)], we have

max
P∈P

EP[Q(ξ)] ≥ max
ξn⊆Ξ

max
P(ξn)∈P

n∑
j=1

Q(ξj)p(ξj) ≥ max
P(ξ0

n)∈P(ξ0
n)

n∑
j=1

Q(ξ0
j )p(ξ0

j ), (9)

where ξ0
n ≡ {ξ0

1 , . . . , ξ
0
n } is a set of fixed scenarios. □

The non-convex program in the middle of (9) actually equals the WCEV if n ≥ m + 1.

The rightmost optimization problem, although just providing a lower bound, is a very simple

linear program (LP) in P.

Remark 3. It is worth highlighting that the lower bound from that LP in (9) is the strongest

one we can have for given ξ0
n. That is, if its strength with respect to max

P∈P
EP[Q(ξ)] is weak,

ξ0
n should be expanded by including additional nontrivial scenarios. Computationally, we

can start with a small-sized ξ0
n and then gradually expand it for stronger lower bounds. □

Actually, if the expansion of ξ0
n can be managed appropriately, the optimal value of that

LP approaches max
P∈P

EP[Q(ξ)] exactly or with an arbitrary accuracy, which corresponds to

the limit operation presented in Corollary 4. We mention that such an expansion process can

be realized by customizing the well-known column generation (CG) algorithm, a classical

decomposition method proposed to solve large-scale LPs [30, 31, 32, 33]. Next, we first

present the explicit form of the LP in (9), referred to as the pricing master problem (PMP)

in the remainder of this paper.

PMP : η∗(ξ0
n) = max

{ n∑
j=1

Q(ξ0
j )p(ξ0

j ) :
n∑
j=1

p(ξ0
j ) = 1,

n∑
j=1

ψi(ξ0
j )p(ξ0

j ) ≤ γi ∀i ∈ [m],

p(ξ0
j ) ≥ 0 ∀ j ∈ [n]

}
.

(10)

Let α and β ≡ [β1, . . . , βm] be dual variables of its constraints, respectively. Supposing that

PMP is feasible and its shadow prices are (α∗,β∗), the corresponding pricing subproblem

(PSP) to derive a new scenario with the largest reduced cost is

PSP : v∗(ξ0
n) = max

ξ ∈Ξ
Q(ξ) − α∗ −

m∑
i=1

ψi(ξ)β∗i . (11)

Next, we provide an estimation on the strength of the lower bound derived from ξ0
n.

Proposition 7. Suppose that PMP is feasible and both PMP and PSP are solved to

optimality. We have

η∗(ξ0
n) ≤ max

P∈P
EP[Q(ξ)] ≤ η∗(ξ0

n) + v∗(ξ0
n). □

Proof. Note that it is sufficient to prove the second inequality. From PSP in (11), it can be
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seen that v∗(ξ0
n) + α∗ ≥ max

ξ ∈Ξ
Q(ξ) −

m∑
i=1

ψi(ξ)β∗i , or equivalently

v∗(ξ0
n) + α∗ ≥ Q(ξ) −

m∑
i=1

ψi(ξ)β∗i ∀ξ ∈ Ξ.

On the other hand, noting that (4) is an infinite-column linear program with the strong

duality [20], we have its dual problem

min
{
α +

m∑
i=1

βiγi : α +
m∑
i=1

ψi(ξ)βi ≥ Q(ξ) ∀ξ ∈ Ξ, α free, βi ≥ 0 ∀i ∈ [m]
}
.

Clearly, by setting α = v∗(ξ0
n) + α∗ and βi = β

∗
i for all i, we obtain a feasible solution to the

dual problem. Hence, we have

max
P∈P

EP[Q(ξ)] ≤ v∗(ξ0
n) + α∗ +

∑
i

β∗γi = v∗(ξ0
n) + η∗(ξ0

n),

where the last equality follows from the strong duality of PMP. □

According to Proposition 7, for a given ξ0
n (and hence PMP and PSP are given), if the

optimal value of PSP is 0, η∗(ξ0
n) equals the WCEV. Otherwise, denoting PSP’s optimal

solution by ξ∗, we can augment ξ0
n by including ξ∗ and recompute PMP. This process is

repeated until the reduced price becomes sufficiently small, which is the basic idea of CG

algorithm. For simplicity, we refer to the approach directly constructing WCEV − FMP and

solving it by some stand-alone method(s) as Oracle-1, and one using an iterative procedure

as Oracle-2. In the context of this paper, Oracle-2 is just the following customized CG

algorithm. Note that we do not include subscript n, unless we need to track the number of

scenarios in ξ0.

Oracle-2: The CG Algorithm to Compute the WCEV

Step 1 Given initial ξ0 and optimality tolerance ε, set the iteration counter k = 1.

Step 2 Solve PMP to derive optimal value ηk∗(ξ0) and shadow price (α∗,β∗).
Step 3 Solve PSP to derive its optimal solution ξ∗ and optimal value v∗(ξ0).

Step 4 If v∗(ξ0
n) ≤ ε, report ηk∗(ξ0) as the optimal value of (4) and terminate. Otherwise,

update ξ0 = ξ0 ∪ {ξ∗} and k = k + 1, and go to Step 2.

We mention that, as an algorithm from the primal perspective to compute WCEV prob-

lem, it generates a set of discrete scenarios and their respective probabilities. As discussed

next, this algorithm brings us several important features that can be further explored.

Remark 4. (i) Similar to WCEV − FMP, this CG algorithm mainly works in the primal

space and is general in handling different ambiguity sets. Even if P is a mixed integer set, for

which the strong duality-based approaches do not work, it is feasible to compute the WCEV

by the extension of Oracle-2, i.e., the well-established Brand-and-Price (B&P) algorithm.
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Alternatively, we propose a new CG variant in Section 5.2 to handle such ambiguity sets

without developing B&P procedures.

(ii) At the termination, we also have

ηk∗(ξ0) = max
{ ∑
ξ ∈ξ0

Q(ξ)p(ξ) : (pξ )ξ ∈ξ0 ∈ P
}
. (12)

By Proposition 7, the WCEV is bounded by
¯
ηk∗(ξ0) + ε at termination. Instead of utilizing

a time-consuming oracle to solve PSP exactly, this observation allows us to develop a fast

approximation algorithm for complex PSP and hence for the WCEV, as long as its approx-

imation bound is available.

(iii) Compared to directly computing the nonlinear program WCEV − FMP by a professional

solver, Oracle-2 demonstrates a superior capacity that is generally faster by multiple orders

of magnitude. Actually, it is rather a vanilla version of CG. More advanced implementation

techniques, after customization to fit into the DRO context, should be able to help us ac-

celerate the computation or the convergence.

(iv) Although Oracle-2 is currently faster by several orders of magnitude, we anticipate

that this situation may change with the development of specialized techniques to improve

Oracle-1. Yet, the applicability of Oracle-2 is less restrictive, as it does not depend on the

number of scenarios that are with non-zero probabilities as represented in Proposition 5. □

According to the CG literature, it is not restrictive to assume that PMP is feasible,

as a modified CG based on Farka’s Lemma can generate new scenarios (i.e., columns) to

ensure it to be feasible. Alternatively, as shown in Section 4.1, the algorithm framework for

2 − Stg DRO can be used to address this issue of infeasible PMP. In the next subsection,

we consider the convergence issue of Oracle-2 and its computational complexity.

3.3 Convergence and Complexity of Oracle-2

Without loss of generality, we assume ξ0 = ∅ at the initialization. Since Oracle-2 derives

optimal ξ∗ from PSP and updates ξ0 = ξ0 ∪ ξ∗ in each iteration, a sequence
{
ηk∗(ξ0)

}
k
,

consisting of optimal values of PMPs, can be found. As it can be easily recovered, we omit

ξ0 when appropriate to simplify our arguments, unless otherwise stated. The next theorem

reveals the relationship between the limit of
{
ηk∗

}
k

and the WCEV.

Lemma 8. Assuming that max
P∈P

EP[Q(ξ)] exists and an ε-optimal solution of WCEV problem

can be derived in finite iterations for ε > 0,
{
ηk∗

}
k

converges to max
P∈P

EP[Q(ξ)]. □

Proof. Consider the simple case where Oracle-2 terminates with v∗ = 0 in the kt -th iteration

and hence it involves kt − 1 different ξ’s. According to Proposition 7, we obtain the optimal

value of WCEV problem, which leads the conclusion. Next, we consider the other case where

an ε−optimal solution of WCEV problem can be retrieved in finite iterations.
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According to Corollary 4, for any given ε > 0, there exists an integer K such that

max
P∈P

EP[Q(ξ)] − ε < ηK∗ ≤ max
P∈P

EP[Q(ξ)].

Otherwise maxP∈P EP[Q(ξ)] − ε would be an upper bound of {ηk∗}k , which contradicts the

derivation of an ε−optimal solution by Oracle-2. Because ε can be arbitrarily small, {ηk∗}k
is increasing with k, and because of the monotone convergence theorem,

lim
k→+∞

ηk∗ = max
P∈P

EP[Q(ξ)],

which is the expected conclusion. □

The next theorem shows that we actually can always find an optimal or ε-optimal solution

of WCEV problem in finite iterations under some mild conditions. Before that, consider a

continuous function f : X × Y → R, for y ∈ Y and for any ε > 0, if there exists a δ > 0,

such that

| f (x1,y) − f (x2,y)| ≤ ε if ‖x1 − x2‖ ≤ δ for x1,x2 ∈ X,

we say that f (x,y) is continuous, uniformly with respect to x for y ∈ Y.

Theorem 9. Assume that the reduced cost function, i.e., r(ξ;α,β) ≡ Q(ξ) − α −
m∑
i=1

ψi(ξ)βi,

is continuous, uniformly with respect to ξ over Ξ for β ≥ 0. Then, Oracle-2 returns an

optimal or ε-optimal solution of WCEV problem in finite iterations. □

Proof. According to the assumption, for any ε > 0, there exists a δ > 0 such that

|r(ξ1;α,β) − r(ξ2;α,β)| ≤ ε if ‖ξ1 − ξ2‖ ≤ δ for ξ1, ξ2 ∈ Ξ,β ≥ 0.

Let B(ξ1, δ) denote the closed ball with radius δ at ξ1 ∈ Ξ, i.e., B(ξ1, δ) = {ξ2 ∈ Ξ, ‖ξ1 − ξ2‖ ≤

δ}. We consider the following claim.

Claim: In any particular iteration with associated ξ0, Oracle-2 either solves WCEV problem

to an optimal or ε-optimal solution, or produces a new scenario ξ∗ that is not contained in

ball B(ξ, δ) for any ξ ∈ ξ0.

Proof of Claim: Recall (α∗,β∗) denotes the shadow price obtained from computing PMP.

We prove this claim by contradiction.

Suppose that scenario ξ∗ with r(ξ∗;α∗,β∗) is identified by PSP. Note that it is sufficient

to assume that r(ξ∗;α∗,β∗) > ε, since otherwise it is an optimal or ε-optimal solution of

WCEV problem by Proposition 7. Assume further that it is contained in ball B(ξ ′, δ) for

some ξ ′ ∈ ξ0. We have

v∗(ξ0) =r(ξ∗;α∗,β∗)

=r(ξ∗;α∗,β∗) − r(ξ ′;α∗,β∗) + r(ξ ′;α∗,β∗)
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=|r(ξ∗;α∗,β∗) − r(ξ ′;α∗,β∗)| + r(ξ ′;α∗,β∗)

≤ε + r(ξ ′;α∗,β∗)

≤ε.

The second equation holds due to an identity transformation, the third follows from the fact

that r(ξ ′;α∗,β∗) ≤ 0 and the first inequality follows the definition of uniformly continuous

function. The last inequality, which is valid due to the fact that r(ξ;α∗,β∗) ≤ 0 for ξ ∈ ξ0,

clearly contradicts to our first assumption.

With the aforementioned contradiction, we can conclude that either ξ0 (and the asso-

ciated probabilities) is an optimal or ε-optimal solution of WCEV problem, or ξ∗ is not

contained in ball B(ξ, δ) for any ξ ∈ ξ0. □

It simply follows from the claim that the distance between any two scenarios in Ξ0 is

more than δ, indicating the two balls centered at them with δ
2 -radius are disjoint. Let V( δ2 )

denote the volume of such a ball. Given that Ξ is compact, it is clear that Ξ is contained

in a ball centered at some ξ0 ∈ Ξ with radius d̂. Consequently, B(ξ0, d̂ + δ
2 ) is compact, and

its volume, denoted by V(d̂ + δ
2 ), is finite. Because V(d̂ + δ

2 )/V( δ2 ) is finite, it follows that an

optimal or ε-optimal solution of WCEV problem can be found by Oracle-2 within a finite

number of iterations, bounded by
⌈
V(d̂ + δ

2 )/V( δ2 )
⌉
. □

Next, we consider some special case where an optimal solution is guaranteed to be ob-

tained within finite iterations.

Corollary 10. Assume that Ξ is a polytope, Q(ξ) is convex and ψi(ξ) are concave over Ξ

for i ∈ [m]. Let XV(Ξ) be the set of extreme points of Ξ. Then, Oracle-2 terminates with an

optimal solution to WCEV problem within |XV(Ξ)| iterations. □

Proof. We note that, under the aforementioned assumptions, an optimal solution to PSP in

(11) is an extreme point of Ξ, i.e., it belongs to XV(Ξ). Moreover, it can be seen from the

proof of Theorem 9 that a new extreme point of Ξ, which is not contained in ξ0, will be

identified and then used to update ξ0 in each iteration before Oracle-2 terminates.

Given that XV(Ξ) is a finite set, the expected conclusion follows. □

Remark 5. (i) Actually, results of Theorem 9 can be extended to handle some discontinuous

r(ξ;α,β). For example, as long as r(ξ;α,β) is uniformly continuous within each subset of a

finite partition of Ξ for β ≥ 0, where Proposition 5 does not hold, an ε-optimal solution for

WCEV problem can still be found within finite iterations.

(ii) As discussed, ψi(·) functions are continuous over Ξ for ambiguity sets defined by moment

inequalities and Wasserstein metric, which render Theorem 9 to hold when Q(·) guarantees

r(ξ;α,β) uniformly continuous over Ξ for β ≥ 0. Moreover, in the case where Ξ is a polytope

and P involves the first moment inequalities, the second moment inequalities subject to lower

bounds, or the Wasserstein metric restriction defined with L1 norm, optimal ξ∗ of PSP,
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which is to maximize a convex function, can always be obtained at some extreme point of Ξ.

According to Corollary 10, an optimal solution for WCEV problem can be obtained within

finite iterations. □

In the next section, we seek to compute the whole 2 − Stg DRO, and present a decom-

position algorithm that incorporates those primal oracles for WCEV problem.

4 From Computing the WCEV to Solving 2 − Stg DRO

In this section, we present a generally applicable and computationally strong solution scheme

to solve 2 − Stg DRO, along with theoretical analyses on its strength, convergence and com-

putational complexity. Compared to all existing methods in the literature, it enhances our

understanding on DRO and significantly expands and improves our ability to solve practical

instances, particularly those with the challenging infeasible recourse issue.

We highlight that the basic intuitions behind our algorithm design are: (i) For a set of

given scenarios, the worst-case probability distribution can be readily determined by solving

an LP; (ii) Together with the first stage decision making, a simple bilevel optimization prob-

lem can be constructed to obtain a lower-bound approximation of the original 2 − Stg DRO;

(iii) If such lower-bound approximation is not satisfactory, additional scenarios needed to

determine the WCEV can be identified by solving WCEV problem and then are employed

to expand that scenario set through the framework of C&CG.

4.1 Integrating Primal Oracles within C&CG

As noted, different from the current mainstream strategies on solving DRO, our algorithm

development takes the primal perspective: it integrates the oracles for WCEV problem

discussed in the previous section within the C&CG framework, resulting in a simple and

intuitive algorithmic structure that helps its adoption among practitioners.

We say that two formulations are equivalent to each other if they share the same optimal

value, and one’s optimal first-stage solution is also optimal to the other one. With this

definition and by the results in Corollary 4 and Proposition 5, two equivalent reformulations

can be obtained for 2 − Stg DRO.

Proposition 11. For 2 − Stg DRO in (1), we have

w∗ =min
{

f1(x) + η : x ∈ X, η ≥ lim
n→+∞

max
ξj (n)∈Ξ, j∈[n]

max{
n∑
j=1

Q(x, ξj(n))pj : P ∈ P}
}

=min
{

f1(x) + η : x ∈ X, η ≥ max
{ m+1∑

j=1
Q(x, ξj)pj : P ∈ P, ξj ∈ Ξ ∀ j ∈ [m + 1]

}}
. □

Both equivalent reformulations can be treated as bilevel optimization problems with

a non-convex lower-level maximization problem. Note that no closed-form is available to
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characterize the optimal solution set of such lower-level problem to build a single-level re-

formulation further. Indeed, they can easily yield lower bounds to w∗ if we reduce the

lower-level problems to simpler ones, e.g., LPs. Let x∗ denote a fixed first-stage solution.

The resulting lower bound we obtain might not be strong enough to substantiate x∗’s quality,

which may demand us to revise our simplification. Next, we show that, by employing the or-

acles developed for WCEV problem and the C&CG scheme, a complete algorithmic scheme

for 2 − Stg DRO is developed, which ensures an optimal and feasible x∗ can be produced.

4.1.1 Addressing the Challenge of Infeasible Recourse

By convention, we set Q(x, ξ) = +∞ if Y(x, ξ) = ∅, i.e., the recourse problem in (2) is

infeasible. Also, let E denote the event when Y(x, ξ) = ∅ (or equivalently Q(x, ·) = +∞).

Then, by extending the feasibility definition from the deterministic context, we say a first-

stage decision x is almost surely feasible to 2 − Stg DRO if sup
P∈P

P(E) = 0, i.e., the probability

of this event E is 0 for P ∈ P. To implement this concept in computation, we introduce a

supporting problem, whose optimal value corresponds to the status of Y(x, ξ). Specifically,

we assume that Y(x, ξ) ≡
{
y : g(x, ξ,y) ≥ 0

}
and define

Ỹ(x, ξ) ≡
{
(y, ỹ) : g(x, ξ,y) + ỹ ≥ 0, ỹ ≥ 0

}
, (14)

with artificial variable ỹ. Note that Ỹ(x, ξ) , ∅ regardless of x and ξ. With ‖·‖1 denoting

the L1 norm, the supporting problem is

Q̃ f (x, ξ) = min
{
‖ỹ‖1 : (y, ỹ) ∈ Ỹ(x, ξ)

}
. (15)

Since (15) is to minimize the L1 norm of ỹ, the next result follows easily.

Lemma 12. Q̃ f (x, ξ) > 0 iff Q(x, ξ) = +∞. Moreover, x is almost surely feasible to

2 − Stg DRO iff the optimal value of the following problem equals 0.

WCEV(F ) : max
P∈P

EP[Q̃ f (x, ξ)] ≡ max
{ ∫
Ξ

Q̃ f (x, ξ)P(dξ) : P ∈ P
}
. (16)

As a result, the worst-case expected value of Q̃ f (x, ξ) can be used to verify the (almost

surely) feasibility of x, and hence is denoted by WCEV(F ). To keep our notation consistent,

the one presented in (4), after replacing Q(ξ) by Q(x, ξ), is interchangeably referred to as

WCEV(O) as it computes the worst-case expected recourse cost. We mention that when a

mixed integer ambiguity set, denoted by P I , is adopted as the ambiguity set, Lemma 12

still holds. Actually, both WCEV(O) and WCEV(F ), as well as their extensions on P I , can

be computed by the primal oracles developed in the previous section.

Remark 6. When the optimal value of WCEV(F ) equals 0, it has an intuitive interpreta-

tion. That is, the probability over the subset of Ξ satisfying Q̃ f (x, ξ) = 0 equals 1 and the
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probability over its complement 0 for any distribution within P. When the optimal value of

WCEV(F ) is larger than 0, it means that some scenarios become infeasible for the given x

and they have positive probabilities under some distribution in P. For the latter case, the

scenario set generated by a primal oracle should be used within C&CG in a way such that

the current x is cut off, i.e., being excluded from future considerations. Note that in the

remainder of this paper, we say x is feasible means that it is almost surely feasible. □

4.1.2 Primary Components of the C&CG Method for 2 − Stg DRO

The C&CG method for 2 − Stg DRO, which is referred to as C&CG-DRO, involves a master

problem and two subproblems. The master problem is a relaxation of 2 − Stg DRO and yields

a lower bound. Two subproblems, which are for feasibility and optimality, respectively, help

us strengthen the master problem and derive an upper bound.

(I): The Master Problem of C&CG-DRO

The master problem is defined on ξ̂o and ξ̂ f , two sets of fixed scenarios in Ξ. To differentiate

it from the master problem of Oracle-2, we call it the main master problem (MMP). In the

following we first present a form developed using big-M technique, which is rather intuitive

and interpretable. Then, with deep insights, we derive a big-M-free one that is compact and

more rigorous. Hence, they are referred to as MMP1 and MMP2, respectively.

MMP1 :
¯
w = min

x∈X
f1(x) + η (17a)

η ≥ max
{ ∑
ξ ∈ξ̂o

ηoξ poξ : (poξ )ξ ∈ξ̂o ∈ P
}

(17b){
ηoξ = f2(x, ξ,yξ ) +M‖ỹo

ξ ‖1, (yξ , ỹo
ξ ) ∈ Ỹ(x, ξ)

}
∀ξ ∈ ξ̂o (17c)

0 ≥ max
{ ∑
ξ ∈ξ̂ f

η
f
ξ p f

ξ : (p f
ξ )ξ ∈ξ̂ f ∈ P

}
(17d){

η
f
ξ = ‖ỹ f

ξ ‖1, (yξ , ỹ f
ξ ) ∈ Ỹ(x, ξ)

}
∀ξ ∈ ξ̂ f (17e)

We mention that in (17c) Ỹ(·, ·) is employed, instead of original Y(·, ·), and the sum of f2 and

big-M penalized ‖ỹo
ξ ‖1 is assigned to ηoξ . It is worth highlighting that these components are

fundamental in solving 2 − Stg DRO when the feasibility issue arises in the recourse problem.

Consider a scenario ξo in ξ̂o. On one hand, if poξ equals 0, i.e., ξo virtually does not occur,

it is not necessary to have the corresponding Y(·, ξo) being non-empty. Or, alternatively

the choice of x should not be affected by Y(·, ξo). On the other hand, if poξ is positive,

indicating the occurrence of ξo cannot be ruled out, x must render Y(·, ξo) non-empty to

ensure a feasible recourse. Or, alternatively, those causing Y(·, ξo) empty cannot be in any

optimal solution of MMP1. Those two points and the logic behind, which are the nature of

DRO, can be well achieved by making use of artificial variables ỹo
ξ and big-M coefficient M

in (17c).

Note that when poξ = 0, η in (17b) is not affected by ηoξ , and Ỹ(x, ξo) , ∅ for any x.
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Hence, we can conclude that ξo has no impact on MMP1. Also, when poξ > 0, the big-M

penalty term in ηoξ will drive MMP1 to select an x such that ỹo
ξ can be 0, i.e., Y(x, ξo) , ∅.

As a result, (17c) will disqualify x in any optimal solution of MMP1 if it causes the recourse

problem of ξo infeasible. Certainly, if the recourse problem is assumed to be feasible for any

x ∈ X and ξ ∈ Ξ, it is not needed to introduce variable ỹ and set Ỹ.

Remark 7. As the two inequalities in (17b) and (17d) refine the feasible set of x from

optimality and feasibility perspectives, we refer to them as optimality and feasibility cutting

planes, and ξ̂ f and ξ̂o feasibility and optimality sets, respectively. Note that different from

most of classical cutting plane methods that generate new and independent cutting planes

over iterations, MMP1 strengthens either the optimality or the feasibility cutting plane based

on the augmented ξ̂o or ξ̂ f in every iteration. □

By further investigating the critical interaction between a scenario and the associated

probability, we actually can leverage it to eliminate the reliance on big-M. Similar to the

unification idea presented in [22] and [34], the two sets of scenarios, for optimality and

feasibility, respectively, can be merged to have a unified set. By doing so, we let ξ̂ = ξ̂ f ∪ ξ̂o,

through which we can build the following alternative formulation of MMP1.

MMP2 :
¯
w = min

x∈X
f1(x) + η (18a)

η ≥ max
{∑
ξ ∈ξ̂

ηoξ poξ : (poξ )ξ ∈ξ̂ ∈ P
}

(18b)

ηoξ = f2(x, ξ,yξ ) ∀ξ ∈ ξ̂ (18c)

0 ≥ max
{∑
ξ ∈ξ̂

η
f
ξ p f

ξ : (p f
ξ )ξ ∈ξ̂ ∈ P

}
(18d)

η
f
ξ = ‖ỹξ ‖1 ∀ξ ∈ ξ̂ (18e)

(yξ , ỹξ ) ∈ Ỹ(x, ξ) ∀ξ ∈ ξ̂ (18f)

Proposition 13. MMP2 is a valid relaxation and provides a lower bound to 2 − Stg DRO.

Proof. We first extend MMP1 by considering ξ̂ that leads to the following auxiliary formu-

lation.

MMPa
1 :

¯
w = min

x∈X
f1(x) + η (19a)

η ≥ max
{∑
ξ ∈ξ̂

ηoξ poξ : (poξ )ξ ∈ξ̂ ∈ P
}

(19b){
ηoξ = f2(x, ξ,yo

ξ ) +M‖ỹo
ξ ‖1, (yo

ξ , ỹ
o
ξ ) ∈ Ỹ(x, ξ)

}
∀ξ ∈ ξ̂ (19c)

0 ≥ max
{∑
ξ ∈ξ̂

η
f
ξ p f

ξ : (p f
ξ )ξ ∈ξ̂ ∈ P

}
(19d){

η
f
ξ = ‖ỹ f

ξ ‖1, (y f
ξ , ỹ

f
ξ ) ∈ Ỹ(x, ξ)

}
∀ξ ∈ ξ̂ (19e)
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Since ξ̂ = ξ̂ f ∪ ξ̂o ⊆ Ξ, MMPa
1 is a valid relaxation that actually is stronger than MMP1.

For MMPa
1 , let {po∗ξ }ξ ∈ξ̂ denote an optimal solution to the LP in (19b). Considering

some ξ ′ ∈ ξ̂, we note that (19d) and (19e) will drive ỹo
ξ′ to be 0 if po∗ξ′ > 0. If this is not the

case, we let
(
p f
ξ′, ỹ f

ξ′
)
=
(
po∗ξ′ , ỹo

ξ′
)
. Then, we have

max
{∑
ξ ∈ξ̂

η
f
ξ p f

ξ : (p f
ξ )ξ ∈ξ̂ ∈ P

}
≥ η

f
ξ′p

f
ξ′ = ‖ỹ f

ξ′ ‖1p f
ξ′ > 0,

which is contradictory to inequality (19d). Given the arbitrarity of ξ ′, we can simply remove

M in (19c) without affecting the optimality of MMPa
1 . The updated (19c) is{

ηoξ = f2(x, ξ,yo
ξ ), (yo

ξ , ỹ
o
ξ ) ∈ Ỹ(x, ξ)

}
∀ξ ∈ ξ̂. (20)

Next, we prove that two sets of (yξ , ỹξ ) variables are not necessary. Let
(
Pa, Ŷa(x)

)
denote the feasible set defined by (19d) and (19e), i.e.,(

Pa, Ŷa(x)
)
=
{
0 ≥ max

{∑
ξ ∈ξ̂

η
f
ξ p f

ξ : (p f
ξ )ξ ∈ξ̂ ∈ P

}
{
η
f
ξ = ‖ỹ f

ξ ‖1, (y f
ξ , ỹ

f
ξ ) ∈ Ỹ(x, ξ)

}
∀ξ ∈ ξ̂

}
.

Claim: There exists an optimal solution to MMPa
1 such that its component, (po∗ξ ,yo∗

ξ , ỹ
o∗
ξ )ξ ∈ξ̂,

belongs to
(
Pa, Ŷa(x)

)
.

Proof of Claim: Suppose it is not true. So, there exists at least one scenario ξ ′ ∈ ξ̂ such

that η f ∗ξ′ p f ∗
ξ′ > 0. Again, we let

(
po∗ξ′ ,yo∗

ξ′ , ỹo∗
ξ′
)
=
(
p f ∗
ξ′ ,y f ∗

ξ′ , ỹ f ∗
ξ′
)
. Then, for (19c) we have

ηo∗ξ′ po∗ξ′ = po∗ξ′

(
f2(x, ξ ′,yo∗

ξ ) +Mỹo∗
ξ′

)
> po∗ξ′ f2(x, ξ ′,yo∗

ξ ),

which is contradictory to the updated (19c), i.e., (20). □

Hence, (yo
ξ , ỹ

o
ξ ) and (y f

ξ , ỹ
f
ξ ) can be unified into (yξ , ỹξ ) without affecting the optimality

of MMPa
1 . By doing so, MMPa

1 is equivalent to MMP2. □

Remark 8. (i) Note that “=” in (17c) or (17e) can be changed to “≤” without affecting the

optimality of MMP, which may lead to some computational improvement when |ξ̂o | or |ξ̂ f |
is large. More importantly, both MMP1 and MMP2 are bilevel optimization formulations

with two lower-level problems for feasibility and optimality, respectively. For P defined in

(3), the lower-level problems in (17b) and (17d) (or in (18b) and (18d)) are LPs and can be

directly replaced by their optimality conditions or dual problems as shown in Appendix A.2.

Actually, by making use of their specific structures and their dual problems, simpler single-

level equivalent reformulations can be obtained. Consider MMP2 for demonstration, with
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(α f ,β f ) and (αo,βo) denoting dual variables of constraints of P in (18b) and (18d).

¯
w = min

{
f1(x) + η : x ∈ X, η ≥ αo +

m∑
i=1

γiβ
o
i , αo +

m∑
i=1

ψi(ξ)βoi ≥ ηoξ ∀ξ ∈ ξ̂,

0 ≥ α f +

m∑
i=1

γiβ
f
i , α f +

m∑
i=1

ψi(ξ)β fi ≥ η
f
ξ ∀ξ ∈ ξ̂,

(18c), (18e), (18f), βoi ≥ 0, ∀i ∈ [m], β fi ≥ 0 ∀i ∈ [m]
}
.

(21)

We mention that (21) is a big-M-free single-level formulation. If f1 and f2 are linear and

X and Y(·, ·) are linearly representable, it is a mixed integer linear program that is rather

tractable by state-of-the-art professional solvers.

(ii) For MMP2, it is not necessary to define the optimality cutting plane with respect to the

whole set ξ̂. It is worth noting from our numerical studies that |ξ̂ f | could be more than an

order of magnitude greater than |ξ̂o |. Since the feasibility issue has not been analyzed in

the existing literature, such a huge difference is very new and unexpected. Hence, rather

than employing ξ̂ in both optimality and feasibility cutting planes for consistency, it would

be computationally more effective to build the first one with respect to ξ̂o only. When

computing large-scale instances, the benefit of this modification is often obvious.

(iii) If the recourse problem is assumed to be feasible all the time, (21) reduces to the duality

based master problem appeared in the literature (e.g., [9, 16, 25]). Yet, its derivation from

MMP is intuitive, involves the knowledge of LP only, and more importantly, allows us to

consider sophisticated P using mature optimization techniques. Unless specified otherwise,

(21) is utilized as MMP in our algorithm implementation. □

(II): Subproblems of C&CG-DRO

The two subproblems are referred to as main subproblems for consistency. As mentioned

after Lemma 12, the feasibility one is WCEV(F ) in (16), and the optimality one WCEV(O)

in (4) (with Q(ξ) replaced by Q(x, ξ)). Because they can be solved by the oracles developed

in Section 3.1 in an almost identical fashion, we next present the customization of those

oracles on WCEV(O) only. Specifically, for given x∗, the finite mathematical program for

WCEV(O) can be easily obtained by modifying (7) as in the following.

WCEV(O) − FMP : ηo(x∗) = max
{

m+1∑
j=1

ηjpj :(p1, . . . , pm+1) ∈ P,

ξj ∈ Ξ ∀ j ∈ [m + 1],
{
ηj = min

{
f2(x∗, ξj,yj),yj ∈ Y(x∗, ξj)

}}
∀ j ∈ [m + 1]

}
.

(22)

Comparing (7) and (22), the basic difference is that variable ηj replaces Q(ξj), and η j is set

to the recourse cost for ξj through a replica of the recourse problem parameterized by ξj for

all j. Note that the equality sign associated with ηj can be changed to ≤ without affecting

the whole formulation’s optimality.
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If WCEV(O) is solved by the CG-based Oracle-2, the customized PMP, denoted by

PMP(O), is a simple LP with Q(ξ0
j ) replaced by Q(x∗, ξ0

j ) in (10). The customized PSP,

denoted by PSP(O), is in the following format.

PSP(O) : v∗(x∗,ξ0
n) = max

ξ ∈Ξ
min

y∈Y(x∗ ,ξ)
f2(x∗, ξ,y) − α∗ −

m∑
i=1

ψi(ξ)β∗i . (23)

Both (22) and (23) are bilevel optimization formulations that can be solved by the methods

presented in Appendix A.2. To unify our exposition, regardless of using Oracle-1 or Oracle-

2 to solve WCEV(O) and WCEV(F ), we let ηo(x∗) denote the optimal value of WCEV(O),
ξ̂o(x∗) ≡ {ξo1 , . . . , ξo|ξ̂o (x∗) |

} and Po
(
ξ̂o(x∗)

)
the set of resulting scenarios and their probabilities;

and η f (x∗), ξ̂ f (x∗) and P f
(
ξ̂ f (x∗)

)
to their counterparts for WCEV(F ).

Remark 9. As noted previously, when the recourse problem is an LP and there is no

feasibility issue x ∈ X, Benders type of algorithms have been developed to solve 2 − Stg DRO

[15, 17, 18, 19, 23]. With the primal oracles for WCEV(O) and resulting ξ̂o, they naturally

can be extended for possible enhancements. Specifically, let the recourse problem be

min
{
c2y : By ≥ b2 − A2x − Hξ

}
. (24)

Note that for ξ ∈ ξ̂o(x∗) we can derive an optimal solution for the dual problem of (24).

Denoting them by {π∗ξ }ξ ∈ξ̂o (x∗), Benders cutting planes, generated after solving the current

WCEV(O), are presented in the following.

αo +
∑
i

ψi(ξ)βoi ≥ ηoξ ∀ξ ∈ ξ̂o(x∗)

ηoξ ≥ (b2 − A2x − Hξ)⊺π∗ξ ∀ξ ∈ ξ̂o(x∗) □

Indeed, although it has not been investigated in the current literature, Benders cutting

planes to address the feasibility issue can be produced in the same fashion after solving

WCEV(F ). To differentiate from existing implementations and to be consistent, we refer to

our new approach as Benders-DRO and the previous ones as basic Benders. Actually, as

shown in the numerical study, Benders-DRO performs drastically better than basic Benders.

4.2 Complete C&CG Procedure for 2 − Stg DRO

With the aforementioned problems defined, we are ready to present the overall procedure of

C&CG method customized to compute 2 − Stg DRO. Note that LB and UB denote lower

and upper bounds, respectively, TOL is the optimality tolerance, and t is the counter for it-

erations. Also, to facilitate our understanding, we sketch the logic and main steps in Figure 1.

Algorithm 1: C&CG-DRO
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Step 1 Set LB = −∞, UB = +∞, t = 1, and ξ̂o = ξ̂ f = ξ̂ = ∅.

Step 2 Solve master problem MMP. If it is infeasible, report the infeasibility of 2 − Stg DRO

and terminate. If it is unbounded, select an arbitrary new feasible solution x∗. Other-

wise, derive optimal value
¯
w and solution x∗, and update LB =

¯
w.

Step 3 Solve feasibility subproblem WCEV(F ), derive its optimal value η f (x∗), optimal set of

scenarios ξ̂ f (x∗) and associated probabilities (by one of oracles from Section 3).

Step 4 Cases based on η f (x∗)

Case A η f (x∗) = 0

(i) Solve optimality subproblem WCEV(O), derive its optimal value ηo(x∗), optimal

set of scenarios ξ̂o(x∗) and their probabilities (by one of oracles from Section 3);
(ii) Update ξ̂o = ξ̂o ∪ ξ̂o(x∗) (and accordingly ξ̂), and augment MMP with new

variables and constraints accordingly.

Case B η f (x∗) > 0

(i) Update ξ̂ f = ξ̂ f ∪ ξ̂ f (x∗) (and accordingly ξ̂), and augment MMP with new

variables and constraints accordingly;
(ii) set ηo(x∗) = +∞.

Step 5 Update UB = min{UB, f1(x∗) + ηo(x∗)}.

Step 6 If UB − LB ≤ TOL, return x∗ and terminate. Otherwise, set t = t + 1 and go to Step 2.

Solve MMP for LB
with the updated feasibility and optimality cuts

Solve WCEV(F)

Is x∗ feasible?

Solve WCEV(O)

x∗

No.{
ξ
f
1 , . . . , ξ

f
n f

}

Yes{
ξo1 , . . . , ξ

o
no

}
and UB

Figure 1: The Schematic Flow of C&CG-DRO

We note that Algorithm 1 is a rather vanilla version of C&CG-DRO. Some simple

changes, as described in the following, often can yield significantly computational improve-

ments, especially when subproblems are computed by CG-based Oracle-2.

(C1) Rather than letting Oracle-2 start from scratch, ξ̂ f and ξ̂o obtained up to date can be

used as the initial scenario sets for it to solve WCEV(F ) and WCEV(O), respectively.

If this is the case, the following operation should be included between Step 2 and Step

3.

– Step 2.a For ξ f ∈ ξ̂ f , compute Q̃(x∗, ξ f ); and for ξo ∈ ξ̂o, compute Q(x∗, ξo).
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With this change, we can simplify Step 4 as in the following.

– In Step 4-Case A and Step 4-Case B, update ξ̂ f = ξ̂ f (x∗) and ξ̂o = ξ̂o(x∗),
respectively.

We note that those changes are included in our default implementation of C&CG-DRO

with Oracle-2.

(C2) Solving subproblems often leads to many scenarios with zero probability in ξ̂ f (x∗)
and ξ̂o(x∗), which could be more prominent when Oracle-2 is applied. To keep MMP

more tractable, we only set ξ̂ f and ξ̂o to include scenarios of non-zero probabilities

from ξ̂ f (x∗) and ξ̂o(x∗) in our default implementation of C&CG-DRO. Yet, to keep

the following theoretical analyses simple, C&CG-DRO does not screen out scenarios

of zero probability.

(C3) If we are concerned with the feasibility of PMP(O) (i.e., the pricing master problem

of Oracle-2 for WCEV(O)), instead of using Farka’s Lemma modified implementation,

we can simply use ξ̂ f (x∗) to initialize PMP(O). Since WCEV(O) is to be solved in

Step 4 − Case A, employing ξ̂ f (x∗) guarantees that PMP(O) is feasible. Yet, as noted

earlier, set ξ̂ f (x∗) might not be small and could slow down the computation of PMP(O).

A detailed flow chart describing C&CG-DRO with Oracle-2 is presented in Figure 4

at the end of this paper. In the next subsection, we analyze C&CG-DRO’s strength with

respect to existing approaches, and its convergence and iteration complexity.

4.3 Strength, Convergence and Iteration Complexity

As previously mentioned, the classical C&CG implementation, referred to as basic C&CG,

is one of the most popular methods for solving 2 − Stg DRO. As a new and more intricate

algorithm, it is significant to analytically demonstrate C&CG-DRO’s strength compared to

that of basic C&CG. Next, we show that this actually is the case under some mild conditions.

Since the infeasibility issue of the recourse problem has not been studied in the literature, we

assume that there is no feasibility issue associated with x ∈ X. We also note that Oracle-2

is adopted in C&CG-DRO in the following analysis, because of its available infrastructure.

Proposition 14. (i) Assume that both basic C&CG and C&CG-DRO have the same sce-

nario set ξ̂o before the start of iteration t0. We further assume that the solution algorithms

for their master and subproblems are deterministic and PMP(O) has a unique shadow price

with respect to ξ̂o. Then the lower bound derived from basic C&CG in iteration t0 + 1 is

dominated by that of C&CG-DRO.

(ii) Assume that the (main) master problems of basic C&CG and C&CG-DRO generate the

same first-stage solution in iteration t0. If the upper bound is updated in basic C&CG in

iteration t0, this upper bound is dominated by that of C&CG-DRO.

Proof. (i) As noted in Remark 8, (21), the duality based reformulation of MMP2, serves as
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the (main) master problem for both basic C&CG and C&CG-DRO. We let (x∗, α∗,β∗, . . . )

denote the optimal solution obtained from computing the (main) master problem for both

algorithms, noting that ξ̂ = ξ̂o. With (C1) implemented and the stated assumptions, it can

be seen that (α∗,β∗) is the shadow price of PMP(O) for ξ̂o and x∗. Hence, the associated

PSP(O) is

max
ξ ∈Ξ

Q(x∗, ξ) − α∗ −
m∑
i=1

ψi(ξ)β∗i .

Also, the subproblem of basic C&CG is

max
ξ ∈Ξ

Q(x∗, ξ) −
m∑
i=1

ψi(ξ)β∗i .

Clearly, they are essentially the same and have the identical optimal solution. Denoting it

by ξ ′, we therefore have ξ ′ ∈ ξ̂o(x∗)\ξ̂o, the set of new scenarios identified after executing

Oracle-2. As a result, after computing the updated (main) master problems for C&CG

and C&CG-DRO, respectively, in iteration (t0 + 1), the lower bound derived by the former

method is weaker than that generated by the latter one.

(ii) Again, in iteration t0, let x∗ be the optimal first-stage solution output from computing

the (main) master problems, ξ ′ the optimal solution from solving the subproblem of basic

C&CG, and its optimal value α′ = Q(x∗, ξ ′) −∑m
i=1 ψi(ξ ′)β∗i . Hence, we have

α′ ≥ Q(x∗, ξ) −
m∑
i=1

ψi(ξ)β∗i ∀ξ ∈ Ξ.

Upon termination of Oracle-2 with ϵ = 0, the dual problem of PMP(O) is

¯
ηo∗

(
x∗, ξ̂o(x∗)

)
= min

{
α +

m∑
i=1

βiγi : α +
m∑
i=1

ψi(ξ)βi ≥ Q(x∗, ξ) ∀ξ ∈ ξ̂o(x∗), βi ≥ 0 ∀i ∈ [m]
}
.

Given that ξ̂o(x∗) ⊆ Ξ, it is clear that (α′,β∗) is a feasible solution to this dual problem.

So, we have
¯
ηo∗

(
x∗, ξ̂o(x∗)

)
≤ α′ +

∑m
i=1 β

∗
i γi, leading to

f1(x∗) +
¯
ηo∗

(
x∗, ξ̂o(x∗)

)
≤ f1(x∗) + α′ +

m∑
i=1

β∗i γi .

Note that the left-hand-side and right-hand-side of this inequality are benchmarked against

the current upper bounds and employed to update them if applicable by C&CG-DRO and

basic C&CG, respectively (e.g., Step 5 in C&CG-DRO). Hence, if an update occurs to

the upper bound in basic C&CG, the new upper bound is dominated by the upper bound

provided by C&CG-DRO. □

Next, we show that C&CG-DRO eventually solves 2 − Stg DRO. We assume that Oracle-

1 is adopted as it does not incur any numerical issue for WCEV problem.
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Theorem 15. For a fixed x ∈ X, let Ξo(x) =
{
ξ ∈ Ξ : Q(x, ξ) < +∞

}
denote the feasible

sample space under x, and the assumption made in Theorem 9 holds for x ∈ X, i.e.,

Q(x, ξ) −
∑
i

ψi(ξ)βi

is continuous, uniformly with respect to ξ for x ∈ X and β ≥ 0.

(i) If there is no feasibility issue for the recourse problem, i.e., all x ∈ X are feasible, C&CG-

DRO returns an optimal (or ε−optimal) one in a finite number of iterations.

(ii) When the feasibility issue exists, we further assume Ξ is a polytope, Q̃ f (x, ξ) is convex

over Ξ, Q(x, ξ) is uniformly continuous over Ξo(x) for x ∈ X, and ψi(ξ) are concave over Ξ

for i ∈ [m]. C&CG-DRO either reports that 2 − Stg DRO is infeasible or returns an optimal

(or ε−optimal) one in a finite number of iterations.

Proof. We first present the proof for the first statement when 2 − Stg DRO has no feasibility

issues. Note that according to the definition of the uniform continuity, we have that for any

given ε > 0 there exists a δ > 0 satisfying��� (Q(x, ξ1) −
∑
i

ψi(ξ1)βi
)
−
(
Q(x, ξ2) −

∑
i

ψi(ξ2)βi
) ��� ≤ ε,

if ‖ξ1 − ξ2‖ ≤ δ for ξ1, ξ2 ∈ Ξ, x ∈ X, and β ≥ 0.

Claim 1: Suppose that ξ̂o is currently available scenarios, x∗ is an optimal solution to MMP

defined with ξ̂o, and ξ̂o(x∗) has been obtained by solving WCEV(O) for x∗ in iteration t0.

If the Hausdorff distance between sets ξ̂o(x∗) and ξ̂o, denoted by h
(
ξ̂o(x∗), ξ̂o

)
, is less than

or equal to δ, we have UB ≤ LB + ε, i.e., x∗ is an ε−optimal solution.

Proof of Claim 1: Note that, for x∗, its optimal value of WCEV(O) reduces to

ηo(x∗) = max
{ ∑
ξ ∈ξ̂o (x∗)

pξQ(x∗, ξ) : (pξ )ξ ∈ξ̂o (x∗) ∈ P
}

= min
{
α +

m∑
i=1

γiβi : α +
∑
i

ψi(ξ)βi ≥ Q(x∗, ξ) ∀ξ ∈ ξ̂o(x∗)
}
.

For the dual form (21) of MMP, let
(
x∗, αo∗, βo∗, (ηo∗ξ )ξ ∈ξ̂o , . . .

)
be components associated

with x∗. Without loss of generality, we assume that ηo∗ξ = Q(x∗, ξ). We have

LB =
¯
wt0
= f1(x∗) + η∗

η∗ =αo∗ +
m∑
i=1

γiβ
o∗
i

αo∗ +
∑
i

ψi(ξ)βo∗i ≥ Q(x∗, ξ) ∀ξ ∈ ξ̂o .

By the definition of Hausdorff distance, we have maxξ1∈ξ̂o (x∗)

{
minξ2∈ξ̂o {‖ξ1 − ξ2‖}

}
≤ δ.
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Following the uniform continuity assumption on Q(x, ξ) −∑
i ψi(ξ)βi, we have

max
ξ ∈ξ̂o (x∗)

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i } − max
ξ ∈ξ̂o

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i }

≤ max
ξ ∈ξ̂o (x∗)

{
{Q(x, ξ) −

∑
i

ψi(ξ)βo∗i } − max
ξ′∈ξ̂o :‖ξ′−ξ ‖≤δ

{Q(x, ξ ′) −
∑
i

ψi(ξ ′)βo∗i }
}

≤ max
ξ ∈ξ̂o (x∗)

ε = ε.

Then, it can be inferred that

αo∗ ≥ max
ξ ∈ξ̂o

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i }

= max
ξ ∈ξ̂o

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i } − max
ξ ∈ξ̂o (x∗)

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i }+

max
ξ ∈ξ̂o (x∗)

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i }

≥ max
ξ ∈ξ̂o (x∗)

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i } −
���max
ξ ∈ξ̂o

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i }−

max
ξ ∈ξ̂o (x∗)

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i }
���

≥ max
ξ ∈ξ̂o (x∗)

{Q(x, ξ) −
∑
i

ψi(ξ)βo∗i } − ε.

Therefore, (αo∗ + ε, βo∗) is feasible to the dual problem of WCEV(O), i.e., UB ≤ f1(x∗) +

ηo(x∗) ≤ f1(x∗) + αo∗ + ε +
∑m

i=1 γ
iβo∗i ≤

¯
wt0 + ε = LB + ε. □

Given the definition of ηo(x∗), we can infer that x∗ is an ε−optimal solution to 2 − Stg DRO.

Moreover, when ξ̂o(x∗) ⊆ ξ̂o, it is clear that we have UB ≤ LB, rendering x∗ an optimal

solution to 2 − Stg DRO.

Similar to the proof of Theorem 9 on compact sample space Ξ, we introduce balls with

volume equal to V( δ2 ). According to Claim 1, we can conclude that after a finite number of

iterations, C&CG-DRO either returns an optimal solution or an ε−optimal solution when

no feasibility issue occurs.

Next, we consider the second statement and assume that Oracle-1 returns an extreme

point solution of Ξ if such type of optimal solutions is available.

Claim 2: If 2 − Stg DRO is infeasible, C&CG-DRO reports its infeasibility within a finite

number of iterations.

Proof of Claim 2 : Since Ξ is a polytope, Q̃ f (x, ξ) is convex and ψi(ξ) are concave over Ξ for

i ∈ [m], it follows from Corollary 10 that, if MMP is feasible, at least one new extreme point

from XV(Ξ) (which does not belong to existing ξ̂ f ) will be derived after solving WCEV(F).
Given that XV(Ξ) is a finite set, it follows that MMP will become infeasible within a finite

number of iterations. Hence, it certifies that 2 − Stg DRO is infeasible. □

Note that the feasibility check presented in WCEV(F) will only be performed a fi-

nite number of times. By combining Claims 1 and 2, C&CG-DRO either reports that
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2 − Stg DRO is infeasible or returns an optimal (or ε−optimal) one in a finite number of

iterations. □

Next, we present a few results regarding the number of iterations of the algorithm. The

following one can be easily obtained by Theorem 9.

Corollary 16. For a given ε, assume δ in the proof Theorem 9 is available. Then, the num-

ber of iterations of C&CG-DRO before termination is bounded by
⌈
V(d̂ + δ

2 )/V( δ2 ) + |XV(Ξ)|
⌉
.

When X or Ξ is a finite set, a natural upper bound on the iteration complexity can be

derived. Note that it is easy to show that repeated x or ξ leads to LB = UB.

Proposition 17. (i) If X is a finite set, the number of iterations is bounded by the cardinality

of X, i.e., |X|; (ii) If sample space Ξ is finite, the number of iterations is bounded by the

cardinality of Ξ.

Next, we discuss the case where both the recourse problem and the ambiguity set are

linear, noting that it can be exactly solved within a finite number of iterations.

Proposition 18. Assume that the recourse problem is an LP, Ξ is a polytope, and ψi(ξ)

are linear over Ξ for i ∈ [m]. C&CG-DRO either reports that 2 − Stg DRO is infeasible, or

converges to its exact solution within |XV(Ξ)| iterations.

Proof. According to the proof of Corollary 10 and Theorem 15, since the set of extreme

points of Ξ, i.e., |XV(Ξ)|, is finite, C&CG-DRO either reports that 2 − Stg DRO is infeasi-

ble, or converges to an exact solution that belongs to XV(Ξ). Hence, the whole procedure

completes in |XV(Ξ)| iterations. □

5 Further Investigations on Solving 2 − Stg DRO

In this section, a couple of new variants of the primary C&CG-DRO algorithm are presented

to support us with a stronger solution capacity. We first develop a variant to compute

2 − Stg DRO with Wasserstein metric-based ambiguity set. Then, we describe another vari-

ant to handle MIP ambiguity set, which has not been investigated in the literature yet and

can be used to capture more sophisticated uncertainties.

On one hand, the basic intuition behind the variant for 2 − Stg DRO with Wasserstein

metric-based ambiguity set is: given that we are considering a distribution close to an

empirical one, the critical scenarios underlying that distribution should also be close to

those of the empirical one. Hence, we should identify some non-trivial scenarios around

each empirical sample (in an independent fashion) and then aggregate them to provide a

basis for selection. We repeat this operation in the framework of C&CG-DRO. On the other

hand, the basic intuition to handle the MIP ambiguity set is: we generate scenarios and

build a bilevel MIP (instead of a bilevel LP for convex ambiguity set) to obtain a lower
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bound approximation of the original 2 − Stg DRO. As bilevel MIP is very hard to solve, we

fix discrete variables in the lower-level problem to convert it into an LP and thus to derive a

weaker lower bound. Such a lower bound can be improved through C&CG-DRO iteratively.

5.1 A Variant to Handle Wasserstein Metric-Based Ambiguity Set

Consider two distributions P and Pe. The Wasserstein metric between them is defined as

W(P,Pe) =
{

inf
K ∈S(P,Pe )

∫
Ξ

∫
Ξe
‖ξ − ζ ‖pK(dζ, dξ)

}
, (25)

where S(P,Pe) denotes the collection of joint probability distributions of ξ and ζ with

marginal distributions being P and Pe, respectively, and ‖·‖p denotes Lp norm. Accord-

ingly, the Wasserstein metric-based ambiguity set, which has received a lot of attention in

the literature of data-driven decision making, is

PW =
{
P ∈ M(Ξ,F ) : W(P,Pe) ≤ r

}
,

where r is the radius bound imposed on the Wasserstein metric. When Pe is defined on

a set of empirical samples, i.e., Ξe ≡ {ξe1, . . . , ξeN } with {pei }Ni=1 being its probability mass

function, (25) can be simplified to the following one by taking advantage of conditional

probabilities [8, 9],

W(P,Pe) =
{

min
Pi ∈M(Ξ,F),i∈[N ]

N∑
i=1

pei

∫
Ξ

‖ξ − ξei ‖Pi(dξ) :
∫
Ξ

Pi(dξ) = 1 ∀i ∈ [N]
}
, (26)

noting that Pi denotes the conditional probability distribution under the condition of ξei .

Clearly, we have P =
∑N

i=1 pei Pi.

Remark 10. We mention that, with the help of the indicator function, Wasserstein metric-

based ambiguity set can be described in the form of (3) as in the following.

PW =
{
P ∈ M(Ξ,F ) :

∫
Ξ

P(dξ) = 1,
∫
Ξ

1{i=k }P(dξ) = pek ∀k ∈ [N],∫
Ξ

N∑
i=1

N∑
k=1

pei 1{i=k }‖ξ − ξek ‖pPi(dξ) ≤ r
}
,

where the indicator function 1{i=k } equals 1 if i = k and 0 otherwise. □

With PW defined on Ξe, it has been noted that the true data-generating probability

distribution contained in PW is of a high confidence, and, under some mild assumption, a

finite-sample guarantee can be established for a solution to PW -based DRO [8]. We next

present a new variant of C&CG − DRO to compute such PW -based 2 − Stg DRO, which is

referred to as C&CG − DRO(PW ) for simplicity. Also, in the context of Wasserstein metric-

based ambiguity set, unless explicitly stated otherwise, we omit the subscript p for clarity
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in our exposition.

5.1.1 Computing WCEV Problems for Given x∗

To describe new variants of solution oracles for PW -based WCEV’s, we use WCEV(F ) for

illustration. Note that all results developed for WCEV(F ) are applicable to its counterpart

WCEV(O) by simply replacing Q̃ f (ξj,x∗) with Q(ξj,x∗). Specifically, consider the following

WCEV(F ) formulated with respect to PW .

WCEV(F ) : η f (x∗) = sup
Pi ∈M(Ξ,F),i∈[N ]

N∑
i=1

pei

∫
Ξ

Q̃ f (x∗, ξ)Pi(dξ)

s.t.
∫
Ξ

Pi(dξ) = 1 ∀i ∈ [N]

N∑
i=1

pei

∫
Ξ

‖ξ − ξei ‖Pi(dξ) ≤ r

(27)

In the following, we leverage a structural insight and the Pigeonhole principle, a classical

result in combinatorics, to develop a novel and compact finite mathematical program that

solves WCEV(F ) problem.

Proposition 19. An optimal solution to the following finite mathematical program solves

WCEV(F ) problem in (27) exactly.

WCEV(F )−FMP : max
{ N∑
i=1

pei [Q̃ f (x∗, ξi1)pi1 + Q̃ f (x∗, ξi2)pi2] : pi1 + pi2 = 1 ∀i ∈ [N],

N∑
i=1

pei (‖ξi1 − ξei ‖pi1 + ‖ξi2 − ξei ‖pi2) ≤ r, ξi1, ξi2 ∈ Ξ ∀i ∈ [N]
}

Proof. According to Theorm 3, the optimal value of (27) can be obtained. Following similar

steps to the proof of Proposition 5 and applying the Richter-Rogosinski Theorem [20], (27)

has an optimal distribution with at most (N + 1) scenarios of non-zero probabilities. Hence,

given the definition of Pi, (27) is equivalent to

WCEV(F )−FMP0 : max
{ N∑
i=1

N+1∑
j=1

pei Q̃ f (x∗, ξi j)pi j :
N+1∑
j=1

pi j = 1 ∀i ∈ [N],

N∑
i=1

N+1∑
j=1

pei ‖ξi j − ξei ‖pi j ≤ r, ξi j ∈ Ξ ∀i ∈ [N], ∀ j ∈ [N + 1]
}
.

Assume an optimal solution to WCEV(F )−FMP0, denoted by
(
ξ∗i j, p

∗
i j

)
i∈[N ], j∈[N+1], is avail-

able. By fixing ξi j = ξ∗i j , WCEV(F )−FMP0 reduces to an LP with (N + 1) constraints.

Hence, according to the theory of LP, there exists an optimal solution with at most (N + 1)
probability variables pi j being non-zeros.

Given that
∑N+1

j=1 pi j = 1 must be satisfied, it follows that we have at least one pi j > 0 for

every i. Then, by the Pigeonhole principle, we further have that no more than two pi j > 0
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for every i. As a result, for i, we can reduce (N + 1) variables to just two variables, i.e., pi1

and pi2, through which WCEV(F )−FMP0 becomes WCEV(F )−FMP. □

It is worth pointing out that (27) (as well as its counterpart for WCEV(O)) actually has

a decomposable structure. Note in the objective function of (27) that

N∑
i=1

pei

∫
Ξ

Q̃ f (x∗, ξ)Pi(dξ) = pe1

∫
Ξ

Q̃ f (x∗, ξ)P1(dξ) + · · · + peN

∫
Ξ

Q̃ f (x∗, ξ)PN (dξ)

= pe1

∫
Ξ

Q̃ f (x∗, ξ1)P1(dξ1) + · · · + peN

∫
Ξ

Q̃ f (x∗, ξN )PN (dξN ),

which allows us to modify Oracle-2 to tackle Pi parallelly. Let ξ̂
f
i = {ξ fi,1, . . . , ξ

f
i,ni

} denote

a set of scenarios introduced for Pi, i = 1, . . . ,N, and ξ̂ f = (ξ̂ f
1, . . . , ξ̂

f
N ). We construct the

following PMP(F ) defined on top of ξ̂ f . Note that dual variables are indicated after the

colon for each constraint.

PMP(F ) :
¯
η f ∗(x∗, ξ̂ f ) = max

N∑
i=1

pei

ni∑
j=1

Q̃ f (x∗, ξ fi, j)pi(ξ
f
i, j) (28a)

s.t.
ni∑
j=1

pi(ξ fi, j) = 1 ∀i ∈ [N] : α f
i (28b)

N∑
i=1

pei

ni∑
j=1

‖ξ fi j − ξ
e
i ‖pi(ξ fi, j) ≤ r : β f (28c)

pi(ξ fi, j) ≥ 0 ∀ j ∈ [ni], ∀i ∈ [N] (28d)

Then, with PMP(F )’s shadow price (α f ∗
1 , · · · , α f ∗

N , β
f ∗) and the stricture of PMP(F ), we define

PSPi(F ) for i ∈ [N] as follows.

PSPi(F ) : vi∗(x∗, ξ̂ f ) = max
ξ ∈Ξ

pei
(
Q̃ f (x∗, ξ) − β f ∗‖ξei − ξ‖

)
− α f ∗

i . (29)

Remark 11. (i) Note that, except Q̃ f (x∗, ξ), the objective function of PSPi(F ) is concave

for Lp-norm if p ≥ 1 or linearizable (by introducing binary variables) if p = 0. So, it does

not impose additional computational challenge, compared to standard PSP(F ) constructed

in Section 3.2.

(ii) Regarding customization of Oracle-2 to handle Pw, for shadow price (α f ∗
1 , · · · , α f ∗

N , β
f ∗),

all PMPi(F )’s will be solved in an independent or parallel fashion for i ∈ [N]. Once a

scenario with positive reduced cost, denoted by ξ
f ∗
i , is identified by PSPi(F ), ξ̂i will be

augmented as ξ̂ f
i = ξ̂

f
i ∪ {ξ f ∗i }. Then, PMP(F ), with the updated ξ̂

f
i for i ∈ [N], will be used

to generate a new shadow price. Hence, the CG procedure terminates if none of PMPi(F )
produces a scenario of positive reduced cost, which is the primary difference to Oracle-2

presented in Section 3.2. Upon termination, we note that ξ̂
f
i ∩ ξ̂

f
j might not be empty for

i , j. It suggests that scenarios in the overlap are critical to both ξei and ξej . □
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5.1.2 Customizing C&CG-DRO to Handle PW

Similar to ξ̂ f , we let ξ̂o = (ξ̂o1, . . . , ξ̂oN ), i.e., optimality sets for i ∈ [N], and ξ̂ = ξ̂ f ∪ ξ̂o. Note

that they have been updated up to now after solving WCEV(F ) and WCEV(O) in previous

iterations, respectively. Then, the main master problem of 2 − Stg DRO defined on PW can

be reformulated as:

MMPW :
¯
w = min

x∈X
f1(x) + η (30a)

η ≥ max
{ N∑
i=1

pei
∑
ξ ∈ξ̂i

ηoξ poξ : (poξ )ξ ∈ξ̂ ∈ PW
}

(30b)

ηoξ = f2(x, ξ,yξ ) ∀ξ ∈ ξ̂ (30c)

0 ≥ max
{ N∑
i=1

pei
∑
ξ ∈ξ̂i

η
f
ξ p f

ξ : (p f
ξ )ξ ∈ξ̂ ∈ PW

}
(30d)

η
f
ξ = ‖ỹξ ‖1 ∀ξ ∈ ξ̂ (30e)

(yξ , ỹξ ) ∈ Ỹ(x, ξ) ∀ξ ∈ ξ̂ (30f)

Similar to MMP2 in (18), MMPW is a bilevel optimization formulation and can be easily

converted into a single-level. We next present the single-level one derived by using the strong

duality-based reformulation technique.

MMPW :
¯
w = min

{
f1(x) + η :x ∈ X, η ≥

N∑
i=1

αo
i + rβo,{

αo
i + pei ‖ξ − ξei ‖βo ≥ pei η

o
ξ ∀ξ ∈ ξ̂i

}
∀i ∈ [N]

0 ≥
N∑
i=1

α
f
i + rβ f ,{

α
f
i + pei ‖ξ − ξei ‖β f ≥ pei η

f
ξ ∀ξ ∈ ξ̂i

}
∀i ∈ [N]

(30c), (30e), (30f), βo ≥ 0, β f ≥ 0
}
.

(31)

With the aforementioned MMPW and those defined to solve WCEV problems, the cus-

tomization of C&CG-DRO to solve 2 − Stg DRO with PW can be easily obtained. As the

necessary changes are rather straightforward, we do not provide detailed descriptions.

Remark 12. (i) Actually, as Wasserstein metric-based ambiguity set is defined on top of Ξe,

it is rather straightforward to initialize ξ̂oi by ξei . Moreover, given that pei > 0, the associated

recourse problem for ξei must be feasible for any choice of x. In our numerical study, when

the radius r is small, this initialization strategy is computationally very effective, while it

is less effective when r is large. Also, when N is large, using the whole Ξe for initialization

might not be computationally effective. If this is the case, we can consider employing a more

adversarial subset of Ξe for initialization.

(ii) We can also modify the procedure of generating Benders cutting planes according to
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the one described in Remark 9 to handle PW . We consider the recourse problem in (24)

and Benders cuts for optimality for demonstration. Those cuts, generated after solving the

current WCEV(O) with x = x∗, are in the following forms.{
αo
i + pei ‖ξ − ξei ‖βo ≥ pieη

o
ξ ∀ξ ∈ ξ̂oi (x∗)

}
∀i ∈ [N]{

ηoξ ≥ (b2 − A2x − Hξ)⊺π∗ξ ∀ξ ∈ ξ̂oi (x∗)
}

∀i ∈ [N]

□

5.2 An Extension to Handle Mixed Integer Ambiguity Set

As mentioned, so far all ambiguity sets in the DRO literature are assumed to be convex

in P, although the underlying sample spaces can be either continuous or discrete. Such an

assumption is crucial to duality based reformulations, and actually is the enabling structure

for all known solution methods. Nevertheless, it seriously restricts our modeling capacity

to describe and analyze real world problems. Even some simple situations, as shown next,

cannot be represented by any convex set, while they can be captured by mixed integer sets.

Example 1. In addition to constraints in (3), we consider a situation where the first moment

only belongs to one of two intervals, i.e., [l1,u1] and [l2,u2]. It can be seen that it is not convex

in P, as a convex combination of two legitimate distributions may not yield a legitimate one.

Yet, it can be represented by introducing a new binary variable, z, and incorporating the

following constraints

l1z + l2(1 − z) ≤
∫
Ξ

ξP(dξ) ≤ u1z + u2(1 − z), (32)

resulting in a mixed integer representation for the updated ambiguity set P. □

It is easy to see that for both z = 0 and 1, the corresponding WCEV problems have

optimal discrete probability distributions. Hence the original one does, too. Nevertheless,

such mixed integer ambiguity sets are infeasible to the popular duality based approaches.

We highlight that they actually can be addressed by solution methods developed from the

primal perspective, through which our modeling and solution capacity on DRO can be

greatly improved. Specifically, we mainly consider the following mixed 0-1 ambiguity set

to present our algorithm development for the associated 2 − Stg DRO, where Z ⊆ {0,1}nξ I

denotes the feasible set for binary vector z. Note that it can be further extended to handle

mixed integer Wasserstein metric-based ambiguity sets.

P I =
{
(P,z) ∈ M(Ξ,F ) × Z :

∫
Ξ

P(dξ) = 1, EP[ψi(ξ,z)] ≤ γi(z) ∀i ∈ [m]
}
. (33)
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5.2.1 Computing WCEV Problems for A Given x∗

It can be seen that for any z ∈ Z, there are still m + 1 constraints defining P. Hence,

the continuous finite mathematical program WCEV − FMP presented in Section 3.1 can be

easily extended to the following mixed integer one to compute WCEV(F ) problem. We note

again that all results developed for WCEV(F ) problem are applicable to its counterpart

WCEV(O).

Corollary 20. Assume that the sufficient conditions presented in Proposition 5 are satisfied

for every z ∈ Z. Then, WCEV problem is equivalent to

WCEVI (F ) − FMP : max
{ m+1∑

j=1
pjQ̃ f (ξj,x∗) :

m+1∑
j=1

pj = 1,
m+1∑
j=1

pjψi(ξj,z) ≤ γi(z) ∀i ∈ [m],

ξj ∈ Ξ ∀ j ∈ [m + 1], pj ≥ 0 ∀ j ∈ [m + 1], z ∈ Z
}
.

Example 1 (Continued). As constraints in (32) are appended to those in (3), the number

of constraints is m + 3. Then, the corresponding WCEVI −FMP is obtained by augmenting

the original WCEV − FMP with binary variable z, continuous variables pm+2 and pm+3, and

ξm+2 and ξm+3, and with constraint

l1z + l2(1 − z) ≤
m+3∑
j=1

pjξj ≤ u1z + u2(1 − z). □

Compared to original WCEV(F ) − FMP, this mixed integer WCEVI (F ) − FMP is even

more computationally challenging. With the strong performance of Oracle-2, it would be

desired to extend it to compute WCEV problems with respect to P I . As noted earlier,

the challenge of a mixed integer master problem (e.g., PMP with a mixed integer ambigu-

ity set) can be addressed by customizing the classical B&P procedures on top of CG [35].

Rather than designing and implementing traditional branch-and-bound subroutines, we ex-

tend Oracle-2 in a novel fashion that leverages strong features of professional solvers to

minimize the extra development burden. In this subsection, we assume that P I is not

empty for any z ∈ Z.

First, we present the new PMP defined for P I , denoted by PMPI .

PMPI (F ) : η∗(ξ0
n) = max

{ n∑
j=1

Q̃ f (ξ0
j ,x)p(ξ0

j ),
n∑
j=1

p(ξ0
j ) = 1, p(ξ0

j ) ≥ 0 ∀ j ∈ [n],

n∑
j=1

ψi(ξ0
j ,z)p(ξ0

j ) ≤ γi(z) ∀i ∈ [m], z ∈ Z
}
.

(34)

Note that PMPI is a mixed integer program, not a linear program. In the following,

we define the pricing subproblem PSPI . It has a bilevel optimization structure, which is
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substantially different from classical pricing subproblems.

PSPI (F ) : v∗(ξ0
n) = max

{
Q̃ f (ξ,x) − α̂−

m∑
i=1

ψi(ξ,z)β̂i : ξ ∈ Ξ, z ∈ Z (35)

(
P̂, (α̂, β̂)

)
∈ arg max

{ n∑
j∈1

Q̃ f (ξ0
i ,x)p(ξ0

i ) :
n∑
j=1

p(ξ0
j ) = 1

n∑
j=1

ψi(ξ0
j ,z)p(ξ0

j ) ≤ γi(z) ∀i ∈ [m], p(ξ0
j ) ≥ 0 ∀ j ∈ [n]

}}
.

(36)

Note that the lower-level problem in (36) is actually the continuous portion of PMPI (F ).
With a slight abuse of notation, we let

(
P̂, (α̂, β̂)

)
denote a pair of optimal primal and dual

solutions to (36) for z selected by the upper-level problem. So, the overall bilevel optimization

problem seeks to choose (ξ,z) that maximizes the reduced cost based on (α̂, β̂) feedback from

the lower-level problem. We can further furnish this bilevel optimization problem with the

following inequality. It stipulates that, with new ξ, the upper bound on the WCEV should

be larger than or equal to the optimal value of PMPI (F ), which helps us to reduce the

generation of unnecessary columns in the execution of Oracle-2.

n∑
j∈1

Q̃ f (ξ0
j ,x)p̂(ξ0

j ) + Q̃ f (ξ,x) − α̂ −
m∑
i=1

ψi(ξ,z)β̂i ≥ η∗(ξ0
n).

Indeed, bilevel optimization formulation PSPI can be treated as an integration of the

master and subproblems of the conventional CG algorithm, where all z’s in Z are evaluated

in (35) when maximizing the reduced cost. Hence, the next result follows directly, which

extends that presented in Proposition 7.

Proposition 21. Suppose that PMPI (F ) is feasible and both PMPI (F ) and PSPI (F ) are

solved to optimality. We have

η∗(ξ0
n) ≤ max

P∈P I
EP[Q̃ f (ξ)] ≤ η∗(ξ0

n) + v∗(ξ0
n). □

Regarding the modification of Oracle-2 to handle P I , it can be done by simply using

PMPI (F ) and PSPI (F ) to replace their counterparts, and removing the shadow price output

in Step 2. The resulting variant is referred to as Oracle-2 I .

Remark 13. (i) When solving bilevel optimization problem PSPI by a contemporary MIP

solver through its single-level reformulation (see Appendix A.2), it is common to have both

optimal primal and dual solutions, i.e.,
(
P̂, (α̂, β̂)

)
are available. Hence, Oracle-2 I is rather

straightforward to implement, compared to the traditional B&P method.

(ii) In our computational study, a hybrid implementation including both Oracle-2 and vari-

ant Oracle-2 I is often computationally more efficient. Specifically, let P(z) denote the ambi-

guity set for given z. For a fixed z and the associated P(z), we first run Oracle-2 to generate

a set of ξ’s until v∗(ξ0
n) becomes 0. Then, Oracle-2 I is called to derive a new z with positive
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v∗(ξ0
n), which allows us to switch back to run Oracle-2. We repeat those steps until no z with

v∗(ξ0
n) > 0, which terminates the whole procedure. Note that this fashion of implementation

reduces the number of calls to solve bilevel optimization problems. □

5.2.2 Customizing C&CG-DRO to Handle P I

With an augmented ξ̂, we can build a main master problem with respect to P I , which is

a bilevel optimization formulation with MIP lower-level problem(s). Its optimal solution

can be obtained by employing a C&CG variant specialized for such type of bilevel MIP

optimization [36]. Nevertheless, rather than searching deeply for strongest x by solving a

bilevel MIP program, we can build and solve the following main master problem that is

simpler and can be solved more efficiently.

Note that, for a given x∗, computing WCEV(F ) (and WCEV(O), respectively) problem

actually returns
(
z f ∗(x∗), ξ̂ f (x∗)

)
(and

(
zo∗(x∗), ξ̂o(x∗)

)
, respectively). Hence, similar to ξ̂ f

and ξ̂o, we assume that, before a new C&CG iteration, two sets of z’s have been obtained

accumulatively from computing WCEV(F ) and WCEV(O) problems in previous iterations,

denoted by Ẑ f and Ẑo, respectively. Also, let Ẑ = Ẑ f ∪ Ẑo, and P I (z′) denote P I with z

fixed to z′. Then, we construct and consider the following main master problem. As it is an

extension of MMP in (18), we refer to it as MMPI .

MMPI
2 :

¯
w′ = min

x∈X
f1(x) + η (37a)

η ≥ max
{∑
ξ ∈ξ̂

ηoξ poξ,z : (poξ1 ,z, . . . , p
o
ξ|ξ̂| ,z

) ∈ P(z)
}

∀z ∈ Ẑ (37b)

0 ≥ max
{∑
ξ ∈ξ̂

η
f
ξ p f

ξ,z : (p f
ξ1 ,z, . . . , p

f
ξ|ξ̂| ,z

) ∈ P(z)
}

∀z ∈ Ẑ (37c)

(18c), (18e), (18f)

Since the lower-level problems in (37b) and (37c) are LPs, MMPI can be converted into a

single-level formulation. Especially by applying the duality-based technique, a big-M-free

one, similar to (21), can be obtained to facilitate easy computation. We also note that (37b)

and (37c) are defined over ξ̂ and Ẑ to simplify MMPI ’s structure. Actually, given the scale

of |ξ̂ | × |Ẑ|, it could be computationally more friendly to define (37b) on ξ̂o and Ẑo only,

which might not be significantly weaker than the current one.

With all master and subproblems revised according to P I , we next list modifications on

particular steps of C&CG − DRO.

Step 1: Additional initialization includes Ẑ f = Ẑo = ∅.

Step 2: MMP is replaced by (the single-level reformulation of) MMPI .

Step 3: WCEV(F ) is replaced by WCEVI (F ), and the variant of the adopted oracle also

outputs optimal z f (x∗).
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Step 4-Case A: WCEV(O) and MMP are replaced by WCEVI (O) and MMPI , the adopted

oracle also outputs optimal zo(x∗), and additional update operation Ẑo = Ẑo ∪{zo(x∗)}
is included.

Step 4-Case B: WCEV(F ) is replaced by WCEVI (F ), and additional update operation

Ẑ f = Ẑ f ∪ {z f (x∗)} is included.

With the aforementioned changes, the updated algorithm is referred to as C&CG − DRO(P I ).
We mention that it can be further extended to handle Wasserstein metric-based mixed inte-

ger ambiguity sets. As this extension is rather a straightforward integration with the results

presented in Section 5.1, we omit its description to avoid redundancy.

Remark 14. (i) Analyses on the convergence and iteration complexity for C&CG − DRO(PW )
follows directly from Sections 3.3 and 4.3 as PW belongs to the general ambiguity set pre-

sented in (3). Such analyses for C&CG − DRO(P I ) can be developed in a way similar to

those presented Sections 3.3 and 4.3, noting that P I reduces to the form of P for any fixed

z and set Z is finite.

(ii)We mention that the presented C&CG-DRO, together with oracles for WCEV problems,

actually provides a strong and flexible platform to compute a broad class of 2 − Stg DRO

problems. On one hand, the ambiguity set does not need to adhere to any standard form

or be defined by any specific mathematical structure. For example, it can be captured by

mixing moment inequalities and Wasserstein metric-based consideration. Also, it is com-

parable to solution methodologies developed for RO and SP. Note that, as long as master

and sub- problems can be solved, there are no strict restrictions imposed on the underlying

decision-making problem. More importantly, the overall development requires only a basic

understanding of probability, LP, and MIP. This simplicity makes it easy to understand,

modify, and debug. □

6 Numerical Studies

In this section, we present and discuss numerical results obtained from computational exper-

iments. Our focus is on testing, evaluating and analyzing C&CG − DRO and its variants in

computing 2 − Stg DRO instances. The facility location model with different structures or

considerations is employed as the testbed, which often arises from various applications in lo-

gistics, supply chain and healthcare systems. Data regarding clients and facilities’ locations,

distances and basic demands are adopted from [37]. All solution methods are implemented

by Python 3.6, with professional MIP solver Gurobi 9.5.2 on a Windows PC with E5-1620

CPU and 32G RAM. Unless noted otherwise, the time limit is set to 7200s, and the relative

optimality tolerance of any algorithm/solver is set to .5%.
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6.1 Distributionally Robust Facility Location Models

Consider a facility location problem that builds p ≥ 1 facilities. Let I represent the set

of client sites, and J ⊆ I the set of potential facility sites. The parameter ci j captures the

service cost of a unit demand from client i served by facility j, with ci j = 0 if i = j. Moreover,

di is the demand of client i, and fj is the fixed construction cost of a facility at j with Fj

being its capacity once the facility is established. The decision maker seeks a solution of the

minimum cost consisting of the fixed construction cost and the weighted sum of the service

cost for the normal situation (i.e., nominal demand d̄ with no disruptions) and the expected

worst-case service cost within an ambiguity set. Under the DRO scheme, we investigate the

impact of three major factors. They are the sample space, which could be either continuous

or discrete, the ambiguity set, which could be either moment- or Wasserstein metric-based,

and the recourse problem, which may or may not have the feasibility issue. Hence, there

are 8 different combinations that will be used to generate instances and to perform our

computational study. In the following, we present mathematical formulations, with ρ being

the weight coefficient.

The first basic formulation considers continuous random demands d = (d1, . . . , d |I |).

FL − DRO(d) : min
(x,y)∈X

∑
j∈J

fj yj + ρ
∑
i∈I

∑
j∈J

ci j xi j + (1 − ρ) max
P∈Pd

EP[Qd(y,d)] (38)

with X =
{
(x,y) ∈ R |I |× |J | × {0,1} |J | :

∑
j∈J

xi j ≥ d̄i ∀i ∈ I,
∑
j∈J

yj = p,
∑
i∈I

xi j ≤ Fj yj ∀ j ∈ J
}
,

and

Qd(y,d) = min
{∑
i∈I

∑
j∈J

ci jwi j :
∑
j∈J

wi j ≥ di ∀i ∈ I,
∑
i∈I

wi j ≤ Fj yj ∀ j ∈ J,

wi j ≥ 0 ∀i ∈ I, ∀ j ∈ J
}
.

Note that variables (x,y) in X are continuous and binary, respectively, representing demand

allocations and yes/no construction decisions. Constraints in X require that all nominal

demands are satisfied, the demand allocation can only be made if the facility is constructed,

and the total allocation to that facility is subject to its capacity. For Qd(y,d), w represents

the demand allocation after the randomness of demand is materialized.

We highlight that when Fj is sufficiently large, the whole formulation reduces to the

uncapacitated model and Qd(y,d) is always feasible regardless of the choice of y. Otherwise, y

needs to be selected to ensure the feasibility of Qd(y,d), which requires to eliminate infeasible

y’s in our computation. We consider both cases in our numerical study to understand and

evaluate the challenge and the impact of Q’s feasibility issue in 2 − Stg DRO. As noted

earlier, existing algorithms are not able to handle this challenge.

Regarding the underlying ambiguity set, the sample space of random demand is D =
{
d ∈

39



R |I | : d−
i ≤ di ≤ d+i , ∀i ∈ [I],

}
. We mainly consider the following moment- and Wasserstein

metric-based ones (using L1 norm), denoted by Pm
d and Pw

d , respectively.

Pm
d =

{
P ∈ M(D,F ) : EP[d] ≤ d̃

}
; PW

d =
{
P ∈ M(D,F ) : W(P,Pe) ≤ rd

}
(40)

As C&CG-DRO (and its variants) is generally applicable, more sophisticated ambiguity sets

are considered in Section 6.5.

Empirical distribution Pe in PW
d consists of a set of random samples drawn from D, each

with equal probability. Besides continuous demand, we also study discrete disruptions that

cause a facility to be unavailable. The demands are then served by the survived facilities.

The basic formulation for binary random disruptions, u = (u1, . . . ,u |J |), is

FL − DRO(u) : min
(x,y)∈X

∑
j∈J

fj yj + ρ
∑
i∈I

∑
j∈J

ci j xi j + (1 − ρ) max
P∈Pu

EP[Qu(y,u)]. (41)

For this random factor, we consider up to k(≤ p − 1) disruptions in set J, and hence the

sample space is U = {u ∈ {0,1} |J | :
∑

j∈J u j ≤ k ∀ j ∈ J}. Such type of sample space, although

is finite, is generally exponential with respect to |J |, rendering the enumeration is practically

infeasible. The corresponding recourse problem is

Qu(y,u) = min
{∑
i∈I

∑
j∈J

ci jwi j :
∑
j∈J

wi j ≥ di ∀i ∈ I,
∑
i∈I

wi j ≤ Fj yj ∀ j ∈ J, (42a)∑
i∈I

wi j ≤ Fj(1 − u j) ∀ j ∈ J, wi j ≥ 0 ∀i ∈ I, ∀ j ∈ J
}
. (42b)

Similarly, following ambiguity sets are investigated.

Pm
u =

{
P ∈ M(U,F ) : EP[u] ≤ k̃

}
; PW

u =
{
P ∈ M(U,F ) : W(P,Pe) ≤ ru

}
. (43)

Also, empirical distribution Pe includes random samples of equal probability drawn from

discrete sample space.

6.2 Computational Results of Oracles for WCEV Problems

We first perform a set of experiments to evaluate two primal oracles for WCEV problems,

including WCEV(F ) and WCEV(O). Instances belonging to “Small” group are with |I | =
|J | = 5, p = 3. For the applicable combinations, the size of empirical set is 5, rd = 2, ru = 0.5,

and k = 2 if U is adopted. For instances belonging to “Large” group, all parameters are

same except that |I | = |J | = 8 and the size of the empirical set is 10.

All results are presented in Table 1, with the time limit set to 10 minutes. where label

“T” indicates the algorithm terminates before generating an optimal solution. Under this

situation, the optimality gap is reported if available, or marked as “-” otherwise. On one

hand, it can be easily seen that Oracle-1 is practically infeasible to apply. Only 3 out of 16
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instances can be solved to optimality, with non-trivial amount of computational times. On

the other hand, the computational time of Oracle-2 for all instances is negligible. Overall,

we can estimate that Oracle-2 is drastically faster, potentially by many orders of magnitude.

Hence, we just adopt Oracle-2 in our remaining experiments.

Table 1: Computational Results of Two Oracles for WCEV Problems

Prob.
Size

Ambiguity
Sets

WCEV
Continuous Sample Space D Discrete Sample Space U
Oracle-1 Oracle-2 Oracle-1 Oracle-2

Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

Small
Moment

WCEV(F ) T 249 0.08 0 T 140 0.02 0
WCEV(O) T 11 0.07 0 113.9 0 0.04 0

Wasserstein
WCEV(F ) T - 0.13 0 23.5 0 0.01 0
WCEV(O) T 89 0.9 0 6.03 0 0.03 0

Large
Moment

WCEV(F ) T 353 0.00 0 T 1604 0.03 0
WCEV(O) T 56.5 0.44 0 T 385 0.14 0

Wasserstein
WCEV(F ) T - 0.23 0 T 14.5 0.05 0
WCEV(O) T 578 3.99 0 T - 0.07 0

6.3 Computational Results of the Uncapacitated Case

Recall that the existing approaches of implementing C&CG and Benders decomposition

to solve 2 − Stg DRO are referred to as basic C&CG and basic Benders decomposition

methods, respectively. In this subsection, we set Fj large than all possible total demands

for all j, i.e., the case without capacity restrictions. So, there is no feasibility challenge

associated with the recourse problem, allowing us to benchmark our work with respect to

the current literature. Next, we first investigate instances of FL − DRO(d) and then those

of FL − DRO(u). Regarding moment-based ambiguity sets, we introduce parameter r and a

random vector v to generate random d̃ or k̃: d̃ = d̄(1 + r × v) with v ∈ [−0.5 ∗ 1,0.5 ∗ 1] and

k̃ = r × v with v ∈ [0,1]. Also, we have ρ = 0.5 in all computational studies.

6.3.1 Results for Instances of Continuous Sample Space

For instances of FL − DRO(d) with moment-based ambiguity set Pm
d , numerical results of

basic C&CG, C&CG-DRO, basic Benders, and Benders-DRO algorithms are presented in

Table 2. Columns “LB”, “UB”, “Iter.” and “|ξ̂ |” report the lower and upper bounds, the

number of main iterations and the number of scenarios generated when an algorithm ter-

minates, respectively. Similar to Table 1, we mark the entry with “T” for “Time(s)” or “-”

for “Gap(%)” if the relevant data is not available. Obviously, Benders type of algorithms

are practically infeasible, noting that they are extremely uncompetitive compared to their

C&CG counterparts. As for basic C&CG and C&CG-DRO, we also observe that the latter

exhibits a clear and consistent advantage. For relatively easy instances that basic C&CG

can solve within a few minutes, C&CG-DRO is faster by an order of magnitude. For more

challenging instances, C&CG-DRO can be up to several hundred times faster. One explana-
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tion for such drastically different performances is that basic C&CG needs to perform many

more iterations, given that it only generates a single scenario for every iteration. Another

explanation is that C&CG-DRO identifies critical scenarios in an effective fashion. Note

that it produces much fewer scenarios for main master problems, compared to basic C&CG,

that are still able to provide a strong support to define worst-case distributions. Similar

observations can be made between Basic Benders and Benders-DRO, i.e., Benders decom-

position with Oracle-2 to generate Benders cuts, where the latter one is also much faster.

Also, we observe that Benders type of algorithms always produce a huge number of Benders

cuts, which, however, are rather ineffective in the derivation of optimal solutions.

The overall performance profiles of all these four algorithms are plotted in Figure 2, where

the dominance of C&CG-DRO is straightforward. To deeply understand algorithms’ dy-

namic behaviors, Figure 3 presents the convergence trajectories of basic C&CG and C&CG-

DRO for the case where |I | = 30, r = 0.65 and p = 6. We do not include those of Benders type

of algorithms due to their very weak performances. It can be seen that C&CG-DRO quickly

converges to an optimal solution, especially with the optimal solution identified within a

couple of iterations. This observation also confirms the importance of solving WCEV prob-

lem. It not only provides an exact evaluation for a first-stage solution, but also generates a

set of scenarios that are critical to select a high quality first-stage solution.

The aforementioned pattern among those algorithms holds for computational results of

instances with Wasserstein metric-based ambiguity set PW
d , which are presented in Table 3.

Typically, C&CG-DRO is faster than basic C&CG by 1 to 2 orders of magnitude, while

Benders type of algorithms remain very uncompetitive. It is also interesting to point out, re-

gardless the solution algorithm we employed, one difference between results for FL − DRO(d)

with Pm
d and with PW

d : the number of (main) iterations for the former one is much larger

than that of the latter one. We believe that the reason behind is that the empirical set un-

derlying PW
d has a determinant impact on its structure. When more samples are available,

it is easier to identify the worst-case distribution, which is observed in Table 3. Moreover,

it is worth highlighting that for some instances, |ξ̂ | is equal to the product between the

number of iterations and N + 1, e.g., instances (in the form of I − rd −N− p) 15− 10− 50− 6

and 30 − 10 − 100 − 10. Recall that the theoretical analysis presented in Propositions 5 and

the structure of PW
d indicate that the number of scenarios with non-zero probability is not

more than N + 1 (for every iteration). Clearly, it is verified by the results of those instances,

which actually are obtained by Oracle-2 that does not depend on Proposition 5.
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Table 2: Computational Results of Uncapacitated Models with Pm
d

|I | r p
Basic C&CG C&CG-DRO

LB UB Gap(%) Iter. |ξ̂ | Time(s) LB UB Gap(%) Iter. |ξ̂ | Time(s)

15

0.65
6 51.3 51.3 0 52 52 18.1 51.3 51.3 0 3 13 1.9
10 16.5 16.5 0 71 71 9.7 16.5 16.5 0 3 12 1.4

0.80
6 49.2 49.2 0 83 83 16.9 49.1 49.2 0 3 19 1.7
10 15.8 15.8 0 50 50 6.0 15.8 15.8 0 3 14 1.5

0.95
6 47.2 47.2 0 58 58 15.1 47.2 47.2 0 4 22 2.7
10 15.1 15.1 0 66 66 7.9 15.1 15.1 0 3 12 1.2

Average 0 63.3 63.3 12.3 0 3.2 15.3 1.7

30

0.65
6 122.8 122.8 0 109 109 5529.5 122.7 122.8 0 3 29 20.3
10 70.8 70.8 0 40 40 120.4 70.8 70.8 0 3 29 8.7

0.80
6 118.3 118.7 0 46 46 770.0 118.2 118.3 0 3 41 17.7
10 68.2 68.2 0 47 47 191.2 68.2 68.2 0 3 25 8.8

0.95
6 113.9 114.1 0 76 76 3782.2 113.9 113.9 0 3 43 43.6
10 65.1 65.1 0 58 58 337.3 65.1 65.1 0 3 27 7.7

Average 0 62.6 62.6 1788.43 0 3.0 32.3 17.8

|I | r p
Basic Benders Benders-DRO

LB UB Gap(%) Iter. Cuts Time(s) LB UB Gap(%) Iter. Cuts Time(s)

15

0.65
6 13.5 97.0 86 2889 2889 T 51.1 51.3 0 250 24975 5977.9
10 0.0 38.9 100 13646 13646 T 5.5 17.3 68 389 27631 T

0.80
6 11.1 94.3 88 3231 3231 T 49.1 49.2 0 231 21545 4503.7
10 0.0 42.7 100 13755 13755 T 4.8 15.8 70 390 29488 T

0.95
6 9.2 93.7 90 3424 3424 T 47.1 47.2 0 235 23769 5257.1
10 0.0 44.5 100 13760 13760 T 5.6 15.1 63 329 28968 T

Average 94 8450.8 8450.8 34 304.0 26062.7

30

0.65
6 0.0 248.8 100 8063 8063 T 1.0 141.0 99 95 28135 T
10 0.0 171.7 100 9423 9423 T 0.0 79.3 100 422 90730 T

0.80
6 0.0 270.8 100 8108 8108 T 0.0 127.2 100 98 28444 T
10 0.0 146.5 100 9249 9249 T 0.0 82.4 100 421 91524 T

0.95
6 0.0 276.7 100 8173 8173 T 1.1 120.8 99 110 31051 T
10 0.0 163.1 100 8816 8816 T 0.0 79.2 100 400 95203 T

Average 100 8638.7 8638.7 100 257.7 60847.8
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Figure 2: Overall performance profiles of Four Algorithms

43



−5 −3 −1 1 3 5 7 90

500

1,000

1,500

2,000

2,500

3,000

ln(time)

Va
lu

e
of

ob
je

ct
iv

e
fu

nc
tio

n
Basic C&CG C&CG-DRO

(a) Convergence over Time

0 20 40 60 80 100 1200

500

1,000

1,500

2,000

2,500

3,000

Number of iterations

Va
ul

e
of

ob
je

ct
iv

e
fu

nc
tio

n

Basic C&CG C&CG-DRO

(b) Convergence over Iterations

Figure 3: Convergence Plots of Computing FL − DRO(u) with Pm
d

Table 3: Computational Results of Uncapacitated Models with PW
d

I rd N p
Basic C&CG C&CG-DRO

LB UB Gap(%) Iter. |ξ̂ | Time(s) LB UB Gap(%) Iter. |ξ̂ | Time(s)

15

2

50
6 62.3 62.6 0 5 250 114.1 62.4 62.4 0 2 80 26.0
10 20.1 20.2 0 3 150 12.9 20.1 20.1 0 1 14 5.1

100
6 62.1 62.3 0 6 600 726.7 62.3 62.3 0 2 139 52.5
10 20.0 20.1 0 3 300 40.3 20.0 20.0 0 1 27 10.4

200
6 62.1 62.3 0 5 1000 3077.7 62.1 62.1 0 2 185 98.7
10 19.9 20.0 0 3 600 134.5 19.9 19.9 0 1 31 16.7

Average 41.3 0 4.2 483.3 684.4 41.2 0 1.5 79.3 34.9

10

50
6 63.7 63.9 0 5 250 214.0 63.8 64.0 0 3 153 70.2
10 21.2 21.2 0 3 150 12.5 21.2 21.2 0 1 51 5.4

100
6 63.6 63.8 0 5 500 770.8 63.7 63.8 0 3 303 179.4
10 21.1 21.2 0 3 300 43.9 21.1 21.1 0 1 101 12.0

200
6 63.4 63.7 0 4 800 1719.3 63.3 63.6 0 2 402 190.5
10 21.0 21.0 0 3 600 129.5 21.0 21.0 0 1 148 20.9

Average 42.5 0 3.8 433.3 481.6 42.5 0 1.8 193.0 79.7

30

2

50
6 143.8 144.4 0 4 200 1105.4 144.2 144.2 0 1 44 130.0
10 84.1 84.4 0 4 200 400.4 84.4 84.4 0 1 51 52.4

100
6 143.6 144.1 0 4 400 4803.8 144.0 144.0 0 1 85 596.8
10 83.9 84.2 0 4 400 1561.6 84.2 84.2 0 1 101 222.3

200
6 143.0 144.8 1 3 600 T 143.5 143.5 0 1 77 1435.9
10 83.7 84.0 0 4 800 6587.7 83.9 83.9 0 1 109 487.9

Average 114.3 0 3.8 433.3 114.0 0 1.0 77.8 487.6

10

50
6 146.6 147.2 0 3 150 1235.2 147.1 147.1 0 1 51 154.6
10 86.3 86.3 0 3 150 500.5 86.3 86.3 0 1 51 49.2

100
6 146.3 147.0 0 3 300 5120.4 146.8 146.8 0 1 101 723.6
10 86.1 86.2 0 3 300 1664.0 86.2 86.2 0 1 101 216.8

200
6 144.8 146.7 1 2 400 T 146.5 146.5 0 1 201 2303.9
10 85.8 86.3 1 2 400 T 86.0 86.0 0 1 201 727.3

Average 116.6 0 2.7 283.3 116.5 0 1.0 117.7 695.9
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6.3.2 Results for Instances of Discrete Sample Space

Given the extremely poor performance of Benders type of algorithms, we do not consider

them in the remainder of this section, unless otherwise noted. For FL − DRO(u), the number

of sites under consideration is smaller than that for FL − DRO(d) due to its computational

challenge. Except for parameter k, other parameters are kept the same as those in Tables 2

and 3. Computational results for FL − DRO(u) with Pm
u and PW

u are presented in Tables 4

and 5, respectively.

From Tables 4 and 5, it can be seen that both algorithms are more sensitive to param-

eters determining the size of instances, including |I | and N. A few instances have not been

solved to the exactness by either algorithm, indicating that FL − DRO(u) is more complex

than FL − DRO(d). The number of iterations is generally much greater than that of its

counterpart FL − DRO(d). The same observation holds for the number of scenarios involved

in. One explanation is that the non-convex structure of the discrete sample space renders

the associated ambiguity sets more intricate. As a result, a large number of iterations needs

to be performed to generate many scenarios that are critical to capture the worst-case distri-

butions. Especially for Wasserstein metric-based PW
u , we note that the number of scenarios

generated could be larger than 2,000, which is drastically more than that for moment-based

Pm
u . As the number of scenarios largely determines the scale of MMP, it deserves a deep

investigation to develop efficient algorithms for MMP when the number of empirical samples

is large. Another observation from handling PW is that the numbers of iterations could be-

come smaller with respect to larger empirical sets, which verifies the effectiveness to employ

those samples for initialization. Between basic C&CG and C&CG-DRO, they have roughly

the same performance for simple instances. Yet, for more challenging instances, C&CG-

DRO demonstrates a much stronger capacity. It either can solve instances that cannot be

computed by basic C&CG, or produces solutions with significantly smaller gaps.

Table 4: Computational Results of Uncapacitated Models with Pm
u

|I | r p k
Basic C&CG C&CG-DRO

LB UB Gap(%) Iter. |ξ̂ | Time(s) LB UB Gap(%) Iter. |ξ̂ | Time(s)

15

0.65
6 3 230.1 230.1 0 120 120 1105.3 229.1 230.1 0 67 99 676.1
10 5 182.4 182.4 0 164 164 790.3 181.6 182.4 0 64 179 530.5

0.80
6 3 236.3 236.3 0 105 105 640.9 235.5 236.3 0 30 59 124.5
10 5 195.1 195.1 0 87 87 173.0 194.2 195.1 0 26 81 109.1

0.95
6 3 242.6 242.6 0 93 93 417.9 242.2 242.6 0 12 25 15.8
10 5 207.8 207.8 0 45 45 51.7 207.8 207.8 0 13 40 35.8

Average 215.7 0 102.3 102.3 529.9 215.7 0 35.3 80.5 248.6

20

0.65
6 3 215.9 299.2 28 107 107 T 266.4 280.3 5 74 118 T
10 5 197.2 237.6 17 138 138 T 208.1 227.6 9 59 234 T

0.80
6 3 220.5 299.2 26 104 104 T 280.3 288.6 3 76 124 T
10 5 212.2 246.6 14 167 167 T 226.3 233.2 3 59 219 T

0.95
6 3 226.2 299.2 24 116 116 T 293.3 296.5 1 92 123 T
10 5 237.6 254.3 7 165 165 T 239.5 240.2 0 45 151 2318.8

Average 272.7 19 132.8 132.8 261.1 3 67.5 161.5
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Table 5: Computational Results of Uncapacitated Models with PW
u

|I | ru N p k
Basic C&CG C&CG-DRO

LB UB Gap(%) Iter. |ξ̂ | Time(s) LB UB Gap(%) Iter. |ξ̂ | Time(s)

15

0.5

50
6 3 201.8 201.9 0 4 150 29.4 201.9 201.9 0 3 91 25.8
10 5 181.9 181.9 0 4 138 113.2 181.5 181.9 0 4 104 162.3

100
6 3 194.3 194.3 0 4 292 72.9 194.2 194.5 0 3 251 49.7
10 5 181.1 181.9 0 3 263 176.9 181.0 181.1 0 3 162 271.4

200
6 3 189.8 189.8 0 4 568 204.1 189.4 189.8 0 4 551 173.1
10 5 168.7 169.5 0 3 390 365.1 168.9 169.6 0 2 246 418.3

Average 186.5 0 3.7 300.2 160.3 186.5 0 3.2 234.2 183.4

2

50
6 3 234.8 234.8 0 11 536 317.6 234.1 234.8 0 11 488 236.4
10 5 200.2 200.7 0 6 207 189.9 200.1 200.7 0 7 280 555.9

100
6 3 229.0 229.0 0 9 681 442.0 228.6 229.3 0 7 667 332.2
10 5 198.2 198.6 0 7 522 559.7 198.2 198.6 0 6 541 865.9

200
6 3 226.4 227.4 0 10 1721 2934.4 226.3 226.4 0 9 1884 3291.1
10 5 192.8 193.1 0 7 980 1214.7 192.6 193.4 0 6 851 1985.6

Average 213.9 0 8.3 774.5 943.4 213.9 0 7.7 785.2 1211.2

20

0.5

50
6 3 173.2 386.1 55 16 800 T 181.2 192.8 6 36 1767 T
10 5 183.8 184.7 0 6 249 334.6 184.0 184.7 0 4 120 303.2

100
6 3 173.5 475.8 64 8 800 T 178.2 205.3 13 22 2118 T
10 5 171.2 171.3 0 4 275 407.5 170.5 171.3 0 2 137 233.7

200
6 3 169.8 452.5 62 5 1000 T 183.2 318.0 42 8 1471 T
10 5 146.4 147.0 0 3 537 967.9 146.5 146.5 0 2 325 480.6

Average 302.9 30 7 610.2 203.1 10 12.3 989.7

2

50
6 3 187.8 320.8 41 14 700 T 220.6 259.8 15 22 1112 T
10 5 213.5 215.9 1 21 858 T 212.8 213.8 0 13 513 1604.5

100
6 3 178.8 521.6 66 8 800 T 189.4 312.6 39 12 1124 T
10 5 210.1 210.8 0 9 663 4590.6 210.4 210.8 0 11 624 3920.4

200
6 3 171.5 521.6 67 4 800 T 183.2 318.0 42 8 1471 T
10 5 196.9 197.4 0 5 650 2740.6 196.9 197.4 0 5 923 3028.5

Average 331.3 29 10.2 745.2 252.1 16 11.8 961.2

6.4 Computational Results of the Capacitated Case

In this subsection, we present computational results for instances of various models with

capacity considerations. Capacity parameters Fj are set to the total demands from a random

number of neighboring sites for j ∈ J. Parameters determining the size of instances, e.g., |I |,

p and k, are set to smaller values compared to those for the uncapacitated case, due to the

increased computational challenge. All results are presented in Tables 6 and 7, noting that

column “|ξ̂ |o” reports the number of scenarios in the optimality set, and column “|ξ̂ |” shows

the number of scenarios in the complete set from solving both WCEV(O) and WCEV(F ).
Hence, the number of scenarios in the feasibility set is the difference between them.

From those tables, it is clear that those instances are more difficult to solve. On average,

the number of iterations, the computational time, and the optimality gap are all significantly

more than those of uncapacitated instances. It is worth noting that the number of scenarios

in the feasibility sets is often non-trivial. Especially for instances with a discrete sample

space, it can outnumber the optimality one by an order of magnitude. This indicates that

the importance of detecting and addressing the infeasibility issue in practice, although it
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has been overlooked in the existing literature. Compared to the uncapacitated case, we also

note that it is more clear that the number of iterations is often smaller for larger N, which

shows that empirical samples are very useful in addressing the complex structure of the

capacitated case.

Table 6: Computational Results of Capacitated Models on Pm

|I | r p
Pm

d p k
Pm

u
LB UB Gap(%) Iter. |ξ̂o | |ξ̂ | Time(s) LB UB Gap(%) Iter. |ξ̂o | |ξ̂ | Time(s)

15

0.65
6 52.8 52.8 0 5 27 38 23.0 6 3 322.3 322.3 0 88 12 106 754.8
10 16.5 16.5 0 4 11 24 5.0 10 5 183.6 184.3 0 53 107 107 236.2

0.80
6 51.4 51.4 0 5 24 39 24.8 6 3 331.4 332.6 0 89 9 105 642.1
10 15.8 15.8 0 4 16 30 5.4 10 5 200.7 201.7 0 45 88 88 158.5

0.95
6 50.8 50.8 0 4 24 31 27.5 6 3 340.3 340.7 0 100 5 125 676.1
10 15.1 15.1 0 4 12 25 6.6 10 5 213.3 214.0 0 17 37 37 29.4

Average 0 4.3 19.0 31.2 15.4 Average 0 65.3 43.0 94.7 416.2

20

0.65
6 81.8 81.9 0 5 47 64 66.1 6 3 280.5 324.9 14 98 66 125 T
10 37.3 37.3 0 4 22 38 24.1 10 5 211.1 228.7 8 70 172 172 T

0.80
6 80.7 81.0 0 5 46 64 76.2 6 3 295.7 334.0 11 105 61 133 T
10 35.9 35.9 0 4 25 47 28.5 10 5 230.9 245.8 6 73 178 178 T

0.95
6 79.7 79.9 0 5 41 53 87.9 6 3 306.8 339.9 10 115 63 146 T
10 34.3 34.4 0 4 26 40 34.6 10 5 247.0 255.8 3 85 199 199 T

Average 0 4.5 34.5 51.0 52.9 Average 9 91.0 123.2 158.8

Table 7: Computational Results of Capacitated Models on PW

|I | rd N p
PW

d ru p k
PW

u
LB UB Gap(%) Iter. |ξ̂o | |ξ̂ | Time(s) LB UB Gap(%) Iter. |ξ̂o | |ξ̂ | Time(s)

15

2

50
6 93.2 93.2 0 2 2 4 114.4

0.5

6 3 286.3 286.3 0 18 13 233 148.2
10 20.1 20.1 0 1 14 14 194.5 10 5 184.0 184.4 0 1 13 13 26.8

100
6 92.8 92.8 0 2 5 9 272.5 6 3 255.3 255.3 0 6 33 133 117.6
10 20.0 20.0 0 1 27 27 371.6 10 5 183.2 183.4 0 3 50 50 138.5

200
6 92.3 92.3 0 2 8 15 445.3 6 3 241.5 241.5 0 3 75 125 206.1
10 19.9 19.9 0 1 31 31 585.3 10 5 171.3 171.4 0 2 72 72 343.5

Average 0 1.5 14.5 16.7 330.6 Average 0 5.5 42.7 104.3 163.4

10

50
6 98.2 98.2 0 2 10 18 118.7

2

6 3 331.8 331.8 0 45 71 1341 1640.4
10 21.2 21.2 0 1 51 51 191.1 10 5 204.9 205.7 0 6 208 208 209.0

100
6 97.9 97.9 0 2 20 35 262.6 6 3 316.5 316.7 0 22 125 1334 1083.4
10 21.1 21.1 0 1 101 101 362.2 10 5 202.1 203.0 0 5 308 308 358.7

200
6 97.4 97.4 0 2 38 68 447.7 6 3 309.6 310.2 0 13 233 1404 1346.4
10 21.0 21.0 0 1 148 148 589.3 10 5 196.1 197.0 0 6 595 595 1001.4

Average 0 1.5 61.3 70.2 328.6 Average 0 16.2 256.7 865.0 939.9

20

2

50
6 114.3 114.3 0 1 51 51 331.5

0.5

6 3 197.0 197.5 0 30 173 213 5465.2
10 44.1 44.1 0 1 43 43 594.6 10 5 184.5 185.2 0 3 25 25 99.5

100
6 114.0 114.0 0 1 95 95 717.2 6 3 190.0 199.5 5 18 243 269 T
10 44.0 44.0 0 1 60 60 1037.5 10 5 170.9 171.7 0 2 29 29 158.4

200
6 113.7 113.7 0 1 98 98 1485.1 6 3 180.8 210.2 14 9 464 464 T
10 43.8 43.8 0 1 41 41 1556.9 10 5 147.3 147.6 0 1 50 50 198.8

Average 0 1.0 64.7 64.7 953.8 Average 3 10.5 164.0 175.0

10

50
6 118.4 118.4 0 1 51 51 316.0

2

6 3 207.3 277.2 25 17 397 397 T
10 45.5 45.5 0 1 51 51 443.3 10 5 213.4 214.2 0 10 188 188 723.7

100
6 118.1 118.1 0 1 101 101 695.8 6 3 191.2 290.1 34 9 432 432 T
10 45.4 45.4 0 1 101 101 781.1 10 5 212.0 212.8 0 7 321 321 1925.9

200
6 117.8 117.8 0 1 150 150 2047.9 6 3 186.9 357.5 48 6 697 697 T
10 45.4 45.4 0 1 191 191 1901.9 10 5 198.7 199.4 0 5 568 568 3802.5

Average 0 1.0 107.5 107.5 1031.0 Average 18 9.0 433.8 433.8

6.5 Computational Results of Complex Ambiguity Sets

In this subsection, we consider uncapacitated FL − DRO defined on more sophisticated am-

biguity sets. Note that our purpose here is to demonstrate C&CG-DRO’s (with Oracle-2 )
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capacity to handle complex problems, rather than to provide a comprehensive evaluation.

One type of ambiguity sets is Wasserstein metric-based set defined by L2 norm, denoted by

PW2
d . Note that it has a second-order conic (SOC) structure and requires SOC programming

solver within Oracle-2 to compute PSP problems. Another type is mixed integer ambiguity

sets extending Pm
u as in the following, which is denoted by PmI

u .

PmI
u =

{
P ∈ M(U,F ) : k − θz ≤ EP[u] ≤ k̃ − θz,

∑
i

zi ≥ z0, zi ∈ {0,1} ∀i ∈ I
}
.

In our numerical study, k = 0.4 ∗ 1, k̃ = 0.8 ∗ 1, θ is set to 0.4 and z0 to 2. All results are

presented in Table 8. Compared to the results in Tables 3 and 4, there is no significant

difference in the computational performance, including time and the number of iterations.

The C&CG-DRO method remains effective for handling L2 norm-defined Wasserstein metric-

based ambiguity sets, while it is still sensitive to the instance scale when the sample space

is discrete. However, we note that this observation is based on this small-scale study and is

not conclusive.

Table 8: Computational Results of Uncapacitated Models with PW2
d and PmI

u

|I | r2
d N p

SOC Ambiguity Set (PW2
d )

r p k
MIP Ambiguity Set (PmI

u )
LB UB Gap(%) Iter. |ξ̂ | Time(s) LB UB Gap(%) Iter. |ξ̂ | Time(s)

15

2
50 6 62.4 62.7 0 1 51 31.6

0.65
6 3 235.6 236.4 0 34 69 216.4

100 6 62.3 62.5 0 1 101 58.5 10 5 193.3 194.2 0 30 76 103.0
200 6 62.1 62.4 0 1 201 135.2

0.80
6 3 235.4 236.4 0 34 64 195.3

30
50 6 64.4 64.7 0 2 98 72.3 10 5 194.7 195.1 0 27 58 83.4
100 6 64.3 64.6 0 2 198 150.9

0.95
6 3 235.4 236.4 0 33 63 191.1

200 6 64.2 64.4 0 2 397 333.3 10 5 195.0 195.2 0 27 60 68.1
Average 0 1.5 174.3 130.3 Average 0 30.8 65.0 68.1

20

2
50 6 93.6 93.6 0 1 51 72.0

0.65
6 3 276.6 289.3 4 70 130 T

100 6 93.4 93.4 0 1 101 217.3 10 5 212.5 225.2 6 69 165 T
200 6 93.2 93.2 0 1 201 776.9

0.80
6 3 279.7 290.5 4 74 122 T

30
50 6 96.2 96.6 0 1 51 69.2 10 5 225.4 233.2 3 65 155 T
100 6 96.1 96.4 0 1 101 222.4

0.95
6 3 280.5 293.2 4 65 133 T

200 6 96.0 96.3 0 1 201 687.3 10 5 224.9 233.2 4 66 170 T
Average 0 1.0 117.7 340.9 Average 4 68.2 145.8

7 Conclusions

In this paper, rather than following the dual perspective that is popular in the literature, we

present a new study on two-stage DRO by taking the primal perspective. This perspective

allows us to gain a deeper and more intuitive understanding on DRO, to develop a general

and fast decomposition algorithm (and its variants) by leveraging existing powerful solution

methods, and to address a couple of unsolved issues underlying two-stage DRO. Theoretical

analyses regarding the strength, convergence, and iteration complexity of the developed

algorithm are also presented. A systematic numerical study on the distributionally robust

facility location problem has been conducted, taking into account multiple critical factors..

Results clearly demonstrate that our new solution algorithm (and its variants) is generally
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applicable and achieves remarkable superiority over existing methods, often solving problems

up to several orders of magnitude faster.

Regarding future research directions, it would be interesting to extend our primal per-

spective to consider other types of risk measures beyond the expected value under the DRO

framework. Also, enhancing the developed algorithm (and its variants) and promoting it in

solving large-scale and complex data-driven problems will be carried out to support various

real-world systems.
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¯
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Figure 4: Flowchart for C&CG-DRO algorithm with Oracle-2
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